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Integer Quantum Hall Effect
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• Two-dimensional electron gas with transverse magnetic field

• The transverse conductivity is quantized and related to a topological index:
σxy = e2

h
N , N ∈ Z.

• Equivalently: quantization of charge deficiency with respect to magnetic flux
insertion at the origin (Laughlin argument)

• Non-interacting setting: many models, many indices from the last 40 years

Stability against interactions?

1



A lot of progress in the last decade

• Giuliani, Mastropietro, Porta ’15: Quantization of σxy in Haldane-Hubbard model
(constructive QFT techniques)

• Hasting, Michalachis ’15: quantization via quasi-adiabatic evolution

• Bachamnn, Bols, De Roeck, Fraas et. al, from ’16: A many-body index via flux
insertion through a finite torus in the large L limit

• Marcelli, Miyao, Monaco, Teufel, Wesle et al. from ’17: Quantized linear response
from NEASS

• Kapustin, Sopenko ’20 (+ Kitaev) Flux insertion in the infinite setting

• Bachman, Bols, Rahnama ’24: Z2 Many Body index, slightly simpler (!)

Our goal: functional analysis approach to define a many-body index directly in the
infinite setting, whose construction connects well with physical intuition, and covers

known (non-)interacting models.
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Main result

Theorem Bachmann, Shapiro, T. ’25
Let ω be an invertible and U(1)-symmetric state over the CAR algebra A of
`2(Z2)⊗ CN . Then it exists Â and a unitary Û ∈ Â such that the quantity:

I(ω) := ω̂
(
Û∗δQ⊗1(Û)

)
∈ Z

is a topological index. If ω1 and ω2 are continuously related by a U(1)-symmetric
locally generated automorphism, then I(ω1) = I(ω2).

• All those terms, including hats, need to be properly defined.

• In a nutshell, we gradually insert a unit of magnetic flux at the origin, leading to a
defect state ω̂2π = ω̂ ◦Ad(Û) with Û ∈ Â unitary.

• For a second-quantized non-interacting model for quantum Hall effect, I
coincides with the spectral flow associated to the insertion of a unit of magnetic
flux through the sample, starting with the Fermi projection (charge deficiency).

• Towards an abstract version: the index of a pair of pure states
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Outline

Symmetric SRE states

Magnetic flux insertion

A many-body index for invertible states
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Symmetric SRE states



The C∗-alegbra of fermionic observables

Consider H = `2(Z2)⊗ Cn Canonical Anti-commutation Relation (CAR) algebra A,
generated by 1, a(h) for h ∈ H, and

{a(f ), a∗(g)} = 〈g , f 〉1, {a(f ), a(g)} = {a∗(f ), a∗(g)} = 0,

with a∗(f ) = (a(f ))∗.

For Λ ⊂ Zd finite, AΛ is the C∗-algebra generated by 1 and ax,i := a(δx ⊗ ei ) for
x ∈ Zd and i ∈ {1, . . . , n}. The ∗-algebra of local observables is

Aloc :=
⋃

Λ⊂Zd , Λ finite

AΛ

One has A ≡ Aloc, in the ‖ · ‖-topology.

Every A ∈ A is ε-close to a compactly supported observable.
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States

A state
ω : A → C

is a positive linear functional on A such that ω(1) = 1 (hence continuous). The set of
states is a weakly*-compact and convex subset of A∗. Its extreme points are called
pure states.

We say that ω0 is a product state if for X ∩ Y = ∅

∀AX ,BY ∈ AX ×AY , ω0(AXBY ) = ω0(AX )ω0(BY ).

Pure product states factorize completely over each lattice site x . Analog of the atomic
limit or trivial phase, so we expect I(ω0) = 0.

We need to implement the following notions:

• locality
• symmetry
• (gaped ground state of a parent H)

A pure, local and symmetric gaped ground state is the analog of a Fermi projection.
We classify states, not Hamiltonians.
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0-chains

Remark: Objects like
∑
x∈Z2

hx,ya
∗
x ay do not belong to A.

Let f : R+ → R∗+ be a rapidly decreasing function. We say that A ∈ A is f -localized
near x ∈ Zd if

‖A− An‖ ≤ f (n) ‖A‖
for all n ∈ N, with An ∈ ABx (n). Aal = set of almost local observables (A f -localized
near x). One has Aloc ⊂ Aal ⊂ A.

Definition

A 0-chain F is a sequence (Fx)x∈Z2 of elements of Aal such that

• ∀x ∈ Z2,F ∗x = Fx and Fx if f -localized near x .

• sup
x∈Z2
‖Fx‖ <∞

Ex: Hx =
∑
|x−y|≤1

a∗x ay + a∗y ax defines a 0-chain H = (Hx)x∈Z2 .
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Dynamics and LGA

Proposition

Let F be a 0-chain. Then δF : Aal → Aal given by

A 7→ δF (A) = [F ,A] :=
∑
x∈Z2

[Fx ,A]

is a ∗-derivation on A. It generates a dynamics R 3 t 7→ αF
t on A, defined by

αF
0 (A) = 1,

d
dt
αF
t (A) = iαF

t (δF (A))

on Aal and extends by continuity to all of A.

A 0-chain can also be time-dependent: s 7→ F (s). It generates a non-autonomous
dynamics αF

s→t .

Definition
An automorphism α on A is a called a locally generated automorphism (LGA) if
there exists a 0-chain F and some s ∈ [0,∞) such that α = αF

0→s .
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Short-range entanglement (SRE)

Definition
A state ω is called Short Ranged Entangled (or SRE) if

ω = ω0 ◦ α.

where α is a locally generated automorphism (LGA) and ω0 is apure product state.

Recall that α = αF
t with some f -local 0-chain F , but not a physical Hamiltonian.

SRE should be taken as a definition for a state to be local in space: an f -local (finite)
time evolution of a pure product state ω0.

It appears naturally in the classification of symmetry-protected topological phases.
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Charge and U(1)-symmetry

For each x ∈ Zd ,

Qx =
n∑

i=1

a∗x,iax,i ∈ Ax

is trivially an f -local 0-chain. For φ ∈ R let ρφ := αQ
φ be its associated LGA.

For Λ ⊂ Zd finite the local charge QΛ =
∑

x∈Λ Qx ∈ AΛ has integer spectrum, and

ρφ(A) = lim
Λ→Z2

eiφQΛ

Ae−iφQΛ

(φ ∈ R).

Moreover one has ρφ+2π = ρφ so that ρφ is called the U(1) gauge transformation
associated to Q.

Definition
A state ω is symmetric if ω ◦ ρφ = ω for all φ ∈ R.
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Parent Hamiltonian

Proposition
Let ω be a symmetric and SRE state. Then it is the unique gaped ground state of
some symmetric parent Hamiltonian: it exists a 0-chain H and ∆ > 0 such that:

• ω(A∗[H,A]) ≥ ∆ω(A∗A) for all A ∈ Aloc with ω(A) = 0.

• ρφ(Hx) = Hx for all φ ∈ R and x ∈ Zd

Single-particle finite dimensional case: let H = H∗ ≥ 0 with Hψ0 = 0. Gap condition
for H is equivalent to

〈ψ0,A
∗HAψ0〉 − 〈ψ0,A

∗AHψ0〉︸ ︷︷ ︸
=0

≥ ∆〈ψ0,A
∗Aψ0〉

for all A such that 〈ψ0,Aψ0〉 = 0 (recall ω(A) = 〈ψ0,Aψ0〉 in that case).

Proof. ω = ω0 ◦ α with ω0 pure product then it exist H0
x on each Ax such that ω0 is a

unique gaped ground state of ω0 with gap ∆. Take Hx = α−1(H0
x ). Since α is an LGA

then Hx defines a 0-chain, and ω is gaped ground state of Hx . Take
H ′x = (2π)−1

∫ 2π
0 ρφ(Hx). It is symmetric by construction and ω is again a gaped

ground state of H ′x .
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Magnetic flux insertion



A 3-step procedure

Summary: the state ω is

• SRE: ω = ω0 ◦ α

• U(1)-symmetric: ω ◦ ρφ = ω

• the unique gaped ground state of some U(1)-symmetric 0-chain H

Goal: construct a defect state ωD
2π corresponding to a 2π-magnetic flux insertion

through the sample.

1. Half-plane gauge transformation

2. Quasi-adiabatic flow localized along a line

3. Restriction to the half-line
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The defect state

1. Upper half-plane gauge transformation:

ω↑φ = ω ◦ ρQ↑φ , (Q↑)x = Qxχ{x2≥0}.

is the gaped ground state of the parent Hamiltonian given by (H↑φ)x := ρ
Q↑
−φ(Hx).

2. There exists a φ-dependent 0-chain φ 7→ K(φ) such that ω↑φ = ω ◦ αK
φ and

‖K(Φ)x‖ ≤ g(|x2|)

for some rapidly decreasing g . K is the quasi-adiabatic flow (Hastings ’04).

3. Restriction to the half-line:

D(φ)x := K(φ)xχ{x1≤0}.

Let αD
φ be its associated LGA. Flux insertion: ω ◦ αD

φ from 0 to 2π.

ωD
2π := ω ◦ αD

2π is the defect state.

Prop: ωD
2π is U(1)-symmetric.
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Single-particle analogy: gauge transformation on H = `2(Z2).

x1

x2

0
S

C

AD A↑

• Gauge transformation ψ 7→ e−iφχ↑ψ with χ↑(x) = 1{x2≥0} generates a vector
potential

A↑(x) = −φ∇χ(x) = φ

(
0
−1

)
1{x2=0},

which is localized along x2 = 0. It satisfies ∇× A↑ = 0.

• Truncate to the left: AD = A↑1{x1≤0}. Not a total gradient anymore. For any
surface S with boundary C one has∫

S

BDds =

∫
C

Adl =

φ, 0 ∈ S

0 0 /∈ S .

AD corresponds to a magnetic φ-flux insertion at the origin.
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Equality at infinity

Proposition

It exits U ∈ Aal such that ωD
2π = ω ◦Ad[U] with Ad[U](A) = U∗AU.

Highly non trivial: existence U ∈ A is very strong. This property does not hold at the
level of LGA αD

2π, and U depends on ω. Heavily relies on SRE property.

The proof is adapted from Bachmann, Bols, Rahnama ’24 to our setting. It relies on
the fact that ωD

2π and ω are “equal at infinity”:

|ωD
2π(A)− ω(A)| ≤ f (r) ‖A‖ , ∀A ∈ B(r)c

for some rapidly decreasing f .

15



An integer quantity

Proposition
The quantity

i(ω) := ω(U∗δQ(U))

is integer valued. Moreover, if α is an LGA which perserves the U(1)-symmetry, then
i(ω ◦ α) = i(ω).

Proof: Let H,Π,Ω be the GNS representation of ω.

• ω is pure and U(1)-symmetric so Π induces an irreducible representation of the
U(1)-symmetry ρQφ . Thus Π(ρQφ (A)) = eiQ̃Π(A)e−iQ̃ with σ(Q̃) = Z and Q̃Ω = 0.

• The index becomes

ω(U∗δQ(U)) = ω(U∗[Q,U]) = 〈Ω,Π(U)∗Q̃Π(U)− Q̃Ω〉 = 〈ΩD
2π, Q̃ΩD

2π〉

where ΩD
2π := Π(U)Ω represents ωD

2π in H.

• ωD
2π is U(1)-symmetric implies that ΩD

2π is an eigenstate of Q̃, hence i(ω) ∈ Z.

• (LGA-invariance goes along the same lines in the GNS representation.)
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A small caveat

Can we show that i(ω) 6= 0 on some explicit model? Actually not...

Consider a single particle model on H = `2(Z2)⊗ Cn with Fermi projection P. It
generates a quasi-free state

ωP(a∗x,iay,j) = 〈(δx ⊗ ei ),P(δy ⊗ ej)〉

(higher correlation functions are obtained by Wick contraction/Slater determinant). If
the Hamiltonian is local, then |ωP(a∗x,iay,j)| ≤ Ce−µ|x−y|.

Q: Can we continuously deform ωP to a product state? Can we continuously deform P

so that its matrix elements are diagonal in space?

Not true in general!

Proposition
If c(P) = 0 then ωP is SRE.

Proved in Bachmann, Bols, Rahnama ’24 for translation invariant systems, could be
generalized beyond using Chung, Shapiro ’25. The converse statement is a conjecture.

Slightly problematic...
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A many-body index for invertible states



Stacking

`2(Z2)⊗ Cn

`2(Z2)⊗ Cn

P

P⊥

`2(Z2)⊗ C2n

P ⊕̂P⊥

Consider the projection P ⊕ P⊥ of the external direct sum H⊕H. Then

c(P ⊕ P⊥) = c(P) + c(P⊥) = 0

.

Stacking

Let A1 and A2 respectively be the CAR algebras over `2(Z2)⊗ Cn and `2(Z2)⊗ Cm

for n,m ∈ N. We denote by A1⊗̂A2 the stacked CAR algebra over `2(Z2)⊗ Cn+m.

For states we define:
ω1⊗̂ω2(A1⊗̂A2) := ω1(A1)ω2(A2)

and extend it on A1⊗̂A2 by linearly.
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Invertible states

Definition

We say that a state ω of some CAR algebra A is invertible if it exist a state ω′ over a
CAR algebra A′ such that ω⊗̂ω′ is SRE in A⊗̂A′.

We say that ω is symmetric invertible if moreover ω⊗̂ω′ is both U(1)-invariant with
respect to Q⊗̂1 and 1⊗̂Q.

Main motivation: any quasi-free state ωP is symmetric invertible.

We are back to SRE states! but on A⊗̂A′. Index i applies to ω̂. Main difference: we
have the full charge Q̂ = Q⊗̂1 + 1⊗̂Q and the charges Q⊗̂1, 1⊗̂Q on each layer.
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A many-body index

Theorem Bachmann, Shapiro, T. ’25

Let ω be a symmetric invertible state over the CAR algebra A of `2(Z2)⊗ CN . Then
it exists a unitary Û ∈ Â = A⊗̂A′ such that the quantity:

I(ω) := ω̂
(
Û∗δQ⊗1(Û)

)
∈ Z

is a topological index. If ω1 and ω2 are continuously related by a U(1)-symmetric
LGA, then I(ω1) = I(ω2).

ω̂ 7→ ω̂D,Q̂
2π 7→ Û ∈ A⊗̂A′

But we measure the charge in one layer only.

Lemma: The Q ⊗ 1 symmetry is preserved along the construction of ω̂D,Q̂
2π .

Same proof applies as well.
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Back to the single particle case

The quasi-free state ωP is symmetric invertible since ωP⊕P⊥ = ωP⊗̂ωP⊥ is SRE on
A⊗̂A′.

Flux insertion in the single particle model:

1. Half-plane gauge transformation P↑(φ) = eiφχ{x2≥0}Pe−iφχ{x2≥0}

2. The flow is also generated by P↑(φ) = U(φ)PU∗(φ) with∂φU(φ) = iK(φ)U(φ)

U(0) = 1
, K(φ) := −i[∂φP(φ),P(φ)]

3. Truncation to the left D(φ) = χ{x1≤0}K(φ)χ{x1≤0}, and consider the associated
non-autonomous evolution UD(φ1, φ2).

The defect state is QD
2π = UD(2π, 0)PUD(2π, 0)∗.

Proposition

I(ωP) = Tr(QD
2π − P) = Ind(QD

2π,P)
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Spectral flow interpretation

Let H be the (physical) parent Hamiltonian for P, and consider the φ-flux insertion
procedure on it. It reads

H(φ)x,y =

eiφsgn(x2−y2)Hx,y , x1, y1 ≤ 0

Hx,y , otherwise.

H(0) is gaped, and H(2π) = H(0). However, QD
φ 6= χ(−∞,µ)(H(φ)).

φ

σ(H(φ))

µ

Proposition

I(ωP) = SFµ([0, 2π] 3 φ 7→ H(φ))

See De Nittis and Schulz-Baldes ’15 for a detailed spectral flow interpretation of QHE in the
single particle picture.
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Conclusion



Conclusion

• A many-body index in the infinite dimensional setting which classifies
U(1)-symmetric invertible states and covers the non-interacting models for
Quantum Hall Effect.

• Physical interpretation: many-body spectral flow associated to a magnetic flux
insertion at the origin

• We classify ground states, parent Hamiltonians are tools.

• Invertible states appear as tailored for integer QHE (SRE is not enough and I ∈ Z
so no FQHE)
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A many-body index of a pair of projection

Recall that if P and Q are two projections on a Hilbert space with P −Q compact then

Index(P,Q) = dim(imP ∩ kerQ)− dim(imQ ∩ kerP) ∈ Z

is a topological index Avron Seiler Simon ’94

Theorem Bachmann, Shapiro, T. ’25
Let Q be the generator of a U(1) symmetry on a C∗-algebra A. Let ω1 and ω2 be
two symmetric pure states which are locally comparable:

∃U ∈ U(A) ∩ D(δQ), ω2 = ω1 ◦Ad(U)

Then the quantity
N (ω1, ω2) = ω1(U∗δQ(U)) ∈ Z

is a topological index, called index of a pair of pure states.

Prop: If P and Q are two projections on H with P − Q ∈ J1(H), then
N (ωP , ωQ) = Index(P,Q).

(no need for SRE property in the abstract framework)
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Bachmann, Shapiro, T.
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arXiv:2507.10807

Thank you!
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