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Integer Quantum Hall Effect
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e Two-dimensional electron gas with transverse magnetic field

e The transverse conductivity is quantized and related to a topological index:
oy = SN, N €L

e Equivalently: quantization of charge deficiency with respect to magnetic flux

insertion at the origin (Laughlin argument)

e Non-interacting setting: many models, many indices from the last 40 years

Stability against interactions?



A lot of progress in the last decade

e Giuliani, Mastropietro, Porta '15: Quantization of o, in Haldane-Hubbard model
(constructive QFT techniques)

e Hasting, Michalachis '15: quantization via quasi-adiabatic evolution

e Bachamnn, Bols, De Roeck, Fraas et. al, from '16: A many-body index via flux
insertion through a finite torus in the large L limit

e Marcelli, Miyao, Monaco, Teufel, Wesle et al. from '17: Quantized linear response
from NEASS

e Kapustin, Sopenko '20 (4 Kitaev) Flux insertion in the infinite setting
e Bachman, Bols, Rahnama '24: Z, Many Body index, slightly simpler (!)

Our goal: functional analysis approach to define a many-body index directly in the
infinite setting, whose construction connects well with physical intuition, and covers
known (non-)interacting models.



Main result

Theorem Bachmann, Shapiro, T. '25

Let w be an and state over the CAR algebra A of
2(Z%) ® CV. Then it exists A and a unitary U € A such that the quantity:

I(w) = & (U*5Q®“(0)) €z

is a topological index. If wi and w, are continuously related by a U(1)-symmetric
, then I(wl) = I(LU2).

e All those terms, including hats, need to be properly defined.

e In a nutshell, we gradually insert a unit of at the origin, leading to a
defect state Qar = & 0 Ad(U) with U € A unitary.

e For a second-quantized non-interacting model for quantum Hall effect, 7
coincides with the associated to the insertion of a unit of magnetic
flux through the sample, starting with the Fermi projection (charge deficiency).

e Towards an abstract version:



Symmetric SRE states
Magnetic flux insertion

A many-body index for invertible states



Symmetric SRE states




The C*-alegbra of fermionic observables

Consider H = ¢?(Z*) ® C" Canonical Anti-commutation Relation (CAR) algebra A,
generated by 1, a(h) for h € H, and

{a(f),a" (&)t = (&, )L,  {a(f) a(g)} ={a"(f),a"(g)} =0,
with a*(f) = (a(f))*.

For A C Z9 finite, A is the C*-algebra generated by 1 and ay,; := a(dx ® €;) for

x € 7% and i € {1,...,n}. The x-algebra of local observables is
.Aloc = U A/\
ACZ9, A finite

One has A = Ajoc, in the || - ||-topology.

Every A € A is e-close to a compactly supported observable.



A state
w:A—>C

is a positive linear functional on A such that w(1) =1 (hence continuous). The set of
states is a weakly*-compact and convex subset of A™. Its extreme points are called
pure states.
We say that wp is a product state if for X NY =0

VAx, By € Ax x Ay, wo(AxBy) = wo(Ax)wo(By).
Pure product states factorize completely over each lattice site x. Analog of the atomic

limit or trivial phase, so we expect Z(wo) = 0.

We need to implement the following notions:

e locality
e symmetry
e (gaped ground state of a parent H)

A pure, local and symmetric gaped ground state is the analog of a Fermi projection.
We classify states, not Hamiltonians.



Remark: Objects like Z (B gEiaEy
x€EZ2
Let f : R+ — R} be a rapidly decreasing function. We say that A € A is f-localized

near x € 24 if
|A = Anll < f(n)[|Al

for all n € N, with A, € Ag_(n). A = set of (A f-localized
near x). One has A*° C A* C A.

Definition

A O-chain F is a sequence (Fy),cz2 of elements of A* such that
o Vx € Z2, F; = Fy and F if f-localized near x.
o sup ||F| < o0

xEZ2

Ex: Hy = Z aya, + aya, defines a O-chain H = (Hx)cz2.

[x—y|<1



Dynamics and LGA

Proposition
Let F be a O-chain. Then 67 : A%! — A®! given by
A 7(A) =[F,Al:= > _[F, Al

xEZ2

is a *-derivation on A. It generates a dynamics R 3 t — o on A, defined by

o5(A)=1,  Saf(A)=iaf(6°(A)

on A and extends by continuity to all of A.

A 0-chain can also be time-dependent: s — F(s). It generates a non-autonomous
dynamics af_, .

Definition
An automorphism « on A is a called a if
there exists a O-chain F and some s € [0, 00) such that a = af_,..



Short-range entanglement (SRE)

Definition
A state w is called Short Ranged Entangled (or SRE) if

W = wo o .

where « is a locally generated automorphism (LGA) and wo is apure product state.

Recall that o = af with some f-local 0-chain F, but not a physical Hamiltonian.

SRE should be taken as a definition for a state to be local in space: an f-local (finite)
time evolution of a pure product state wpo.

It appears naturally in the classification of symmetry-protected topological phases.



Charge and U(1)-symmetry

For each x € Z¢,

n
Qx = g ay ;ax,i € Ax

i=1
is trivially an f-local O-chain. For ¢ € R let py 1= ag be its associated LGA.

For A C Z? finite the local charge Q" = er,\ Q« € Ap has integer spectrum, and

ps(A) = lim ¢4 Ae= 9" (4 e R).

N—72

Moreover one has pgi2r = py so that pg is called the U(1) gauge transformation
associated to Q.

Definition

A state w is symmetric if w o py = w for all ¢ € R.
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Parent Hamiltonian

Proposition
Let w be a symmetric and SRE state. Then it is the
: it exists a O-chain H and A > 0 such that:

o W(A*[H,A]) > Aw(A*A) for all A€ A with w(A) = 0.
o pg(Hx) = Hy for all $ € R and x € Z¢

akil,



Parent Hamiltonian

Proposition
Let w be a symmetric and SRE state. Then it is the
: it exists a O-chain H and A > 0 such that:

o W(A*[H,A]) > Aw(A*A) for all A€ A with w(A) = 0.
o pg(Hx) = Hy for all $ € R and x € Z¢

Single-particle finite dimensional case: let H = H* > 0 with Hio = 0. Gap condition
for H is equivalent to

<'¢}07A*HA1/)0> - <¢07A*AH1/)0> > A<¢0:A*A1/J0>
—0

for all A such that (1o, Ao) = 0 (recall w(A) = (vo, Atho) in that case).

akil,



Parent Hamiltonian

Proposition
Let w be a symmetric and SRE state. Then it is the unique gaped ground state of
some symmetric parent Hamiltonian: it exists a 0-chain H and A > 0 such that:

o W(A*[H,A]) > Aw(A*A) for all A€ A with w(A) = 0.
o pg(Hx) = Hy for all $ € R and x € Z¢

Single-particle finite dimensional case: let H = H* > 0 with Hyo = 0. Gap condition
for H is equivalent to

(th0, A* HAo) — (b0, A AHto) > Ao, A* Atbo)
=0

for all A such that (1o, Ao) = 0 (recall w(A) = (vo, Atho) in that case).

Proof. w = wp o o with wo pure product then it exist H® on each A, such that wo is a
unique gaped ground state of wo with gap A. Take H, = o~ *(HY). Since a is an LGA
then H, defines a 0-chain, and w is gaped ground state of H,. Take
H, = (2m)~* 0277 pe(Hyx). It is symmetric by construction and w is again a gaped
ground state of HJ.
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Magnetic flux insertion




A 3-step procedure

Summary: the state w is
e SRE: w=wpoa
e U(1)-symmetric: wo py = w

e the unique gaped ground state of some U(1)-symmetric 0-chain H

Goal: construct a defect state w2, corresponding to a 2r-magnetic flux insertion
through the sample.

1. Half-plane gauge transformation
2. Quasi-adiabatic flow localized along a line

3. Restriction to the half-line

12



The defect state

1. Upper half-plane gauge transformation:

wh=wopdt,  (@)x = QuXpuzor-

is the gaped ground state of the parent Hamiltonian given by (H, )X = p (H ).

2. There exists a ¢-dependent O-chain ¢ — K(¢) such that (1 =woal and
[K(®)l < &(lx2])

for some rapidly decreasing g. K is the quasi-adiabatic flow (Hastings '04).

3. Restriction to the half-line:

D(¢)x := K(#)xX {a<0}-

Let ag be its associated LGA. Flux insertion: w o ag from 0 to 2.

wh = woab is the defect state.

Prop: w5, is U(1)-symmetric.

'3}



Single-particle analogy: gauge transformation on H = (?(Z?).

SERRNE RN RRRT!

A AT

. iyt .
o Gauge transformation 1 — e X ) with xT(x) = 1{.,>0} generates a vector
potential

Al(x) = —¢Vx(x) = ¢ (_°1> 1 =0}

which is localized along x» = 0. It satisfies V x AT = 0.
e Truncate to the left: AP = ATIL{XISO}. Not a total gradient anymore. For any
surface S with boundary C one has

0es
/ BPds = / Adl = o 0€
s c 0 0¢S.

AP corresponds to a magnetic ¢-flux insertion at the origin.
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Equality at infinity

Proposition
It exits U € A* such that w2, = w o Ad[U] with Ad[U](A) = U*AU.

Highly non trivial: existence U € A is very strong. This property does not hold at the
level of LGA o5, and U depends on w. Heavily relies on SRE property.

The proof is adapted from Bachmann, Bols, Rahnama 24 to our setting. It relies on

the fact that w2, and w are “equal at infinity":
|war(A) — w(A)| < F(N) |All, VA€ B(r)

for some rapidly decreasing f.

15



An integer quantity

Proposition

The quantity
i(w) == w(U69(U))

is integer valued. Moreover, if « is an LGA which perserves the U(1)-symmetry, then
i(woa) =i(w).
Proof: Let H, M, be the GNS representation of w.

e wis pure and U(1)-symmetric so I induces an irreducible representation of the
U(1)-symmetry pg. Thus I'I(pg(A)) = ¢'°M(A)e™'? with 0(Q) = Z and QQ = 0.
e The index becomes
w(U*3°(U)) = w(U*[Q, U]) = (Q,N(U)*QN(U) — QQ) = (2., QQ2,)
where Q5 = M(U)Q represents w2 in H.
o Wl is U(1)-symmetric implies that Q5 is an eigenstate of @, hence i(w) € Z.

e (LGA-invariance goes along the same lines in the GNS representation.)
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A small caveat

Can we show that /(w) # 0 on some explicit model? Actually not...

Consider a single particle model on H = ¢?(Z?) ® C" with Fermi projection P. It
generates a quasi-free state

wp(ax,idy.j) = ((0x @ &), P(6, ® ¢)))

(higher correlation functions are obtained by Wick contraction/Slater determinant). If
the Hamiltonian is local, then |wp(ay ;a, ;)| < Ce M1,

Q: Can we continuously deform wp to a product state? Can we continuously deform P
so that its matrix elements are diagonal in space?

Not true in general!

Proposition
If ¢(P) = 0 then wp is SRE.

Proved in Bachmann, Bols, Rahnama '24 for translation invariant systems, could be
generalized beyond using Chung, Shapiro '25. The converse statement is a conjecture.

Slightly problematic...
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A many-body index for invertible states




z?(z?i ®C"

| ﬁizzi - r@E) e

Consider the projection P @& P+ of the external direct sum # & H. Then

c(P®P)=c(P)+c(P")=0

Stacking
Let A" and A2 respectively be the CAR algebras over £2(Z?) ® C" and (*(Z*) ® C™
for n,m € N. We denote by A*®.A* the over *(Z*) ® C™™.

For states we define:
w1Bw2(A1RA2) := wi(A1)w2(Az2)

and extend it on A*®.A? by linearly.

18



Invertible states

Definition
We say that a state w of some CAR algebra A is invertible if it exist a state w’ over a
CAR algebra A’ such that w®w’ is SRE in ARA’.

We say that w is symmetric invertible if moreover w&w’ is both U(1)-invariant with

respect to Q1 and 1®Q.

Main motivation: any quasi-free state wp is symmetric invertible.

We are back to SRE states! but on A®.A’. Index i applies to &. Main difference: we
have the full charge Q = Q&1 + 1&Q and the charges Q®1, 1&Q on each layer.

19



A many-body index

Theorem Bachmann, Shapiro, T. '25

Let w be a state over the CAR algebra A of £2(Z?) @ CV. Then
it exists a unitary U € A = A®A’ such that the quantity:

I(w) =& (0*5 (0) ez

is a topological index. If w1 and w> are continuously related by a U(1)-symmetric
LGA, then I(wl) = I(UJ2).

G oD% 0ec ARA
But we measure the charge

Lemma: The Q ® 1 symmetry is preserved along the construction of c&Z;Q.

Same proof applies as well.
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Back to the single particle case

The quasi-free state wp is symmetric invertible since wpgp1 = wp®wpi is SRE on
ARA'.
Flux insertion in the single particle model:

1. Half-plane gauge transformation PT(¢) = e'®Xtx2>0} Pe~'¢X {220}
2. The flow is also generated by PT(¢) = U(¢)PU*(¢) with

{8¢U(¢)=iK(¢)U(¢) . K(¢) = —i[0sP(¢), P(8)]

U0) =1

3. Truncation to the left D(¢) = X {x <0} K(#)X {x <0}, and consider the associated
non-autonomous evolution UP(¢1, ¢2).

The defect state is Q2. = U (2r,0)PUP(2x,0)".
Proposition

I(WP) = Tr(QZDW 7 P) = Ind(QZDﬂa P)
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Spectral flow interpretation

Let H be the (physical) parent Hamiltonian for P, and consider the ¢-flux insertion
procedure on it. It reads

cidsen(xa—y2)

H((ﬁ)x, _ XY
g Hy.y, otherwise.

X1, Y1 S O

H(0) is gaped, and H(2m) = H(0). However, QF # X(—oo,.)(H(®)).

Proposition
Z(wp) = SFu([0,27] > ¢ — H(4))

See De Nittis and Schulz-Baldes '15 for a detailed spectral flow interpretation of QHE in the
single particle picture.
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Conclusion




Conclusion

A many-body index in the infinite dimensional setting which classifies
U(1)-symmetric invertible states and covers the non-interacting models for
Quantum Hall Effect.

e Physical interpretation: many-body spectral flow associated to a magnetic flux
insertion at the origin

e We classify ground states, parent Hamiltonians are tools.

e Invertible states appear as tailored for integer QHE (SRE is not enough and Z € Z
so no FQHE)
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A many-body index of a pair of projection

Recall that if P and Q are two projections on a Hilbert space with P — Q compact then
Index(P, Q) = dim(imP N ker Q) — dim(imQ N ker P) € Z

is a topological index Avron Seiler Simon '94

Theorem Bachmann, Shapiro, T. '25

Let Q be the generator of a U(1) symmetry on a C*-algebra A. Let w1 and w» be
two symmetric pure states which are

JU e UA)ND(BY), w2 =wi o Ad(V)

Then the quantity
N(wl,W2) = wl(U*(SQ(U)) €7
is a topological index, called index of a pair of pure states.
Prop: If P and Q are two projections on H with P — Q € J1(H), then
N(wp,wq) = Index(P, Q).
(no need for SRE property in the abstract framework)
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Bachmann, Shapiro, T.
The index of a pair of pure states and the interacting integer quantum Hall effect.
arXiv:2507.10807

Thank you!
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