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Zeroth law of thermodynamics

“The zeroth law deals with the observed fact that a large system seems to
normally have "states" described by a few macroscopic parameters like a tem-
perature and density, and that any system not in one of these states, left
alone, rapidly approaches one of these states. When Boltzmann and Gibbs
tried to find a macroscopic basis for thermodynamics, they realized that the
approach to equilibrium was the most puzzling and deepest problem in such
a formalism.”

from Simon, B.: The Statistical Mechanics of Lattice Gasses.



Heuristic motivation

e Consider an infinite quantum system on a d-dimensional lattice

e At t = 0: consider a translation invariant state po.
Ex: equilibrium state at inverse temperature 3 “po = e Pt
itHa

—itHan

e Evolve it with a distinct dynamics for t > 0 “rr=e"2 e

What happens to the state as t — oo ?

e Equilibrium states for infinite systems are well known: KMS states

e A lot is known when H> is a local perturbation: return to equilibrium,
non-equilibrium steady states, entropy production...

What happens when the perturbation is infinite, but translation invariant ?



Our contribution

1. Formulate the problem
2. Establish some structural results about entropy and irreversibility
3. In a nutshell:
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s(wo)
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4. ldentify weak-Gibbs states w and their related entropy balance equation:
S(vlw) = —s(v) + v(Es) + p().

5. Infer some consequences for adiabatic theory (not in today’s talk).



Quantum spins on a lattice

Statements from this section can be found in

Bratteli-Robinson | and 11 '79/81, Israel '79, Simon '93...

Consider the d-dimensional lattice Z¢ (d arbitrary) and a Hilbert space Ho = C.
Let F = {X C Z7||X| < oo}
o For x € Z%, Hx = Ho
e For X ¢ F, Hx = ®X7'[X and Ux = B(Hx)
x€

e For X C X', Ux C Uxs via A~ A® Lxnx
o Uoe = fouX and U = Uioc (in norm) is the spin C*-algebra.
€

Remark: what follows also works for the (even) fermionic CAR algebra (the proof are
very similar, see Araki-Moriya '03)



States and entropy

For x € Z9 translation automorphism 7, sending Ux to Ux.x.

Translation invariant states

S1 = {v : U — C|vpositive, linear, (1) = land v o 7 = v, Vx € Z9}

For v € St and A € F a cube of Z9 centered at 0, let vp be the restriction of v to Uy,
i.e. v(A) = tr(vaA) for all A € Un.

e Mean specific entropy: the limit

s(v) = - ,\li,n%d ﬁtr(w\ log(va))

exists and s : St — [0, log(2)] is affine and upper-semicontinuous.
e Mean relative entropy:
1
s(vlw) = — lim —tr(va(log(wn) — log(v,
( ‘ ) et ‘/\| ( /\( g( /\) g( /\)))

If such a limit exists, then s(v|w) > 0.



Interactions, local Hamiltonian

An interaction is a family {®(X)}xer such that ®(X) € Ux is a self-adjoint.
Moreover we assume:

1. Translation invariance: 7 (®(X)) = (X + x)
2. Short range:
ol = >_ eI o)) < oo
X30
(think finite range: ®(X) = 0 if diam(X) > r)

The set of interactions is denoted by B;.

For A € F a cube of Z? centered at 0, the local Hamiltonian is He(A) = E d(X)
XCA
Examples:

e Ising model for spins ®(X) = —ofof if X = {i,j},|i —j| =1 and 0 otherwise.
e Quasi-free Fermions ®(X) = afa; + aja; if X = {i,j},|i —j| = 1 and 0 otherwise.

z Z * *
Ho(A) = — E oo}, Ho(A) = E aiaj+aja
iLJEN iJjEN
li=il=1 li-jl=1



Pressure and mean energy

The local Hamiltonian

A) =D o(X)

XCA

has no limit in &/ as A — Z9. However we can define the following quantities.
e Pressure (or Helmholtz free energy) of interaction ® € B;:
p(®) = I|m |/\‘ log(tr(e _ﬂH“’(A))) < o0

e [ean energy of interaction ® € BB, in a state v € Si:

A—zd ||

lim ——v(Ho(A)) = v(Es), -3 ‘L

Notice: entropy of state, pressure of interaction and energy of interaction and state.




Equilibrium states

Gibbs variational principle
For any ® € B,

p(®) = S (s(v) — Br(Es))

Equilibrium states:
Seq(®) = {v € St[p(®) = s(v) — fr(Ee)}

In the following we set 8 = 1, so that high-temperature = small interaction.



Let ® € B, and t € R. For A € Ux with X € F the limit

o (A) = lim e pe=itHe()
A—zd

exists, is uniform for t in compact sets and extends to a strongly continuous
one-parameter group of *-automorphism on 2/, that we denote by ;.

Prop: If v € Seq(®) then vo 7 = v.

(the reciprocal statement involves the KMS condition.)

Back to our question:

Take two distinct interactions W and ® on U (spins or fermions), let 1o € Seq(V) and
define vy = vp o 7.

What can we say about v; as t — 0o ?



Approach to equilibrium



Equilibrium Steady States (ESS)

Let wo € St and ® € B,. For T > 0 define
1 [T
wr = 7/0 wo OT;Ddt

Consider the set of Equilibrium Steady States (ESS) (in contrast to NESS):
Soo(wo, @) = {weak * —lim(@r) 750, T — 00}
One has:
Woo € Soowo,®) & HTa)n, To > 00, VAEU, woo(A) = lim @r,(A).

n—oo

Moreover, woo € St and weo © 7Y = weo (stationary states).

10



Approach to equilibrium

We speak about approach to equilibrium when weo € Soo(wo, ®) N Seq(P)
1. When do we have it? When do we have So.(wo, ®) C Seq(P)? When is
Seo(wo, P) a singleton? (mostly open)

2. What are the general properties of Soo(wo, @), independent from the details of wo
and &7 (structural theory)

Very little is known about Seo(wo, P), except in a few cases, such as:

e Lanford-Robinson '71 (see also Haag-Radison-Kastler '73 and Sukhov '83):
quasi-free interaction for fermions

Hcp(/\) = Z h(l' 7_[')(8?8]' TP afa,-)
ijen
e Radin '70: generalized Ising model for spins
Ho(A) = h(i — j)ofof
ijen
In both cases, the dynamics is exactly solvable. However, weo & Scq(®).

akil,



A question of Ruelle

For finite and closed systems, it is a well known fact that the von Neumann entropy
S(p) = tr(plnp) is preserved by unitary evolution.

“It is unclear to the author whether the evolution of an infinite system should
increase its entropy per unit volume. Another possibility is that, when the time
tends to oo, a state has a limit with strictly larger entropy.”

Ruelle, D.: States of classical statistical mechanics. J. Math. Phys. 1967
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Conservation laws at finite time

Recall

1 1

w(Es) = lim —w(Hs(N)), s(w) = — lim —tr(wa log(wa)).
A—zd || A—zd |A]

Proposition

Forany w € §1, ® € B, and t € R

1. wo 7’ (Es) = w(Eo) [Jaksic-Pillet-T. '24]
2. s(wot’) = s(w) [Lanford-Robinson '68]

The first result is expected but not straightforward. The second one is more surprising
and goes back to Lanford and Robinson '68 in the case of spin systems. Intuitively, the
von Neumann entropy S(p) = tr(pInp) of a closed finite system cannot change by a
unitary evolution. The argument extends to the mean entropy of infinite systems thank
to the |A|~!-term which cancels possible boundary effects.

'3}



Conservation laws

: 17
The last results naturally extend to the averaged dynamics wr = 7 / wo o dt
0

Proposition
Forall T € R, Wr(Es) = wo(Ee) and s(wr) = s(wo).

By (semi-) continuity:

Proposition
For weo € Soo(wo, P)

° UJo(Eq)) = woo(Eo)

When do we have strict increase of entropy 7

14



Weak Gibbs states

Defintion

A state w € S;(U) is called for interaction ® € B" if there are constants
Ch > 0 satisfying
e Ho() e Ho()

1
<O ———F lim — log Ch =
wa < Atr(e*"’d’(/‘))’ /\IT?" Al ogCA =0

1
N tr(e—Ho(N) =

The set of weak Gibbs states for ® is denoted by

This is the quantum analogue of classical weak Gibbs states [Yuri '02].

Prop: In particular, Swg(®) C Seq(P)

Theorem [Jaksic-Pillet-T. '24]
Suppose that either d =1 and ® € Bford > 1, » € B, and

Then

Conjecture: For any r > 0 and ® € B,, Scq(P) = Swe(P).

This is true in classical systems for any ® € B¢ [Pfister-Sullivan "19].
15



Entropy balance equation

Proposition
Let ® € B" and w € Sye(P). Then for any v € S;(U),
.S
s(lw) = Tim 2TALN) oy L) + (o). (1)
aze A

In particular v — s(v|w) is lower-semicontinuous and s(v|w) > 0 with equality iff
V€ Seq(P).

Summarizing: At high temperature, all equilibrium states are weak Gibbs and hence
satisfy (1).

16



Increase of entropy

I: SU)>w Tﬂdoo € Seq(P), II: Seq(Vo) > wo Tnuoo

Theorem | [Jaksic-Pillet-T. '24]

Let w € S;(UU), ® € B" such that w is not 7®-invariant. Let weo € Soo(w, ®), and
suppose that weo € Swe(P). Then

S(weo) > s(w).

This is a conditional result, in particular it requires woo € Seq(P).
Proof: (!) The entropy balance equation gives
0 < s(wlwse) = —s(w) + w(Eo) + p(®)
= —5(w) + wo(Ee) + p(®)
= 5(Woo) — s(w).

Thus if s(weo) = s(w) then w € Seq(P), and so w is T®-invariant. O

17



Irreversibility

I: SU)>w W € Seq(P), II: Seq(Vo) 3 wo 5 Weo

Theorem |11 [Jaksic-Pillet-T. '24]

Let ®, Wy € B". Suppose that Seq(Wo) = {wo} with wo weak Gibbs and not

7®-invariant. Then for any weo € Seo(wo, ®),

woo(Ewg) > wo(Ew,).-

This one is unconditional on we. Its proof is similar.

Cor: Assume the setting to be reversible: wo € Soo(woe, Vo).

wWo — Woo, wo < Woo
® Vo

Then weo = wo and wo is 7°-invariant.

Approach to equilibrium is (in contrast to return to equilibrium).

18



Elements of proof




Back to weak Gibbs states

Let ® € B, with and w € Seq(P). Let's prove that w € Syg(P), namely find
Cp such that
—Ho (M) e Ho(N) 1

€ g
lim

—— < < Qh————F, log Cpn = 0.
tr(e=He(N) = N = Mr(e—Fo(M)’ arzd || o

it

Proposition [Israel '79]

For any A € Uio. the map R > t — 74(A) has an analytic extension to the strip

z rsupp(A
where we have ||7Z(A)]|| < ||A]| e" 5P )Willm&)\'

Recall that [|®]], = 3= (X171 l0(X))].
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KMS states and perturbation [Haag-Hugenholtz-Winninck '67]

Definition
Let ® € B,. A state w € S;(U) is (7o, B)-KMS if for all A, B € U, the function

R >t Fag(t) = w(7s(A)B)

has an extension analytic in the strip {0 < Im(z) < 8}, bounded and continuous on
its closure, and satisfying the Kubo-Martin-Schwinger boundary condition
Fas(t +iB) = w(B7e(A))

Prop: Any (7e, 3)-KMS is Te-invariant. Moreover w € Seq(P) < w is (70, 5)-KMS.
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KMS states and perturbation [Haag-Hugenholtz-Winninck '67]

Definition
Let ® € B,. A state w € S;(U) is (7o, B)-KMS if for all A, B € U, the function

R >t Fag(t) = w(7s(A)B)

has an extension analytic in the strip {0 < Im(z) < 8}, bounded and continuous on
its closure, and satisfying the Kubo-Martin-Schwinger boundary condition
Fas(t +iB) = w(B7e(A))

Prop: Any (7e, 3)-KMS is Te-invariant. Moreover w € Seq(P) < w is (70, 5)-KMS.

Proposition

For any V = V* € U there exist a unique perturbed dynamics (7¢)v, generated by
(60)v(A) = do(A) + [V, A] for all A € Uioe. For w a (8, P)-KMS state, we denote by
wy the corresponding perturbed KMS state.

[Simon 93, Araki-Moriya '03]
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Surface energies and Gibbs condition

For ® € B, and A C Z¢ finite consider the surface energies

Wi = E d(X)
XOA£D
XNACH#D
. 1
Prop: For ® € B,, limy_, 74 W [[WA|l =0

Removing W, in the dynamics disconnects the box A from the rest of Z9.

Gibbs condition [Simon '93, Araki-Moriya '03]
For fixed A, let (76)—w, be the dynamics perturbed by — W, and let w_w, be the
corresponding KMS state. Then for any A € U/(A) one has

tr(e_ﬁH“’(A)A)

w-w, (A) = Tor(e PR

21



Comparing perturbed and original state

Theorem [Lenci-Rey-Bellet '05]
Let w be a (7,1)-KMS state and let wy be a (7v,1)-KMS state associated to the
perturbed dynamics 7y for some V = V* € . Assume that R 3 t — 7°(V/) has an

, bounded and continuous on its
closure. Then

IVI+I772 W)l —Ivi=I-/5wi,,

wy < e wy > e

In our case, since , 2+ Tg(Wa) is analytic on Im(z) < a for some a > 1/2
which implies

i —Hg (A i —Hgo (A
o= WAl =l 2 (W)l o wn < el WAl )y (wa)l € o
tr(e*""v(’\)) - - tr(e*"’m(/\))
It remains to show that
lim —|7/2 =0
o, \/\\ [I7e = (WA)l

and similarly for (Té,/z),WA(W/\).
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End of proof

e Xl

For X € F we have ||rg/*(&(X))|| < [[®(X)[| =517 50 that

r|X|
i €]
Ir 2wl < S 1) l——-
S 1—[[®[./r
XNAE#D

We conclude the proof by showing that

. 1 r|X|
lim — [&(X)]le"*! = 0.
aze |A| XQZA#@
XNACH)
This relation is immediate for ® finite range, and the general case follows by density in
B and the bound

1 . :
o 2 IvEOle™ < enfwy,

‘M XNA#D
that holds for all W € B,.

The argument for (Té/z),WA(W/\) is similar.
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Recent progress and perspectives




Stability of weak Gibbs states

Is weak Gibbs property or entropy balance equation somehow preserved along a state

trajectory?

(work in progress with Vojkan Jaksic, Anna Szczepanek and Claude-Alain Pillet)

Theorem
Let Wo and ® be finite range interactions. Assume that Swe(Vo) = Seq(Wo) = {wo}
and consider w; = wo o 7. Then it exists To > 0 such that for all |t| < To

Wt S Swg(¢t)
for some interaction ®;. Moreover Ty = +oo ifd = 1.

The proof relies on :

1. Lieb-Robinson bounds
2. Existence and vanishing of surface energy for ®,

3. Araki's estimate for d = 1

24



Conservation of relative entropy

Recall that for w € S; and ® € B" we have s(w o 7{") = s(w). What about relative
entropy?

(work in progress with Vojkan Jaksic, Anna Szczepanek and Claude-Alain Pillet)

Corollary

Let Wo and & be finite range interactions. Assume that Syg(WVo) = Seq(Wo) = {wo}
and consider w; = wo o . Then it exists To > 0 such that for all |t| < To and any
v e SI(U), withv, =voTtd,

s(ve|we) = s(v|wo) = —s(r0) + ¥(Ewo) + p(Wo)

for some interaction ®.. Moreover Ty = +o0 ifd = 1.

25



Conclusion

Formulation of Approach to Equilibrium for infinite and translation-invariant quantum

spin or fermionic systems

e Entropy is constant for finite time
e Strict increase of entropy at t = co

Approach to Equilibrium is not compatible with reversibility or adiabatic theorem

Central tool: weak Gibbs states and entropy balance equation

e At least at high temperature, all equilibrium states are always weak Gibbs

26



Perspectives

The problem of approach to equilibrium remains mostly open

e Prove approach to equilibrium in specific models, beyond quasi-free or exactly
solvable cases.
e A possible choice is the canonical two-body interaction fermionic model, related

to the Quantum Boltzmann equation
[Hugenholz '83, Erdds-Salmhofer-Yau '04, Benedetto-Castella-Esposito-Pulvirenti '04-'08]

Thank you for your attention!

e Jaksic, V., Pillet, C. A., & Tauber, C. (2024). Approach to equilibrium in translation-invariant quantum
systems: some structural results. Annales Henri Poincaré (Vol. 25, No. 1, pp. 715-749)

e Jaksic, V., Pillet, C. A., & Tauber, C. (2024). A note on adiabatic time evolution and quasi-static processes
in translation-invariant quantum systems. Annales Henri Poincaré (Vol. 25, No. 1, pp. 751-771).
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