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Chapter 1

A brief introduction and some historical facts

This course is a first introduction to probability theory, we will try to set the basis of the
theory with some rigour but skipping most of technical details. Probability is the branch
of mathematics that deals with the study of random phenomena, it is one of the most
active fields in applied mathematics, and plays a key role in diverse fields including
physics , biology, social sciences. The world ”random” does not refer to chaotic (in the
sense of ”completely unpredictable”) but rather refers to phenomena that, though not
certain, they are to some extent predictable.
Let’s start recalling some key dates for the history of probability

• an event often indicated as the beginning of probability is the correspondence be-
tween Pascal (1623-1662) and Fermat (1601-1665) concerning games, gambling
in particular. There is in particular a famous exchange concerning the so called
match problem (problème de partis). Two gamblers bet each 10 euros and start
playing a series of game each ending with a winner and a looser. The rule is that
the player that wins first 3 games will gain the 20 euros. The game is interrupted
unfortunately before any of them wins...question: how should one divide fairly
the 20 euros based on the number of wins of each player?

• 1657: first book on mathematical modelisation of dice game dates back and is
due to Huygens

• end of 17th century: probability theory started to become important outside
games, and it was used for an important political/social issue: evaluate mortal-
ity and population size. At the beginning of 18th century population theory was
developed by Bernoulli, who is considered the ancestor of modern demography

• first half of 18th century: the problem of the estimating errors in astronomy
measurement stimulated further the development of probability
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4CHAPTER 1. A BRIEF INTRODUCTION AND SOME HISTORICAL FACTS

• the 18th century saw three key steps in probability theory: law of large numbers
(by Bernoulli) and (a first version of) the central limit theorem (by de Moivre),
the development of the first studies of statistical inference i.e. the art determining
a posteriori probability laws from observation (Bayes and de Laplace)

• 19th century: Gauss error theory, development of the Russian school (Chebyshev,
Markov, Lyapunov)

• 20th century: birth of modern probability theory with Kolmogorov and Borel ax-
iomatisation of probability theory in the framework of measure theory. Stochastic
process theory flourished and stochastic calculus was born, introduction of differ-
ential equations with noise (Levy, Frechet, Doob,Ito,. . . )



Chapter 2

Setting the framework: probability spaces

Probability theory aims at representing in an axiomatic way some concepts which are
implicit in common sense and it is constructed in a very empirical way going back and
forth from observation to theory. That’s why the concepts we will introduce in this
chapter will sound familiar to you even if you have never studied probability before!

1 Random experiments and sample spaces

A random experiment is an experiment whose result can not exactly be determined in
advance, but such that we know in advance the set of all possible outcomes. We call
Ω the set of possible outcomes, also called the sample space

Example 1 (Experiment 1). Toss once a coin. The set of possible outcomes contains two
elements head and tail, Ω = {head, tail}

Example 2 (Experiment 2). Take n cards each having a different number from 1 to n,
mix the deck. The possible outcomes are all the different permutations of the n cards.

Ω := {ω = (ω(1), . . . ω(n)) : ω is a permutationsof(1, . . . , n))}

2 Events and σ-algebras

Given a random experiment we can define its events. Each event is a sub-set of Ω, so
that the set of events is a subset of the set of all subsets, also called power set, or set of
parts famille de parties, which we denote by P(Ω).

5



6 CHAPTER 2. SETTING THE FRAMEWORK: PROBABILITY SPACES

Given two events, A and B, we let

• A ∪B be the event A or B

• A ∩B be the event A and B

• Ac be the event not A

Note that it holds
(A ∪B)c = Ac ∩Bc.

We say that A and B are disjoint if the event A and B is impossible, namely A ∩B = ∅.

Example 3 (Example of events for experiment 2).

1. E1:= card number 1 is in the second half of the deck

2. E2:= card 2 is not in the deck

3. E3:= card 1 is at the first position

4. E4:= each card is not at its position

In formulas

1. E1 := {ω ∈ Ω;ω(1) ⩾ n/2}

2. E2 := ∅

3. E3 := {ω ∈ Ω : ω(1) = 1}

4. E4 := {ω ∈ Ω : ω(i) ̸= i ∀i} = ∩n
i=1B

c
i where Bi := {ω ∈ Ω : ω(i) = i}

When confusion does not arise we omit the ω ∈ Ω, e.g. Bi := {ω(i) = i}.

In order to define a probability on the random experiments there are some minimal
requirement on the set of events we want to consider (which may or may not include
each single outcome of the experiments, i.e. each single element of Ω). This minimal
set of requirement sis formalised by saying that the set of events should be a σ-algebra
(or a σ-field or, in french, a tribu), which is defined as follows

Definition 2.1 (σ-algebra). A set F of subsets of Ω (i.e. a set of events) is a σ-algebra if
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• ∅,Ω ∈ F ,

• F is stable by complement, A ∈ F → Ac ∈ F ,

• F is stable by countable union, i.e.

If Ai ∈ F ∀i ∈ N it holds ∪i ⩾ 1 Ai ∈ F

Remark 2.2. The property of countable union is stronger then what is required for an
algebra where only stability under finite union is required (plus the first two conditions).

Exercise 1. Prove that the above properties imply also: stability under finite union, sta-
bility under countable (and finite) intersection.

Example 4 ( Some examples of σ-algebras). • given E ∈ Ω, then {E,Ec, ∅,Ω} is a
σ-algebra

• the smallest σ algebra is {∅,Ω}

• P(Ω) is a σ-algebra

3 Probability

Suppose that we repeat N times the same experiment, for example toss N times a
coin. We fix an event A (say the event: tail) and we note N(A) the number of times
A occurs. Then N(A)/N , that we call empirical frequency of the event A, is a random
quantity. Our experience says that if the number of tossing becomes large (i.e. for
N → ∞) the empirical frequency stabilises around a limit. This limit is our intuitive
idea of probability of the event A. Note that if A and B are disjoint it holds N(A∪B) =
N(A) + N(B), thus we will require the probability to stare this additive property. We
will also require it to be, as the empirical frequency, a positive number in [0, 1].

Definition 3.1 (Probability and probability space). Given a σ algebra F on a set Ω, a
probability P is a function P : F → [0, 1] s.t.

• P (Ω) = 1

• if {Ai}i∈N is a sequence of events that are pairwise disjoint (i.e. Ai ∩ Aj = ∅ for all
i ̸= j) then

P (∪i∈NAi) =
∑
i∈N

P (Ai)

We call the triple (Ω,F , P ) a probability space
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Remark 3.2. The notion of probability is intimately related to the (more general) notion
of measure. Given a σ algebra F on a set Ω, a measure on F ,Ω is a function µ : Ω →
R+ ∪ {+∞} satisfying for all sequence of pairwise disjoint elements of F , P (∪i∈NAi) =∑

i∈N P (Ai). We call (Ω,F , µ) a measure space, so a probability space is a measure space
s.t. the measure of the whole space equals one.

Some easy consequences of the definition of probability.

Proposition 3.3 (Properties of the probability).

• P (∅) = 0

• P (A) = 1− P (Ac)

• if A1 ⊂ A2 then P (A1) ⩽ P (A2)

• P (A1 ∪A2) + P (A1 ∪A2) = P (A1) + P (A2)

• P (∪i ⩾ 1Ai) ⩽
∑

i ⩾ 1 P (Ai)

Definition 3.4 (Lim inf and lim sup of sequences of events). Given a sequence of sets
(Ai)n∈N we define

lim inf
n→∞

An := ∪n ⩾ 1 ∩j ⩾ n Aj

lim sup
n→∞

An := ∩n ⩾ 1 ∪j ⩾ n Aj

If lim infn→∞An = lim supn→∞An we say that limn→∞An exists and we set it equal
to lim infn→∞An = lim supn→∞An.

Proposition 3.5. For a non decreasing sequence of events, namely if Ai ⊂ Ai+1 for all
i ∈ N

• the limit event exists and it equals ∪n ⩾ 1An

• P (limn→∞An) = limn→∞ P (An)

For a non increasing sequence t the limit exists and it holds limn→∞An = ∩n ⩾ 1An and
again P (limn→∞An) = limn→∞ P (An)

Proof. For a non decreasing sequence
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• Since ∩j ⩾ nAj = An it holds lim infn→∞An = ∪n ⩾ 1An. On the other hand
∪j ⩾ nAj = ∪j ⩾ 1Aj thus lim supn→∞An = ∪j ⩾ 1Aj

• Let B1 = A1 and for i > 1 let Bi = Ai ∩ Ac
i−1. Then {Bi}i ⩾ 1 is a sequence

of pair-wise disjoint events. Furthermore it holds An = ∪n
j=1Bj which yields

P (An) =
∑n

j=1Bj . On the other hand since limn→∞An = ∪n ⩾ 1An this yields
limn→∞An = ∪n ⩾ 1Bn. Thus we have

lim
n→∞

P (An) =
∑
n ⩾ 1

Bn and P ( lim
n→∞

An) =
∑
n ⩾ 1

Bn

For a non increasing sequence the proof goes along the same lines.

3.1 Probability on finite, countable and continuous spaces

If Ω is finite, Ω := {ω1, . . . ωn}, the natural choice of σ-algebra (and actually the only
one containing all the results as distinct events), is P(Ω). An n-ple {pi}i∈[1,...,n] with
pi ∈ [0, 1] for all i and

∑n
i=1 pi = 1 defines a probability as follows

∀A ∈ P(Ω) we let P (A) =
∑

i:ωi∈A
pi

Example 5. The choice {pi}i∈[1,...,n] with pi = 1/n for all i ∈ [1, . . . , n] defines the uniform
measure on Ω, P ({ω}) = 1

n for all ω ∈ Ω.

If Ω is not finite but countable, namely in bijection with N so that we can set
Ω := {ω1, ωn . . . }, any sequence (pi)i ⩾ 1 of real positive numbers such that

∑
i pi = 1

defines a probability on F = P(Ω).

If Ω = Rd there exists a σ-algebra that is called Borel σ-algebra1 that contains all
closed intervals [a1, b1] × . . . [a1, b1] for all ai < bi (and therefore by stability under
complement it also contains all open intervals), and that is the smallest algebra con-
taining all closed intervals. There is a result that we will not prove that says that there
exists (and it is unique) a measure λ on (B(Rd),Rd) such that the measure of an in-
terval I := [a1, b1] × . . . [a1, b1] is λ(I) =

∏d
i=1(bi − ai). This is the so called Lesbegue

measure. Using this result, for any given domain V ⊂ Rd of Lebesgue measure λ(V )

1The concept of Borel σ algebnra is more general, for all topological spaces. How do we generate a
Borel σ algebra for a metric space? take P(Ω) and for any T ⊂ P(Ω) let Tσ (resp. Tδ) be all countable
unions (intersections) of elements and denoted by B(R). Then the Borel σ algebra can be generated by
starting from the collection A of all open subsets and iterating the operation A → (Aδ)σ until the first
uncountable ordinal
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with λ(V ) > 0 and λ(V ) < ∞ we can define a probability PV that we call uniform
probability measure on V s.t. for all A ∈ B(Rd) it holds

PV (A) =
λ(A ∩ V )

λ(V )
.

4 Borel-Cantelli lemma

Lemma 4.1 (Borel-Cantelli Lemma). Consider a probability space (Ω,F , P ) and let
{An}n∈N be an infinite sequence of events with summable probabilities, namely s.t.∑

n∈N
P (An) <∞,

then the event that an infinite number of these events occur has probability zero, namely

P (lim sup
n→∞

An) = 0,

where we recall that lim supn→∞An := ∩N ⩾ 0 ∪n ⩾ N An.

The event lim supn→∞An is sometimes referred to as {An infinitely often } or simply
{An i.o.}

Proof. Let
BN = ∪n ⩾ NAn

so that
lim sup
n→∞

An = ∩N ⩾ 0BN .

Notice that {BN}N∈N is a non increasing sequence of events, therefore

P (lim sup
n→∞

An) = lim
N→∞

P (BN ).

This, together with

P (BN ) ⩽
∞∑

n=N

P (An)

(which is obtained simply by union bound, i.e. using the property P (A ∪B) ⩽ P (A) +
P (B)) yields

P (lim sup
n→∞

An) ⩽ lim
N→∞

∞∑
n=N

P (An) = 0

where the last equality follows from the hypothesis
∑∞

n=N P (An) <∞.
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A partial converse of the above result is given by the so called second Borel-Cantelli
Lemma. We postpone this Lemma to section 3 since we will need the notion of sequence
of independent events.

5 Random variables

Often we are more interested in a quantity that depends on the result of the random
experiment rather than on the result itself. For example if the experiment is toss n
times a coin and I tell you that you win 1 euro at each head and you lose 1 euro at each
tail, you are probably more interested on your gain (i.e. on the total number of heads)
rather than on the result itself (which is an ordered n-ple of symbols of type head and
tail). We call such a quantity a random variable. More formally

Definition 5.1 (Discrete random variables). Given a probability space (Ω,F , P ) and a
discrete (finite or countable) space E, a discrete random variable X with values in E is a
measurable function, namely X : Ω → E such that

∀x ∈ E it holds {X = x} ∈ F .

The family of positive real numbers

pX(x) := P ({ω ∈ Ω : X(ω) = x}), x ∈ E

is called probability law of the r.v. X. From the properties of P it follows that
∑

x∈E pX(x) =
12. Note that if we let f be a function on E then Y = f(X) is also a r.v. and it has proba-
bility law

pY (y) =
∑

x:f(x)=y

px(x) ∀y ∈ f(E)

We have simplified notation by denoting the event {ω ∈ Ω : X(ω) = x} simply by
{X = x}. Note that we use capital letters to denote the r.v. and lowercase letters for
their values.

Remark 5.2. Given X and f , with X : Ω → E a discrete r.v. and f : E → R a
function, also Y = f(X) is a discrete r.v. . The corresponding provability law, pY , is easily
determined from pX , indeed it holds for all y ∈ f(E)

pY (y) =
∑

x:f(x)=y

pX(x).

2In turn this means that if we consider the probability space E with σ-algebra P(E), the function
pX(x) defines a probability on it.
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Example 6. Consider a probability space (Ω,F , P ) and fix an event A ∈ F and define
the fonction 1A : Ω → {0, 1} by letting 1A(ω) = 1 if ω ∈ A, 1A(ω) = 0 if ω ̸∈ A.
Then X := 1A(ω) is a discrete random variable with Bernoulli probability of parameter
p = P (A), namely it is a discrete random variable on {0, 1} and it holds PX(1) = p.

Definition 5.3 (Real random variables). Given a probability space (Ω,F , P ) a real ran-
dom variable X is a mesurable function on Ω, namely X : Ω → R s.t.

∀I interval of R it holds {X ∈ I} ∈ F .

The law of X, PX , is a probability measure on (R, B(R)) that to any B ∈ B(R) gives
measure

PX(B) = P ({ω : X(ω) ∈ B}).
If there exists p : R → R+ s.t. holds for all I ∈ R

P (X ∈ I) =

∫
I
p(x)dx

then we say that the r.v. X has density p (and necessaily p satisfies
∫
R p(x)dx = 1). It is

also useful to define the partition function

F (x) := PX(X ⩽ x)

which completely determines the law of the r.v. Note that X has density p iff F is the
primitive of p, namely if F (x) =

∫ x
−∞ p(y)dy, ∀x ∈ R.

Remark 5.2 is also true for continuous r.v. provided the function f is sufficiently
regular, we will not enter into technicalities here.

Exercise 2. Use the property of probability that we detailed above to prove that the par-
tition function satisfies

• F : R → [0, 1] is increasing

• limx→−∞ F (x) = 0, limx→∞ F (x) = 1

• F is continuous on the right

Do all real random variables have a density? No! Consider for example X a real r.v.
with density and a ∈ R. Consider the r.v. Y := max(a,X) then its law has a mass at
point a and a part with density on (a,∞).

Proposition 5.4. Given a r.v. X with density pX , for each a, b ∈ R with a ̸= 0, the r.v.
Y = aX + b also has a density and it holds

pY (y) =
1

|a|
pX(

y − b

a
)
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Proof. Suppose a > 0. For y ∈ R oit holds

FY (y) = P (Y ⩽ y) = P (aX + b ⩽ y) = P

(
X ⩽

y − b

a

)
= FX

(
y − b

a

)
Thus

FY (y) = FX

(
y − b

a

)
=

∫ y−b
a

−∞
pX(x)dx =

∫ y

−∞
pX

(
t− b

a

)
1

a
dt

5.1 Simulating a random variable of arbitrary law

We will now show that starting from U a uniform r.v. on the interval [0, 1] we can
generate a r.v. of arbitrary law.

For example if we want to generate X a Bernoulli random variable of parameter p
we can set

X := 1U>1−p

or

X := 1U<p

In general if want to generate a r.v. X that has partition function F we let

F−1(u) := min{x ∈ R : F (x) ⩾ u}

(note that F−1 is well defined thanks to the fact that F is right continuous) and let

X := F−1(U).

It is indeed easy to verify that

P (X ⩽ x) = P (U ⩽ F (x)) = F (x)

(use the fact that F−1(U) ⩽ x) iff U ⩽ F (x) and that U is a uniform r.v.) so that the
partition function of X is indeed F . Nota that if the r.v. that we want to generate has a
density, i.e. if F (x) :=

∫ x
−∞ p(y)dy then X is the inverse of F .

Exercise 3. Fix a real positive number λ > 0 and set p(x) := λe−λx. Calculate F−1 to
generate a r.v. of density p starting from the uniform r.v. U .

Exercise 4. Fix p = (p1, . . . , pn) a probability on a discrete finite set {x1, . . . , pn}. The
partition function is a step function F (x) =

∑
xi ⩽ x pi. Calculate F−1 to generate a dis-

crete r.v. with the above probability law starting from the uniform r.v. U . The construction
is readily extended to any countable discrete set.
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Chapter 3

Conditioning and independence

1 Conditional probability

The notion of conditional probability arises naturally when we have a partial infor-
mation on the result of an experiment. Recall from section 3 that the probability of
an event A corresponds to the value around which N(A)/N stabilises, where N(A) is
the number of times the event A occurs. Suppose now that we know that the event
B is verified, the frequency N(A ∩ B)/N(B) is an estimation of the probability of A
conditioned to B. Hence the following definition is natural:

Definition 1.1 (conditional probability). Given A and B two events on the same prob-
ability space (Ω, P,F) such that P (B) > 0, we call conditional probability of A given B
the following quantity

P (A|B) =
P (A ∩B)

P (B)

Remark 1.2. Note that, for any B s.t. P (B) > 0, the function f : Ω → [0, 1] with
f(A) = P (A|B) is a probability (i.e. satisfies the requirements of Definition 3.1).

Example 7. Let T be an integer r.v. that represents a waiting time and set

p(n) := P (T = n), n > 0

Fixe a time t > 0 and suppose that we know that T > t, which is the law of the residual
time X = T − t conditioned to this event?

pt(n) := P (T − t = n|T > t) =
P (T − t = n ∩ T > t)

P (T > t)
=
P (T = t+ n)

P (T > t)
=

p(t+ n)∑
m>t p(m)

Suppose that we add the hypothesis that the law of the residual waiting time is the same
as the law of the waiting time, namely suppose that pt(n) = p(n) then letting π(t) :=

15
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∑
m>t p(m) summing the above formula we get∑

n>s

p(n) =
1

π(t)

∑
n>s

p(t+ s)

which implies
π(s)π(t) = π(t+ s)

which in turn implies
π(s) = as, with 0 < a < 1

where the conditions on a come from the fact that the probability should be positive and
should go to zero when s→ ∞. This in turn implies that p should have a geometric form,
namely

p(n) = π(n− 1)− π(n) = (1− a)an−1.

The following result allows to express in a recursive way the probability of the
intersection of n events using the conditional probability

Proposition 1.3. Let n ∈ N, n ⩾ 2 and A1, . . . , An be events verifying P (A1 ∩ A2 · · · ∩
An−1) > 0. Then the following holds

P (∩n
i=1Ai) = P (A1)

n∏
i=2

P (Ai |A1 ∩ · · · ∩Ai−1)

Proof. Let’s start by noticing that for i ⩽ n it holds P (A1 ∩ · · · ∩ Ai−1) ⩾ P (A1 ∩ · · · ∩
An−1) > 0 thus the conditional probabilities in the r.h.s. of the formula is well defined.
We proceed by induction. For n = 2 the result immediately holds by the definition of
conditional probability. Then using this result we get

P (∩n
i=1Ai) = P

((
∩n−1
i=1 Ai

)
∩An

)
= P (∩n−1

i=1 Ai)P (An | ∩n−1
i=1 Ai).

The result then follows by induction.

Proposition 1.4 (Formula of total probability). Let {Ai}i∈I be a partition of Ω, namely
Ai ∩Aj = ∅ for each i ̸= j and ∪i∈IAi = Ω. The for any B it holds

P (B) =
∑
i∈I

P (B ∩Ai).

Furthermore, if P (Ai) > 0 ∀i ∈ I it holds

P (B) =
∑
i∈I

P (B|Ai)P (Ai).

In particular, if 0 < P (A) < 1, it holds

P (B) = P (B|A)P (A) + P (B|Ac)(1− P (A)).
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Proof. Use B = B ∩ Ω and the property of countable additivity of the probability to
obtain the first formula. Then use the definition of conditional probability.

Proposition 1.5 (Bayes formula). Given A and B two events s.t. P (A) > 0 and P (B) >
0, then from the definition of conditional probability it follows immediately that

P (A |B) =
P (B |A)P (A)

P (B)
.

Furthermore, if 0 < P (A) < 1 it holds

P (A |B) =
P (B |A)P (A)

P (B|A)P (A) + P (B|Ac)(1− P (A))

and in general if {Ai}i∈I is a partition of Ω with P (Ai) > 0 for all i ∈ I it holds

P (Ai |B) =
P (B |A)P (A)∑

j∈I P (B|Aj)P (Aj)

Proof. The result immediately follows using the definition of conditional probability
and Proposition 1.4

Example 8 (An application of Bayes formula). Suppose that we have a population of
individuals and we know that the percentage of people having Covid is 0, 04%. Suppose
we have a test at hand and we know that

• if a tested person is ill the test is positive in 99% of cases

• if a tested person is sane the test is negative in 98% of cases

Q. If we test an individual and the test is positive, which is the probability that this indi-
vidual is ill?

Let’s define the two events A=the individual is ill; B=the test is positive. Then the
above question translates into: which is the value of P (A|B)?

We know that

P (A) =
4

104
; P (B|A) = 99

102
;P (Bc|Ac) =

98

102

We can use Bayes to express

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
=

4

104
99

102
1

99
102

4
104

+ 2
102

104−4
104

∼ 0.02

The above conditional probability could seem very small in view of the fact the test has
just 2% of false positives. The point is that, in order to have a larger value of reliability
of positive test, what should be small is the ratio of the fraction of false positive w.r.t. the
fraction of ills. In our case this ration is 0.02/0.04 which is not ≪ 1 !
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2 Independence of events

Given two events , A andB, we say that they are independent if P (A∩B) = P (A)P (B),
which implies, for P (B > 0) that P (A|B) = P (A).

Example 9. Throw two dices and define the following events

• A=the result of the first dice is 3

• B= the sum of the results is 12

• C=the sum of the results is 5

• D=the sum of the results is 7.

Then

• A and B are not independent, indeed A∩B = ∅, so P (A∩B) = 0 while P (A) = 1/6
and P (B) = 1/12.

• A and C are not independent, indeed P (A∩C) = 1/36 (A and C occur if the results
of the first and second dice are resp. 3, 2) which is different from P (C)P (A) (indeed
P (C) = P ((1, 4) ∪ (2, 3) ∪ (3, 2) ∪ (4, 1)) = 4/36 and P (A) = 1/6.

• A and D are independent. Indeed one can readily verify that P (A) = P (D) = 1/6
(indeed P (D) = P ((1, 6) ∪ (2, 5) ∪ (3, 4) ∪ (4, 3) ∪ (5, 2),∪(6, 1)) and P (A ∩D) =
1/36.

Definition 2.1 (Independent events). Given (Ai)i∈I a family of events on a probability
space. We say that they are independent if for any finite subset J ⊆ I with |J | ⩾ 2 it holds

P (∩j∈JAj) =
∏
j∈J

P (Aj) (2.1)

Remark 2.2. Note that it would not be enough to define the pairwise independence to ob-
tain the independence nor to require P (∩i∈IAi) =

∏
i∈I P (Ai) to obtain that factorisation

holds for any subfamily.
For example for the experiment in which we throw two dices if we let

• A1 first dice yields 1, 2, or 5

• A2 first dice yields 4,5,6

• A3 sum of dices yields 9
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check that P (A1) = 1/2, P (A2) = 1/2, P (A3) = 4/36 and P (A1 ∩ A2 ∩ A3) =
1/36 = P (A1)P (A2)P (A3) and yet P (A2 ∩ A3) = P ((4, 5) ∪ (5, 4) ∪ (6, 3)) = 3/36 ̸=
P (A2)P (A3) = 1/18.

The following proposition, that can be proven by induction, allows to better under-
stand the notion of independency of family of events.

Proposition 2.3 (An equivalent definition of independent events). Given (Ai)i∈I a fam-
ily of events on a probability space. The following facts are equivalent

(i) the events A1, . . . An are independent

(ii) for each choice B1, . . . Bn in which each Bi is either Ai or Ac
i , it holds

P (∩n
i=1Bi) =

n∏
i=1

P (Bi) (2.2)

Proof. Let’s start by proving inductively that (ii) implies (i). For n = 2 the result is
immediate (set B1 = A1 and B2 = A2 and independency follows). Suppose that we
know that (ii) implies (i) for n-1 we want to extend the result to n, namely to prove
that (2.2) implies (2.1) for all J . If |J | = n the result follows letting Bi = Ai for all i.
Suppose |J | ⩽ n − 1 and J ⊂ {1, . . . n − 1} then we have to prove that (2.2) implies
the independence of A1, . . . An−1. Now notice that for all possible choices of Bi = Ai

or Bi = Ac
i it holds

P (B1 ∩ · · · ∩Bn−1) = P (B1 ∩ · · · ∩Bn−1 ∩An) + P (B1 ∩ · · · ∩Bn−1 ∩Ac
n) =

= P (B1) . . . P (Bn−1)(P (An) + P (Ac
n)) = P (B1) . . . P (Bn−1)

where in the first equality we use that An, A
c
n are disjoint and their union is the whole

space, and in the second inequality we use (2.2). Therefore we have proven that (2.2)
holds also for n-1. Now, by induction, the independence of A1, . . . An−1 follows.
Let’s now prove that (i) implies (ii). In general we want to prove

P (Ac
1 ∩ .. ∩Ac

k ∩Ak+1 · · · ∩An) = P (Ac
1)...P (A

c
k)P (Ak+1) . . . P (An)

If k = 0 the result follows immediately from (i) (choose J = I in (2.1)). Let’s proceed
inductively on k, suppose we know that the above factorisation holds for k − 1 then

P (Ac
1∩..∩Ac

k∩Ak+1 · · ·∩An) = P (Ac
1∩..∩Ac

k−1∩Ak+1 · · ·∩An)−P (Ac
1∩..∩Ac

k−1∩Ak∩Ak+1 · · ·∩An)

using the inductive hypothesis on k − 1 the desired result follows immediately.
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An immediate corollary of the above proposition is the following

Corollary 2.4. Given a family of independents events, if we substitute some of the events
with their complementary it still remains a family of independent events.

When we say that we make n independent trials we are referring to n independent
events A1, . . . An each with the same probability Given n independent trials, each one
with probability p, the probability that at least one event is verified is

1− P (∩n
i=1A

c
i ) = 1− (1− p)n.

Exercise 5 (Borel monkey). You can now solve the following paradox. Put a monkey in
front of a typewriter. Prove that, if the monkey hits uniformly at random a key per second,
it will almost surely (i.e. with probability one) compose the Divine Comedy if we give to it
infinite time. And if we want that it composes the Divine comedy (∼ 5× 105 characters )
with probability at least 0.99, how long should we wait?

3 Conditional law

We will now generalise the notion of probability conditioned to an event to a probability
law of a random variable X conditioned to another random variable Y . This notion
will reduce the the one of conditioning on events in the setting X = 1A, Y = 1B.

Definition 3.1 (Conditional law: discrete setting). Let X : Ω → E and Y : Ω → F two
discrete r.v. on the same probability space (Ω,F , P ), and let pX,Y be the joint law of the
couple X,Y and pX be the marginal of this law on X. For each x ∈ E s.t. pX(x) > 0 we
let the conditional law of Y given X = x be

pY |X(y|x) :=
pX,Y (x, y)

pX(x)
∀y ∈ F.

Note that pY |X(·|x) is a probability distribution on F .

Definition 3.2 (Conditional law: continuous setting). Let (X,Y ) be two continuos real
r.v. with a density pX,Y . We call conditional density of Y given X = x the function

pY |X(y|x) :=
pX,Y (x, y)

pX(x)

and conditional law of Y given X = x the probability on R which has as density pY |X(·|x)



Chapter 4

Random variables: expectation, independence

1 Expectation of a random variable

The value of a random variable depends on the outcome of the random experiment, so
it fluctuates. Thus we wish to associate to it its ”more likely” value. The first and most
important indicator of the most likely value is its expectation.

Definition 1.1 (Expectation ).

• for a discrete r.v. X : ω → E = {xi, i ⩾ 1} of law p we define the expectation as

E(X) =
∑
i ⩾ 1

xip(xi)

if
∑

i ⩾ 1 |xi|p(xi) <∞. In this case we say that X is integrable

• for a real r.v. X of density p we define its expectation by

E(X) =

∫
R
xp(x)dx

if
∫
R |x|p(x)dx <∞. In this case we say that X is integrable

• for a (discrete or real) r.v. X that is not integrable yet it is positive we can again
define its expectation as above. Instead, if the variable is neither positive and nor
absolutely convergent, we cannot define its expectation.

Why do we ask ”absolute” convergence? because we do not want the result to
depend on how we chose to enumerate the events in the set (easier to understand in
the discrete case). A remark: usually in physics jargon expectation is rather called the
mean and denoted as < X > instead then with E(X).

21
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1.1 Properties of the expectation

The following proposition easily follows from the definition of expectation.

Proposition 1.2 (Properties of the expectation of discrete r.v.). Given X : Ω → E a
discrete r.w. the following holds

(i) Recall from Remark 5.2 that for any function f : E → R, Y = f(X) is a discrete
r.v.. If f ⩾ 0 or if

∑
y |y|pY (y) =

∑
x |f(x)|pX(x) <∞ then it holds

E(f(X)) =
∑
x

f(x)pX(x).

(ii) f → E(f(X)) is linear. In particular, if X is integrable, for all a, b ∈ R also
Y = aX + b is integrable and

E(aX + b) = aE(X) + b

(iii) Positivity. If X takes only positive vakues then E(X) ⩾ 0 and E(X) = 0 iff
P (X = 0) = 1.

(iv) Given f, g : Ω → E s.t. E(f) and E(g) are defined and s.t. f ⩽ g then E(f) ⩽ E(g).
In particular, if X is integrable it holds |E(X)| ⩽ E(|X|) and if |X| ⩽ a it holds
|E(x)| ⩽ a and in X

The analogous results or the continuous case are contained in the following Propo-
sition, which follows from the definition of expectation and the use Fubini theorem to
switch the order of integrals (which is guaranteed by absolute convergence).

Proposition 1.3 (Properties of the expectation of real r.v. with density). Let X be a
continuous r.v. with density p

(i) if X is positive

E(X) =

∫ ∞

0
P (X > x)dx

(ii) if f : R → R+ is continuous and f(X) also has a density. then

Ef(X) =

∫
R
f(X)pX(x)dx

(iii) if the corresponding expectation are well defined, the same results as in Proposition
1.2(ii),(iii),(iv) apply.
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Note that given X,Y two (real or discrete) square integrable r.v., namely s.t. X2

and Y 2 are integrable, then also the variables XY and (X + Y )2 are integrable. This
follows from the above proposition and the inequalities

2|XY | ⩽ X2 + Y 2, (X + Y )2 ⩽ 2(X2 + Y 2)

Exercise 6. Prove that if X is square integrable, then necessarily X is also integrable.
More generally, for any two integers r, s s.t. 0 < s < r if E|X|r < ∞ this implies
E|X|s <∞.

Hint 1.4. Use |X|r = |X|r(1|X| ⩾ 1 + 1|X|<1)

Exercise 7. Prove that E(X) <∞ implies P ({X <∞}) = 1.

Hint 1.5. Suppose by contradiction that P ({X < ∞}) < 1 then deduce that there exists
c > 0 such that for any N it holds P ({X > N}) > c > 0, and use this to that E(X)
cannot be finite.

Remark 1.6. The converse is not true: P ({X < ∞}) = 0 does not imply E(X) < ∞.
We will see in section ?? an example of variable which has infinite mean though it is finite
with probability one, the first time a simple symmetric one dimensional r.v. starting from
the origin comes back to the origin.

1.2 Jensen and Markov inequalities

Let us state two key inequalities involving means of random variables.

Proposition 1.7 (Jensen inequality). Given a probability space (Ω,F , P ) and ϕ : R → R
a convex function, for any integrable variable X s.t. also ϕ(X) is integrable it holds

ϕ(EX) ⩽ E(ϕ(X)).

Proof. From the convexity of ϕ it follows that for any x0 it holds

ϕ(x) ⩾ ϕ(x0) + ϕ′(x0)(x− x0)

Therefore
ϕ(X) ⩾ ϕ(E(x)) + ϕ′(x0)(X − E(X)).

By taking the expected value of the above expression and using the properties of the
expectation we obtain the desired inequality.

As for Cauchy-Schwartz inequality, you might meet Jensen inequality in other math-
ematics fields (of course stated in different forms), it is a basic inequality upper bound-
ing the convex function of an integral with the integral of the convex function.



24CHAPTER 4. RANDOM VARIABLES: EXPECTATION, INDEPENDENCE

Proposition 1.8 (Markov inequality). Given a positive real random variable X, and a
positive real number a > 0 it hols

P ({X > a}) ⩽ E(X)

a

Hint 1.9. Set X = X1X>a +X1X ⩽ a

2 Variance and moments

For any integer k ⩾ 1 the k-th moment of the real r.v. X is, by definition, EXk, it this
expectation exists. If k = 1 it is the expectation, if k = 2 we call the centred moment
the variance, namely

Var(X) := E[(X −EX)2]

which, being the mean square displacement from the expectation, represents the dis-
persion of the law. The quantity which represents the typical fluctuations from the
mean is thus

σ(X) =
√

Var(X).

By linearity of expectation we get for any real a, b

Var(aX + b) = a2Var(X)

and
Var(X) = E(X2)− (E(X))2.

Exercise 8. Calculate the expectation and the variance of X in the following cases

• X is a Bernoulli law of parameter p with p ∈ [0, 1], namely it is a continuous random
variable with density Ω = {0, 1} and P ({X = 1}) = p

• X is a binomial B(n, p) with n ∈ N p ∈ [0, 1], namely Ω = N and P ({X = k}) =(
n
k

)
pk(1− p)n−k

• X is an exponential variable with parameter λ > namely it is a continuous random
variable with density p(x) = λe−λx for x ⩾ 0, p(x) = 0 for x < 0

• X is a it is a r.v. with uniform law on an interval [a, b] with a, b ∈ R −∞ < a < b <
∞, namely it is continuous random variable with densty p(x) = (b− a)−11[a,b](x)

• X is a r.v. with Poisson law of parameter λ, λ > 0, namely it is a discrete r.v. with
Ω = N and p(n) = e−λλn/n!
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• a real variable X of density

px(x)
1

σ
√
2π

exp{−(x− µ)2/(2σ2)}

with µ ∈ R and σ ∈ R+. This law is called normal or Gaussian law of parameters µ
and σ2

Prove also that for n→ ∞ nd p→ 0 with np→ λ the law of the binomial variable B(n, p)
goes to the law of the Poissosn variable pλ, namely for all n ∈ N it holds

(
n
k

)
pk(1−p)n−k →

Bn,p(n) → e−λλn/n!

2.1 Quantifying dispersion: Chebyshev inequality

Theorem 2.1 (Chebychev inequality). Given X a r.v. s.t. X2 is integrable, and a ∈ R+

it holds
P (|X −E(X)| ⩾ a) ⩽

1

a2
Var(X).

Proof. Let Y be a variable s.t. Y 2 is integrable. Then

a21|Y | ⩾ a ⩽ Y 2

Thus using E(f) ⩽ E(g) for f ⩽ g we get

E(1|Y | ⩾ a) = P (|Y | ⩾ a) ⩽ a2E(Y 2).

Chebychev inequality is obtained by setting Y = X −E(X).

2.2 Covariance and correlation

To study simultaneously two or more random variables we need to introduce the notion
of covariance and correlation.

Definition 2.2 (Covariance and correlation). Given X,Y square integrable variables we
define their covariance as

Cov(X,Y ) = E [(X −E(X))(Y −E(Y ))] .

When Var(X) and Var(Y ) are non zero, we define the correlation as

Cor(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
.

From the above definition it follows that
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Proposition 2.3.

(i) If (X1 . . . Xn) are n square integrable r.v. then

Var

 n∑
j=1

Xj

 =
n∑

j=1

Var(Xj) + 2
∑∑

Cov(Xℓ, Xm)

(ii) Cor(X,Y ) ∈ [−1, 1]

Proof. To prove (i) we set Sn :=
∑n

i=1Xi and notice that

Sn −E(Sn) =
n∑

i=1

[Xi −E(Xi)]

which yields

[Sn −E(Sn)]
2 =

n∑
i=1

[Xi −E(Xi)]
2 + 2

n∑
m=1

∑
ℓ<m

[Xℓ −E(Xℓ)] [Xm −E(Xm)] .

To prove (ii) we note that the statement is equivalent to

|E [Z1Z2] | ⩽
√

E(Z2
1 )
√
E(Z2

2 )

with Z1 := X − E(X) and Z2 := Y − E(Y ). In turn, to prove this inequality it is
sufficient to notice that |E [Z1Z2] | ⩽ E [|Z1Z2|] and to apply the Cauchy-Schwartz
inequality which we state and prove below separately since it is of much more general
interest.

2.3 Cauchy-Schwartz inequality

Let us state and prove here an inequality which is often used in probability (and actually
in many other mathematics fields, where it can take different formulations.

Proposition 2.4 (Cauchy-Schwartz inequality). Let X,Y be two random variables then

E(|XY |) ⩽
√
E(X2)

√
E(Y 2)

Proof. There are several different ways of proving the inequality, one being the follow-
ing. For λ ∈ R define

f(λ) := E(|X|+ λ|Y |)2 = λ2E(Y 2) + 2λE(|XY |) +E(X2)
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Note that f(λ) ⩾ 0 for all λ. Therefore the discriminant of the above second order
equation in λ should be non positive, otherwise we could write f(λ) = (λ−λ1)(λ−λ2)
with λ1, λ2 ∈ R and find an interval of λ for which f(λ) < 0. This implies

4(E(|XY |))2 − 4E(Y 2)E(X2) ⩽ 0

which immediately yields the desired result.

We also mention without proof a useful generalisation of the C-S inequality which
is called Holdër inequality.

Proposition 2.5 (Holdër inequality). For p, q ∈ [1,∞] s.t. 1/p+ 1/q = 1 it holds

E(|XY |) ⩽ (E(|Xp|)1/p)(E(|Xq|)1/q

3 Independent random variables

Definition 3.1 (Independent random variables).

• Given a probability space (Ω,F , P ) and n discrete r.v. X1, . . . Xn with Xi : Ω → E
on this space, we say that they are independent if

P (X1 = x1, . . . , Xn = xn) =

n∏
i=1

P (Xi = xi) , ∀(x1, . . . xn) ∈ En

• Given n real r.v. X1, . . . Xn defined on the same probability space (Ω,F , P ) we say
that they are independent if

P (Xi ∈ Ii, i = 1, . . . n) =
n∏

i=1

P (Xi ∈ Ii)

for any choice of the intervals I1, . . . In. In particular, if the n-ple(X1, . . . Xn) has a
density, independence corresponds to factorisation of the joint density.

In view of Definition 2.1 of independents of events it could seem strange that we
do not require the above property also for any subfamily. However this holds automat-
ically, namely it also holds

P (Xi1 ∈ Ii1 ∩Xik ∈ Iik) =

k∏
j=1

P (Xij ∈ Iij )

since we can get rid of the other variables Xj with j ̸∈ {i1, . . . ik} by choosing Ij = Ω.
An easy consequence of the above definition is the following.
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Proposition 3.2.

• Given n independent r.v., X1, . . . Xn, and n real functions f1, . . . fn such that for all
i ∈ [1, n] fi : R → R and fi(Xi) is integrable, it holds

E
n∏

i=1

fi(Xi) =
n∏

i=1

Efi(Xi)

• if X and Y are independent and square integrable it holds

Var(X + Y ) = Var(X) + Var(y)

which, using proposition 2.3, yields Cov(X,Y ) = 0

It is also useful to introduce the weaker notion of sequence of pairwise independent
random variables. We say that X1, . . . Xn are pairwise independent if ∀i ̸= j Xi and Xj

are independent.

Proposition 3.3. Given two independent real r.v. X,Y with density pX , pY , so that
pX,Y = pXpY their sum has also a density and it holds

pX+Y (z) =

∫
R
pX(x)pY (z − x)dx

Proof. The proof follows immediately by using factorisation of the density of indepen-
dent random variables and Fubini theorem.

A natural generalisation of the notion of independent r.v. to an infinite countable
set of r.v. is the following.

Definition 3.4 (Sequence of independent random variables). Given a sequence {Xn}n ⩾ 1

of random variables it is called a sequence of independent r.v. if for any n ⩾ 1 it holds that
X1, . . . , Xm are m independent r.v.

Lemma 3.5 (Second Borel-Cantelli Lemma). Consider a probability space (Ω,F , P ) and
let {An}n∈N be an infinite sequence of independent events it holds that with non summable
probabilities, namely ∑

n∈N
P (An) = ∞,

then the probability that infinitely many of these event occurs is one, namely

P (lim sup
n→∞

An) = 1.
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Proof. The result of the lemma is equivalent to

P ((∩N ⩾ 0 ∪n ⩾ N An)
c) = 0.

On the other hand (∩N ⩾ 0 ∪n ⩾ N An)
c = ∪N ⩾ 0 ∩n ⩾ N Ac

n so that

P ((∩N ⩾ 0 ∪n ⩾ N An)
c) = lim

N→∞
P (∩∞

n=NA
c
n).

Using the independence on the events to rewrite the probability of the intersection as
a product of the probabilities we get

P ((∩N ⩾ 0 ∪n ⩾ N An)
c) = lim

N→∞

∞∏
n=N

P (Ac
n) = lim

N→∞

∞∏
n=N

(1− P (An)) = 0

3.1 Coin tossing: an example of i.i.d. variables

Consider the following experiment: throw n times a coin which yields head with prob-
ability p and tail with probability 1− p at each trial. Thus we set Ω = {0, 1}n and

P ({ω}) = pK(ω)(1− p)n−K(ω), with K(ω) = total number of heads.

We write each ω ∈ Ω as (ω1, . . . , ωn) with ωi ∈ {0, 1} and let ωi = 1 (resp. ωi = 0)
correspond to the i-th toss giving head (resp. tail) so that K(ω) =

∑n
i=1 ωi. Note that

K is a random variable taking values in E := {0, 1, . . . , n} and

P ({K = j}) =
∑

ω:
∑n

i=1 ωi=j

P ({ω}) =
(
n

j

)
pj(1− p)n−j

Thus K follows the Binomial law with parameters n and p which we denote by k ∼
B(n, p).
Note that if we consider the n random variables X1, . . . Xn with Xi(ω) = ωi, it holds

P (X1 = x1, . . . , Xn = xn) =
n∏

i=1

pxi(1− p)1−xi ==

n∏
i=1

P (Xi = xi)

thus the variables X1, . . . Xn are independent.

We shall now provide an analytic construction of the coin-tossing game with infinite
trials. More precisely the goal here is to provide an explicit construction of a probability
space (Ω,F , P ) on which we can define {Xn}n∈N that are independent and s.t. each
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marginal is Bernoulli(1/2). Consider the probability space (Ω,F , P ) with Ω the real
interval R ∩ [0, 1], F the Borel σ-algebra on this interval and P the uniform measure,
that we call λ. For each ω ∈ Ω we can write its unique dyadic expansion 1 which reads

ω = (0, ω1, . . . ωn . . . ) with ω =
∑
n ⩾ 1

ωn

2n
.

For each n ∈ N let now Xn be the r.v. defined by Xn(ω) = ωn so that Xn(ω) ∈ {0, 1}.
By definition for each n and for each choice x1, . . . xn ∈ {0, 1}n it holds

{Xi = xi; i ∈ {1, . . . , n}} =

{
ω ∈

[
n∑

i=1

xi
2i
,

n∑
i=1

xi
2i

+
1

2n

]}
so that

P ({Xi = xi; i ∈ {1, . . . , n}) = 1

2n

and {Xi}i∈N is a sequence of i.i.d. r.v. of law Ber(1/2).

4 Generating functions

For integer positive r.v., t is convenient to introduce their generating function to simplify
calculations on these variables.

Definition 4.1 (Generating function). Given X : Ω → N a positive r.v. with integer
values, we let

GX(z) = E(zX) =
∑
x∈N

zxpX(x), ∀z ∈ C, |z| ⩽ 1

Exercise 9. Calculate the generating function of the following r.v.

• X distributed as a geometric function of parameter a with a ∈ R ∩ (0, 1), namely a
function s.t.

P (X = i) = (1− a)i−1a, ∀i ∈ N+

• X distributed as a binomial B(n, p)

For a positive r.v. with integer values that can also take infinite value, namely for
X : Ω → N ∪ {∞} we can define the generating function in the same way and we get

P (X = ∞) = 1−
∑
k ⩾ 0

P (X = k) = 1−
∑
z→1

GX(z).

From the above definition the following properties of the generating function follow:
1We exclude expansion ending with an infinity of 1’s which makes the dyadic expansion unique
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Proposition 4.2 (Properties of the generating functions).

• GX is a series of radius of convergence ⩾ 1

• GX is a continuous function on |z| ⩽ 1, infinitely differentiable

• from the knowledge of GX we can completely determine the law of X, indeed[
dn

dzn
GX(z)

]
z=0

= n!pX(n)

• In particular it holds

lim
z→1

d

dz
GX(z) =

∑
n∈N

npX(n) = E(X)

• more generally for k ⩾ 1

lim
z→1

dk

dzk
GX(z) = E [X(X − 1) . . . (X − k + 1)]

which yields in particular

E
[
X2

]
= E [X(X − 1)] +E [X] = lim

z→1

[
d2

dz2
GX(z) +

d

dz
GX(z)

]

• given n independent integer positive r.v. X1, . . . Xn, the generating function of the
sum equals the product of the generating functions, namely letting Sn = X1+ . . . Xn

it holds

GSn(z) =

n∏
i=1

GXi(z)

The proof of the proposition is left as an exercise

Hint 4.3. For the last point use GSn(z) = E(zSn) = E
∏n

i=1 z
X
i =

∏n
i=1Ez

X
i .

5 Conditional expectation

Recall the definitions of conditional laws given in Section 3 , we are now ready to
introduce the notion of conditional expectation.
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Definition 5.1 (Conditional expectation). GivenX : Ω → E and Y : Ω → F two discrete
r.v. we let the conditional expectation of Y given X be the random variable ϕ : E → R
which associates to x ∈ E the value E(Y |X = x) defined as

E(Y |X = x) :=
∑

ypY |X(y|x).

Given (X,Y ) a couple of real random variables with a density, the conditional expectation
of Y givenX is a real random variable ϕ : R → R which associates to x ∈ R s.t. pX(x) ̸= 0
the value

E(Y |X = x) :=

∫
R
ypY |X(y|x)dy.

From the above definition the following properties follow

Proposition 5.2 (Properties of the conditional expectation).

(i) E(E(Y |X)) = E(Y )

(ii) for all real a, b it holds E(aY + bZ|X) = aE(Y |X) + bE(Z|X)

(iii) E(Y |X) ⩾ 0 if Y ⩾ 0

(iv) E(1|X) = 1

(v) E(Y g(X)|X) = g(X)E(Y |X)

Proof. Let’s prove (i) in the discrete case, the continuous case is analogous (with sums
replaced by integrals).

E(E(Y |X)) =
∑
x

pX(x)E(Y |X = x) =
∑
x,y

ypY (y|x)pX(x) =
∑
x,y

ypX,Y (x, y) =
∑
y

py(y) = E(Y )

Properties (ii)-(iv) are an easy consequence of the analogous properties for the ex-
pectation. Property (v) follows from the fact that when we evaluate the conditional
expectation given X, this variable should be considered as a constant.

Note that if (X,Y ) are two independent r.v. (see Definition 3.1) then pY |X(·|x) =
pY (·) and E(Y |X) is a constant function equal to E(Y ). Therefore we can reobtain
more directly the first result of Proposition 3.2:

E(f(X)g(Y )) = E(E(f(X)g(Y )|X)) = E(f(X)E(g(Y )|X)) =
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= E(f(X)E(g(Y )) = E(f(X))E(g(Y ))

The first point of Proposition 5.2 often turns out to be very useful to evaluate the
expectation of a random variable. Indeed, it is sometimes easier to proceed by condi-
tioning on another auxiliary variable and then taking the expectation.

Example 10. The number of people passing in front of Eiffel tower every day follows a
poisson law of parameter λ > 0. Each person decides (independently from the others) to
stop and visit the tower with probability p. Calculate the mean number of persons that
visit the Eiffel tower today in terms of λ and p.
We note V the r.v. representing the number of people visiting the tower today and N the
number of peoples passing in front. We know that

pV |N (v|n) =
(
n

v

)
pv(1− p)n−v

and that

pN (n) =
e−λλn

n!

So we get

E(V ) = E(E(V |N)) =
∑
n

e−λλn

n!

∑
v

v

(
n

v

)
pv(1− p)n−v =

∑
n

e−λλn

n!
pn = λp

Example 11. The number of clients arriving every day to a barber shop is a random vari-
able N of mean c and variance vc. The duration of the haircut required by client i is a
random variable Xi. We suppose {Xi}i∈N are i.i.d. and square integrable of mean t and
variance vt. Determine the mean and the variance of the total time T the barber spends
cutting hairs per day (in terms of c, t, vc, vt).

Since T =
∑

n∈N 1N=n
∑n

i=1Xi it holds

E(T ) = E(E(T |N)) =
∑
n∈N

p(n)nt = ct

E(T 2) = E(E(T 2|N)) =
∑
n∈N

p(n)E(
n∑

i,j=1

XiXj) =
∑
n∈N

p(n)
[
nE(X2

i ) + n(n− 1)t2
]
= cE(X2

i )+E(N2)t2−ct2

Hence

Var(T ) = cE(X2
i ) + E(N2)t2 − ct2 − c2t2 = cVar(Xi) + t2Var(N) = cvt + t2vc
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6 Random sums of random variables

In both examples of previous section we were handling with a sum of N independent
realisation of a random variables, where N itself was a random variable. In both cases
we discovered that the mean of the sum is given by the product of the mean of N and
of the mean of a single realisation of the random variable. The following result proves
that this is a general fact and it gives a full characterisation of the distribution of the
random sum.

Proposition 6.1. Given a sequence {Xn}n∈B i.i.d. integer positive random variables and
ν an integer positive r.v. independent from this sequence, consider the variable S defined
by setting S = 0 if ν = 0 and otherwise

S :=
ν∑

i=1

Xi.

Then the generating function of S satisfies

E(zS) = G(ϕ(z)),

where
G(z) = E(zν) and ϕ(z) = E(zXi).

Proof. Let p be the distribution of ν, then

E(zS) = E(E(zS |ν)) =
∞∑
n=1

p(n)
n∏

i=1

E(zXi) =
∞∑
n=1

p(n)ϕ(z)n = G(ϕ(z))

Exercise 10. Suppose that the hypothesis of proposition 6.1 hold with ν ∼ Poisson of
parameter λ and Xi ∼ Bernoulli of parameter p. Prove that S follows a Poisson law of
parameter λp.
Suppose that the hypothesis of proposition 6.1 hold with ν ∼ a geometric distribution
of mean a (namely P (X = k) = (1 − 1

a)
k−1 1

a for k ∈ [1, 2, . . . ]) and Xi a geometric
distribution of mean b. Prove that S follows a geometric distribution of mean ab.
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Infinite sequences of random variables

1 Convergences

We shall introduce here different notions if convergence.

Definition 1.1. Given {Xn}n ⩾ 0 a sequence of real random variables and X a random
variable we say that

• (Xn) converges almost surely (a.s) to X if P ({ω : Xn(ω) → X(ω)}) = 1. In this
case we write Xn

a.s.−−−→
n→∞

X

• (Xn) converges in Lp to X with p ⩾ 1, p ∈ N, if E(|X −Xn|p) → 0. In this case we
write Xn

Lp

−→ X

• (Xn) converges in probability to X if ∀ϵ > 0, P (|Xn −X| > ϵ) → 0. In this case we
write Xn

P−→ X

• (Xn) converges in law to X if for any continuous and bounded function f : R → R
it holds E(f(Xn)) → E(f(X)). In this case we write µXn → µX .

2 Links among the different notions of convergence

Proposition 2.1.

(i) Almost sure convergence implies convergence in probability

(ii) Convergence in Lr for any r ⩾ 1 implies convergence in probability

(iii) Convergence in probability implies convergence in law.

35
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Proof. (i) Fix ϵ > 0, the sequence (fn)n ⩾ 0 with fn = 1|Xn−X|>ϵ converges a.s. to-
wards 0. Note also that fn < 1 for all n, thus applying the dominated convergence
theorem 0.6 we get limn→∞E(fn) = limn→∞ P (|Xn −X| > ϵ) → 0

(ii) Fix ϵ > 0. Then proceed as in the proof of Markov inequality to get

E(|Xn −X|p) =
∫
Ω
|Xn −X|pdP =

=

∫
|Xn−X|>ϵ

|Xn −X|pdP +

∫
|Xn−X| ⩽ ϵ

|Xn −X|p ⩾ ϵpP (|Xn −X| > ϵ

Hence, since by convergence in Lp it holds limn→∞E(|Xn − X|p) → 0, conver-
gence in probability follows.

(iii) Given f a real continuous function with compact support. Then f is absolutely
contunuous, i.e. for all ϵ > 0 there exists α > 0 s.t. |x − y| < α impolies
|f(x)− f(y)| < ϵ. Then note that

|E(f(Xn)−f(X)| ⩽ E(|f(Xn)−f(X)|) = E(|f(Xn)−f(X)|(1|Xn−X| ⩾ α+1|Xn−X|<α)

⩽ 2 sup fP ({|Xn −X| ⩾ α})

Furthermore, by the hypothesis of convergence ion probability, for n sufficiently
large it holds P ({|Xn − X| ⩾ α}) < ϵ hence we get for n sufficiently large and
for any fixed ϵ |E(f(Xn) − f(X)| ⩽ 3ϵ which implies E(f(Xn)) → E(f(X) and
hence convergence in law.

Remark 2.2. The implications of proposition 2.1 among the different types of convergence
are the only ones that hold in general. Indeed for all other types of applications it is possible
to construct counterexamples

The dominated convergence theorem 0.6 applied to the case in which the mea-
sure µ is a probability measure yields a link between almost sure convergence and L1

convergence under additional hypothesis.

Proposition 2.3 (Dominated convergence). Let (Xn) convergence a.s. towards X, and
suppose there exists an integrable random variable Y (i.e. s.t. E(|Y | <∞) s.t. |Xn| ⩽ |Y |
for all n. Then convergence in L1 holds, namely Xn

L1

−→ X.
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Proposition 2.4. If Xn
∗−→ X and Yn

∗−→ Y with ∗ = a.s. or P or Lp, then

Xn + Yn
∗−→ X + Y

Exercise 11. Prove the above proposition

Proposition 2.5. If {Xn}n ⩾ 0 converges in probability to X, there exists a sub-sequence
(Xnk

) that converges to X a.s.

Proof. The proof is an application of Borel-Cantelli lemma (see Lemma 4.1). For all
k ⩾ 1 we can find nk s.t.

P (|Xnk
−X| > 1

k
) ⩽

1

k2
,

which implies ∑
P (|Xnk

−X| > 1

k
) <∞

which, using Borel-Cantelli, implies that the probability that Ak i.o. with Ak := |Xnk
−

X| > 1
k has probability zero. Hence there exists N s.t. the complementary events Ac

k

occur with probability one for k > N . This implies Xnk
→ X a.s.
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Chapter 6

Law of large numbers (LLN)

The law of large numbers is a result that formalises the experimental observation that
if we repeat n times the same experiment, the empirical mean of a random variable
that depends on the outcome of the experiment concentrates around the mean .

1 Weak LLN

Theorem 1.1 (Weak LLN). Consider a sequence {Xi}i∈NM of independent square inte-
grable r.v. with the same law and define their empirical mean Xn as

Xn =
1

n

n∑
i=1

Xi.

Then Xn convergences in probability to E(X1), namely

P (|Xn −E(X1)| ⩾ ϵ) = 0, ∀ϵ > 0

Proof. By linearity of expectation it holds

E(Xn) = 1/n
n∑

i=1

E(Xi) = E(X1).

By using Var(aX) = a2Var(X) and independence we get

Var(Xn) =
1

n2
Var(

n∑
i=1

Xi) =
n

n2
Var(X1) =

σ2

n

with σ2 = Var(Xi). Thus applying Chebyshev inequality (see Theorem 2.1) to Xn we
get

P (|Xn −E(X1)| ⩾ ϵ) ⩽
1

ϵ2
σ2

n
which concludes the proof.

39
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2 Strong LLN

A stronger result holds

Theorem 2.1 (Strong LLN). Consider a sequence {Xi}i∈N of independent integrable r.v.
with the same law. Their empirical mean Xn converges with probability 1 to EX1, namely

P ( lim
n→∞

Xn = E(X1)) = 1,

Remark 2.2. An even stronger LLN holds: independence can be substituted by pair-wise
independence (strong law of Etemadi)

Proof. For simplicity we assume E(X1) = 0 (otherwise we can recenter the variable,
make the proof for Xi −E(X1) and then deduce the desired result). We will also make
th (non innocent but simplifying!) hypothesis that E(X4

1 ) <∞ (if it is not the case the
proof is more involved). Then

E(Xn
4
) =

1

n4

∑
ijkl

E(XiXjXkXl) =
1

n4

∑
i ̸=j

E(X2
iX

2
j ) +

∑
i

E(X4
i )

 =

=
1

n4
[
n(n− 1)(E(X2

1 ))
2 + nE(X4

1 )
]
= O

(
1

n2

)
were we used the fact independence and the fact that Xi have zero mean to get
E(XiX

3
j ) = E(Xi)E(X3

j ) = 0. Analogously, for j ̸= j ̸= k it holds E(XiXjX
2
k) = 0,

j ̸= j ̸= k ̸= l E(XiXjXkXl) = 0.
Note that this result implies that

E(
∑
n

Xn
4
) =

∑
n ⩾ 1

E(Xn)
4 <∞

which in turn implies that the r.v.
∑

nXn
4 is finite with probability 1 and therefore the

variable Xn converges to 0 with probability 1.

Exercise 12. Prove that if we repeat independently n times the same random experiment
and we consider the frequency of an event A, then as the number of times we repeat the
experiment is sent to infinity, the frequency converges with probability 1 to the probability
of tghe event.
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3 An application of LLN: Monte Carlo method to evaluate
integrals

To be filled

4 An application of LLN: equipartition of probabilities

Let X be a random variable with density pX and living on a finite space, X : Ω → F
with |F | <∞. We define the entropy of X as

HX := −
∑
x∈F

pX(x) log pX(x) = E(− log pX)

where we set xlogx = 0 for x = 0 and the equality follows from the property of ex-
pectation (see Proposition 1.3). Note that the entropy is the avarage of the level of
information brought by an event: if an event is typical i.e. has high probability (resp.
atypical) its occurrence brings little (rep. high) information. Indeed, x log x is an de-
creasing function of x for x ∈ [0, 1]. By using the LLN we will prove that the entropy
”measures the disorder” of the law of X, in a way that will be quantified in Theorem
4.2.

Proposition 4.1. The following holds

• 0 ⩽ Hx ⩽ log |F |

• HX = 0 iff X is constant a.s.

• HX = log |F | iff X is uniformly distributed on F .

Proof. To be filled

Theorem 4.2 (Asymptotic equipartition). Given a probability space (Ω,F , P ), a finite
space F and a r.v. X : Ω → F , let (X1, . . . , Xn) be n i.i.d. r.v. with the same law as X.
Then, for any ϵ > 0 the following holds:

(i) ∃An ⊂ Fn s.t. for any n ∈ N it holds |An| ⩽ exp(n(HX + ϵ)) and s.t.

lim
n→∞

P ((X1, . . . , Xn) ∈ An) = 1

(ii) for any Bn ⊂ Fn s.t. |Bn| ⩽ exp(n(HX − ϵ)) it holds

lim
n→∞

P ((X1, . . . , Xn) ∈ Bn) = 0
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In other words, the set of typical sequences has roughly enHX elements and a typ-
ical sequence has probability p(x1, . . . xn) = e−nHX . This result is at the base of data
compression techniques in information theory. Indeed, if we want to transmit a sig-
nal corresponding to the sequence X1, . . . Xn, thanks to Theorem 4.2 we can compress
data and represent all typical sequences with n log2 eHX bits. Then we can assign to
the remaining (atypical) sequences longer code words.

Proof. (i)Let

An = Aϵ
n :=

{
x ∈ Fn : − 1

n

n∑
i=1

log pX(xi) ∈ [HX − ϵ,HX + ϵ]

}
.

We shall prove that An satisfies both requirements...To be filled
(ii) Fix Bn ⊂ Fn and let Ãn = A

ϵ/2
n . It holds

P (Bn) = P (Bn ∩ Ãn) + P (Bn ∩ Ãc
n) (4.1)

Note that
P (Bn ∩ Ãc

n) ⩽ P (Ãc
n)

which goes to zero as n → ∞ thanks to the proof of point (i). We will now prove that
also the first terms on the r.h.s. of 4.1 goes to zero as n→ ∞. Indeed it holds

P (Bn∩Ãn) =
∑

(x1,...xn)∈Bn∩Ãn

pX(x1) . . . pX(xn) ⩽
∑

(x1,...xn)∈Bn∩Ãn

exp(−n(HX−ϵ/2)) =

= |Bn ∩ Ãn| exp(−n(HX − ϵ/2)) ⩽ exp(n(HX − ϵ)) exp(−n(HX − ϵ/2)) = exp(−n/2ϵ)

where for the last inequality we used |Bn| ⩽ exp(n(HX − ϵ)) and |Bn∩ Ãn| ⩽ |Bn|.
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Central limit theorem

1 CLT: statement and sketch of the proof

Theorem 1.1. Given {Xn}n ⩾ 1 a sequence of independent and identically distributed
(i.i.d.) r.v. that have mean µ, are square integrable, and have non zero variance σ2, for
each I ⊂ R it holds

P

(
Sn − nµ

σ
√
n

∈ I

)
→

∫
I
g(x)dx

with

g(x) =
1√
2π

exp−x
2

2

and Sn =
∑n

i=1Xi

Analogously, we could say that in the limit n → ∞ the partition function of the
variable Zn :=

√
n
σ (X̄n − µ) with X̄n = Sn/n converges to the partition function of

standard gaussian variable.

Proof. To be filled

The assumptions of the CLT can be weakened. In particular, the hypothesis of
equidistribution does not play an essential role.
If the {Xi}i ⩾ 1 are independent, of finite second moment and their tails satisfy the
following condition (known as Lindeberg condition)

lim
n→∞

1

v2n

n∑
i=1

E((Xi − µi)
2
1|Xi−µj |>ϵvn) = 0 (1.1)

with µi = E(Xi), v2n :=
∑n

1 V ar(Xi), CLT continues to holds. Note that the above
condition requires that the Sn is ”very random”, its variance is required to diverge as

43
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n→ ∞.

2 An application: Gaussian law of errors

This ”law” states that the measurements of a quantity which is subject only to accidental
errors are distributed normally around the mean of the observations.

This can be understood by considering that the result of a measurement of a quan-
tity can be represented via a random variable M = q+E where q is a constant (the true
value of the quantity) and E is a random variable corresponding to the sum of all the
sources of errors in the measurement. It is natural to expect that E =

∑n
i=1 ei with n

large (there are many independent causes of error) and ei independent. Furthermore,
if we have removed systematic errors, each source of error is a centred variable (it can
take both positive and negative value with the same probability, otherwise it would be
a systematic error) and it is natural to assume that all the sources of error is predomi-
nant so that the Lindeberg condition 1.1 holds. If the above assumptions hold, by CLT,
we get E/

∑n
i=1 σ(ei)

2 ∼ N (0, 1), namely the total error properly renormalised follows
a standard Gaussian law.

Proposition 2.1. Given a r.v. X with density pX , for each a, b ∈ R with a ̸= 0, the r.v.
Y = aX + b also has a density and it holds

pY (y) =
1

|a|
pX(

y − b

a
)

Proof. Suppose a > 0. For y ∈ R oit holds

FY (y) = P (Y ⩽ y) = P (aX + b ⩽ y) = P

(
X ⩽

y − b

a

)
= FX

(
y − b

a

)
Thus

FY (y) = FX

(
y − b

a

)
=

∫ y−b
a

−∞
pX(x)dx =

∫ y

−∞
pX

(
t− b

a

)
1

a
dt

By using proposition 2.1 it follows that the measurement M are distributed accord-
ing to a gaussian law of mean q and variance σ2 :=

∑n
i=1 σ(ei)

2, namely the probability
density of M is

∼ 1
σ
√
2π
e−(x−q)2/2σ2
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3 Another application: confidence intervals

TO BE FILLED
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Chapter 8

A rapid overview of two notable probabilistic models

1 Random walks: transience and recurrence

1.1 Random walks on Z

Consider a sequence X1, X2, . . . of independent discrete r.v. with P (Xi = 1) = p,
P (Xi = −1) = 1− p. The simple random walk starting from the ori gin is the sequence
of variables {Sn}n∈N defined as the partial sums, namely

Sn =

n∑
i=1

Xi, ∀n ⩾ 1, S0 = 0

An interesting quantity is the first time τ at which the random walks comes back to the
origin, defined as

τ = min{n ⩾ 1 : Sn = 0}, τ ∈ N ∪ {∞},
whose law τ can be completely determined. We say that a random walk is recurrent if
P (τ <∞) = 1, transient otherwise. Recall the definition of generating function

GX(z) = E(zX) =
∑
x∈N

zxpX(x), ∀z ∈ C, |z| ⩽ 1

The following holds

Proposition 1.1. The generating function of τ satisfies

Gτ (z) = 1−
√
1− 4p(1− p)z2.

This implies that

• P (τ <∞) = limz→1Gτ (z) = 1−
√

1− 4p+ 4p2 = 1− |2p− 1|.
In particular, the random walk is recurrent iff p = 1/2
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• E(τ) = limz→1G
′
τ (z) = (1− 4p(1− p))−1/2.

Note that in the symmetric case, i.e. for p = 1− p = 1/2, it holds E(τ) = ∞

Proof. Let

Q(z) :=
∞∑
n=0

anz
n with an = P (Sn = 0).

Then notice that

an =
n∑

k=1

P (Sn = 0|τ = k)P (τ = k) =
n∑

k=1

an−kP (τ = k)

where we used the fact that Xi being independent it holds P (Sn = 0|τ = k) =
P (Sn−k = 0). Then multiplying by zn and summing on n the previous equality we
get

Q(z) = 1 +
∑
n ⩾ 1

n∑
k=1

an−kz
n−kP (τ = k)zk = 1 +Q(z)Gτ (z),

thus

Gτ (z) = 1− 1

Q(z)
.

On the other hand using

P (Sn = 0) =

(
n

n/2

)
pn/2(1− p)n/2 ∀n even

and P (Sn = 0) = 0 for all n odd we get

Q(z) =
∑
k ⩾ 0

(
2k

k

)
(p(1− p)z2)k.

The above series can be summed yielding

Q(z) = (1− 4p(1− p)z2)−1/2

which together with the above formula connecting Q to Gτ yields the desired result.
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2 Branching process

We will discuss in this section the simplest branching model, the so called Galton Wat-
son model. This processes describe the evolution of the number of individuals of a
population along its subsequent generations. An historical note: the model was first
introduced in the end of the 19th century, in order to study the probability of extinc-
tion of names of aristocratic families, hence the fact that it is a single individual (the
male) that give birth to individual (i.e. transmits the name to its male children). The
model has been later applied to several other fields including biology (evolution of
bacterial colonies), epidemiology (spread of infections), chemistry (dynamics of chain
reactions)..

We call Zn the number of individuals in generation n and we suppose that

• in the first generation there is only one individual

• each individual gives independently birth to a certain number of children in the
next generation

• the number of children of each individual has identical distribution

Namely we let

Z0 = 1, Zn+1 =

Zn∑
1

ξi ∀n ⩾ 0

with ξi i.i.d. and
ϕ(z) = E(zξ).

By proposition 6.1 we have that, letting Gn := GZn , it holds

Gn+1 = Gn(ϕ(z)) ∀n ⩾ 0.

Noticing that G0(z) = z we get

Gn(z) = ϕn(z) ∀n > 0 where ϕ(z) = ϕ · ϕ... · ϕ n times .

We are interested in the probability that the population gets extincted, namely on the
probability of the event

E = {∃n ∈ N : Zn = 0} = ∪nAn where An := {Zn = 0}.

Since {An}n ⩾ 1 is a sequence increasing events (due to the fact that Zn = 0 implies
Zn+1 = 0), by proposition 3.5, it holds

E = lim
n→∞

An, P (E) = lim
n→∞

ϕn(0)
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where we used the fact that, since Zn is an integer positive r.v., it holds P (Zn = 0) =
ϕn(0).

If we exclude the case ϕ(z) = z, which corresponds to the (uninteresting) situation
in which with probability one each individual gives birth to one child, the following
holds:

Theorem 2.1.

(i) If E(ξ) ⩽ 1 then P (E) = 1, namely the population gets extinguished a.s.

(ii) If E(ξ) > 1 it holds P (E) = σ with σ the unique solution of the equation ϕ(σ) = σ
in [0, 1).

Proof. Consider the function ϕ(z) in the interval [0, 1]. Notice that

ϕ′(z) = E(ξzξ−1) and ϕ′′(z) = E(ξ(ξ − 1)zξ−2)

which are both positive since they are the expectation of real discrete positive r.v. Fur-
thermore it holds ϕ(1) = 1. Thus, thanks to the fact that we excluded the case ϕ(z) = z,
only two situations may happen (see Fig.8.1)

• if ϕ′(1) ⩽ 1 it holds z ⩽ ϕ(z) and tehrefore ϕn(z) ⩽ ϕn+1(z), and

P (E) = lim
n→∞

ϕn(0) = 1

• if ϕ′(1) > 1 it holds z ⩽ ϕ(z) ⩽ σ for z ⩽ σ and z ⩾ ϕ(z) ⩾ σ if z ⩾ σ.
Furthermore it holds

P (E) = lim
n→∞

ϕn(0) = σ

Remark 2.2. Notice that (ii) is coherent with the fact that if the distribution of the number
of children of an individual is such that the probability to have zero child is zero, the
extinction event should have probability zero. Indeed in this case it holds ϕ(0) = 0 and
σ = 0

The regime E(ξ) < 1 is called subrcritical, the regime E(ξ) > 1 supercritical and
the case E(ξ) = 1 critical. The following proposition gives additional informations on
the speed of extinction for the subcritical and critical case and on the explosion of the
population size in the supercritical case when we condition on the non extinction event.
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Figure 8.1: The function ϕ(z) in the case E(ξ) ⩽ 1 (left figure) and E(ξ) > 1. In both
figures for a chosen z we also indicate the iterated values ϕ2(z) = ϕ(ϕ(z)), ϕ3(z) =
ϕ(ϕ(ϕ(z))) which show the convergence to 1 in the case E(ξ) ⩽ 1 and to the point σ
s.t. ϕ(σ) = σ when E(ξ) > 1

Proposition 2.3.

(i) For E(ξ) < 1 it holds
P (Zn ̸= 0) ⩽ E(ξ)n

thus extinction occurs exponentially fast

(ii) For E(ξ) = 1, if E(ξ2) <∞ it holds for n large

P (Zn ̸= 0) ∼ 2

E(ξ2 − ξ)

1

n

(iii) For E(ξ) > 1

a) only two events may occur: either extinction or explosion (namely divergence
of Zn)

b) if E(ξ2) <∞ and we condition on non extinction it holds

Zn

E(ξ)n
→W a.s.

with W a positive finite r.v.
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We provide a proof only of point (i) and a proof of (iii)(a), the other cases need a
longer proof and more refined tools.

Proof. In order to prove (i) we notice that

P (Zn ̸= 0) ⩽ E(Zn) = E(E(Zn|Zn−1)) = E(Zn−1E(ξ)) = E(ξ)n.

In order to prove (iii)-a) we notice that for any a > 0 integer and any z ∈ (0, 1) it
holds

P (0 < Zn ⩽ a)za ⩽
∑
k ⩾ 1

P (Zn = k)zk

where we used the fact that zx > za for x ⩽ a and z ∈ (0, 1). Then we use∑
k ⩾ 1

P (Zn = k)zk = ϕn(z)− P (Zn = 0) = ϕn(z)− ϕn(0).

This, together with the previous inequality, yields

P (An,a) ⩽ z−a [ϕn(z)− ϕn(0)] with An,a := {0 < Zn ⩽ a}

By analysing the recursive equation for ϕn(z) it is then possible to show that ϕn(z) −
ϕn(0) converges to zero exponentially fast. Then, applying Borel-Cantelli lemma 4.1
we get that the event {An,a occurs i.o.} has probability zero. In other words, there
exists N s.t. for all n ⩾ N , the event Ac

n,a always occur. Noticing that Ac
n,a = {Zn =

0} ∪ {Zn ⩾ a} and that Zn = 0 implies Zn+1 = 0, we deduce that either extinction
occurs or Zn > a for all n ⩾ N . The latter case implies explosion thanks to the
arbitrariness of a.

Exercise 13. Fix p ∈ (0, 1) and let the number of children of an individual be distributed
as P (ξ = k) = (1− p)kp, k ∈ N. Prove that the extinction probability equals 1 if p ⩾ 1/2
and it equals p(1− p)−1 if p < 1/2.



Chapter 9

Large deviations

The aim of the large deviation theory is to quantify the occurrence of macroscopic
fluctuations in random systems. We will treat in detail only the easiest example, the
large deviations for sums of i.i.d. random variables, and give some hints on more
general results.

1 Large deviations for sums of i.i.d. random variables

Theorem 1.1 (Cramer’s theorem). Let (Xn)n ⩾ 1 be a sequence of i.i.d. real random
variables s.t.

ϕ(t) = E(etX1) <∞ ∀t ∈ R.

Let Sn :=
∑n

i=1Xi and let I be the Fenchel-Legendre transformation of log ϕ(t), namely

I(x) := sup
t∈R

{tx− log ϕ(t)}. (1.1)

Then

• for any closed interval 1 C ⊂ R it holds

lim sup
n→∞

1

n
logP

(
Sn
n

∈ C

)
⩽ − inf

x∈C
I(x) (1.2)

• for any open interval A ⊂ R it holds

lim inf
n→∞

1

n
logP

(
Sn
n

∈ A

)
⩾ − inf

x∈A
I(x) (1.3)

1namaly C = [a, b] including the cases a = −∞ or b = ∞
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Corollary 1.2 (Bound on the tail on Sn). Let a > E(X1) then from Cramer’s theorem
we get

lim sup
n→∞

1

n
logP (Sn ∈ [a,∞)) ⩽ − min

x ⩾ a
I(x)

and

lim inf
n→∞

1

n
logP (Sn ∈ [a,∞)) ⩾ lim inf

n→∞

1

n
logP (Sn ∈ (a,∞)) ⩾ − inf

x>a
I(x).

The two above inequalities, together with the fact that I(x) is non decreasing in the interval
[E(X1),∞) (see proposition 1.3), yield

P (Sn ⩾ na) ≃ e−nI(a) (1.4)

where the symbol ≃ stands here for logarithmic equivalence 2.

Before proving Cramer’s theorem let us discuss some properties of the function I(x)
defined in (1.1), which us called rate function.

Proposition 1.3. The rate function I satisfies the following properties

(i) I is a convex non negative function and I(E(X1)) = 0

(ii) I is increasing on [E(X1),∞) and decreasing on (−∞, E(X1)]

(iii) for x ⩾ E(X1) it holds
I(x) = sup

t ⩾ 0
(tx− log ϕ(t))

(iv) for x ⩽ E(X1) it holds
I(x) = sup

t ⩽ 0
(tx− log ϕ(t))

(v) given a function f we ley Df := {x : f(x) < ∞} and let D0
f be the interior of Df .

Then I is strictly convex and infinitely differentiable in D0
I and, for any x̄ ∈ D0

I there
is a unique t̄ ∈ D0

log ϕ(t) s.t. x̄ and t̄ are in duality, namely s.t.

x̄ =
d log ϕ(t)

dt
|t=t̄

2Given two sequences an, bn we say that they are logarithmically equivalent and denote this as an ≃ bn
if

lim
n→∞

1

n
(log an − log bn) = 0.
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and
t̄ = I ′(x̄).

Furthermore it holds
I(x̄) = t̄x̄− log ϕ(t̄).

Proof. (i)Convexity is established as follows. Let λ ∈ (0, 1) then

I(λx+ (1− λ)y) = sup
t∈R

(t(λx+ (1− λ)y)− log ϕ(t)) =

sup
t∈R

(λ(tx− log ϕ(t)) + (1− λ)(t(1− y)− log ϕ(t)) ⩽ λI(x) + (1− λ)I(y).

Non negativity follows from the fact that ϕ(t) = 0 thus I(x) ⩾ 0x− log ϕ(0) = 0.
The fact that I(E(X)) = 0 can be proved by Jensen inequality

ϕ(t) = E(etX1) ⩾ etE(X1)

so that for all t ∈ R it holds

tE(X1)− log ϕ(t) ⩽ tE(X1)− tE(X1) = 0.

(ii) This result follows by convexity and the fact that I(E(X1)) = 0
(iii) For x > E(X1) and t < 0 it holds

tx− log ϕ(t) ⩽ t(x− E(X1)) < 0

where in the first inequality we used ϕ(t) ⩾ etE(X1). Thus necessarily since I(x) ⩾ 0 it
should be

I(x) = sup
t ⩾ 0

(tx− log ϕ(t)) if x > E(x1)

(iv) Analogously for x < E(X1) and t > 0 we have

tx− log ϕ(t) ⩽ t(x− E(X1)) < 0.

This implies
I(x) = sup

t ⩽ 0
(tx− logψ(t)) if x < E(x1).

(v) Follows from the properties of the Legendre transform

We are now ready to prove Cramer’s Theorem. We will divide the proof into two
parts: proof of the upper bound (1.2) and proof of the lower bound (1.3)
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Proof of inequality (1.2). Let the open set be C = [a, b]. If E(X) ∈ C and E(X) ̸= a,
E(X) ̸= b, the result immediately follows from the law of large numbers (and the fact
that I(E(X)) = 0). Otherwise either (i) a ⩾ E(X) or (ii) b ⩽ E(X) and we treat
separately the two cases.
(i)

P

(
Sn
n

∈ C

)
⩽ P

(
Sn
n

⩾ a

)
In turn for t > 0 and using Markov inequality it holds

P

(
Sn
n

⩾ a

)
= P (etSn ⩾ etna) ⩽ e−tnaE(etSn) = e−tnaϕ(t)n.

Putting the two inequalities above together we get

1

n
logP (

Sn
n

∈ C) ⩽ − sup
t>0

(ta− log ϕ(t)) = −I(a) = − inf
x∈C

I(x)

where for the second last equality we used Proposition 1.3 (iii) and for the last equality
we used Proposition 1.3 (ii).
(ii) The proof follows along the same way:

P

(
Sn
n

∈ C

)
⩽ P

(
Sn
n

⩽ b

)
In turn for t < 0 and using Markov inequality it holds

P

(
Sn
n

⩽ b

)
= P (etSn ⩾ etnb) ⩽ e−tnbE(etSn) = e−tnbϕ(t)n.

Putting the two inequalities above together we get

1

n
logP (

Sn
n

∈ C) ⩽ − sup
t<0

(tb− log ϕ(t)) = −I(b) = − inf
x∈C

I(x)

where for the second last equality we used Proposition 1.3 (iv) and for the last equality
we used Proposition 1.3 (ii).

Proof of inequality (1.3). Assume infx∈A I(x) < ∞, otherwise the statement is trivial.
Since A is open this implies A ∩ D0

I ̸= 0 , namely there exists x̄ ∈ A ∩ D0
I . Let

Bn,ϵ :=

(
(x1, . . . xn) ∈ Rn :

Sn
n

∈ A;
∣∣Sn
n

− x̄
∣∣ < ϵ}

)
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Since A is open, we can fix ϵ small enough so that Bn,ϵ is not empty and open. Let now
λ̄ be the dual of x̄ (see Proposition 1.3) (v), it holds

P (Sn ∈ A) ⩾
∫
Bn,ϵ

n∏
i=1

µ(dxi) =

∫
Bn,ϵ

e−λ̄Sn+n log ϕ(λ̄)
n∏

i=1

µλ̄(dxi) (1.5)

where µ(dx) is the common probability measure of the i.i.d. random variables and for
any λ we let

µλ(dx) := eλx−log ϕ(λ)µ(dx).

Assume λ̄ > 0 (the proof in the other case is analogous), then the r.h.s. of (1.5) is lower
bounded by

e−λ̄n(x̄+ϵ)+n log ϕ(λ̄)

∫
Bn,ϵ

n∏
i=1

µλ̄(dxi) = e−nI(x̄+ϵ)

∫
Bn,ϵ

n∏
i=1

µλ̄(dxi).

This, together with (1.5) yields

1

n
logP (Sn ∈ A) ⩾ − I(x̄+ ϵ) +

1

n
log

∫
Bn,ϵ

n∏
i=1

µλ̄(dxi). (1.6)

Now notice that µλ(dx) is a probability measure and∫
R
xµλ(dx) =

dE(eλx)

dλ
.

Therefore, when λ = λ̄, the above mean equals x̄ thanks to Proposition 1.3(v). Then,
the weak law of large number implies∫

Bn,ϵ

n∏
i=1

µλ̄(dxi) → 1

which, together with (1.6) implies

1

n
logP (Sn ∈ A) ⩾ − I(x̄+ ϵ). (1.7)

Since the l.h.s. of this equation does not depend on ϵ and I is continuous we can send
ϵ→ 0 and we get

1

n
logP (Sn ∈ A) ⩾ − I(x̄). (1.8)

Repeating the argument for any x̄ ∈ A ∩ D0
I inequality (1.3) is proved.
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Exercise 14. Let (Xn)n ⩾ 1 be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2. Prove that
for all a ∈ (0, 1] it holds

lim
n→∞

1

n
logP

(
Sn
n

⩾ a

)
= log 2 +

1− a

2
log

1− a

2
+

1 + a

2
log

1 + a

2
.

Exercise 15. Let X be a gaussian variable of variance σ2 and mean m, prove that the
rate deviation function of a sum of i.i.d. random variables distributed as X is

I(x) =
(x−m)2

2σ2

2 Some generalities

Given a family {Pn}n ⩾ 1 of probability distributions on Ω we say that the family satisfies
a large deviation principle with good rate function I(·) it there exists I : Ω → [0,∞] s.t.

• I is lower semicontinuous, namely for all x ⩾ 0 the set {x ∈ Ω : 0 ⩽ I(x) ⩽ c} is
closed

• For each ℓ <∞ the set {x : I(x) ⩽ ℓ} is compact in Ω

• For each closed set C ⊂ Ω it holds

lim sup
n→∞

1

n
logPn(C) ⩽ − inf

x∈C
I(x) (2.1)

• for each open set A ⊂ Ω it holds

lim inf
n→∞

1

n
logPn(A) ⩾ − inf

x∈A
I(x) (2.2)

It is not difficult to verify that in the case Pn are the distributions of partial sums of i.i.d.
variables (namely in the setting of the previous section), (1.1) is a good rate function.

Proposition 2.1. If a sequence (Pn)n ⩾ 1 satisfies a LDP, then the associated rate function
is unique.

Lemma 2.2 (Varadhan’s lemma). Let (Pn)n ⩾ 1 be a sequence of probability measures on
Ω satisfying an LDP with rate function I. Let F : Ω → R a continuous function that is
bounded from above. Then it holds

lim
n→∞

1

n
log

∫
Ω
enF (x)Pn(dx) = sup

x∈Ω
{F (x)− I(x)}

Remark 2.3. Large deviation theory has a natural application in many problems in sta-
tistical physics. The easiest example is the case of the Curie Weiss model for which the large
deviation function can be explicitly determined (see e.g. [?Velenik]).



Appendix A

Recalling some integration results

Definition 0.1 (Measurable functions). Given two measurable spaces (Ω,F) and (Ω′,F ′)
and a function f : Ω → Ω′, we say that f is measurable if f−1(F ′) ∈ Ω, namely if

∀B ∈ F ′, {x ∈ Ω, f(x) ∈ B} ∈ F .

For example, continuos functions from Rk → Rm, are measurable if we endow these
spaces with their Borel σ-algebras.

Proposition 0.2. Any positive measurable function is the point-wise limit of an increasing
sequence of positive step-functions

On a measurable space (Ω,F) one can define a measure µ : Ω → R+ ∪ {∞} by
requiring that for any sequence of pair-wise disjoint events it holds

µ(∪nAn) =
∑
n

µ(An).

Then the integral of a function w.r.t. the measure is defined as follows

Definition 0.3 (Integral w.r.t. a measure). Given a measure space (Ω,F , µ) and a mea-
surable function f : Ω → F we defines the integral w.rt. µ of f as follows

• if f is a positive step functions, i.e. of the form f =
∑n

k=0 αk1Ak
we set∫

Ω
f(x)dµ(x) := sumn

k=0αkµ(Ak)

• if f is positive, using Proposition 0.2 we set∫
Ω
f(x)dµ(x) := lim

k→∞

∫
Ω
fk(x)dµ(x)

which can be proven not to depend on the chosen sequence
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• for a generic l measurable f we set f = f+ − f− with a+ := max(a, 0) and a− :=
min(−a, 0). Then if

∫
Ω f

+(x)dµ(x) < ∞ and
∫
Ω f

−(x)dµ(x) < ∞ we say that f is
integrable and set∫

Ω
f(x)dµ(x) =

∫
Ω
f+(x)dµ(x)−

∫
Ω
f−(x)dµ(x).

Note that, since |f | = f+f−, if f is integrable also |f | is integrable.

Let us state some fundamental results of integration theory.

Theorem 0.4 (Monotone convergence). Let {fn}n∈N be a sequence of measurable func-
tions s.t 0 ⩽ fn ⩽ fn+1 for any n. Let f be defined as the pointwise limit of fn namely

f(x) = lim
n→∞

fn(x) ∀x ∈ Ω.

Then ∫
Ω
f(x)dµ(x) = lim

n→∞

∫
Ω
fn(x)dµ(x).

Lemma 0.5 (Fatou lemma). Let {fn}n∈N be a sequence of measurable functions s.t 0 ⩽ fn
for any n. Let f be defined setting f(x) = lim infn fn(x) for all x. Then∫

Ω
f(x)dµ(x) ⩽ lim inf

n

∫
Ω
fn(x)dµ(x)

Theorem 0.6 (Dominated convergence). Let g be an integrable function on (Ω,F , µ),
and {fn}n∈N be a sequence of measurable functions s.t |fn| ⩽ g for any n. If limn→∞ fn(x) =
f(x) almost everywhere (i.e. except on a set of measure zero) then∫

Ω
f(x)dµ(x) = lim

n→∞

∫
Ω
fn(x)dµ(x).

Theorem 0.7 (Fubini-Tonelli and Fubini theorems). Given two measure spaces (Ω,F , µ)
and (Ω′,F ′, µ′) s.t. µ and ν are σ-finite 1) and f : Ω×Ω → R+ that is Ω×Ω′ measurable,
then∫

Ω×Ω′
f(x, y)d(µ⊗ µ′)(x, y) =

∫
Ω

(∫
Ω′
dµ′(y)

)
dµ(x) =

∫
Ω′

(∫
Ω
dµ(x)

)
dµ′(y)

Furthermore, f is integrable on Ω× Ω′ iff the two above quantities are finite.
If there exists G : Ω′ → R integrable on (Ω′,F ′µ′) s.t. µ′-almost surely∫

Ω
|f(x, y)|dµ(x) ⩽ G(y)

then f is integrable on Ω× Ω′.
1
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Let us recall also the notion of absolute continuity of measures

Definition 0.8. Let Ω,F be a measurable space and µ, ν be two measures on this space.
We say that µ is absolutely continuous w.r.t. ν (in formulas µ ≪ ν) if for all A ∈ F s.t.
ν(A) = 0 on a µ(A) = 0. We say that µ and ν are equivalent (in formulas µ ≡ ν) if
µ≪ ν and ν ≪ µ.

The following result guarantees that absolute continuity implies the existence of a
density.

Theorem 0.9 (Radon-Nikodym derivative). Let Ω,F be a measurable space and µ, ν be
two measures on this space s.t. µ(E) < ∞, ν is σ-finite and µ ≪ ν. Then there exists a
unique h ∈ L1(ν) s.t. for all A ∈ F it holds µ(A) =

∫
A hdν. We call h the Radon-Nikodym

derivative of µ w.r.t. ν. In formulas

dµ = hdν or h =
dµ

dν
.
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