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Zeroth law of thermodynamics

“The zeroth law deals with the observed fact that a large system seems to
normally have "states" described by a few macroscopic parameters like a tem-
perature and density, and that any system not in one of these states, left
alone, rapidly approaches one of these states. When Boltzmann and Gibbs
tried to find a macroscopic basis for thermodynamics, they realized that the
approach to equilibrium was the most puzzling and deepest problem in such
a formalism.”

from Simon, B.: The Statistical Mechanics of Lattice Gasses.

1



Heuristic motivation

• Consider an infinite quantum system on a d-dimensional lattice

• At t = 0: consider a translation invariant state ρ0.
Ex: equilibrium state at inverse temperature β “ρ0 = e−βH1 ”

• Evolve it with a distinct dynamics for t > 0 “τt = eitH2 · e−itH2 ”

What happens to the state as t →∞ ?

• Equilibrium states for infinite systems are well known: KMS states

• A lot is known when H2 is a local perturbation: return to equilibrium,
non-equilibrium steady states, entropy production...

What happens when the perturbation is infinite, but translation invariant ?
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Our contribution

1. Formulate the problem

2. Establish some structural results about entropy and irreversibility

3. In a nutshell:

T →∞

s(ωT )

s(ω0)

s(ω∞) > s(ω0)

T

4. Identify weak-Gibbs states ω and their related entropy balance equation:

s(ν|ω) = −s(ν) + ν(EΦ) + p(Φ).

5. Infer some consequences for adiabatic theory (not in today’s talk).
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Quantum spins on a lattice

Statements from this section can be found in

Bratteli-Robinson I and II ’79/81, Israel ’79, Simon ’93...

Consider the d-dimensional lattice Zd (d arbitrary) and a Hilbert space H0 ∼= C2.

Let F = {X ⊂ Zd | |X | <∞}.

• For x ∈ Zd , Hx = H0

• For X ∈ F , HX = ⊗
x∈X
HX and UX = B(HX )

• For X ⊂ X ′, UX ⊂ UX ′ via A 7→ A⊗ 1X ′\X

• Uloc = ∪
X∈F
UX and U = Uloc (in norm) is the spin C∗-algebra.

Remark: what follows also works for the (even) fermionic CAR algebra (the proof are
very similar, see Araki-Moriya ’03)
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States and entropy

For x ∈ Zd translation automorphism τx sending UX to UX+x .

Translation invariant states

SI = {ν : U → C | ν positive, linear, ν(1) = 1 and ν ◦ τx = ν, ∀x ∈ Zd}

For ν ∈ SI and Λ ∈ F a cube of Zd centered at 0, let νΛ be the restriction of ν to UΛ,
i.e. ν(A) = tr(νΛA) for all A ∈ UΛ.

• Mean specific entropy: the limit

s(ν) = − lim
Λ→Zd

1
|Λ| tr(νΛ log(νΛ))

exists and s : SI → [0, log(2)] is affine and upper-semicontinuous.

• Mean relative entropy:

s(ν|ω) = − lim
Λ→Zd

1
|Λ| tr

(
νΛ(log(ωΛ)− log(νΛ))

)
If such a limit exists, then s(ν|ω) ≥ 0.
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Interactions, local Hamiltonian

An interaction is a family {Φ(X )}X∈F such that Φ(X ) ∈ UX is a self-adjoint.
Moreover we assume:

1. Translation invariance: τx(Φ(X )) = Φ(X + x)

2. Short range:
∥Φ∥r =

∑
X∋0

er(|X |−1) ∥Φ(X )∥ <∞

(think finite range: Φ(X ) = 0 if diam(X ) > r)

The set of interactions is denoted by Br .

For Λ ∈ F a cube of Zd centered at 0, the local Hamiltonian is HΦ(Λ) =
∑
X⊂Λ

Φ(X )

Examples:

• Ising model for spins Φ(X ) = −σz
i σ

z
j if X = {i , j}, |i − j | = 1 and 0 otherwise.

• Quasi-free Fermions Φ(X ) = a∗i aj + a∗j ai if X = {i , j}, |i − j | = 1 and 0 otherwise.

HΦ(Λ) = −
∑
i,j∈Λ

|i−j|=1

σz
i σ

z
j , HΦ(Λ) =

∑
i,j∈Λ

|i−j|=1

a∗i aj + a∗j ai
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Pressure and mean energy

The local Hamiltonian
HΦ(Λ) =

∑
X⊂Λ

Φ(X )

has no limit in U as Λ→ Zd . However we can define the following quantities.

• Pressure (or Helmholtz free energy) of interaction Φ ∈ Br :

p(Φ) = lim
Λ→Zd

1
|Λ| log(tr(e

−βHΦ(Λ))) <∞

• Mean energy of interaction Φ ∈ Br in a state ν ∈ SI:

lim
Λ→Zd

1
|Λ|ν(HΦ(Λ)) = ν(EΦ), EΦ =

∑
X∋0

Φ(X )

|X |

Notice: entropy of state, pressure of interaction and energy of interaction and state.
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Equilibrium states

Gibbs variational principle
For any Φ ∈ Br

p(Φ) = sup
ν∈SI

(
s(ν)− βν(EΦ)

)

Equilibrium states:

Seq(Φ) = {ν ∈ SI | p(Φ) = s(ν)− βν(EΦ)}

In the following we set β = 1, so that high-temperature = small interaction.
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Dynamics

Let Φ ∈ Br and t ∈ R. For A ∈ UX with X ∈ F the limit

τΦ
t (A) = lim

Λ→Zd
eitHΦ(Λ)Ae−itHΦ(Λ)

exists, is uniform for t in compact sets and extends to a strongly continuous
one-parameter group of *-automorphism on U , that we denote by τΦ

t .

Prop: If ν ∈ Seq(Φ) then ν ◦ τΦ
t = ν.

(the reciprocal statement involves the KMS condition.)

Back to our question:
Take two distinct interactions Ψ and Φ on U (spins or fermions), let ν0 ∈ Seq(Ψ) and

define νt = ν0 ◦ τΦ
t .

What can we say about νt as t →∞ ?
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Approach to equilibrium



Equilibrium Steady States (ESS)

Let ω0 ∈ SI and Φ ∈ Br . For T > 0 define

ωT =
1
T

∫ T

0
ω0 ◦ τΦ

t dt

Consider the set of Equilibrium Steady States (ESS) (in contrast to NESS):

S∞(ω0,Φ) = {weak ∗ − lim(ωT )T>0, T →∞}.

One has:

ω∞ ∈ S∞(ω0,Φ) ⇔ ∃(Tn)n,Tn →∞, ∀A ∈ U , ω∞(A) = lim
n→∞

ωTn (A).

Moreover, ω∞ ∈ SI and ω∞ ◦ τΦ
t = ω∞ (stationary states).
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Approach to equilibrium

We speak about approach to equilibrium when ω∞ ∈ S∞(ω0,Φ) ∩ Seq(Φ)

1. When do we have it? When do we have S∞(ω0,Φ) ⊂ Seq(Φ)? When is
S∞(ω0,Φ) a singleton? (mostly open)

2. What are the general properties of S∞(ω0,Φ), independent from the details of ω0

and Φ? (structural theory)

Very little is known about S∞(ω0,Φ), except in a few cases, such as:

• Lanford-Robinson ’71 (see also Haag-Radison-Kastler ’73 and Sukhov ’83):
quasi-free interaction for fermions

HΦ(Λ) =
∑
i,j∈Λ

h(i − j)(a∗i aj + a∗j ai )

• Radin ’70: generalized Ising model for spins

HΦ(Λ) =
∑
i,j∈Λ

h(i − j)σz
i σ

z
j

In both cases, the dynamics is exactly solvable. However, ω∞ /∈ Seq(Φ).
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A question of Ruelle

For finite and closed systems, it is a well known fact that the von Neumann entropy
S(ρ) = tr(ρ ln ρ) is preserved by unitary evolution.

“It is unclear to the author whether the evolution of an infinite system should
increase its entropy per unit volume. Another possibility is that, when the time
tends to ∞, a state has a limit with strictly larger entropy.”

Ruelle, D.: States of classical statistical mechanics. J. Math. Phys. 1967
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Conservation laws at finite time

Recall

ω(EΦ) = lim
Λ→Zd

1
|Λ|ω(HΦ(Λ)), s(ω) = − lim

Λ→Zd

1
|Λ| tr(ωΛ log(ωΛ)).

Proposition
For any ω ∈ SI, Φ ∈ Br and t ∈ R

1. ω ◦ τΦ
t (EΦ) = ω(EΦ) [Jaksic-Pillet-T. ’24]

2. s(ω ◦ τΦ
t ) = s(ω) [Lanford-Robinson ’68]

The first result is expected but not straightforward. The second one is more surprising
and goes back to Lanford and Robinson ’68 in the case of spin systems. Intuitively, the
von Neumann entropy S(ρ) = tr(ρ ln ρ) of a closed finite system cannot change by a
unitary evolution. The argument extends to the mean entropy of infinite systems thank
to the |Λ|−1-term which cancels possible boundary effects.
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Conservation laws

The last results naturally extend to the averaged dynamics ωT =
1
T

∫ T

0
ω0 ◦ τΦ

t dt

Proposition
For all T ∈ R, ωT (EΦ) = ω0(EΦ) and s(ωT ) = s(ω0).

By (semi-) continuity:

Proposition
For ω∞ ∈ S∞(ω0,Φ)

• s(ω0) ≤ s(ω∞)

• ω0(EΦ) = ω∞(EΦ)

When do we have strict increase of entropy ?
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Weak Gibbs states

Defintion
A state ω ∈ SI (U) is called weak Gibbs for interaction Φ ∈ Br if there are constants
CΛ > 0 satisfying

C−1
Λ

e−HΦ(Λ)

tr(e−HΦ(Λ))
≤ ωΛ ≤ CΛ

e−HΦ(Λ)

tr(e−HΦ(Λ))
, lim

Λ↑Zd

1
|Λ| logCΛ = 0

The set of weak Gibbs states for Φ is denoted by Swg(Φ).

This is the quantum analogue of classical weak Gibbs states [Yuri ’02].

Prop: In particular, Swg(Φ) ⊂ Seq(Φ)

Theorem [Jaksic-Pillet-T. ’24]
Suppose that either d = 1 and Φ ∈ Bf or d ≥ 1, Φ ∈ Br , and ∥Φ∥r < r .

Then Seq(Φ) = Swg(Φ).

Conjecture: For any r > 0 and Φ ∈ Br , Seq(Φ) = Swg(Φ).

This is true in classical systems for any Φ ∈ Bf [Pfister-Sullivan ’19].
15



Entropy balance equation

Proposition
Let Φ ∈ Br and ω ∈ Swg(Φ). Then for any ν ∈ SI (U),

s(ν|ω) = lim
Λ↑Zd

S(νΛ|ωΛ)

|Λ| = −s(ν) + ν(EΦ) + p(Φ). (1)

In particular ν 7→ s(ν|ω) is lower-semicontinuous and s(ν|ω) ≥ 0 with equality iff
ν ∈ Seq(Φ).

Summarizing: At high temperature, all equilibrium states are weak Gibbs and hence
satisfy (1).
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Increase of entropy

I : SI (U) ∋ ω−→
Φ

ω∞ ∈ Seq(Φ), II : Seq(Ψ0) ∋ ω0−→
Φ

ω∞

Theorem I [Jaksic-Pillet-T. ’24]

Let ω ∈ SI (U), Φ ∈ Br such that ω is not τΦ-invariant. Let ω∞ ∈ S∞(ω,Φ), and
suppose that ω∞ ∈ Swg(Φ). Then

s(ω∞) > s(ω).

This is a conditional result, in particular it requires ω∞ ∈ Seq(Φ).

Proof: (!) The entropy balance equation gives

0 ≤ s(ω|ω∞) = −s(ω) + ω(EΦ) + p(Φ)

= −s(ω) + ω∞(EΦ) + p(Φ)

= s(ω∞)− s(ω).

Thus if s(ω∞) = s(ω) then ω ∈ Seq(Φ), and so ω is τΦ-invariant.
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Irreversibility

I : SI (U) ∋ ω−→
Φ

ω∞ ∈ Seq(Φ), II : Seq(Ψ0) ∋ ω0−→
Φ

ω∞

Theorem II [Jaksic-Pillet-T. ’24]
Let Φ,Ψ0 ∈ Br . Suppose that Seq(Ψ0) = {ω0} with ω0 weak Gibbs and not
τΦ-invariant. Then for any ω∞ ∈ S∞(ω0,Φ),

ω∞(EΨ0) > ω0(EΨ0).

This one is unconditional on ω∞. Its proof is similar.

Cor: Assume the setting to be reversible: ω0 ∈ S∞(ω∞,Ψ0).

ω0−→
Φ

ω∞, ω0←−
Ψ0

ω∞

Then ω∞ = ω0 and ω0 is τΦ-invariant.

Approach to equilibrium is irreversible (in contrast to return to equilibrium).
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Elements of proof



Back to weak Gibbs states

Let Φ ∈ Br with ∥Φ∥r < r and ω ∈ Seq(Φ). Let’s prove that ω ∈ Swg(Φ), namely find
CΛ such that

C−1
Λ

e−HΦ(Λ)

tr(e−HΦ(Λ))
≤ ωΛ ≤ CΛ

e−HΦ(Λ)

tr(e−HΦ(Λ))
, lim

Λ↑Zd

1
|Λ| logCΛ = 0.

Proposition [Israel ’79]

For any A ∈ Uloc the map R ∋ t 7→ τ t
Φ(A) has an analytic extension to the strip

|Im(z)| < r

2∥Φ∥r

where we have ∥τ z
Φ(A)∥ ≤ ∥A∥ er supp(A) r

r−2∥Φ∥r |Im(z)| .

Recall that ∥Φ∥r =
∑

X∋0 er(|X |−1) ∥Φ(X )∥.
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KMS states and perturbation [Haag-Hugenholtz-Winninck ’67]

Definition
Let Φ ∈ Br . A state ω ∈ SI (U) is (τΦ, β)-KMS if for all A,B ∈ U , the function

R ∋ t 7→ FAB(t) = ω(τ t
Φ(A)B)

has an extension analytic in the strip {0 < Im(z) < β}, bounded and continuous on
its closure, and satisfying the Kubo-Martin-Schwinger boundary condition
FAB(t + iβ) = ω(Bτ t

Φ(A))

Prop: Any (τΦ, β)-KMS is τΦ-invariant. Moreover ω ∈ Seq(Φ)⇔ ω is (τΦ, β)-KMS.

Proposition
For any V = V ∗ ∈ U there exist a unique perturbed dynamics (τΦ)V , generated by
(δΦ)V (A) = δΦ(A) + [V ,A] for all A ∈ Uloc. For ω a (β,Φ)-KMS state, we denote by
ωV the corresponding perturbed KMS state.

[Simon ’93, Araki-Moriya ’03]
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Surface energies and Gibbs condition

For Φ ∈ Br and Λ ⊂ Zd finite consider the surface energies

WΛ =
∑

X∩Λ̸=∅
X∩Λc ̸=∅

Φ(X )

Prop: For Φ ∈ Br , limΛ→Zd
1
|Λ| ∥WΛ∥ = 0

Removing WΛ in the dynamics disconnects the box Λ from the rest of Zd .

Gibbs condition [Simon ’93, Araki-Moriya ’03]
For fixed Λ, let (τΦ)−WΛ be the dynamics perturbed by −WΛ and let ω−WΛ be the
corresponding KMS state. Then for any A ∈ U(Λ) one has

ω−WΛ(A) =
tr(e−βHΦ(Λ)A)

tr(e−βHΦ(Λ))
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Comparing perturbed and original state

Theorem [Lenci-Rey-Bellet ’05]
Let ω be a (τ, 1)-KMS state and let ωV be a (τV , 1)-KMS state associated to the
perturbed dynamics τV for some V = V ∗ ∈ U . Assume that R ∋ t 7→ τ t(V ) has an
analytic extension to the strip {0 < |Im(z)| < 1

2}, bounded and continuous on its
closure. Then

ωV ≤ e∥V∥+∥τ i/2(V )∥ω, ωV ≥ e−∥V∥−∥τ i/2
−V

(V )∥ω

In our case, since ∥Φ∥r < r , z 7→ τ z
Φ(WΛ) is analytic on Im(z) < a for some a > 1/2

which implies

e−∥WΛ∥−∥τ i/2
Φ

(WΛ)∥ e−HΦ(Λ)

tr(e−HΦ(Λ))
≤ ωΛ ≤ e∥WΛ∥+∥(τ i/2

Φ
)−WΛ

(WΛ)∥ e−HΦ(Λ)

tr(e−HΦ(Λ))

It remains to show that
lim

Λ→Zd

1
|Λ| ∥τ

i/2
Φ (WΛ)∥ = 0

and similarly for (τ i/2
Φ )−WΛ(WΛ).
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End of proof

For X ∈ F we have ∥τ i/2
Φ (Φ(X ))∥ ≤ ∥Φ(X )∥ er|X|

1−∥Φ∥r/r , so that

∥τ i/2
Φ (WΛ)∥ ≤

∑
X∩Λ̸=∅
X∩Λc ̸=∅

∥Φ(X )∥ er|X |

1− ∥Φ∥r/r
.

We conclude the proof by showing that

lim
Λ↑Zd

1
|Λ|

∑
X∩Λ̸=∅
X∩Λc ̸=∅

∥Φ(X )∥er|X | = 0.

This relation is immediate for Φ finite range, and the general case follows by density in
Br and the bound

1
|Λ|

∑
X∩Λ̸=∅

∥Ψ(X )∥er|X | ≤ er∥Ψ∥r

that holds for all Ψ ∈ Br .

The argument for (τ i/2
Φ )−WΛ(WΛ) is similar.
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Recent progress and perspectives



Stability of weak Gibbs states

Is weak Gibbs property or entropy balance equation somehow preserved along a state
trajectory?

(work in progress with Vojkan Jaksic, Anna Szczepanek and Claude-Alain Pillet)

Theorem
Let Ψ0 and Φ be finite range interactions. Assume that Swg(Ψ0) = Seq(Ψ0) = {ω0}
and consider ωt = ω0 ◦ τΦ

t . Then it exists T0 > 0 such that for all |t| < T0

ωt ∈ Swg(Φt)

for some interaction Φt . Moreover T0 = +∞ if d = 1.

The proof relies on :

1. Lieb-Robinson bounds

2. Existence and vanishing of surface energy for Φt

3. Araki’s estimate for d = 1
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Conservation of relative entropy

Recall that for ω ∈ SI and Φ ∈ Br we have s(ω ◦ τΦ
t ) = s(ω). What about relative

entropy?

(work in progress with Vojkan Jaksic, Anna Szczepanek and Claude-Alain Pillet)

Corollary
Let Ψ0 and Φ be finite range interactions. Assume that Swg(Ψ0) = Seq(Ψ0) = {ω0}
and consider ωt = ω0 ◦ τΦ

t . Then it exists T0 > 0 such that for all |t| < T0 and any
ν ∈ SI (U), with νt = ν ◦ τΦ

t ,

s(νt |ωt) = s(ν|ω0) = −s(ν0) + ν(EΨ0) + p(Ψ0)

for some interaction Φt . Moreover T0 = +∞ if d = 1.
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Conclusion

Formulation of Approach to Equilibrium for infinite and translation-invariant quantum
spin or fermionic systems

• Entropy is constant for finite time

• Strict increase of entropy at t =∞

• Approach to Equilibrium is not compatible with reversibility or adiabatic theorem

• Central tool: weak Gibbs states and entropy balance equation

• At least at high temperature, all equilibrium states are always weak Gibbs
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Perspectives

The problem of approach to equilibrium remains mostly open

• Prove approach to equilibrium in specific models, beyond quasi-free or exactly
solvable cases.

• A possible choice is the canonical two-body interaction fermionic model, related
to the Quantum Boltzmann equation
[Hugenholz ’83, Erdös-Salmhofer-Yau ’04, Benedetto-Castella-Esposito-Pulvirenti ’04-’08]

Thank you for your attention!
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