
Ann. Henri Poincaré Online First
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Spin Conductance and Spin Conductivity in
Topological Insulators: Analysis of
Kubo-Like Terms
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Abstract. We investigate spin transport in 2-dimensional insulators, with
the long-term goal of establishing whether any of the transport coefficients
corresponds to the Fu–Kane–Mele index which characterizes 2d time-
reversal-symmetric topological insulators. Inspired by the Kubo theory
of charge transport, and by using a proper definition of the spin current
operator (Shi et al. in Phys Rev Lett 96:076604, 2006), we define the
Kubo-like spin conductance Gsz

K and spin conductivity σsz
K . We prove that

for any gapped, periodic, near-sighted discrete Hamiltonian, the above
quantities are mathematically well defined and the equality Gsz

K = σsz
K

holds true. Moreover, we argue that the physically relevant condition to
obtain the equality above is the vanishing of the mesoscopic average of
the spin-torque response, which holds true under our hypotheses on the
Hamiltonian operator. A central role in the proof is played by the trace
per unit volume and by two generalizations of the trace, the principal
value trace and its directional version.
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1. Introduction

The last few decades witnessed an increasing interest, among solid state physi-
cists, for physical phenomena having a topological origin. This interest traces
back to the milestone paper by Thouless, Kohmoto, Nightingale and den Nijs
on the quantum Hall effect (QHE) [49], includes the pioneering work of Haldane
on Chern insulators [23] and the seminal papers by Fu, Kane and Mele concern-
ing the quantum spin Hall effect (QSHE) [18,19,25,26] up to the most recent
developments in the flourishing field of topological insulators [2,25,30,37,44].

As it is well known, in the QHE a topological invariant (Chern number)
is related to an observable quantity, the transverse charge conductance or
Hall conductance. By analogy, in the context of the QSHE for 2-dimensional
time-reversal-symmetric insulators, one would like to connect—if possible—
the relevant topological invariant (Fu–Kane–Mele index) to a macroscopically
observable quantity. The natural candidates are spin conductance and spin
conductivity, whose proper definition has been debated, and whose equivalence
has not been yet established.

The first crucial point is to characterize the operator corresponding to
the spin current density. In the last few years, an intense debate about the
correct expression of the latter took place, but a general consensus was not
reached [1,10,37,44,46,48,51]. Among the candidates, one may include1:

(i) the naive guess

Jnaive = i[H,X]Sz,

where H is the Hamiltonian operator of the system, X = (X1,X2) is the
position operator, and Sz represents the z-component of the spin;

(ii) its symmetrized version, namely

Jsym = 1
2
(Jnaive + J∗

naive) = 1
2
(i[H,X]Sz + iSz [H,X]) ,

which has the advantage of providing a self-adjoint operator;
(iii) last but not least, the alternative provided by the “proper” spin current

Jprop = i[H,XSz], (1.1)

proposed by [46], which is also self-adjoint.

1We use Hartree atomic units, so that the reduced Planck constant �, the squared electron

charge e2 and the electron mass me are dimensionless and equal to 1. In particular, the

quantum of charge conductivity in the QHE is e2

h
= 1

2π
.
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Whenever [H,Sz] = 0 (spin-commuting case), the three above definitions
agree, while they differ in general. Notice that spin conservation is often vio-
lated in topological insulators, as it happens e.g. in the paradigmatic model
proposed by Kane and Mele [25,26], reviewed in Appendix A. Hence, it is of
prominent importance to understand which choice best models the physics,
aiming at a closer comparison between the theoretical predictions and the
ongoing and challenging experiments on the quantum spin Hall effect [50].

The choice (iii) has the advantage to provide an operator associated to
a sourceless continuity equation for the associated density and to Onsager
relations [46,51]. On the other hand, whenever H is periodic, Jsym provides a
periodic (or covariant, when ergodic randomness is added) operator, while—as
early remarked by Schulz-Baldes—the latter property fails to hold for Jprop,
which “leads to technical difficulties, but also questions the physical relevance”
of the operator Jprop [44].

In this paper, we are inspired by the following simple but new observa-
tion: even if Jprop is not periodic, it satisfies a peculiar commutation relation
with the lattice translations {Tp}p∈Zd whenever the Hamiltonian operator is
periodic. Namely,

Tp Jprop T−1
p = Jprop − p i[H,Sz] ∀p ∈ Z

d. (1.2)

Hence, whenever the spin torque i[H,Sz] averages to zero on the mesoscopic
scale, e.g. because τ (i[H,Sz]ρ(t)) = 0 where τ( · ) is the trace per unit volume
(see Definition 2.6) and ρ(t) is the density matrix describing the state of the
system, the operator Jprop is “mesoscopically periodic”, in the sense that its
commutator with the lattice translations vanishes on the mesoscopic scale.

A second crucial question is whether the relevant observable quantity
related to the Fu–Kane–Mele (FKM) index is the spin conductance, or the
spin conductivity, or some other transport coefficient, if any. We recall that
the transverse (resp. direct) spin conductance is defined, experimentally, as
the ratio between the spin current intensity and the electric potential drop
measured in orthogonal (resp. parallel) directions, hence as the ratio of two
extensive observable quantities. On the contrary, the transverse (resp. direct)
spin conductivity is the ratio between the expectation value per unit volume of
spin current and the strength of the electric field measured in orthogonal (resp.
parallel) directions, and as such is the ratio of two intensive quantities. In the
case of charge transport in 2-dimensional systems, the equality of charge con-
ductance and conductivity holds true, as proved in [7] under suitable technical
hypotheses, at least within the linear response approximation (LRA) [3,4,21].
In the case of spin transport, the situation is instead radically different and,
unless [H,Sz] = 0, it is not obvious a priori whether the equality between spin
conductance and spin conductivity holds true or not.

Our analysis encompasses several steps. As a first step, we reconsider
the spin transport starting from the first principles of quantum mechanics.
This analysis, performed in two related papers [32,33] by a space- and a
time-adiabatic approach, respectively, shows that spin conductivity and con-
ductance, defined by using the operator Jprop (whose lack of periodicity is
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harmless on the mesoscopic scale, as remarked above), contain additional terms
with respect to what suggested by the analogy with the Kubo theory of charge
transport. The physical relevance of the additional terms is at the moment
unclear and deserves further investigations by both numerical and analytical
methods.

As a second step, in this paper we investigate the Kubo-like terms. Explic-
itly, they are the following:
(a) the Kubo-like spin conductivity is defined as

σsz

K := τ(Σsz

K ) with Σsz

K := iP
[
[P,X1Sz], [P,X2]

]
P (1.3)

where P is the Fermi projector up to energy μ ∈ R, which is supposed to
be in a spectral gap, and τ( · ) is the trace per unit volume (tuv). The
fact that τ(Σsz

K ) is well defined and finite will be part of our results.

(b) the Kubo-like spin conductance is defined as

Gsz

K (Λ1,Λ2) := 1-pvTr
(
Gsz

K (Λ1,Λ2)
)

with Gsz

K (Λ1,Λ2) := iP
[
[P,Λ1Sz], [P,Λ2]

]
P (1.4)

where Λj is a switch function in direction j ∈ {1, 2}, as in Definition 2.3.
The fact that the operator Gsz

K (Λ1,Λ2) is not trace class (see Remark
4.8), forces us to introduce a suitable trace-like linear functional, denoted
by 1-pvTr( · ) and baptized directional principal value trace in direction
j = 1 in Definition 2.5, which generalizes the trace.
The new result of our paper is that for any gapped, periodic, and near-

sighted Hamiltonian (compare Assumption 2.2), one has the equality

Gsz

K (Λ1,Λ2) = σsz

K .

In particular, under these assumptions, the spin conductance is independent of
the switch functions Λ1 and Λ2 involved in its definition. The precise results,
which for technical reasons are proved in the setting of discrete Hamiltonian
operators, are stated in Theorems 2.8 and 2.9, while the crucial observation
mentioned after (1.2) reflects in Eqs. (2.4), (3.2) and (5.20) in the proofs.
Notice that our results do not assume the smallness of [H,Sz]; hence, they
go beyond the regime of spin quasi-conservation considered in previous papers
[40,44].

Moreover, the structure of the proof suggests that, more generally, spin
conductance and conductivity are equal under the more general condition that
τ(Tsz

) = 0, where the spin-torque response operator is defined by

Tsz
:= iP

[
[P, Sz], [P,X2]

]
P. (1.5)

Physically, τ(Tsz
) represents—within LRA—the response of the system, in

terms of spin torque i[H,Sz], to a uniform electric field in direction 2. Indeed,
the term [P,X2] originates from the perturbation by a linear potential, i.e.
a uniform electric field, whereas [P, Sz] stands for the spin-torque response,
namely the response in the expectation value of i[H,Sz], to this perturbation.
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To prove our results, we need to set up a suitable mathematical machin-
ery, involving some trace-like linear functionals, as the principal value trace
(Definition 2.4) and the j-directional principal value trace (Definition 2.5).
We also prove some relevant properties of the trace per unit volume (Defini-
tion 2.6).
As it is well known, in an infinite-dimensional Hilbert space one has in general
Tr([A,B]) �= 0, since the cyclicity of the trace holds true only under special
conditions, e.g. if AB and BA are trace class and both A and B are bounded
operators [47, Corollary 3.8]. Similar subtleties appear when considering the
trace-like functionals mentioned above. It is noteworthy that many physically
relevant quantities appear as the trace or tuv of exact commutators. For
example, as noticed in [7] the Kubo charge conductance σe

K for a quantum
Hall system can be rewritten as

σe
K = i τ

(
[PX1P, PX2P ]

)

where P is the spectral projector up to the Fermi energy. Hence, the men-
tioned mathematical subtleties are not an abstract academic issue, but are
deeply intertwined with the physics of quantum transport. For this reason, we
devote two sections to the analysis of the properties of the mentioned trace-like
functionals (Sects. 3, 4), also considering that part of this machinery might be
of independent interest. In this analysis, we greatly benefited by the previous
work on charge transport in quantum Hall systems, including in particular
[3,6–9,14,15]. The mathematical setting and the main results are discussed in
Sect. 2, while Sect. 5 is devoted to the proofs.

Our work provides a mathematical consistent expression for the Kubo-
like terms of spin conductivity and conductance, and some sufficient conditions
which imply their equality. Moreover, our work puts on solid mathematical
grounds the proposal to use Jprop as the self-adjoint operator corresponding
to spin current density, circumventing the criticism related to its failure to be
periodic. These results pave the way to further developments in the mathe-
matical theory of time-reversal-symmetric topological insulators, a very active
field of research in Solid State Physics and, more recently, in Mathematical
Physics [5,11–13,16,17,20,22,27,34,35,40,41,44,45].

2. Setting and Main Results

We consider independent electrons moving in a discrete set C ⊂ R
2, which

is supposed to be a periodic crystal, i.e. it is equipped with a free action
of a Bravais lattice Γ � Z

2. In view of the latter action, after a choice of a
periodicity cell, one decomposes C � Z

2×{ν1, . . . , νN}, where the second factor
corresponds to the “points inside the chosen periodicity cell” (see Appendix A
for the specific case of the honeycomb structure and the Kane–Mele model).

Taking spin into account, the Hilbert space of the system is Hphys =
�2(C) ⊗ C

2 which, in view of the above procedure, is identified with

Hdisc = �2(Z2) ⊗ C
N ⊗ C

2. (2.1)
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Any bounded operator A acting on Hdisc is characterized by a collection
of matrices {An,m}n,m∈Z2 ⊂ End(CN ⊗ C

2). We denote by |Am,n| the corre-
sponding matrix norm, while the operator norm on the full Hilbert space Hdisc

is denoted by ‖A‖.

Definition 2.1. A bounded operator A acting on Hdisc is called near-sighted2

if and only if there exist constants C, ζ > 0 such that

|Am,n| ≤ Ce− 1
ζ ‖m−n‖1 ∀m,n ∈ Z

2,

where ‖n‖1 :=
∑2

j=1 |nj |. The constant ζ is called the range of A.

Assumption 2.2. The Hamiltonian operator H is a bounded self-adjoint oper-
ator acting on Hdisc. Further, we assume that the operator H

(H1) is near-sighted with range ζH ;
(H2) is periodic, namely Hm,n = Hm−p,n−p for all m,n,p ∈ Z

2;
(H3) admits a spectral gap, namely there exist non-empty sets I1, I2 ⊆ R and

a, b ∈ R, such that

Spectrum(H) = I1 ∪ I2 and sup I1 < a < b < inf I2.

The interval Δ = (inf a, sup b) is called the spectral gap.

For μ ∈ Δ, we denote the Fermi projection by

P := χ(−∞,μ)(H), (2.2)

where χΩ is the characteristic function of the set Ω. In Appendix A, we show
that the Hamiltonian HKM of the Kane–Mele model, which is often consid-
ered the paradigmatic model of time-reversal-symmetric topological insula-
tors, enjoys all the above assumptions, whenever the values of the parame-
ters guarantee the existence of a spectral gap. Moreover, one easily sees that
[HKM, Sz] �= 0.

The aim of this paper is to analyze the Kubo-like terms in the spin
conductivity and spin conductance, defined as in (1.3) and (1.4), respectively.
In our context, the position operator X = (X1,X2) acts in Hdisc as

(Xjϕ)n := njϕn, j ∈ {1, 2}, ∀ϕ ∈ D(Xj).

The spin operator Sz acts on Hdisc as 1⊗ 1⊗ 1
2
sz, where sz is the third

Pauli matrix. In order to keep a light notation, in the following we identify
any operator A which acts only in one sector of Hdisc, with the one acting
in Hdisc with extra identity factors, and we keep the same notation A (e.g.
X1 ≡ X1 ⊗ 1CN ⊗ 1C2 , and so on).

The operator Gsz

K involves the notion of switch function, which we now
define.

2The term near-sighted was proposed by the Nobel Laureate Walter Kohn [30,39], in a
slightly different context. For electrons in crystals, “it describes the fact that [. . . ] local
electronic properties [. . . ] depend significantly on the effective external potential only at
nearby points.” The term short range operator is often equivalently used in the literature,
as well as local operator. The latter use, however, overlaps with the standard meaning of the
word “local” in the theory of operators, so we avoid it.
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Definition 2.3. Fix j ∈ {1, 2}. A switch function in the jth-direction is a
function Λj : Z

2 → [0, 1] that depends only on the variable nj and satisfies

Λj(nj) =

{
0 if nj < n−
1 if nj ≥ n+

for arbitrary n− < n+.

In the following, we will identify a function defined on Z
2 with the correspond-

ing multiplication operator on �2(Z2).
As anticipated in the introduction, many subtleties of the quantum theory

of transport arise since some relevant operators appearing in the theory are
not trace class. The operators Σsz

K and Gsz

K , defined in (1.3) and (1.4), are
not exceptional. To overcome this problem, one needs to define suitable trace-
like linear functionals corresponding to the relevant physical quantities. The
transverse spin conductivity is defined through the well-known trace per unit
volume. However, for the conductance the situation is quite different and we
have to introduce the notions of principal value trace and its directional version.

We make use of the norm

‖n‖∞ := max
j∈{1,2}

|nj | ∀n ∈ Z
2,

which conveniently respects the square structure of Z2. For any L ∈ 2N + 1
and n0 ∈ Z

2, we set

QL(n0) :=
{
n ∈ Z

2: ‖n − n0‖∞ ≤ L/2
}

to denote the square of side L centered at n0. Following [9], we restrict to odd
integers (L ∈ 2N + 1) in order to use the convenient decomposition3

QL(n0) =
⊔

n∈QL(n0)

Q1(n). (2.3)

For the sake of better readability, we write QL for QL(0).
We denote by χL := χQL

, for L ∈ 2N + 1, the characteristic function of the
square QL, and by χj,L, for j ∈ {1, 2} and L ∈ 2N + 1, the characteristic
function of the stripe

{
m ∈ Z

2: |mj | ≤ L/2
}
.

Definition 2.4 (Principal value trace). Let A be an operator acting in Hdisc

such that4 χLAχL is trace class for every L ∈ 2N+1. The principal value trace
of A, is defined, whenever the limit exists, as

pvTr(A) := lim
L→∞

L∈2N+1

Tr(χLAχL).

3The symbol
⊔

corresponds to the disjoint union.
4The condition that “χLAχL is trace class for every L ∈ 2N + 1” is automatically sat-

isfied in every discrete model, as those considered in this paper, since the range of χL is
finite-dimensional. We decided to state this redundant condition anyhow, since we prefer to
consider the same definition for discrete and continuum models (Schrödinger operators), as
we plan to extend the proof to the latter models in the future.
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Notice that the principal value trace was already used in the context of
quantum Hall effect [7, Definition 6.6], but not its directional version that is
used below. As we deal with a two-dimensional system, we can also define
the notion of directional principal value trace depending on the jth-direction,
where j ∈ {1, 2} indicates the direction around which one localizes.

Definition 2.5 (Directional principal value trace). Fix an index j ∈ {1, 2}. Let
A be an operator acting in Hdisc such that χj,LAχj,L is trace class for every
L ∈ 2N + 1. The j-directional principal value trace of A, is defined, whenever
the limit exists, as

j-pvTr(A) := lim
L→∞

L∈2N+1

Tr(χj,LAχj,L).

We will show in Sect. 3 that both the principal value trace and its direc-
tional version coincide with the usual trace whenever A is a trace class oper-
ator. However, these functionals work also for operators which are not trace
class, in analogy with generalized integrals. Finally, we recall the definition of
trace per unit volume (see [4,9] and references therein).

Definition 2.6 (Trace per unit volume). Let A be an operator acting in Hdisc

such that (see footnote 4) χLAχL is trace class for every L ∈ 2N+1. The trace
per unit volume of A, is defined, whenever the limit exists, as

τ(A) := lim
L→∞

L∈2N+1

1
L2

Tr(χLAχL).

The fundamental properties of these three trace-like linear functionals are dis-
cussed in Sect. 3.

We now state an auxiliary lemma and then discuss the main results of
the paper.

Lemma 2.7. Let H be as in Assumption 2.2 and P be the corresponding Fermi
projection, as in (2.2). Then, the spin-torque response operator

Tsz
= iP

[
[P, Sz], [P,X2]

]
P

is periodic and bounded. Moreover, Tsz
has finite trace per unit volume and it

holds

τ(Tsz
) = Tr(χ1Tsz

χ1).

τ(Tsz
) is called the mesoscopic average of spin-torque response.

Theorem 2.8 (Vanishing of spin-torque response). Let H be as in Assump-
tion 2.2 and P be the corresponding Fermi projection, as in (2.2). Then,

τ(Tsz
) = 0.

The physical interpretation of this result is that a uniform electric field
does not induce any particular spin-torque excess in the sample, at least within
LRA, when averaging on a mesoscopic scale (as done by the trace per unit vol-
ume). The proof of it relies on the conditional cyclicity of tuvwhich, while
false in general, holds true for a specific class of operators, as proved in Propo-
sition 3.5.
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Theorem 2.9. Let H be as in Assumption 2.2 and P the corresponding Fermi
projection. Then:
(1) Let Λ2 be a fixed switch function in the 2nd-direction. Assume that

Gsz

K (Λ1,Λ2), defined by (1.4), is finite for at least a switch function Λ1.
Then, Gsz

K (Λ′
1,Λ2) is finite for any switch function Λ′

1, and it is indepen-
dent of the choice of Λ′

1.
(2) The operator Σsz

K , defined in (1.3), satisfies

(Σsz

K )m,n = (Σsz

K )m−p,n−p − p1 (Tsz
)m−p,n−p for all m,n,p ∈ Z

2, (2.4)

where Tsz
is the spin-torque response defined in (1.5). Moreover, the

Kubo-like term in the transverse spin conductivity, defined as σsz

K :=
τ(Σsz

K ), is well defined and satisfies

σsz

K = Tr(χ1Σsz

K χ1).

(3) Finally, the equality

σsz

K = Gsz

K (Λ1,Λ2) (2.5)

holds true. In particular, Gsz

K is finite and independent of the choice of
the switch functions Λ1,Λ2 in both directions.

Remark 2.10. Before proving the above statements, a few comments are in
order.

(i) Notice that the operator Σsz

K is, in general, not periodic; hence, the fact
that its trace per unit volume is well defined and finite, as proved in
Theorem 2.9 (2), is not trivial.

(ii) The simplicity of formula (2.5) might obscure the physics of the problem.
Indeed, during the proof, one shows that it holds true [see Eq. (5.20)]

Gsz

K (Λ1,Λ2) = σsz

K +
1
2

lim
L→∞

L∈2N+1

∑

m1∈Z

|m1|≤L/2

τ(Tsz
). (2.6)

The second summand is a series of constant terms, which is either zero
if τ(Tsz

) = 0, or divergent otherwise. As stated in Theorem 2.8, for
a gapped periodic near-sighted Hamiltonian, one has always τ(Tsz

) = 0.
On the other hand, we suspect that Eq. (2.6) is valid in a broader context.

(iii) Whenever

[H,Sz] = 0, (2.7)

the spin-torque response operator vanishes, see (1.5). In this particular
case, it is straightforward to prove that Gsz

K (Λ1,Λ2) = σsz

K , since the
proof boils down to the analogous proof for charge transport (see [7] for
the continuum case, and [31] for a recent overview of the literature).
In view of (2.7), P admits the decomposition induced by the Sz-
eigenspaces, namely

P = P↑ ⊕ P↓.

In the above, P↑ and P↓ are both projections on �2(Z2) ⊗ C
N . In this

specific case, if H enjoys Assumption 2.2 and is time-reversal symmetric,
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namely ΘHΘ−1 = H for Θ = eiπsy/2K, where sy is the second Pauli
matrix and K is the natural complex conjugation on Hdisc, one has that

σsz

K = iτ(P
[
[P,X1], [P,X2]

]
SzP )

=
1
2
(
C1(P↑) − C1(P↓)

)
= C1(P↑), (2.8)

with

C1(Ps) :=
i

2π

∫

B

dk tr (Ps(k)[∂1Ps(k), ∂2Ps(k)]) for s ∈ {↑, ↓},

where Ps(k) refers to the fiber operator at fixed crystal momentum, with
respect to the modified Bloch–Floquet transform (see e.g. [34,38]).
Hence, in the spin-commuting case our result agrees with previous contri-
butions [40,44,45], yielding that the Kubo-like spin conductivity, given
by (2.8), agrees with the Spin-Chern number. Moreover, formula (2.8)
agrees with the Fu–Kane–Mele index modulo 2 [18,25,45].

3. Machinery: (Directional) Principal Value Trace and Trace
Per Unit Volume

In this section, we state and prove some fundamental properties of the trace-
like functionals introduced before. First, we recall some facts about the trace
and its conditional cyclicity.

Proposition 3.1 (Conditional cyclicity of the trace [47, Corollary 3.8]). Let H
be a separable Hilbert space. If A,B ∈ B(H) have the property that both AB
and BA are in the trace class ideal B1(H) then

Tr(AB) = Tr(BA).

Hereafter, the trace on the Hilbert space Hdisc will be denoted by TrA,
for any trace class operator A, while the (matrix) trace on C

N ⊗C
2 � C

2N by
tr( · ).

If an operator A is trace class, its trace can be computed through the diag-
onal elements in the position basis of �2(Z2), namely Tr(A) =

∑
n∈Z2 tr(An,n),

the latter series being absolutely convergent. We say that Tr(A) is computed
“through the diagonal kernel”. The construction of the trace is somehow anal-
ogous to the construction of the Lebesgue integral [42, Section VI.6]. As well
known, whenever a function is Lebesgue integrable, then its principal value
integral exists and it is equal to the Lebesgue integral. Similarly, the (direc-
tional) principal value trace is a natural extension of the trace.

Lemma 3.2. If A ∈ B1(Hdisc) then pvTr(A) and j-pvTr(A) are well defined
and

pvTr(A) = Tr(A) = j-pvTr(A).

Proof. By the diagonal kernel computation
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Tr(A) =
∑

n∈Z2

tr(An,n) = lim
L→∞

L∈2N+1

∑

n∈Z
2

‖n‖∞≤L/2

tr(An,n)

= lim
L→∞

L∈2N+1

Tr(χLAχL) = pvTr(A). (3.1)

The absolute convergence of the series also allows us to compute it as a limit of
partial sum in one direction only, leading to j-pvTr(A) by Fubini’s Theorem.

�

In the following, we give two sufficient conditions for the existence of the
trace per unit volume of an operator: the first one (periodicity) is well known
[4,9], while the second one is, to our knowledge, new.

Proposition 3.3 (Existence of TUV, condition I). Let A be a periodic operator
acting in Hdisc such that (see footnote 4) χLAχL is trace class for every L ∈
2N + 1. Then, τ(A) is well defined and

τ(A) = Tr(χ1Aχ1).

Proof. The operator χLAχL is trace class for every L ∈ 2N + 1, and its trace
can be computed through the diagonal kernel. In view of periodicity, one has
An,n = A0,0 for all n ∈ Z

2. Therefore, by using decomposition (2.3), one
obtains

Tr(χLAχL) =
∑

n∈Z
2

‖n‖∞≤L/2

tr(An,n) = L2 tr(A0,0).

Hence limL→∞ 1
L2 Tr(χLAχL) = tr(A0,0) = Tr(χ1Aχ1). �

Proposition 3.4 (Existence of TUV, condition II). Let A,B be operators acting
in Hdisc such that (see footnote 4) χLAχL and χLBχL are trace class for every
L ∈ 2N + 1 and satisfy the following equation

Am,n = Am−p,n−p + g(p)Bm−p,n−p for all m,n,p ∈ Z
2, (3.2)

where either5 tr(B0,0) = 0 or g : Z
2 → R is an odd function in at least one

variable.6 Then, τ(A) is well defined and

τ(A) = Tr(χ1Aχ1).

Proof. The operator χLAχL is trace class, and we compute its trace through
the diagonal kernel. In view of Eq. (3.2), one has An,n = A0,0 + g(n)B0,0.
Therefore, using decomposition (2.3), we obtain

5Notice that if B is periodic then tr(B0,0) = τ(B) by Proposition 3.3. However, periodicity

is not required here.
6Namely, setting (R1g)(n1, n2) := g(−n1, n2) and (R2g)(n1, n2) := g(n1, −n2) for all n ∈
Z
2, one says that g : Z

2 → R is an odd function in at least one variable if and only if there
exists an index j ∈ {1, 2} such that g(n) = −(Rjg)(n) for all n ∈ Z

2.
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Tr(χLAχL) =
∑

n∈Z
2

‖n‖∞≤L/2

tr(An,n)

= L2 tr(A0,0) + tr(B0,0)
∑

n∈Z
2

‖n‖∞≤L/2

g(n). (3.3)

If tr(B0,0) = 0 the second summand on the right-hand side vanishes. Other-
wise, if the function g is odd in at least one variable, there exists an index
j ∈ {1, 2} such that g(n) = −(Rjg)(n), where Rj is the corresponding reflec-
tion (see footnote 6). Denoting by k the index different from j, we have

∑

n∈Z
2

‖n‖∞≤L/2

g(n) =
∑

nk∈Z

|nk|≤L/2

∑

nj∈Z

|nj |≤L/2

g(n) = 0.

As tr(B0,0) = Tr(χ1Bχ1) is finite by hypothesis, the second summand on the
right-hand side of (3.3) vanishes. �

Proposition 3.5 (Conditional cyclicity of TUV). Let A,B be periodic operators
acting in Hdisc such that (see footnote 4) χLABχL and χLBAχL are trace
class for every L ∈ 2N + 1. Then,

τ(AB) = τ(BA).

Proof. Applying Proposition 3.3 and computing the trace of χ1ABχ1 through
the diagonal kernel, we have τ(AB) =

∑
n∈Z2 trA0,nBn,0. We conclude the

proof by using the periodicity of A and B, the change of variable n �→ −n and
the cyclicity of tr( · ) on a finite-dimensional Hilbert space. �

4. Localization Properties of Near-Sighted Operators

In this section, we consider the peculiar localization properties of operators
which are near-sighted, see Definition 2.1, and their relation with the trace class
condition. Preliminarily, we recall some results which are useful to establish
the trace class property in the discrete case [14].

Remark 4.1 (Hölmgren’s estimate). For an operator A acting on Hdisc

‖A‖ ≤ max

(

sup
m∈Z2

∑

n∈Z2

|Am,n| , sup
n∈Z2

∑

m∈Z2

|Am,n|
)

.

Definition 4.2. A function f :Z2 → R is called 1-Lipschitz if and only if it
satisfies

|f(m) − f(n)| ≤ ‖m − n‖1 for all m,n ∈ Z
2.

Lemma 4.3. If A is a near-sighted operator acting in Hdisc with range ζ, then
e±λfAe∓λf is bounded for every 0 ≤ λ < 1/ζ and every 1-Lipschitz function
f .
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Proof. For every m ∈ Z
2, we compute

∑

n∈Z2

∣
∣
∣
(
e±λfAe∓λf

)
m,n

∣
∣
∣ =

∑

n∈Z2

∣
∣
∣e±λf(m)Am,ne∓λf(n)

∣
∣
∣

=
∑

n∈Z2

∣
∣Am,ne±λ(f(m)−f(n))

∣
∣

≤ C
∑

n∈Z2

e− 1
ζ ‖m−n‖1eλ|f(m)−f(n)|

≤ C
∑

n∈Z2

e− 1
ζ ‖m−n‖1eλ‖m−n‖1

= C
∑

n∈Z2

e−( 1
ζ −λ)‖n‖1 ,

where we have used the near-sightedness of A, the inequality |ea| ≤ e|a| for
all a ∈ R, the fact that f is a 1-Lipschitz function and Z

2 is invariant under
Z

2-translation. The series on the right-hand side of the last inequality is finite
as long as λ < 1

ζ , so we conclude by invoking Remark 4.1. �

Definition 4.4. Let A ∈ B(Hdisc). For j ∈ {1, 2} and α > 0, we say that A is
α-confined in jth-direction7 if and only if

A eα|Xj | is bounded.

Clearly, if A is α-confined in jth-direction for some α > 0 and j ∈ {1, 2}, then
A is λ-confined in jth-direction for every 0 < λ ≤ α.

Lemma 4.5. Let A be a near-sighted operator acting in Hdisc, with range ζ,
and let Λj be a switch function in jth-direction. Then

[Λj , A] is α-confined in jth-direction,

for all α such that 0 < α < 1/ζ.

Proof. For 0 < α < 1
ζ , one notices that

[Λj , A] eα|Xj | = ΛjA(1 − Λj) eα|Xj | − (1 − Λj)AΛj eα|Xj |. (4.1)

We analyze the first summand on the right-hand side (the second is similarly
bounded)

ΛjA(1 − Λj)eα|Xj | = Λje−αXj · eαXj Ae−αXj · (1 − Λj)eαXj+α|Xj | (4.2)

The middle term is bounded by Lemma 4.3 since A is near-sighted and the
two other terms are bounded due to the support of the switch function. �
Proposition 4.6. Let j �= k ∈ {1, 2}. If A is α-confined in the jth-direction, B
is a bounded operator such that B∗ is β-confined in the kth-direction and C is
an operator such that

e−α|X1|Ceα|X1| is bounded or eβ|X2|Ce−β|X2|is bounded,

then ACB is trace class.

7In the terminology of [14].



G. Marcelli et al. Ann. Henri Poincaré

Proof. Without loss of generality, suppose that j = 1 and k = 2. Assume that
e−α|X1|Ceα|X1| is bounded. We have that

ACB = Aeα|X1| · e−α|X1|Ceα|X1| · e−α|X1|e−β|X2| · eβ|X2|B,

is trace class. Indeed, on the right-hand side the first and the second factors
are bounded by hypotheses. Concerning the fourth factor, in view of T ∗S∗ ⊆
(ST )∗ for any S and T closed, densely defined operators in Hdisc, we have
∥
∥eβ|X2|B

∥
∥ ≤

∥
∥
∥
(
B∗eβ|X2|)∗∥∥

∥ =
∥
∥B∗eβ|X2|∥∥ < ∞ by hypothesis. The third

factor is trace class since it is a positive multiplication operator associated to
a summable function.

On the other hand, assume that eβ|X2|Ce−β|X2| is bounded. Writing

ACB = Aeα|X1| · e−α|X1|e−β|X2| · eβ|X2|Ce−β|X2| · eβ|X2|B,

we can argue as before and conclude the proof. �

Remark 4.7 (Discrete versus continuum models). This strategy to establish
trace class property is based on the fact that e−α|X1|e−β|X2| is trace class for
some α, β > 0, a property which holds true for the discrete models considered
in this paper, but not for continuum models. In other words, this property
is rooted in the underlying ultraviolet cutoff of the discrete models. The gen-
eralization to continuum models would require further assumptions on the
operators such as localization in energy.

Remark 4.8. One might naively think that [P,Λ1Sz] is α-confined in the
1st-direction for some α > 0, since P is near-sighted (see the forthcoming
Lemma 5.1) and Sz acts non-trivially only on the C

2 sector. This guess is not
true in general. Indeed, we have

[P,Λ1Sz] = [P, Sz]Λ1 + Sz[P,Λ1].

On the right-hand side, the second summand is α-confined in the 1st-direction
for all 0 < α < 1/ξP by Lemma 4.5, while the first summand has no reason
to be confined, since [P, Sz] is a priori only a bounded operator which does
not have decreasing properties in space. Consequently, Gsz

K is not trace class
in general, since it is not confined in the 1st-direction. This is why we had to
introduce the directional principal value trace in the definition of Gsz

K .

5. Proof of the Main Results

Recall that the Hamiltonian operator H satisfies Assumption 2.2. Namely, H is
near-sighted, periodic and with a spectral gap Δ. For μ ∈ Δ, P = χ(−∞,μ)(H)
is the corresponding Fermi projection. Under these hypotheses, it is well known
that

Lemma 5.1 [3,4,28]. The Fermi projection P is near-sighted.

We denote the range of P by ζP . Note also that P⊥ = 1 − P is near-sighted.
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Lemma 5.2. If A is a near-sighted operator acting in Hdisc, then we have that

[A,Xj ] is bounded for j ∈ {1, 2}.
Proof. For j = 1 and fixed m ∈ Z

2, we compute
∑

n∈Z2

∣
∣
∣([A,X1])m,n

∣
∣
∣ =

∑

n∈Z2

|m1 − n1| |Am,n| ≤ C
∑

n∈Z2

e− 1
ζ ‖m−n‖1 |m1 − n1| .

(5.1)

Clearly, the series on the right-hand side is convergent and its limit is
independent from m by the invariance of Z2 under Z

2-translations. We con-
clude by using Remark 4.1. �

Lemma 5.3. If A is a periodic operator acting in Hdisc and S is an operator
acting non-trivially on C

N ⊗C
2 only, then for j ∈ {1, 2} we have the following

(i) the operator [A,Xj ] is periodic, namely

([A,Xj ])m,n = ([A,Xj ])m−p,n−p for all m,n,p ∈ Z
2;

(ii) the operator [A,XjS] satisfies

([A, XjS])m,n = ([A, XjS])m−p,n−p − pj([A, S])m−p,n−p for all m,n,p ∈ Z
2.

Proof. We use the basis δ
(k)
n := δn ⊗ bk ∈ Hdisc where δn is defined as usual

by (δn)m = δn,m and {bk}k∈{1,...,2N} is an orthonormal basis of CN ⊗ C
2. We

denote by Tp the translation operator by the vector p ∈ Z
2, acting as

(Tpϕ)n := ϕn−p for all ϕ ∈ Hdisc.

(i) By Jacobi identity, we have

[[A, Xj ], Tp] = −[[Tp, A], Xj ] − [[Xj , Tp], A] = −[[Xj , Tp], A] = −pj [Tp, A] = 0,

(5.2)

where we have used the periodicity of A and the identity

[Xj , Tp] = pjTp for all p ∈ Z
2. (5.3)

By the commutation relation (5.2) for every m,n,p ∈ Z
2, we obtain

([A,Xj ])
(i),(j)
m,n :=

〈
δ(i)
m , [A,Xj ] δ(j)

n

〉
=

〈
δ(i)
m , T ∗

p [A,Xj ]Tpδ(j)
n

〉

=
〈
δ
(i)
m−p, [A,Xj ]δ

(j)
n−p

〉
= ([A,Xj ])

(i),(j)
m−p,n−p

for all i, j ∈ {1, . . . , 2N}.
(ii) By Leibniz rule, we have

[A,XjS] = [A,Xj ]S + Xj [A,S]. (5.4)

On the right-hand side of the last equation, the first summand is periodic, as
it is the product of an operator which is periodic by the previous claim (i) and
S, which acts non-trivially only in the sector C

N ⊗ C
2. Instead, the second

summand is such that, in view of identity (5.3) and the periodicity of [A,S],

[Xj [A,S], Tp] = [Xj , Tp][A,S] = pjTp[A,S].
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Therefore, using decomposition (5.4), the claim (i), the previous relation and
the periodicity of [A,S], for every m,n,p ∈ Z

2 we have

([A,XjS])(i),(j)m,n = ([A,Xj ]S)(i),(j)m−p,n−p

+
〈
δ(i)
m , T ∗

pXj [A,S]Tp δ(j)
n

〉
− pj

〈
δ(i)
m , [A,S] δ(j)

n

〉

= ([A,XjS])(i),(j)m−p,n−p − pj([A,S])(i),(j)m−p,n−p,

for all i, j ∈ {1, . . . , 2N}. �

5.1. Proof of Lemma 2.7

The operator Tsz
is periodic, since [P,X2] is so by Lemma 5.3.(i) and the other

operators involved in its definition are periodic. It is also bounded as [P,X2]
is so by Lemmas 5.1 and 5.2, and the other operators are bounded. As Tsz

is
periodic and bounded, one concludes by Proposition 3.3. �

5.2. Proof of Theorem 2.8

In view of Lemma 2.7, one has that τ(Tsz
) is well defined. By algebraic manip-

ulations and Proposition 3.5, one obtains

τ(Tsz
) = iτ(PSzP

⊥[P,X2]) + iτ(P [P,X2]P⊥SzP )

= iτ(SzP
⊥[P,X2]P + SzP [P,X2]P⊥) = iτ(Sz[P,X2]) = iτ([SzP,X2]).

As mentioned above, Sz[P,X2] = [SzP,X2] is a periodic bounded operator.
Hence, in view of Propositions 3.1 and 3.3, the commutation relation [X2, χ1] =
0 and the identity χ2

1 = χ1, we rewrite the term on the right-hand side of the
last equality as

iτ([SzP,X2]) = iTr(χ1SzPχ1X2χ1) − i Tr(χ1X2χ1SzPχ1)

= iTr(χ1SzPχ1X2χ1) − i Tr(χ1SzPχ1X2χ1) = 0.

�

5.3. Proof of Theorem 2.9

Part (1) Assume that Gs
K(Λ1,Λ2) (exists and) is finite for a particular switch

function Λ1. Given another switch function Λ′
1, we set ΔΛ1 = Λ1−Λ′

1.
By algebraic manipulations, using P 2 = P and P⊥ = 1−P , we have

Gs
K(ΔΛ1, Λ2) = 1-pvTr (iP [[P, ΔΛ1Sz], [P, Λ2]]P )

= 1-pvTr
(
i[P, ΔΛ1Sz]P

⊥[P, Λ2] − i[P, Λ2]P
⊥[P, ΔΛ1Sz]

)

= 1-pvTr
(
iPΔΛ1SzP ⊥[P, Λ2] + adj

)
, (5.5)

where adj means that the adjoint of the sum of all operators to the
left is added. Notice that iPΔΛ1SzP

⊥[P,Λ2] = iPΔΛ1Sz[P,Λ2]P
is trace class by Proposition 4.6, and so is its adjoint. Indeed, ΔΛ1

is compactly supported; thus in particular, it is confined in the 1st-
direction and [P,Λ2] is confined in the 2nd-direction by Lemma 4.5.
So the 1-pvTr( · ) can be replaced by Tr( · ). Moreover, each term is
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separately trace class so we split the trace and use cyclicity on each
term. We end up with

Gsz

K (ΔΛ1,Λ2) = iTr
(
ΔΛ1SzPΛ2P

⊥) − i Tr
(
ΔΛ1SzP

⊥Λ2P
)

= iTr
(
ΔΛ1Sz[P,Λ2]

)

= i
∑

m∈Z2

tr
(
ΔΛ1(m1)SzΛ2(m2)Pm,m

− ΔΛ1(m1)SzPm,mΛ2(m2)
)

= 0.

Part (2) Equation (2.4) is implied by Lemma 5.3.(ii). Once established (2.4),
Proposition 3.4 yields the proof of Part (2).

Part (3) We introduce the function

Ξ(n1) =

⎧
⎪⎨

⎪⎩

0 if n1 < −1/2,
n1 + 1/2 if −1/2 ≤ n1 < 1/2
1 if n1 ≥ 1/2,

(5.6)

which interpolates linearly in the interval |n1| ≤ 1/2 and, for l > 0
we define the functions Ξ(l)(n1) := Ξ(n1

l ) which have slope 1/l in
the interval |n1| ≤ l/2. Now, we define the approximate position
functions in the 1st-direction as

X
(l)
1 := l

(
Ξ(l) − 1

2

)
such that

X
(l)
1 (n1) =

⎧
⎪⎨

⎪⎩

−l/2 if n1 < −l/2,
n1 if −l/2 ≤ n1 < l/2
l/2 if n1 ≥ l/2.

(5.7)

Notice that for every l > 0 the functions Ξ(l) are particular switch
functions in the 1st-direction.
We now compute Gsz

K (Ξ(l),Λ2) and show that it is finite. In view of
Part (1), this fact will imply that Gsz

K (Λ1,Λ2) is finite for every switch
function Λ1, and independent of the choice of the latter. Notice that

Gsz

K

(
Ξ(l),Λ2

)
=

1
l
Gsz

K

(
X

(l)
1 ,Λ2

)
+

1
2
Gsz

K

(
1,Λ2

)
, (5.8)

provided the two summands separately exist and are finite (which is
what we are going to prove).

We focus attention on the first summand on the right-hand side of the
last equation. Recall that, by definition (1.4), one has

Gsz

K

(
X

(l)
1 ,Λ2

)
= 1-pvTr

(
Gsz

K

(
X

(l)
1 ,Λ2

))

where

Gsz

K

(
X

(l)
1 ,Λ2

)
= iP [[P,X

(l)
1 Sz], [P,Λ2]]P.
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We analyze Gsz

K

(
X

(l)
1 ,Λ2

)
. By algebraic manipulations, we obtain

Gsz

K

(
X

(l)
1 ,Λ2

)
= i[P,X

(l)
1 Sz]P⊥[P,Λ2] − i[P,Λ2]P⊥[P,X

(l)
1 Sz]

= i[P,X
(l)
1 ]SzP

⊥[P,Λ2]︸ ︷︷ ︸
=:Gsz

K,a

+X
(l)
1 i[P, Sz]P⊥[P,Λ2]︸ ︷︷ ︸

=:Gsz
K,b

+ adj. (5.9)

By Proposition 4.6 and Lemma 4.5, [P,X
(l)
1 ]Sz[P,Λ2] is trace class, and

since P is bounded Gsz

K,a

(
X

(l)
1 ,Λ2

)
is trace class, as well as its adjoint. Thus

by Lemma 3.2, 1-pvTr
(
Gsz

K,a

(
X

(l)
1 ,Λ2

)
+ adj

)
= Tr

(
Gsz

K,a

(
X

(l)
1 ,Λ2

)
+ adj

)
.

As explained in “Appendix B,” for periodic operators the trace of an
expression involving switch functions may become a trace on the unit cell where
position operators replace commutators with switch functions. In particular,
by Lemma B.3 we obtain

1
l

Tr
(
Gsz

K,a

(
X

(l)
1 ,Λ2

)
+ adj

)
=

1
l

Tr
(
i[P,X

(l)
1 ]SzP

⊥[P,Λ2] + adj
)

= Tr
(
i[P,Ξ(l)]SzP

⊥[P,Λ2] + adj
)

= Tr(−χ1iPX1SzP
⊥X2Pχ1 + adj)

= Tr(χ1iP [[P,X1Sz], [P,X2]]Pχ1).

Finally, by Part (2) and by the last equation we obtain that8

1
l

Tr
(
Gsz

K,a

(
X

(l)
1 ,Λ2

)
+ adj

)
= τ(iP [[P,X1Sz], [P,X2]]P ) = σsz

K . (5.10)

Now, we compute 1-pvTr
(
Gsz

K,b + adj
)
, whose argument is defined in

Eq. (5.9). Notice that χ1,LG
sz

K,bχ1,L, as well as its adjoint, is trace class by
Proposition 4.6 since [P,Λ2] is confined in the 2nd-direction and χ1,L is triv-
ially confined in the 1st-one.

By Lemma B.2, we obtain

Tr
(
χ1,LG

sz

K,bχ1,L + adj
)

= Tr
( − χ1,LX

(l)
1 i[P, Sz]P⊥X2Pχ2,1χ1,L + adj

)

= Tr
(
χ1,LX

(l)
1 i[P, Sz]P⊥[P,X2]χ2,1χ1,L

)
+

− Tr
(
χ1,Lχ2,1[P,X2]P⊥i[P, Sz]X

(l)
1 χ1,L

)
.

(5.11)

The two operators in the argument of the trace are trace class by similar
argument as above. Thus, as χ2,1 squares to itself, by using Proposition 3.1
we obtain

Tr
(
χ1,LX

(l)
1 i[P, Sz]P⊥[P,X2]χ2,1χ1,L

)

= Tr
(
χ1,Lχ2,1X

(l)
1 i[P, Sz]P⊥[P,X2]χ2,1χ1,L

)
. (5.12)

8Notice that we do not need to consider the limit l → +∞, as one might expect.
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Similarly, using also that multiplicative operators by position functions com-
mute, we obtain

Tr
(
χ1,Lχ2,1[P,X2]P⊥i[P, Sz]X

(l)
1 χ1,L

)

= Tr
(
χ1,Lχ2,1X

(l)
1 [P,X2]P⊥i[P, Sz]χ2,1χ1,L

)
. (5.13)

Therefore, plugging (5.12) and (5.13) into equation (5.11), we have

Tr
(
χ1,LG

sz

K,bχ1,L + adj
)

= Tr
(
χ1,Lχ2,1X

(l)
1 iP [[P, Sz], [P,X2]]Pχ2,1χ1,L

)

= Tr
(
χ1,Lχ2,1X

(l)
1 Tsz

χ2,1χ1,L

)
.

Observe that for every fixed L ∈ 2N+1, the operator χ1,Lχ2,1X
(l)
1 Tsz

χ2,1χ1,L

is trace class, as χ1,Lχ2,1 is trace class for the previous analysis and Tsz
is

bounded by Lemma 2.7. We compute its trace through the diagonal kernel,
using Lemma 2.7,

Tr
(
χ1,Lχ2,1X

(l)
1 Tsz

χ2,1χ1,L

)
=

∑

m1∈Z

|m1|≤L/2

X
(l)
1 (m1) tr

(
(Tsz

)(m1,0),(m1,0)

)

=
∑

m1∈Z

|m1|≤L/2

X
(l)
1 (m1) tr

(
(Tsz

)0,0

)

= τ(Tsz
)

∑

m1∈Z

|m1|≤L/2

X
(l)
1 (m1) ≡ 0,

(5.14)

as the function X
(l)
1 (m1) is odd and the interval |m1| ≤ L/2 is symmetric with

respect to 0. (We could also invoke the fact that τ(Tsz
) = 0 by Theorem 2.8).

Thus,

1-pvTr
(
Gsz

K,b + adj
)

= 0. (5.15)

Using Eqs. (5.10) and (5.15), we obtain
1
l
1-pvTr

(
Gsz

K

(
X

(l)
1 ,Λ2

))
= σsz

K + 0 = σsz

K . (5.16)

Now, we focus attention on the second summand on the right-hand side
of (5.8). We have

1
2
Gsz

K

(
1,Λ2

)
=

1
2

lim
L→∞

L∈2N+1

Tr(χ1,LiP [[P, Sz], [P,Λ2]]Pχ1,L). (5.17)

Notice that χ1,LiP [[P, Sz], [P,Λ2]]Pχ1,L is trace class, as one proves by apply-
ing Proposition 4.6 and arguing as in the previous cases.

By Lemma B.2, the identity χ2
2,1 = χ2,1 and Proposition 3.1, we obtain

Tr(χ1,LiP [[P, Sz], [P,Λ2]]Pχ1,L) = −Tr(χ1,Li[P, Sz]P⊥X2Pχ2,1χ1,L)+

− Tr(χ1,Lχ2,1PX2P
⊥i[P, Sz]χ1,L)

= Tr(χ1,Lχ2,1Tsz
χ2,1χ1,L).

(5.18)
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As χ1,Lχ2,1Tsz
χ2,1χ1,L is trace class, computing its trace via diagonal kernel

and using Lemma 2.7, we get

Tr(χ1,Lχ2,1Tsz
χ2,1χ1,L) =

∑

m1∈Z

|m1|≤L/2

tr((Tsz
)(m1,0),(m1,0))

=
∑

m1∈Z

|m1|≤L/2

tr((Tsz
)0,0) =

∑

m1∈Z

|m1|≤L/2

τ(Tsz
).

Thus, plugging the last equality and Eq. (5.18) in (5.17), we obtain
1
2
Gsz

K

(
1,Λ2

)
=

1
2

lim
L→∞

L∈2N+1

∑

m1∈Z

|m1|≤L/2

τ(Tsz
) = 0 (5.19)

in view of Theorem 2.8. �
It is worthwhile to notice that, without using Theorem 2.8, by plugging

equalities (5.16) and (5.19) into (5.8), one would obtain

Gsz

K (Ξ(l),Λ2) =
1
l
Gsz

K

(
X

(l)
1 ,Λ2

)
+

1
2
Gsz

K

(
1,Λ2

)

= σsz

K +
1
2

lim
L→∞

L∈2N+1

∑

m1∈Z

|m1|≤L/2

τ(Tsz
). (5.20)

As remarked in Sect. 2, the second summand on the right-hand side is either
zero, if τ(Tsz

) = 0, or diverging to ±∞. Hence, the equality of (the Kubo-like
terms of) the spin conductance and spin conductivity is rooted in the fact that
the spin-torque response τ(Tsz

) vanishes on the mesoscopic scale. We expect
that such a physically relevant condition will play a role also in a more general
setting.
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Appendix A: The Kane–Mele Model in First Quantization
Formalism

In this appendix, we review an explicit model that satisfies Assumption 2.2
and where spin is not conserved. This model was first introduced by Kane and
Mele [25,26]. Here, we propose a first quantized formulation of it, but first we
discuss the dimerization method mentioned at the beginning of Sect. 2.

A.1. The Honeycomb Structure

The model describes independent electrons on a honeycomb structure C, illus-
trated in Fig. 1. The structure is characterized by the displacement vectors

d1 = d
(

1
2 −

√
3

2

)
, d2 = d

(
1
2

√
3

2

)
, d3 = d

(−1 0
)

= −d1 − d2,

where d is the smallest distance between two points of C, which generate the
periodicity vectors

a1 = d2 − d3, a2 = d3 − d1, a3 = d1 − d2 = −a1 − a2. (A.1)

The vectors ai generate a Bravais lattice Γ := SpanZ{a1,a2,a3} ∼= Z
2

where one ai is redundant as it is integer linear combination of the two others.
Then, any site of the crystal can be reached by a Bravais lattice vector and
the use of one of the di vectors. It is then sufficient to pick two ai-vectors and
one di-vector to generate the whole crystal. This choice, which is often called
a dimerization of C, is not unique, as illustrated in Fig. 2.

The above procedure is equivalent to the choice of a periodicity cell that
contains two non-equivalent sites A and B (black and white dots in Fig. 1),
described as internal degrees of freedom besides the Bravais lattice. Hence,
each choice of unit cell provides an isomorphism �2(C) ∼= �2(Z2) ⊗ C

2, leading
to the Hilbert space Hdisc (for N = 2) discussed in Sect. 2, when the spin is
taken into account.

Figure 1. The honeycomb structure
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Figure 2. Three possible dimerizations of the honeycomb structure

A.2. The Hamiltonian

The Kane–Mele model is defined, in a first quantization formalism, by the
Hamiltonian HKM, acting on �2(C) ⊗ C

2 as

HKM = tHNN + λvHv + λSOHSO + λRHR

where t, λv, λSO and λR are real parameters corresponding to various physical
effects. The first term is a nearest-neighbor hopping term:

HNN =
3∑

i=1

(Tdi
+ T−di

) ⊗ 1C2

where Tu is a translation operator along vector u, namely

(Tuψ)x =

{
ψx−u if x − u ∈ C

0 otherwise
for all ψ ∈ �2(C) ⊗ C

2.

The second term is a sublattice potential that distinguishes sites A and B,
namely

Hv = (χA − χB) ⊗ 1C2

for χA (resp. χB) the characteristic function on the sublattice A (resp. sub-
lattice B) of C. The third term is a spin-orbit term, corresponding to an effec-
tive and spin-dependent magnetic field due to an electric field inside the two-
dimensional crystal. This is a next-to-nearest-neighbor term given by

HSO = −i (χA − χB)
3∑

i=1

(Tai
− T−ai

) ⊗ sz.

Finally, the last term is called a Rashba term. This is also a spin-orbit effect
but due to an electric field orthogonal to the sample (for example in a het-
erostructure). This is a nearest-neighbor term given by

HR = i
(
Td1 − T−d1

) ⊗
(

−
√

3sx + sy

2

)

+ i
(
Td2 − T−d2

) ⊗
(√

3sx − sy

2

)

+ i
(
Td3 − T−d3

) ⊗ sy
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Notice that this last term satisfies [HR, Sz] �= 0 so that Sz and HKM do
not commute whenever λR �= 0. Moreover, note that HKM is Γ-periodic, since
[Tu1 , Tu2 ] = 0 for any vectors u1 and u2, and χA and χB are Γ-periodic. Thus,
HKM commutes with all the translation of the Bravais lattice Tγ for γ ∈ Γ.
It has been shown in [25] that HKM has a spectral gap for a wide region in
parameter space, including λR �= 0 (Figure 1 in [25]).

In summary, HKM is made of on-site (Hv), nearest-neighbor (HNN and
HR) and next-to-nearest-neighbor (HSO) terms. Note that after the dimer-
ization procedure a nearest-neighbor term acts on internal degree of freedom,
whereas next-to-nearest-neighbor exchange becomes simply nearest-neighbor.
Thus, whatever the dimerization, one has

(HKM)m,n = 0 for ‖m − n‖1 > 1

so that HKM is trivially near-sighted.

Appendix B: From Switch Functions to Position Operators

In this appendix, we re-elaborate some ideas and techniques which originally
appeared in [7] in the continuum case (R2-covariant Schrödinger operators on
the plane). We adapt their proof to the discrete case considered in this paper.

The crucial property of any switch function is the following one.

Lemma B.1. Let Λj be a switch function in the jth-direction for j ∈ {1, 2}.
Then, for every n ∈ Z one has

∑

m∈Z

(Λj(m + n) − Λj(m)) = n.

Proof. For n = 0, the claim is trivial. Consider n ≥ 1. Notice that the sum-
mand Λj(m + n) − Λj(m) is nonzero only for finitely many m ∈ Z. Hence,

∑

m∈Z

(Λj(m + n) − Λj(m)) =
∑

m∈Z

n−1∑

p=0

(
Λj(m + (n − p)) − Λj(m + (n − p − 1))

)

=
n−1∑

p=0

∑

m∈Z

(
Λj(m) − Λj(m − 1)

)
.

(B.1)

Notice that
∑

m∈Z

(
Λj(m) − Λj(m − 1)

)
= 1, since there is one and only one

point m ∈ Z where the summand is not zero. This proves the statement for
n ≥ 1. The proof for n ≤ −1 is analogous. �

For the sake of clarity, we recall that χ2,1 and χ1 are characteristic func-
tions, respectively, of the line

{
m ∈ Z

2: m2 = 0
}

and of the point {0}.

Lemma B.2. Let A, B and C be operators in B(Hdisc) which are periodic
in the 2nd-direction, and let Λ2 be a switch function in the 2nd-direction. If
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A[B,Λ2]C is trace class, A is α-confined in the 1st-direction, C∗ is β-confined
in the 1st-direction and B satisfies

MB := max

(

sup
m∈Z2

∑

n1∈Z

∣
∣Bm,(n1,0)m2

∣
∣ , sup

n1∈Z

∑

m∈Z2

∣
∣Bm,(n1,0)m2

∣
∣
)

< ∞, (B.2)

then

Tr(A[B,Λ2]C) = −Tr(AX2Bχ2,1C).

Proof. Since A[B,Λ2]C is trace class, its trace can be computed through the
diagonal kernel, and in view of the boundedness of A, [B,Λ2] and C, one has

Tr(A[B,Λ2]C) =
∑

m∈Z2

∑

n∈Z2

∑

p∈Z2

tr
(
Am,nBn,p(Λ2(p2) − Λ2(n2))Cp,m

)
.

(B.3)

We will show that the function
(
Z

2
)3 � (m,n,p) �→ tr

(
Am,nBn,p(Λ2(p2) − Λ2(n2))Cp,m

)
is in �1

((
Z

2
)3)

.

(B.4)

Thus, we can apply Fubini’s Theorem and implement the change of variables
m′ = m − (0, p2), n′ = n − (0, p2). By Lemma B.1 and periodicity in the
2nd-direction, we get that the right-hand side term of (B.3) reads

∑

p1∈Z

∑

m′∈Z2

∑

n′∈Z2

tr
(
Am′,n′Bn′,(p1,0)(−n′

2)C(p1,0),m′
)

= −
∑

m′∈Z2

tr
(
(AX2Bχ2,1C)m′,m′

)
.

Observe that by hypothesis (B.2) and Remark 4.1, X2Bχ2,1 is bounded and
thus AX2Bχ2,1C is trace class, as χ2,1C ∈ B1(Hdisc) by Proposition 4.6.
Therefore, one concludes that

Tr(A[B,Λ2]C) = −
∑

m′∈Z2

tr
(
(AX2Bχ2,1C)m′,m′

)

= −Tr(AX2Bχ2,1C).

It remains to check (B.4). In view of the equivalence of norms on finite-
dimensional vector spaces, one has | tr(M)| ≤ D1|M | for every matrix M and
some D1 > 0. Then by the periodicity in the 2nd-direction, one notices that

∑

m∈Z2

∑

n∈Z2

∑

p∈Z2

∣
∣tr

(
Am,nBn,p(Λ2(p2) − Λ2(n2))Cp,m

)∣∣

≤ D1

2

∑

m∈Z2

∑

n∈Z2

∑

p∈Z2

|Bn,p| |(Λ2(p2) − Λ2(n2))|
( |Am,n|2 + |Cp,m|2 )

≤ D1

2

∑

n∈Z2

∑

m′∈Z2

∑

p′∈Z2

∣
∣B(n1,0),p′

∣
∣
∣
∣(Λ2(p

′
2 + n2) − Λ2(n2))

∣
∣
∣
∣Am′,(n1,0)

∣
∣2

+
D1

2

∑

p∈Z2

∑

m′∈Z2

∑

n′∈Z2

∣
∣Bn′,(p1,0)

∣
∣
∣
∣(Λ2(p2) − Λ2(n

′
2 + p2))

∣
∣
∣
∣C(p1,0),m′

∣
∣2 .
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By using Lemma B.1 and exploiting hypotheses on A, B and C one concludes
that the above series converge; hence, (B.4) is proven. �

Lemma B.3. Let A, B and C be periodic operators in B(Hdisc). Let Λ1,
Λ2 be two switch functions, respectively, in the 1st and 2nd-direction. If
[A,Λ1]B[C,Λ2] is trace class, and A and C satisfy

∑

n∈Z2

|A0,nn1| < ∞,
∑

m∈Z2

|Cm,0m2| < ∞, (B.5)

then

Tr([A,Λ1]B[C,Λ2]) = −Tr(χ1AX1BX2Cχ1).

Proof. Since [A,Λ1]B[C,Λ2] is trace class, its trace can be computed through
the diagonal kernel, and in view of boundedness of [A,Λ1], B and [C,Λ2], one
has

Tr
(
[A,Λ1]B[C,Λ2]

)

=
∑

m∈Z2

∑

n∈Z2

∑

p∈Z2

tr
(
Am,n(Λ1(n1) − Λ1(m1))Bn,pCp,m(Λ2(m2) − Λ1(p2))

)
.

Performing the change of variables n′ = n − m, p′ = p − m and using the
periodicity, one can rewrite the right-hand side term of the last equation as

∑

m∈Z2

∑

n′∈Z2

∑

p′∈Z2

tr
(
Am,n′+m(Λ1(n′

1 + m1) − Λ1(m1))

· Bn′+m,p′+mCp′+m,m(Λ2(m2) − Λ1(p′
2 + m2))

)

=
∑

m∈Z2

∑

n′∈Z2

∑

p′∈Z2

tr
(
A0,n′(Λ1(n′

1 + m1) − Λ1(m1))

· Bn′,p′Cp′,0(Λ2(m2) − Λ1(p′
2 + m2))

)
. (B.6)

By applying Fubini’s Theorem and Lemma B.1, one can rewrite the right-hand
side
∑

n′∈Z2

∑

p′∈Z2

tr
(
A0,n′n′

1Bn′,p′(−p′
2)Cp′,0

)
= −

∑

m∈Z2

tr
(
(χ1AX1BX2Cχ1)m,m

)
.

Observe that by hypothesis (B.5) and Remark 4.1, χ1AX1 and X2Cχ1 are
bounded, and thus, χ1AX1BX2Cχ1 is trace class. Therefore, one concludes
that

Tr
(
[A,Λ1]B[C,Λ2]

)
= −

∑

m∈Z2

tr
(
(χ1AX1BX2Cχ1)m,m

)

= −Tr(χ1AX1BX2Cχ1).

�
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Piazzale Aldo Moro 2
00185 Rome
Italy
e-mail: panati@mat.uniroma1.it

Giovanna Marcelli
e-mail: marcelli@mat.uniroma1.it

Giovanna Marcelli
Fachbereich Mathematik
Eberhard Karls Universität Tübingen
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