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We propose a general edge index definition for two-dimensional Floquet topological phases based on a switch-
function formalism. When the Floquet operator has a spectral gap, the index covers both clean and disordered
phases, anomalous or not, and does not require the bulk to be fully localized. It is interpreted as a nonadiabatic
charge pumping that is quantized when the sample is placed next to an effective vacuum. This vacuum is gap-
dependent and obtained from a Floquet Hamiltonian. The choice of a vacuum provides a simple and alternative
gap-selection mechanism. Inspired by the model from Rudner et al. we then illustrate these concepts on Floquet
disordered phases. Switch-function formalism is usually restricted to infinite samples in the thermodynamic
limit. Here we circumvent this issue and propose a numerical implementation of the edge index that could be
adapted to any bulk or edge index expressed in terms of switch functions, already existing for many topological
phases.
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I. INTRODUCTION

In the context of quantum Hall effect and topological
insulators, the implementation of disorder has always played a
crucial role. It ensures that a topological quantity, e.g., the Hall
conductivity or a number of edge modes, remains the same for
crystals that are not perfectly periodic and thus is observable
and invariant regardless of the microscopic impurities of a
sample [1]. By analogy with static systems, the framework
of Floquet topological insulators has appeared in the last
decade [2,3]. It turns out that a periodically driven system
may have topological properties when the one-period time
evolution (Floquet) operator has a spectral gap [4]. For each
gap one can define a bulk topological index corresponding
to a number of protected edge modes through the bulk-edge
correspondence [5]. Moreover, these indices are specific to
out-of-equilibrium systems and are not entirely captured by
the usual theory of static insulators, allowing for the discovery
of new topological phases of matter.

Consequently, Floquet topological phases have been studied
for various symmetries and dimensions [6–12]. The issue
of disorder naturally arises also in this context, for which
disordered models and their topological indices have been
intensively studied recently [13–17]. Most of the works have
been focused on the so-called anomalous Floquet Anderson
insulator (AFAI): a new topological phase with a fully localized
bulk and yet protected edge modes [14,18,19]. But, in principle,
disorder should be implemented for any topological phase.
In this context some works from mathematical physics have
generalized the bulk-edge correspondence for a large class
of disordered Floquet topological insulators [20,21]. Besides
disorder, recent developments have also studied the influence
of interactions [22–27] and various experimental observations
of these phases have been realized [28–31].

However, the physical interpretation of the topological
indices in Floquet systems remains incomplete so far: in

dimension two, the associated observables such as charge
pumping [14] or orbital magnetization [18] are quantized
only when the bulk Floquet operator is fully localized, with
localization length small enough. Moreover, the meaning of a
spectral gap in the Floquet operator is also an open question. So
far, this hypothesis was made by analogy with static systems
and perfectly works to define the indices, but since there
is no notion of ground state in periodically driven systems,
it is not obvious a priori how to select a given gap of the
Floquet spectrum and observe the corresponding topological
modes. Note that the AFAI phase elegantly circumvents this
problem since it has one canonical gap, the bulk spectrum being
completely localized. Yet the question remains open in general
and is deeply related to the exciting transport properties of these
systems [32–37].

This work focuses on the study of the edge index for a
general Floquet topological system in dimension two. We show
that the interpretation of a quantized pumping within a cycle,
already studied in the AFAI phase [14], is actually valid for any
Floquet phase with a spectral gap [e.g., Fig. 1(a)]. This covers
both clean and disordered phases, anomalous or not, without
any assumption on localization. This pumping is observed
relatively to an effective dynamics given by the so-called
effective Hamiltonian [4], that depends on the gap of the
Floquet operator. Alternatively, we show that this phenomenon
can be also observed when placing the effective dynamics next
to the original one, namely at the interface between the two
[Fig. 1(b)]. In this setting, the effective Hamiltonian appears
as an effective vacuum that compensates other contributions
from the bulk. There is actually one effective vacuum per
gap so that each vacuum provides a way to select a gap and
the corresponding edge modes. We illustrate these statements
on a two-band model generated by a piecewise constant
Hamiltonian introduced by Rudner et al. in Ref. [5] and
add a disordered on-site potential similarly to Ref. [14] but
in different regimes: first, in the anomalous phase at weak
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FIG. 1. (a) Each ε inside a gap of the bulk Floquet spectrum
corresponds to an effective Hamiltonian Hε

E playing the role of an
effective vacuum. (b) When the original sample is placed next to
this vacuum, a quantized pumping of charge occurs at their interface
within a driving cycle. The green curve �2 is a switch function from
0 to 1 in n2 direction measuring the density of electrons in the upper
half-space. It plays a central role in the construction of the indices.

disorder, where the localization length is large and then in a
nonanomalous phase.

These results follow from a general proof of bulk-edge
correspondence for Floquet topological insulators, where the
consequences on the edge index where not investigated in de-
tails [20]. It is based on functional analysis techniques that were
first developed in the context of the quantum Hall effect [38].
The central notion in this framework is the switch function,
which is very elementary and allows to define indices without
requiring disorder averaging, large-time limit, or ergodicity.
In particular, the introduction of external fluxes threaded
through the sample is not needed and makes our approach
simpler.

The formalism of switch functions is a powerful tool of
mathematical physics that goes way beyond periodically driven
systems and naturally appears in the context of linear response
theory for topological phases [38–41]. It is also used here
and there in the physics literature [42,43] (probably more
often, without naming it) but somehow it is underestimated
to compute topological indices. Its main inconvenience is
that it works only for infinite samples in the thermodynamic
limit. Thus it might appear cumbersome to manipulate. We
propose a solution to this issue by providing a numerical
implementation of this formalism on finite-size systems. We
define an approximate index that coincides with the exact
one in the infinite size limit. Although other rigorous indices
already exist for disordered models, including a numerical
implementation [44,45], our approach does not require much
knowledge of the mathematical machinery behind. This makes
the switch function very appealing in order to generalize and
compute topological indices for disordered models. Although
we illustrate this numerical implementation for the aforemen-
tioned edge index, it can be adapted to any bulk or edge index
in principle.

The paper is organized as follows: in Sec. II, we define the
edge index and study its physical interpretation. In Sec. III,
we present a dual picture in terms of an interface index and
introduce the effective vacua and their physical properties.
Then in Sec. IV we implement these notions in a numerical
framework with an application to a specific model. Section V
concludes and discusses several interesting perspectives of this
work.

II. EDGE INDEX AND QUANTIZED PUMPING

A. Floquet topological insulators

1. The bulk picture

The concepts from this section involve simple mathematical
expressions but the price to pay is to deal with infinite or semi-
infinite spaces. Thus we define the bulk Hilbert space HB =
�2(Z2) for which a state ψ is defined by the amplitude ψm
on each site m = (m1,m2) ∈ Z2 of the lattice. Internal degrees
of freedom (spin, sublattice,...) can be taken into account by
considering �2(Z2) ⊗ CN instead, but for simplicity, we focus
on HB (i.e., N = 1) below. An operator AB on HB can be
thought as an infinite matrix (AB)m,n for m,n ∈ Z × Z.

The initial input is a bulk time-periodic Hamiltonian HB(t +
T ) = HB(t), namely a family of infinite matrices HB(t)m,n for
t ∈ [0,T ]. The only requirement for the following formalism
to work is that HB is local:

|HB(t)m,n| � Ce−μ|m−n|, (1)

for some C,μ > and independent of t . This property is also
called short-range, with range 1/μ, or near-sighted [46]. It
means that the dynamics of a state on some site is mostly ruled
by its amplitude within a small neighborhood of it. Note that
this does not imply that the system is in a localized regime.
The simplest local example is a translation-invariant system
where (HB)m,n = (HB)0,m−n: for a sample with finite range
hopping r (e.g., 1 for nearest neighbor), the latter vanishes
for |m − n| > r so that (1) is trivially satisfied. However,
requiring (1) allows to consider any disordered configuration
(on-site potential, disordered hopping, ...).

Time-periodic dynamics can be solved through the Floquet
formalism by considering the spectral properties of time
evolution operator UB(t) (or unitary propagator) computed
by solving the Schrödinger equation i∂tUB(t) = HB(t)UB(t)
and UB(0) = 1, or alternatively by using a time-ordered ex-
ponential of the integral of HB(t) over time. It was noticed in
Refs. [4,5] that the crucial assumption to define a topological
quantity is that the one-period propagator UB(T ) has a spectral
gap. Since it is unitary, the spectrum of UB(T ) lies in the com-
plex circle and its eigenvalues ε for which UB(T )ψ = e−iT εψ

are called quasienergies since they are defined modulo 2π/T ,
by analogy with Bloch quasimomenta. The quasienergies of
UB(T ) are usually plotted in terms of Bloch bands over the
Brillouin torus for a translation-invariant system. However,
we could instead project all these quasienergy bands onto
the unit circle while varying the quasimomentum. The latter
description of the spectrum of UB(T ) is still available when
translation invariance is broken. A typical situation illustrated
in Fig. 2(a). It is composed of several bands that contain both
delocalized waves (corresponding to Bloch waves in a clean
system) and localized states due to disorder. We assume that
there exists at least one gap in the spectrum.

For each quasienergy ε corresponding to a spectral gap of
UB(T ), it is possible to define a topological invariant by using
the effective Hamiltonian

Hε
B = i

T
ln−εT (UB(T )), (2)

namely, the logarithm of UB(T ) with a branch cut taken in
the chosen gap. This effective Hamiltonian was introduced to
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FIG. 2. (a) A bulk spectrum with two bands, containing delocal-
ized waves (blue) and localized states (red crosses), and two spectral
gaps. For each gap one defines a bulk invariant I i

B that is related to
the others by the Chern number of the bands. (b) Corresponding edge
spectrum: two analogous bands are present but each gap might be
filled by some modes confined at the edge of the sample and counted
byI i

E. In this example,I1
B = I1

E = 1,I2
B = I2

E = 0 and c1 = −c2 = 1.

construct a relative evolution that produces a time-periodic
evolution and allows for the definition of a topological bulk
index IB(ε) [5,20]. This index is independent of ε inside a
given gap. Furthermore, IB(ε′) − IB(ε) = c(P ), where c is the
Chern number of the projection to the band of UB(T ) between
e−iT ε and e−iT ε′

clockwise.
In this paper instead we would like to discuss the physical

interpretation of effective Hamiltonian (2). First, it is time-
independent so its dynamics is simpler than the original driven
system HB(t). Second, it was proved in Ref. [20] that Hε

B satis-
fies (1), namely it is also local (but not necessarily localized).
This is because for a finite duration t ∈ [0,T ], time evolution
UB(t) is also local. Finally, the effective Hamiltonian has a
natural interpretation in the edge picture that we investigate
now.

2. The edge picture

The edge Hilbert space is HE = �2(N × Z) and describes
the right half-space, namely a lattice with m1 � 0 and a
single vertical edge at m1 = 0. States and operators on HE

are similarly described as in HB except that one direction
is semi-infinite only. Any state ϕ ∈ HE can be embedded
into HB by setting to zero the components on the left half-
space and any ψ ∈ HB can be truncated to a state in HE by
forgetting the components outside. For an operator AB, we
denote by ÂB the corresponding truncated operator on HE.
This might be thought as taking an upper-left block of the
matrix (AB)m,n, keeping only m1 and n1 � 0, and corresponds
physically to the Dirichlet boundary condition. The edge
Hamiltonian is then defined as the truncation of the bulk one,
i.e., HE(t) := ĤB(t). By construction it is also T -periodic and
local. Moreover, it generates a time evolution UE(t) that is
unitary on HE. However, note that UE(t) �= ÛB(t). These two
operators cannot be equal since ÛB is not unitary anymore: the
truncation procedure forgets some information. In other words
the operations of truncation and generating time evolution do
not commute, so that HB �→ ĤB = HE �→ UE is not the same
as HB �→ UB �→ ÛB.

The spectrum of UE(T ) is illustrated in Fig. 2(b). The
original gaps of UB(T ) may be filled with modes that are
confined at the edge of the sample. The presence of these
modes is characterized by an edge index IE(ε). Although

IE(ε) = IB(ε) by the bulk-edge correspondence [20], it is
actually interesting to look at its own expression that has a
nice interpretation in Floquet topological phases.

B. Periodic time evolution

Let us assume first that time evolution is periodic, namely
UB(T ) = 1. There is a canonical spectral gap, namely every
point of the circle except 1. In that case, the edge invariant is
defined by

IE = Tr(U ∗
E(T )�2UE(T ) − �2) ∈ Z, (3)

where the trace is performed over HE and �2 is called a switch
function operator [38]. It is a diagonal operator that is defined
by (�2)m,n = δm,nf (n2) with

f (n2) =
{

1 for n2 � 0
0 for n2 < 0 . (4)

Operator �2 is the (infinite) density of electrons in the upper-
right quadrant of the edge space. In principle, we can take
any switch as long as f is 1 (respectively, 0) for n2 large and
positive (respectively, negative), but we stay with the previous
example for concreteness. The first thing to notice is that
expression (3) of IE is not trivially vanishing. Because HE

is infinite dimensional, there is no reason that when splitting
the trace, each part remains finite (indeed the trace of �2 is
+∞), so we cannot use cyclicity separately. The mathematical
properties of IE were studied in Ref. [20], but the fact that
IE ∈ Z can actually be checked numerically, see Sec. IV D
below.

The physical interpretation of IE is the following. In
the Heisenberg picture, U ∗

E(T )�2UE(T ) − �2 is the relative
density of electrons in the upper quadrant of the edge space
between t = 0 [where UE(0) = 1] and t = T . Even if each
density is separately infinite, the difference is finite and actually
quantized. Thus IE counts the (algebraic) number of electrons
that have been pumped from the lower to the upper quadrant
within a cycle (see also Ref. [20, Fig. 2]). This pumping is
quantized and actually confined along the edge. Indeed, one
has

UE(T ) = ÛB(T ) + D (5)

with |Dm,n| � De−α|n1| forD, α > 0, so that D 
 0 as soon as
n1 is large. This corresponds to the fact that for t ∈ [0,T ], UE 

ÛB away from the edge. When ÛB(T ) = 1, then expression (3)
only involves D that is confined near the edge.

When the system is translation invariant, one applies Bloch
decomposition in direction 2 and shows that the edge index
becomes [20]

IE = 1

2π i

∫ 2π

0
dk2Tr(U ∗

E(T ,k2)∂k2UE(T ,k2)), (6)

where the trace is performed along the remaining semi-infinite
direction 1. This formula is analogous to the one in Ref. [5].
When UB(T ) = 1 then its spectrum is fully degenerated to
a single point {1} so that IE can be seen as the winding
number of UE(T ) of eventual edges states appearing around
the circle in its spectrum. When Bloch momentum k2 is not
available, definition (3) of IE then appears as a generalized (or
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noncommutative) winding number that can be computed even
for disordered configurations.

C. General case

When UB(T ) = 1, there is only one canonical gap that is the
circle with {1} excluded. In the general case where UB(T ) �= 1
definition (3) is not valid anymore, but one can define an edge
invariant for each spectral gap of UB(T ). The problem when
UB(T ) �= 1 is that the operator involved in (3) is not confined
near the edge so that its trace is not finite. Nevertheless (5) is
still true, except that now ÛB(T ) might contain states infinitely
far from the edge that also contribute to the pumping, leading to
an infinite quantity. Thus this contribution should be somehow
subtracted in order to recover a proper pumping confined at
the edge.

The bulk invariant was originally defined by constructing a
relative evolution generated by a dynamics with HB(t) for the
first half of the period and using the effective Hamiltonian (2)
for the second half [5,20]. Here, we propose the same procedure
but in the edge picture:

H rel
E (t) :=

{
2HE(2t) for 0 � t � T/2

−2Hε
E for T/2 � t � T

, (7)

where Hε
E := Ĥ ε

B. Note that the bulk analog H rel
B (before

truncation) generates a time evolution that satisfies U rel
B (T ) =

1 and was originally constructed for this purpose. Thus we
are back to the previous case and can apply definition (3) for
U rel

E (T ) instead of UE(T ). One important point is that Hε
E is not

the logarithm ofUE(T ) (that might even be not gapped) but only
the truncation of Hε

B defined in (2). Up to a small computation
postponed to Appendix A, we infer the edge index expression

IE(ε) = Tr
(
U ∗

E(T )�2UE(T ) − eiT Hε
E �2e−iT Hε

E
) ∈ Z. (8)

As before, we get a quantized pumping within a cycle, but
relatively to the dynamics due to Hε

E. Note that by construction
UB(T ) = e−iT Hε

B so both UE(T ) and e−iT Hε
E satisfy (5) with

different D but with the same UB(T ), namely, they coincide
away from the edge. By itself the pumping associated to UE(T )
is not well defined because of an infinite contribution from
the bulk. This contribution is removed by the pumping due to
Hε

E so that the relative pumping is well defined. Note that the
spectrum of Hε

E might include (truncated) delocalized waves,
localized states, and even edge modes from other gaps, see
Sec. III A below.

III. INTERFACE PICTURE

When UB(T ) �= 1 the invariant is defined by (8) through
the regularization by Hε

E that relies on the choice of a gap ε.
Although mathematically well defined, the physical interpre-
tation of IE remains unpleasant because the implementation of
the relative dynamics (7) in an experiment might be laborious
as one has to switch alternatively the physical and effective
dynamics. Here, we would like to propose a dual picture that
provides a simpler interpretation of Hε

E. Instead of a dynamics
relative in time, consider one relative in space, namely an

interface defined by

H#(t)m,n :=
{
HE(t)m,n for m1,n1 � 0(
Hε

E

)
m,n for m1,n1 < 0 (9)

instead of (7). This Hamiltonian allows gluing inside the bulk
space of HE(t) on the right half-space (n1 � 0) and Hε

E on the
left one (n1 < 0). So far, this is only a sharp interface where
the two halves are not connected (in other words, the matrix
of H# is block diagonal in the basis {n1 � 0,n1 < 0}). Thus
we consider a more general interface Hamiltonian HI(t) :=
H#(t) + Hint(t) where the latter part allows for a smoother
gluing at the interface. We require that this perturbation stays
confined at the interface, namely |Hint(t)m,n| � Ae−α|n1| for
some A,α > 0. This implies that Hint(t) vanishes quickly away
from the interface n1 = 0. Note that this condition is similar to
the property of D given below (5) except that Hint(t) acts onHB

instead ofHE so that it is confined at both sides of the interface.
Moreover, the notion of confinement is much stronger than the
notion of locality defined in (1). The latter implies that the
off-diagonal elements decay exponentially when the distance
|m − n| grows, whereas for a confined operator all the matrix
elements decay exponentially as soon as one coordinate is far
from the interface or the edge.

The interface Hamiltonian also generates a time evolu-
tion UI(t) on HB. This evolution has no reason to be 1 at
t = T , however, we know the dynamics far away from the
interface, namely UI(T ) 
 UE(T ) far away to the right and
UI(T ) 
 e−iT Hε

E far away to the left. Moreover, we know that
UE(T ) 
 UB(T ) and e−iT Hε

E 
 UB(T ) far away from the edge,
so that finally UI(T ) 
 UB(T ) far away from both sides of the
interface. We define the associated interface index by

II(ε) = Tr(U ∗
I (T )�2UI(T ) − U ∗

B(T )�2UB(T )) ∈ Z. (10)

Note that here the trace is performed over the bulk space HB.
The normalization by UB(T ) is of similar kind of the one
discussed above by the introduction of e−iT Hε

E : it removes the
undesirable contribution. Since UI(T ) and UB(T ) coincide far
away from the interface and by definition nothing happens near
the interface for the bulk evolution UB, then II measures the
quantized pumping confined at the interface between physical
evolution HE and the effective one Hε

E.

Effective vacua

The interface picture provides a dual picture where the
quantized pumping arises between a physical and an effective
sample placed next to each other (see Ref. [20, Fig. 5]). The
topological nature of the index II ensures that it remains the
same regardless of the gluing condition Hint(t) at the interface.
Moreover we argue in Appendix B that

IE(ε) = II(ε) (11)

so that the two pictures are equivalent. Remember that Hε
E =

Ĥ ε
B is the edge truncation of the bulk effective Hamiltonian.

In the particular case where UB(T ) = 1, there is a canonical
spectral gap and Hε

B vanishes for every ε ∈ (0,2π ), so that
Hε

E = 0 and (3) coincides with (8). In that case, the pumping
is quantized relatively to the vacuum Hε

E = 0. In the general
case, Hε

E plays the role of an effective vacuum that allows for
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FIG. 3. (a) The spectrum of Hε
B is obtained by unwinding the one

of UB(T ) on the real line, clockwise. The gap of the branch cut is split
into two parts below and above the real spectrum, and the other bands
and gaps are preserved. (b) The truncation Hε

E on the edge space may
have edge modes inside the remaining gap accordingly to the Chern
number of Hε

B below this gap. (c) By construction, e−iT Hε
E is always

gapped around the original branch cut and may have edge modes in
the other gaps according to the value of the other invariants. Following
the example of Fig. 2, we get nE = c2 = −1 here.

a quantized pumping, equivalently in a relative dynamics or at
the interface with it.

Effective vacua Hε
E have the following interesting proper-

ties, mostly inherited from Hε
B. They are (i) time-independent,

(ii) local in the sense of (1), and (iii) independent of ε

inside a given gap of UB(T ). The latter property tells that
there are as many distinct effective vacua as spectral gaps
in UB(T ). Because each vacuum comes from a logarithm of
UB(T ), it might be difficult to compute it explicitly in general.
Nevertheless, because of property (ii), it can always be well
approximated by a finite range Hamiltonian. Furthermore, it
might be computed numerically, see below. Finally, as we shall
see, its spectrum is known exactly and characterized by the one
of UB(T ), and each vacuum allows to select one specific gap,
by analogy with a choice of a chemical potential through a
particle reservoir in static topological insulators.

Imagine a standard situation with two bands and two gaps
[Fig. 2(a)], which is straightforward to generalize. The gap of
UB(T ) chosen around ε is split into two parts and the rest of the
spectrum is unwinded from the circle to the real line, giving
the spectrum of Hε

B, see Fig. 3(a). After truncation, Hε
E may

have edge modes in a remaining gap, its number being equal
to the Chern number of the band below the gap, by the usual
bulk-edge correspondence of static topological insulators, see
Fig. 3(b). Note that these Chern numbers come from the bands
of UB(T ). Then by folding again the spectrum of Hε

E around
the circle, we get the one for e−iT Hε

E [Fig. 3(c)] that has to be
compared with UE(T ) [Fig. 2(b)]: they have the same bands
but not the same edge modes. In particular, e−iT Hε

E has no edge
mode in the gap around ε by construction.

Note that in the particular case of so-called anomalous
phases where the edge indices are the same in each gap and
all the Chern numbers are vanishing [5], then the effective
vacuum has no edge mode at all so it is topologically trivial. In
a more general case, it contains some topological edge modes
that are also required in the regularization process, in order to
have a quantized pumping in expression (8) for IE or (10) for
II. When UB(T ) has several gaps with distinct indices, part of
the topology has to be “removed” in order to select one gap
associated to one specific value and observe the corresponding
quantized pumping. This is the role of Hε

E so it is not surprising

that it is topological in general. However, for the anomalous
phases, the invariant has the same value in each gap, and only
the contribution from delocalized states is removed through
Hε

E, hence its trivial topology.

IV. NUMERICAL IMPLEMENTATION

In Sec. II, we have defined an edge index valid for any
disordered configuration of the sample without any average
over disorder, that allows for an efficient way to compute the
index and characterizes the topology of the system. The major
inconvenience of this framework is that we have to deal with
infinite systems. If everything is mathematically correct, it
seems rather difficult to implement it in an experiment or even
numerically. For example, expression (3) trivially vanishes if
the Hilbert space is finite dimensional by cyclicity of the trace.
Here, we show that these problems can be circumvented and
that there is a way to estimate numerically the previous indices.
We illustrate by the way the different statements from Secs. II
and III. The code to generate all the figures below is available
in Ref. [47].

A. The model

We use a two-band model first proposed by Rudner et al.
with translation invariance [5], for which an experimental
realization in optical lattices was recently proposed [48]. Then
disorder was included in Ref. [14] to generate the anomalous
Floquet-Anderson insulator phase where all the states of the
bulk Floquet operator are localized. Here we also include
disorder but rather consider a generic situation with delocalized
bands and localized states. The crystal is a bipartite square
lattice divided into two sublattices A and B. The Hamiltonian
is time-periodic with period T and piecewise constant in time:
H (t) = Hn for (n − 1)T/5 � t < nT/5 with n ∈ {1, . . . ,5}.
The first four steps are hopping terms with a common hopping
parameter J where the different bonds of the bipartite lattice
are alternatively switched on and off. Each step connects A

sites with the nearest-neighbor B sites, respectively, situated
to the right, top, left, and bottom. The last step is a pure on-site
potential (no hopping) with a disordered potential

(H5)m,n = ±(δ + δrVm)δm,n, (12)

where ± refers to A or B sites, δ,δr ∈ R and {Vm} is a uni-
form (identically distributed) random variable with support in
[−1/2,1/2]. In the following, we choose δ = δr for simplicity.
Other probability distributions can be also implemented.

We now work on a finite size square sample n ∈ [1,L]2 and
distinguish the A and B-sites by the parity of the coordinates
(n1,n2). Whatever the boundary conditions are, the time-
evolution after one period is given by

U (T ) = e−i T
5 H5 · · · e−i T

5 H1 . (13)

Depending on the value of J and δ, the model presents various
configurations of bands and edge modes as we shall see. The
bulk Hamiltonian is given by HB = H with periodic boundary
conditions in both directions, and the corresponding bulk
evolution UB(T ) has a typical spectrum of two bands and two
gaps illustrated in Fig. 4(a). For each eigenvalue λ, we compute
the inverse participation ratio of the (normalized) eigenstate
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0.28 0.67 -1 0 1

(a) (b)

FIG. 4. Numerical spectra of a disordered configuration for J =
1.875π/T , δ = 1.6π/T , and L = 40. (a) Bulk spectrum with two
bands and two gaps. The color bar indicates the participation ratio α

of the corresponding eigenstate. As expected, each band is globally
delocalized (α ∼ 0.3) with localized states at the extremities (α ∼
0.7). (b) Edge spectrum: the gaps are filled with edge states. The color
bar indicates the first momentum β in direction 1 of the corresponding
eigenstate’s probability density. Edges states are confined to the left
(respectively, right) of the sample whenβ = −1 (respectively,β = 1),
whereas the bands are not particularly confined (β ∼ 0).

ψλ:

α =
∑

n∈[1,L]2

∣∣ψλ
n

∣∣4
. (14)

If the state is perfectly localized at a given site n0, ψλ
n = δn,n0 ,

then α = 1 and if the state is completely delocalized then
ψλ

m = 1/L and α = 1/L2 → 0 in the thermodynamic limit. As
expected, we observe two bands that are mostly delocalized,
with some localized states at their extremities. Compare with
Fig. 2(a).

The edge Hamiltonian is given by HE = H with Dirichlet
boundary condition in direction 1 and periodic boundary
condition in direction 2, so that the crystal is a cylinder with two
edges at n1 = 1 and n1 = L. The corresponding edge evolution
UE(T ) has a typical spectrum illustrated in Fig. 4(b). Similarly
to the bulk spectrum, one has two bands but the gaps are now
filled by modes that are confined at one of the two edges. For
each eigenvalue λ, we compute the first momentum in direction
1 of the corresponding eigenstate’s probability density

β =
∑

n∈[1,L]2

2n1 − L − 1

L − 1

∣∣ψλ
n

∣∣2
. (15)

If ψλ is fully confined at n1 = 1 (respectively, n1 = L) then
β = −1 (respectively, β = 1). If it is completely delocalized,
then β = 0 by parity around L/2. As expected, we observe
edge modes between delocalized bands. The difference with
Fig. 2(b) is first that we have two edges, so two locations for
the edge modes, and then that both gaps are filled with edge
modes. We are indeed in an anomalous phase.

For a fixed δ, the phase of the system is 5π/T -periodic in J ,
even with respect to J = 2.5π/T so we restrict our analysis to
J ∈ [0,2.5π/T ]. At J = 0, one has UB(T ) = 1 and the system
is topologically trivial until J ∗ = 1.25π where both gaps close,
leading to the anomalous phase with one edge mode in each
gap. Finally, at J = 2.5π/T , one also has UB(T ) = 1.

n2 ∈ Z0

1
Λ2(n2)

[Λ2, · ]

(a)

n2 ∈ [1, L]L
2

1
Λ2(n2)

[Λ2, · ]

1 L

(b)

FIG. 5. (a) For an infinite sample, a switch function is any
function that switches between 0 and 1 from −∞ to +∞. Operator
[�2,·] is confined in the region of the switch, which is required to
construct finite-trace expressions. (b) In a finite sample with periodic
boundary conditions, [�2,·] has two opposite contributions because
of periodicity, leading to a vanishing total invariant.

B. Switch functions and periodic boundary condition

The first problem encountered in the numerical computation
of the edge index is that we necessarily have two edges, leading
to two counterpropagating edge modes and a vanishing index.
This explains why (3) has to vanish on a finite size sample. This
situation is quite common in the computation of topological
invariants, and the usual solution is to introduce a cutoff. By
performing the trace over the left half part of the sample
only, namely n1 ∈ [1,L/2], we expect to estimate the index
associated to one edge only that is nonvanishing and coincides
with the previous definition of IE in the thermodynamic limit.

We actually have the same issue here in direction 2 because
of the switch function �2. In the infinite setting, a switch
function is given by any function that is 1 (respectively, 0)
for n2 positive (respectively, negative) and large. Equation (4)
is just one example, but the index IE is actually independent
of the choice of switch function [20]. Noticing that (3) can be
rewritten as

IE = Tr(U ∗
E(T )[�2,UE(T )]), (16)

it is actually possible to show that [�2,·] acts as some kind
of noncommutative derivative [compare with (6)], so that
intuitively [�2,UE(T )] is significant only where �2 varies:
near the switching n2 = 0 [Fig. 5(a)]. This actually ensures that
the trace of UE(T )[�2,UE(T )] is finite and IE is well-defined
in the infinite setting. However, when we work with periodic
boundary conditions, the switch function becomes periodic so
that an extra switch necessarily occurs at the “boundary” of
the sample, sharply from 1 to 0 [Fig. 5(b)]. Consequently,
[�2,UE(T )] becomes significant also near this switch, with
opposite contribution so that the index vanishes again.

If the two contributions of [�2,UE(T )] are well separated,
one can also introduce a cut-off to compute the trace around
one of them only, and expect to get an estimated index that
is nonvanishing and coincides with IE in the thermodynamic
limit.
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C. Effective Hamiltonian and truncation to the edge

Before we compute the invariant using the different cut-offs
discussed above, we still need to compute the effective Hamil-
tonian and truncate it to get its edge version. Indeed, the correct
expression of IE(ε) is (8) and not (3), although the previous
discussion on switch functions works for both. The effective
HamiltonianHε

B is defined through the logarithm, see (2). Since
UB(T ) is a L2 × L2 square matrix, the effective Hamiltonian
is computed through the logarithm of a matrix. This is the
only nontrivial part of the numerical implementation. All
the remaining is basic linear algebra such as the product of
matrices. Moreover, the computation of a matrix logarithm,
even for large matrices, has been well studied and several
efficient algorithms exist to compute it [49,50].

The edge effective Hamiltonian is obtained by truncation of
the bulk one, namely, Hε

E = Ĥ ε
B. At the numerical level, this

simply means that we remove the off-diagonal terms of the
matrix Hε

B. Indeed, since Hε
B is local as in (1), it has nonvan-

ishing terms only near the diagonal that decay exponentially
away from it. On top of that, it has far away off-diagonal terms
that correspond to periodic boundary conditions. If the two
contributions are not overlapping (namely if the size of the
system is larger than the range of the operator), one can set the
off-diagonal part to zero, leading to the same Hamiltonian but
with Dirichlet boundary condition, that is, Hε

E. This intuitive
picture is correct in one dimension but has to be carefully
adapted to our two-dimensional problem since we only want
Dirichlet boundary condition in direction 1 whereas direction
2 remains periodic.

We can then check that the time evolution e−iT Hε
E has

the same spectrum as the one in Fig. 4(b) but without any
edge mode in both gaps, in agreement with the discussion
in Sec. III A for the anomalous phase. In this example, the
effective vacua is present to remove contributions from the
delocalized bands only.

D. Numerical estimate of the index

We have now everything to propose a numerical version
of the edge index. In what follows, we always assume for
simplicity that the branch cut is taken at ε = π and we look
at the invariant IE(π ) in the corresponding gap. Consider the
operator


 := U ∗
E(T )[�2,UE(T )] − eiT Hπ

E
[
�2,e

−iT Hπ
E
]

(17)

that equals the one appearing in (8) by expanding the commu-
tators, so that by definition IE(π ) = Tr(
). The trace being the
sum of diagonal elements, we focus only on 
n,n and consider
its numerical version where n ∈ [1,L]2. A typical amplitude
of |
n,n| is illustrated in Fig. 6. Note that the amplitude scale
is logarithmic so that 
n,n is significant only in a few regions.

This comes from the following facts, discussed above
(1) because of operator [�2,·] then 
n,n is confined near the
switches of �2, namely around n2 = L/2 and n2 = L + 1 =
1, and (2) because we consider the relative evolution with
respect to the effective one, which coincide in the bulk, 
n,n
is confined near the two edges of the sample.

In each case, the two contributions compensate so one has
to pick one of them only. Thus we divide the sample into four
equal areas denoted from I to IV in Fig. 6, according to the

10-25

10-20

10-15

10-10

10-5

I II
IIIIV

n2

n1

FIG. 6. Diagonal kernel |
|n,n, where n = (n1,n2) ∈ [1,L]2 for
J = 1.875π/T , δ = 1.6π/T , and L = 40. Direction 1 has Dirichlet
boundary conditions with two edges at n1 = 1 and L, and direction 2
has periodic boundary conditions with n2 = 1 and L identified. The
color bar is the logarithmic amplitude, so that the kernel is significant
only near the edges and the switches, dividing the sample into four
equal areas denoted from I to IV. Each one leads to a numerical index
according to (18).

choice of switch and edge. For each area, we define the cut-off
QA for A ∈ {I, . . . ,IV }, a diagonal operator that is 1 in area i

and 0 outside. The numerical invariant is then defined as

ĨE(π,QA) := Tr(
QA) =
∑
n∈A


n,n. (18)

In the thermodynamic limit when L → ∞, region I becomes
similar to the half-infinite space described in Sec. II so that
ĨE(π,QA) coincides with IE(π ). The invariant computed in the
other regions should also coincide with IE up to a sign, since
the edge orientation or the switch has been reversed there.

The computation of the index is actually pretty accurate
even for small sizes, as illustrated in Table I for the case where
J = 1.875π/T and δ = 1.6π/T . The theoretical value of the
invariant in that case IE(π ) = −1, which we get numerically
at a precision scaling with the size of the system.

Note that this invariant is computed for a given disordered
configuration and does not require any average on the dis-
order so that the computation can be done in a few seconds
(respectively, minutes) for L = 8 (respectively, for L = 48)
on a simple computer. In the last line of Table I, we give
the standard deviation of the index when computed for a
large number of disordered configurations. As expected, one
can also check numerically that IE(π,QI) 
 −IE(π,QII) 

IE(π,QIII) 
 −IE(π,QIV) within the same order of magni-
tude.

TABLE I. Numerical index distance to its theoretical value. The
precision scales with the size of the system. The last line is the
standard deviation of the invariant for a large number of disordered
configurations.

L 8 16 32 48

|ĨE(π,QI) − (−1)| � 1 × 10−2 1 × 10−4 1 × 10−8 1 × 10−12


IE(π,QI ) � 8 × 10−4 1 × 10−5 2 × 10−9 2 × 10−13
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0 2.54

0

1

L=16

1.15 1.34

0

1

L=16
L=32
L=48

1.25 1.25

J (π/T ) J (π/T )(a) (b)

FIG. 7. Numerical invariant |ĨE(π,QI)| with respect to J (in π/T

units) for δ = 1.6π/T . (a) Away from the transition J ∗ = 1.25π/T

we get 0 or 1 with good precision. (b) In a narrow region near J ∗, the
index converges to the step function in the thermodynamic limit L →
∞. The fluctuations due to disorder are of the size of the markers.

Then we compute the invariant for several values of J and
look at the topological transition. Away from J ∗ = 1.25π/T

where the gap closes, the estimation is pretty accurate for a
large range of J [Fig. 7(a)]. The numerical index moves away
from integer values when looking close to the transition, but
becomes more accurate and converges to the step function by
increasing the size L of the sample [Fig. 7(b)].

Notice that even near the transition, the fluctuations due to
disorder remain small. The fact that ĨE becomes less accurate
here is actually because the range 1/μ of the local operators
[see (1)] goes to infinity when the gap of UB(T ) closes. Thus the
hypotheses that there is no overlap between the two edges or the
two switches, discussed in Sec. IV B or between the diagonal
and far off-diagonal terms related to the truncation procedure
from Sec. IV C, become less and less valid when the size of the
gap decreases. Increasing the size of the system decreases the
different overlaps and thus restores the hypotheses [Fig. 7(b)].

Finally, this cutoff procedure works similarly in the deter-
mination of ĨI, a numerical version of the interface index, and
one can check numerically that IE(ε) = II(ε). However, the
latter index was introduced to interpret Hε

E as an effective
vacuum rather than for computational purposes. Furthermore,
we claim that expression (8) of IE(ε) is slightly simpler and
more efficient to be implemented numerically, but since it
might also be of independent interest we describe the numerical
interface index in Appendix C. Notice that with ĨE and ĨI

being computations in real space with opposite contributions
that compensate, this approach bares similarity with the bulk
invariant defined in Ref. [51], although it was for translation-
invariant static systems.

E. Application to a nonanomalous case

As mentioned before, the switch-function formalism works
for any Floquet system for which UB(T ) has a spectral gap.
Following [5] (that was without disorder), we modify the model
of Sec. IV A by implementing the on-site random potential (12)
at all time. This means we replace Hi by Hi + H5 for i =
1, . . . ,4 and leave H5 unchanged. The corresponding bulk and
edge spectra are given in Fig. 8.

Similarly to the previous case, the bulk spectrum has two
gaps, but in the edge picture only one is filled with edge modes.
This is a numerical realization of Fig. 2. In particular, the Chern
numbers of the bulk bands are nonvanishing, and the system is

0.2 0.41 -1 0 1

(a) (b)

FIG. 8. Numerical spectra of a disordered configuration for J =
1.5π/T , δ = 0.5π/T , and L = 40 in the case where the random
potential is present all the time. (a) Bulk spectrum with two gaps.
(b) Edge spectrum: one gap is filled with edge states whereas the
other is not. The system is not anomalous.

not anomalous. One can check (not shown) that the spectrum
of the effective vacuum is in agreement with Fig. 3. Moreover,
because of nonzero Chern numbers, the localization length of
some bulk states is infinite in the thermodynamic limit (if the
disorder is not too strong). We can anyway compute the edge
index that is already quantized for small sizes, as we can see
in Table II.

Note that the Chern numbers do not entirely capture the
topology of a nonanomalous Floquet model. Moreover, their
physical interpretation is less clear than in static topological
insulators. Thus the computation and physical interpretation
of the switch-function edge index appears also helpful in that
case in order to characterize the topology of disordered models.
The transition from nonanomalous to anomalous phase could
also be studied within this formalism.

V. DISCUSSION

In this paper, we focused on the edge properties of Floquet
topological phases. We showed that the quantized pumping
within a Floquet cycle, first noticed for the anomalous Floquet-
Anderson insulator phase, is actually a general phenomenon
for any gapped bulk one-period evolution. This pumping is
somewhat hidden among other transport processes of the
dynamics, that have to be subtracted in some way in order to
observe the topological part at the edge of the sample. This
regularization is provided by expression (8) of IE coming
from the relative dynamics with respect to an effective one.
This expression, based on the switch function formalism, is
deterministic and works for every disordered configuration of
the sample, as long as the bulk evolution after one period has
a spectral gap.

TABLE II. Numerical index distance to its theoretical value and
standard deviation for a large number of disordered configurations for
the nonanomalous model.

L 8 16 32 48

|ĨE(π,QI) − (−1)| � 5 × 10−2 2 × 10−3 5 × 10−6 2 × 10−8


IE(π,QI ) � 9 × 10−3 6 × 10−4 2 × 10−6 1 × 10−8
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The effective dynamics at the edge, given by Hε
E, can be

easily interpreted in the interface picture, which is dual to
the previous one. There, Hε

E appears as an effective vacuum
that, when placed next to the original sample, reproduces the
quantized pumping at the interface, relatively to the transport
processes that could occur in the bulk. This effective vacuum
depends on the choice of spectral gap and actually appears as
a way to select a given gap among several of a bulk evolution,
in analogy with the chemical potential that shifts the Fermi
energy in static topological insulators. However, there is no
notion of ground state here and the effective vacuum is actually
independent of the quasienergy inside a given gap, so the
analogy should be taken with care. Nevertheless, when the
Floquet operator has several gaps with different invariants,
effective vacua are definitely a way to select and observe the
corresponding edge modes in each of them.

These effective vacua are defined as the truncation of the
logarithm of the bulk evolution, and thus might be cumbersome
to handle in practice. However, most of their properties are
immediate and simple: they are time-independent and local.
In particular, they can always be well approximated by a
finite range static Hamiltonian. Moreover, the spectrum of
an effective vacuum Hε

E is easily deductible from the bulk
evolution. By construction, it has no edge mode in the gap
around ε and has the same bands than the edge evolution but
with different edge modes according to the Chern numbers of
the bulk evolution. In the particular case of anomalous phases
it has no edge mode at all.

We finally implemented these concepts in a numerical
framework on a generic model, leading to an accurate esti-
mation of the edge index IE, without average and for any
disordered configuration. Once the issue with switch functions
in a periodic setting is fixed, the complexity of the algorithm
is reduced to computing the logarithm of a matrix that is quite
well implemented nowadays. The rest of the code is basic linear
algebra and computes the edge invariant for any disordered
system from the input of UE(T ) and UB(T ). The algorithm
becomes less relevant near the topological transition, where
the range of the system goes to infinity and thus breaks the
hypotheses on which the code is built. Away from the transition
it is quite accurate and efficient.

This work opens several interesting perspectives. The effec-
tive vacua and the interface with them provide a mechanism
to select and observe the topological properties associated to
one of the spectral gaps of a Floquet topological insulator.
Moreover, we also learned from the definition of the index that
the quantized pumping occurring at the edge (or equivalently
at the interface) can only be measured up to a regularization
that removes the eventual contributions from the bands and
other gaps. In other words, the word “insulator” seems slightly
inappropriate here. In contrast with the static case, the spectral
bands of a Floquet evolution also contribute within a cycle
and may lead to transport processes, topological or not.
Somehow, the dynamics of a periodically driven system seems
to be richer since the transport of electrons involves several
distinct contributions. The effective vacua appear as a way to
disentangle them.

Furthermore, the index II of an interface given in (10) is
also of independent interest, since it works for any two edge
evolutions that coincide in the bulk and is independent on the

way they are glued together at the interface. Here, it was mostly
used to give an interpretation of Hε

E but, in principle, one could
take two bulk evolutions such that UB,1(T ) = UB,2(T ) and
expect a topological pumping at the interface. A system with
a continuous parameter that drives the topological transition
might have two distinct parameter values with a coinciding
bulk evolution, see, for example, Ref. [52] in the context of
oriented scattering networks. In that case, the second evolution
plays the role of a dynamical vacuum placed next to the first
one, in contrast to an effective vacuum that is time independent.
A dynamical vacuum might be, however, easier to implement
in practice.

Finally, the numerical implementation of the index IE,
which has an illustrative purpose here, is also of independent
interest. It paves the way for a general procedure to estimate
any index in the context of disordered topological insulators.
Coming from functional analysis, the formalism of switch
function has been underestimated in the physics literature
whereas it does not require any strong knowledge of the un-
derlying mathematical theory. Roughly speaking, for a switch
function �i in direction i, [�i,·] replaces the quasimomentum
derivative ∂ki

of a translation invariant system. In our case,
comparing (3) and (6), we have explicitly

1

2π i

∫
dkiTrj (∗ ∂ki

∗) ↔ Tri,j (∗ [�i,∗]), (19)

but this can be generalized to other dimensions or extra
symmetries, at least as a formal expression. It is then possible
to rigorously define the index in terms of switch functions
without requiring translation-invariance. This has been done
for the Floquet bulk index [20], but also originally for the Chern
number [38] and other static topological insulators [53,54]. In
any case, the cutoff procedure of this paper provides a simple
algorithm to immediately estimate these quantities even if they
are formally defined only. Thus, in principle, it is possible to
generalize and study the robustness to disorder of any quantity
initially defined in terms of quasimomentum derivatives. The
issue of strong disorder and mobility gap might be also studied
within this formalism.

APPENDIX A: DERIVATION OF EDGE INDEX
EXPRESSION

The relative edge Hamiltonian given by (7) generates the
following time evolution:

U rel
E (t) =

{
UE(2t) for 0 � t � T/2

e−i(T −2t)Hε
E UE(T ) for T/2 � t � T

. (A1)

In particular, U rel
E (T ) = eiT Hε

E UE(T ). Since U rel
B (T ) = 1, we

can use expression (3) with U rel
E (T ) to define

IE(ε) := Tr(U ∗
E(T )e−iT Hε

E �2eiT Hε
E UE(T ) − �2). (A2)

We then use the invariance under continuous deforma-
tion of the index and consider the homotopy V (s) =
e−isT Hε

E U rel
E (T )eisT Hε

E for s ∈ [0,1] so that V (0) = U rel
E (T )

and V (1) = UE(T )eiT Hε
E . Importantly, this homotopy pre-

serves U rel
E (T ) = 1 + D(T ), namely, V (s) = 1 + D(T ,s) with

D(T ,s) confined near the edge. Thus the edge index is well
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defined and remains constant for every s, so that at s = 1,

IE(ε) = Tr
(
e−iT Hε

E U ∗
E(T )�2UE(T )eiT Hε

E − �2
)
. (A3)

By conjugating the entire expression under the trace by
eiT Hε

E · e−iT Hε
E we get expression (8) for IE(ε). Note that

definition (A2) is perfectly valid for IE(ε) but the pumping
interpretation is less obvious as the operators appear in the
wrong order.

APPENDIX B: EDGE-INTERFACE CORRESPONDENCE

Consider the sharp interface given by (9). We denote this
Hamiltonian by H# = Hε

E#HE, meaning that Hε
E is on the left

and HE on the right of the sample. In that case, H# is composed
of two disconnected blocks, then so is the corresponding
evolution. In particular U#(T ) = e−iT Hε

E #UE(T ). For a general
interface HI, we claim that the gluing condition Hint does not
change much since HI is continuously deformable to H#, so
that in particular UI(T ) 
 U#(T ).

Then notice that UB(T ) = e−iT Hε
B by construction, so we

can use the later expression in the interface index defini-
tion (10). Similarly, we can consider Hε

B as a trivial gluing of
Hε

E on both half of the space, namely Hε
B 
 Hε

E#Hε
E. Of course,

the equality is approximatively true only as the right-hand side
(r.h.s) corresponds to a disconnected interface, but we claim
that the error is small when Hε

B is local. Furthermore, Hε
B can

be continuously deformed to Hε
E#Hε

E. As a consequence one
has e−iT Hε

B 
 e−iT Hε
E #e−iT Hε

E . Consequently,

U ∗
B(T )UI(T ) 
 1 # eiT Hε

E UE(T ). (B1)

Then we rewrite the interface index (10), by cyclicity of the
total trace,

II(ε) = Tr(U ∗
I (T )UB(T )�2U

∗
B(T )UI(T ) − �2), (B2)

and realize that the left-half contribution (namely, 1) cancels
out from this formula. Thus we are left with the trace on the
right-half space, that is the edge space, and the expression is ex-
actly the edge index definition (A2). The approximations made
in this sharp interface computation can be removed through
continuous deformations and leave the indices unchanged [20],
leading to (11).

APPENDIX C: NUMERICAL INTERFACE INDEX

Similarly, it is also possible to implement a numerical esti-
mate of the interface index. In that case, the edge Hamiltonian
is given by the lower-right block of HB, which restricts the
bulk sample to the right half-space with Dirichlet boundary
condition in direction 1 at n1 = L/2 and n1 = L. Then we take
the upper-left block of the effective bulk HamiltonianHε

B [com-
puted as the logarithm of UB(T )], that restricts it to the left half-
space with Dirichlet boundary condition at n1 = 1 and n1 =
L/2. When put together, these two pieces constitute a sharp
(or disconnected) interface between Hε

E and HE(t) at n1 =

-

10-14

10-10

10-6

10-2

I I I

IIIIV

(a) (b)

FIG. 9. Amplitude (in logarithmic scale) of |
n,n| for interfaces
between Hε

E on the left and HE on the right: disconnected interfaces
(a), and nearest-neighbor hopping at the interfaces (b). In each case,
the amplitude is significant near the interfaces n1 = L/2 and n1 =
1 = L (red lines), and near the switch in direction n2, namely n2 =
L/2 and n2 = 1 = L. This divides the sample into four equivalent
areas on each of which the numerical interface invariant can be
computed. The parameters are the same as in Fig. 6.

L/2 and n1 = 1 = L + 1 by periodicity. The corresponding
Hamiltonian HI(t) is block diagonal and generates evolution
UI(t). The operator appearing in the definition of the interface
index is 
 = U ∗

I (T )[�2,UI(T )] − U ∗
B(T )[�2,UB(T )], where

UB is the bulk evolution on the whole sample with periodic
boundary conditions in both directions. The diagonal elements
|
n,n| are represented in Fig. 9(a) for a sharp interface.

The sample splits again into four equivalent regions because

 is confined near the �2-switches and near the two interfaces,
each one giving a numerical index by applying the cutoff
procedure of Sec. IV D: ĨI(ε,QA) is defined as in (18) but with
the areas of Fig. 9(a) instead. We recover the same accuracy
as in Table I for the edge index. Note that to the right of the
interface almost all the elements of |
n,n| are zero. This is
because the model described in Sec. IV A is actually a sequence
of isolated two-level systems, so that away from the interface
the evolution UE is not only local but finite range. On the other
side, the effective Hamiltonian Hε

E is defined in terms of a
logarithm, which is not finite range even when UB(T ) is. This
is why on the left of the interface, operator 
 has a richer
structure, even though these matrix elements are very small
away from the significant regions.

Finally, we can connect the two parts in a more physical way.
We add, for example, a time-independent nearest-neighbor
hopping term of amplitude J at the interfaces n1 = L/2
and n1 = 1 = L + 1, allowing for exchanges between the
two halves. The corresponding operator 
 is represented in
Fig. 9(b), where we observe that the two dynamics have
been mixed together along the interface within a cycle. The
estimated index anyway leads to the same integer value, but
with a slightly lower precision than in the previous case. The
orders of magnitude of Table I are strictly recovered when we
take a rectangle sample of size 2L × L instead.
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