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These lecture notes are based on the second half of the master course Introduction to Statis-

tical Mechanics that I taught together with Beatrice De Tillière at University Dauphine - PSL

during fall 2021 (Master 2 MATH-PSL).

Many misprints are most likely to be present: I will be very happy to have any feed-

back/corrections (toninelli@ceremade.dauphine.fr)!
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Chapter 1

INTRODUCING IPS

Interacting particle systems (IPS for short) are systems composed of a large or infinite number

of particles living on a lattice and evolving as a whole as a Markov process.

To define an IPS we have to choose a (finite or infinite) lattice, namely a countable vertex set

Λ and edge set E, and a finite local state space S. In these notes we will deal always with

the case in which S contains only two possible states, more precisely S = {0, 1} (or S = {±1}

for the stochastic Ising model) and Λ = Zd. We will denote by η ∈ SΛ the configurations and

by (ηt)t > 0 the Markov process on the space SΛ with elementary moves corresponding to the

modification of the configuration on a finite number of sites. Moves occur at a rate depending on

the configuration on a certain neighbourhood of the to-be-updated sites so dynamics is random

and follows local rules. Due to these interactions, the single particle evolution is not Markovian.

There is a strong connection among IPS and statistical mechanics. As you have learned in the

first half of the course, statistical mechanics studies the collective behavior of systems composed

of a large number of particles (atoms, molecules, droplets, grains...) with the goal to understand

the macroscopic laws by using a probabilistic model encoding the microscopic interactions. In

particular, you learned that via statistical mechanics we can explain the fascinating phenomenon

of phase transitions: a small variation of the parameter tuning the intensity of the interactions

may correspond a non smooth variation fo the macroscopic laws. For example the Ising model

accounts for the fact that ferromagnetic materials display a critical temperature above which

the model is in the disordered paramagnetic phase and below which it is in the ferromagnetic

phase featuring a long range order. For the Ising model this corresponds to the fact that below

the critical temperature the Gibbs measure that describes the equilibrium of the model is not

unique: there are two Gibbs measures corresponding to the state with positive and with negative
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magnetisation.

IPS were first introduced with the aim of defining a stochastic dynamics whose large time

measure would coincide with the Gibbs measure of statistical mechanics models. More precisely

they were constructed to address a key issue for statistical mechanics: the one of efficiently

sampling the Gibbs measure in the presence of a phase transition (i.e. when they display

complicate long range correlations). In fact the first IPS to be introduced and studied (starting

from the seminal works of Dobrushin and Spitzer in the 70’s) is the stochastic Ising model , an

IPS whose stationary distributions, as we shall see, coincide with the Gibbs measures for the

Ising model.

After these pioneering works the field of IPS rapidly expanded with the introduction of many

other models. It was immediately clear that the strength of these models was not only that

they allow to sample the equilibrium Gibbs measure, but also to follow the evolution of physics

systems out of equilibrium (either in the pre-asymptotic regime of approach to equilibrium or

for systems constantly driven out of equilibrium, e.g. by some boundary conditions). Indeed,

though real systems evolve according to deterministic laws, a stochastic description is well suited

in the presence of a large number of microscopic components, due to the fact that following the

deterministic laws is impossible and the knowledge of the initial configuration inevitably contains

some alea. Furthermore, IPS rapidly turned out to have interesting applications as models of

collective complex behavior in many other fields besides physics, including biology (models for

spread of infections), social sciences (e.g. opinion dynamics models) and economics.

So, though IPS were born as auxiliary models in the framework of statistical mechanics, they

rapidly evolved as an independent field at the border among probability theory and various fields

of applied mathematics.

In these 5 lectures my aim is to give an introduction to IPS. change here We will start by

constructing the processes today, then we will focus on two models: the stochastic Ising model

and the contact process. Studying these two models we will have the occasion to meet some

of the tools that have been developed for IPS in particular coupling and duality, and to review

the basic issues: determining the large time behavior, the invariant laws and their domain of

attraction, the speed of convergence to equilibrium, . . .

Many important facets of the IPS field will not be covered by this mini-course. A crucial missing

part are scaling limits, which link the evolution of the microscopic discrete stochastic IPS with

some macroscopic continuous equations. These are either PDE or stochastic PDE depending on

whether one is looking at the law of large numbers or the central limit theorem scaling. This
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part has been in particularly very much developed for the so called exclusion type IPS, those for

which particles are locally conserved, namely elementary moves correspond to jump of particles.

The interested reader may have a look at the classic books [Spo91] or [KL99] to have an idea of

the vastness of this subject.

This first lecture will probably be the more boring one because our main job today is to give

a somewhat formal construction of the Markov process. So to give it a more funny start and

motivate you I will first carry you through an overview of different examples of IPS.

1.1 An informal definition of the most popular IPS

1.1 Contact process (CP)

CP is a model of spread of infection. The on-site configuration space is S = {0, 1}, with 0 (resp.

1) representing healthy (resp. infected) individuals. Here

• Infected individuals become healthy after an exponential time of mean 1, independently

of the others

• an healthy individual at site x in configuration η becomes infected after an exponential

time of mean 1/(λNx(η)) with λ > 0 a parameter that is called the infection rate and Nx

the number of infected nearest neighbours of x.

It is easily seen that if the initial configuration contains only healthy individuals we will always

have only healthy individuals, namely the measure concentrated on the completely empty con-

figuration, that we shall call δ0, is an invariant law.

Q. What happens if we start with some infections?

the answer depends on the value of the infection rate λ. We will see that for any d > 1, CP on

Λ = Zd undergoes a phase transition, namely there exists λc(d) such that

• for λ < λc(d): δ0 is the unique invariant measure and all initial measures are attracted to

δ0;

• for λ > λc(d): there are other invariant measures besides δ0. We shall see that an important

role is played by the measure towards which the process is attracted starting from all

infected individuals.
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1.2 Voter model (VM)

VM is a model of opinion spread. S = {0, 1}, with 0 and 1 representing voters for two different

parties, say 0 is a republican voter, 1 a democrat voter. Here the dynamics evolves as follows:

after an exponential time of mean 1, the voter at site x chooses uniformly at random one of its

neighbours and adopts its opinion.

From the above definition it follows immediately that for VM both δ0 and δ1 are invariant mea-

sures, where we denote by δ0 (resp. δ1) the measure concentrated on the configuration with all

sites 0 (resp. all sites 1).

Q. What happens if Λ = Zd and we start from a mixture of opinions? can we preserve a mixture

of opinions or are we deemed to a totalitarian situation?

The answer strongly depends on the spatial dimension

• for d = 1, 2: δ0 and δ1 are the only two extremal invariant measures: the process is always

attracted to a single opinion state

• for d > 3 there is a whole family of extremal invariant measures (that are ergodic under

translations): a mixture of opinions can survive.

1.3 The Stochastic Ising model (SIM)

SIM is a model for magnetism that has been introduced in 1963 by Glauber and very much

studied since the seminal works of Dobrushin in the 1970s. The usual convention is to let the

onsite space state be S = {+1,−1} 1. Here sites represents atoms in a ferromagnetic material,

e.g. iron, and ±1 are the two possible orientations (up and down) of the spin on each atom. The

elementary moves of the dynamics are spin flips and the rates are chosen to take into account

the fact that a spin ”prefers” to be aligned with its nearest neighbours. More precisely the spin

at site x in configuration η changes its value with rate

e−β
∑
y∼x η(x)η(y) ≡ e−2dβ+2βÑx(η)

where Ñx(η) is the number of spins n.n. to x and with spin not aligned with x and β corresponds

to the inverse temperature. Notice that

• the larger β, the strongest the bias to align spins

1One can of course easily rephrase the model by letting S = {0, 1}
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• the higher the number of non aligned neighbours, the highest the flip rate

• if β = 0 (= infinite temperature) SIM is an independent spin dynamics with a unique

invariant measures, the product measure with µx(+1) = µx(−1) = 1/2

• δ+1 and δ−1 are no more invariant laws.

We will see that the invariant measures of SIM coincide with the Gibbs measure of the Ising

model. Then, the results on the Ising model that were presented in the first part of the course

imply that

• in d = 1 SIM has a unique invariant measure ;

• for d > 2 there is βc(d) separating the regime (β < βc) in which we have a unique invariant

measure and the regime (β > βc) in which uniqueness is broken;

• the limit as t→∞ of the expectation under the process for ηt(0) starting from the up

configuration (i.e. from η s.t. η(x) = 1 for all x ∈ Λ), corresponds to the spontaneous

magnetisation of the Ising model.

An alternative interpretation of the Ising model is as a model for collective decision making.

Each site is a person that has to decide his (binary) state. It does so according to a utility

function: if we set β > 0 it is more advantageous to make the same choice as the neighbour we

take, instead for β < 0 it is more advantageous to make the opposite decision 2.

1.4 Friedrickson-Andersen 1 spin facilitated model (FA-1f) and other KCM

FA-1f is an IPS used to model the liquid glass transition, occurring for dense, low temperature

liquids when we approach the dynamical arrest to the amorphous solid glass state. Here S =

{0, 1}: 0 represents facilitating sites, i.e. regions that are not dense and thus facilitate motion, 1

represent highly packed regions. The dynamics evolves as follows: each site waits the ring of an

exponential clock of mean time one and then ”tries” to update its value. I say ”tries”, because

when the clock on site x rings, before updating the configuration at x we have to check whether

a certain local constraint is satisfied: at least 1 of the nearest neighbours of x should be empty.

Then

• if the constraint is satisfies the configuration at x is updated to 0 at rate q and to 1 at

rate 1− q and we go to the next clock ring

2In the physics interpretation the choice β < 0 is also meaningful: it models antiferromagnetic materials
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• otherwise no update occurs and we go to the next clock ring

Notice that

• the rate to update the configuration on a given site does not depend in the configuration

on that site, but only on the state of its neighbours (at variance with SIM);

• the completely filled configuration is blocked, so δ1 is an invariant measure;

• the completely empty configuration is not an invariant measure (unless q = 1);

FA-1f model belongs to a class of IPS called the kinetically constrained models or KCM . These

can be obtained by varying the choice of the constraint that allows the update (changing the

neighbourhood, changing the threshold value..). The only requirement is that the constraint has

finite range and does not depend on the configuration on the to-be-updated site. For example,

two other very much studied KCM are

• the East model on Z for which the constraint to update x requires x+ 1 to be empty

• the FA-2f model on Zd with d > 2 for which the constraint to update x requires at least 2

empty nearest neighbours.

Exercise 1. FA-1f has another invariant measure besides δ1. Try to guess which one.

[ Hint. The measure you are looking for is also an invariant measure for East model and FA-2f

model and actually for any other KCM, namely it is constraint independent (but it depends on

q).

If you don’t manage find the invariant measure, I suggest retrying after Exercise 14.]

1.5 Simple Symmetric Exclusion process (SSEP)

SSEP is a models in which particles can move and never disappear (it is conservative). S = {0, 1},

1 are particles and 0 are empty sites. After an exponential time of mean 1, a particle chooses

uniformly at random a nearest neighbours and ”tries” to jump there. I say ”tries” because it

has to check whether the arrival site is empty (i.e. to satisfy the exclusion constraint). If it is

the case the jump occurs, otherwise the particle does not change position. Here

• δ0 and δ1 are invariant measures;

• for any density parameter ρ ∈ [0, 1] the product measure with probability ρ that a site is

filled is also an invariant measure.
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The name of this model comes from the following feature:

• simple = jumps to nearest neighbours;

• symmetric= equal rate to jump to any of the empty nearest neighbours;

• exclusion : occupancy by a multiple number of particle is not allowed

Several variations of SSEP have been considered: long jumps, non symmetric rates (ASEP),

totally asymmetric rates (TASEP), . . .

1.6 Other notable examples

• Potts model: this is a more sophisticated version of SIM with q > 2 states. Potts model

for q = 2 corresponds to SIM;

• the biased voter model. As for VM S = {0, 1}. Here 1 → 0 with rate equal to the

fraction of 0 neighbours but 0→ 1 with rate (1 + s) times the fraction of 1 neighbour with

s > 0. This model is relevant as a model of evolution of two genetic types. At rate one an

organism dies and it is replaced by a clone of one of its nearest neighbour chosen randomly

but not uniformly (as for VM) but with a bias favouring type 1. Here, even starting with

a single 1 if s is sufficiently high 1’s might survive.

• reaction diffusion models: coalescing random walks (walkers evolving as independent r.w.

that coalesce if the meet), branching and coalescing r.w., . . .

1.2 Setting some notation

In this course we will focus on spin IPS . We call spin IPS or stochastic Glauber dynamics an IPS

with an on-site binary configuration space, |S| = 2, and a dynamics such that each elementary

transition involves a single site variable that changes its value. All the examples of the previous

section are spin models, except for SSEP (whose transitions involve two neighbouring sites),

Potts with q > 2 (the on-site configuration space is not binary) and reaction diffusion models.

Recall that Λ is the countable vertex set of the lattice, which in the cases we will consider

will be Zd. We denote by X the configuration space, X := SΛ, and use the greek letters σ and

η to denote configurations, i.e. elements of X. Given a lattice site x ∈ Λ and configuration η,

we denote by η(x) the configuration at site x. We also adopt the notation x ∼ y to say that
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|x− y| = 1, or there is an edge on the graph from x to y.

For spin IPS the possible elementary moves are of the type η → ηx where ηx is the configu-

ration with the variable at x changed:

• if the onsite configuration space is S = {0, 1} we let

ηx(y) =

1− η(y) if y = x

η(y) if y 6= x
(1.2.1)

• if the onsite configuration space is {−1,+1} (SIM) we let

ηx(y) =

−η(y) if y = x

η(y) if y 6= x
(1.2.2)

For SSEP transitions involve the exchange of the variables on two sites. Here the elementary

moves are of the type η → ηx,y with

ηxy(z) =


η(y) if z = x

η(x) if z = y

η(z) otherwise

(1.2.3)

With this notation, we can summarise the informal definitions of the previous section by

saying that when the system is in configuration η, it flips to ηx after an exponential time of

mean 1/r(x, η) with

r(x, η) = e−β
∑
y,y∼x η(x)η(y) for SIM at inverse temperature β (1.2.4)

r(x, η) =

1 if η(x) = 1

λ
∑

y,y∼x η(y) if η(x) = 0
for CP of infection rate λ (1.2.5)

r(x, η) =
1

2d

∑
y,y∼x

1η(y)6=η(x) for VM (1.2.6)

and

r(x, η) = cx(η)(qη(x) + (1− q)(1− η(x)) for KCM of parameter q (1.2.7)
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with

cx(η) = (1−
∏
y,y∼x

η(y)) for FA-1f (1.2.8)

cx(η) = (1− η(x+ 1)) for East (1.2.9)

and for FA-2f cx(η) = 1 if
∑

y:y∼x(1− ηx) > 2 and cx(η) = 0 otherwise. Instead, for SSEP η is

updated to ηxy at rate r(x, y, η) with

r(x, y, η) =


1
2d1Iη(x)6=η(y) if x ∼ y

0 otherwise
(1.2.10)
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Chapter 2

CONSTRUCTING IPS

We will now proceed to construct a continuous time Markov process (ηt)t > 0 with ηt ∈ X that

evolves according the IPS dynamics informally stated in the previous chapter. We will do this

for simplicity of notation only for spin IPS (for exclusion type processes like SSEP the procedure

is similar). Informally, we wish to construct a Markov process that satisfies

P (ηt+δ = ηx|ηt = η) = δr(x, η) + o(δ) (2.0.1)

If the lattice Λ is finite, it is not difficult to check that such a construction is feasible for any

choice of the rates, provided the rates are finite. However, if |Λ| is infinite, the process might

not be well defined due to the fact that many spin flip might occur at the same time. Indeed

we will see that in order for the process to be well defined we should impose proper conditions

not only on the boundedness of the rates but also on their range, i.e. on their spatial support.

2.1 The finite volume case: Poisson (or graphical) construction

Let’s proceed step by step and start by formally constructing a Markov process which satisfies

(2.0.1) when Λ is finite.

1.1 CP on finite volume

Let’s consider for simplicity the case of the contact process, whose rates are defined in (1.2.5).

Recall that X = {0, 1}Λ and define a set M = {Hx}x∈Λ ∪ {Ix,y}x,y∈Λ,y∼x, as follows

• Hx : X → X is the transformation that heals site x namely sets its value to 0 and leaves

the other sites unchanged. Namely Hxη(k) = η(k) if k 6= x and Hxη(y) = 0.
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• Ix,y : X → X is the transformation that infects y if x is infected, otherwise it does nothing.

Namely Ix,yη(k) = η(k) if k 6= y and Ix,yη(y) = max(η(y), η(x)).

We associate to each map m ∈ M a sequence of i.i.d random variables (σ
(k)
m )k > 1 that are

exponentially distributed and of mean 1/rm, where

rHx = 1, ∀x ∈ Λ

rIx,y = λ ∀x, y ∈ Λ, y ∼ x

Then we define for m ∈M the random times (t
(i)
m )i > 1

t(i)m :=
i∑

k=1

σk

that we call arrival times of the map m. Note that (t
(i)
m )i > 1 form a Poisson point set in [0,∞)

of intensity rmdt with dt the Lebesgue measure 1.

We call ∆ the collection over all the maps in M of these arrival times (which is therefore a

Poisson point set on M× [0,∞)), namely

∆ := ∪m∈M{ti(m)}i∈N.

We also let, for each 0 6 s 6 t,

∆s,t := ∆ ∩ (M× (s, t]).

With probability one, thanks to the fact that |M| <∞ and rm <∞ for each m, |∆s,t| is finite

for t <∞. Given a finite realisation of ∆s,t we re-order it in increasing order of the arrival times

∆s,t := {(m1, τ1), . . . (mn, τn)}, with τ1 6 . . . 6 τn

Let ψ∆s,t : X → X be the composition of the maps in reverse order

ψ∆s,t(η) := mn · · · · ·m1(η)

1For Ω,F , µ a measurable space with µ non atomic and σ-finite, a Poisson point set is a random subset

such that for each A, |ω ∩ A| is Poisson distributed with mean µ(A) for any A s.t. µ(A) < ∞ and if Ai

disjoin, then |ω ∩ A1|, . . . |ω ∩ An| are independent. Sicne µ is non atomic for each ε > 0 we can find Aε s.t.

P [|ω ∩Aε| = 1] = µ(Aε) +O(ε2) and P [|ω ∩Aε| > 2] = O(ε2)
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with the convention ψ∆s,t = 1I if ∆s,t = ∅.

The easiest way to understand this definition is by making a drawing as in Fig. 2.1: on

the column over site x I mark with a cross each arrival time of Hx, and with an arrow from

x→ x+ 1 each arrival times of Ix,x+1 and with an arrow from x→ x− 1 each arrival times of

Ix,x−1.

We are now ready to construct the IPS.

Theorem 2.1.1. Let η ∈ X and set

ηηt := ψ∆0,t(η), t > 0.

Then

• (ηηt )t > 0 is a Markov process on the space DX [0,∞] of cadlag functions from [0,∞) to X

with initial condition ηη0 = η

• if we denote by Eη the mean over this process it holds

lim
t→0

Eη(f(ηt))− f(η)

t
=
∑
m∈M

rm(f(m(η))− f(η)) =
∑
x

r(x, η)(f(ηx)− f(η)). (2.1.1)

The above theorem proves in particular that the process satisfies the informal condition

(2.0.1). Here and in the following, when confusion does not arise, we let ηηt = ηt for simplicity

of notation.

Proof. By definition ηt has paths that are cadlag (right continuous and left limited). So to prove

it is a Markov process we have to prove that the Markov property holds, namely that

Eη(f(ηt)|Fs) = Eηsf(ηt−s) (2.1.2)

where for all s > 0, Fs is the σ-algebra

Fs := σ(η′s : s′ ∈ [0, s]).

Note that, for s 6 t, it holds by definition Fs ⊂ Ft so that (Ft)t > 0 is a filtration. Thanks to

the independence of the sets of arrival times on distinct time intervals and the independence

from the initial configuration of the arrival times, (2.1.2) can be easily proven. We are left with
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Figure 2.1: Graphical construction for CP in d = 1 on the finite volume Λ := [0, 4]. Here

ψ∆0,t = I4,3 I1,0 I2,3 I1,2H4H0H2. If we let η be the configuration depicted in the figure (were

filled circles stand for infected sites and empty circles for healthy sites), we have ψ∆0,t(η) = η′

with η′(x) = 1 for x ∈ [0, 3] and η′(4) = 0. We highlight in green the path of influence from

(1, 0) to (3, t).
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proving (2.1.1). From the condition on the finiteness of the sum of rates, it follows that the

probability of having two arrival times in a time interval t is O(t2). This implies that

Eη(f(ηt)) = f(η) + t
∑
m∈M

rm(f(m(η))− f(η)) +O(t2) (2.1.3)

which yields (2.1.1). The validity of (2.0.1) can be easily checked by setting f = 1ηx in (2.1.1).

Exercise 2. Check that you really understand the O(t2) in the formula (2.1.3). If not

1. please revise (on your favourite probability textbook) what an exponential random variable

is

2. now that you understand the meaning of the σ’s try to extract the properties of the random

variables corresponding to the arrival times that are defined as partial sums of the σ’s

3. try again to see if you understand (2.1.3).

To be sure you fully understand what I mean by ”Note that (t
(i)
m )i > 1 form a Poisson point set

in [0,∞) of intensity rmdt ” a very good reference is [Swaa] Section 1.4.

Definition 2.1.2 (Semigroup and Generator). We shall denote by Pη the law (on DX [0,∞])

of the trajectory (ηηt )t > 0 and, as already stated in Theorem 2.1.1, by Eη the corresponding

expectation.

We also let Pt : C → R for t ∈ [0,∞) be the operator which acts on B(X), the space if bounded

real measurable functions2 on X, as follows

(Ptf)(η) := Eη(f(ηt)).

We also define the operator L : B(X)→ B(X) as

Lf(η) = lim
t→0

(Ptf)(η)− f(η)

t
(2.1.4)

Note that Theorem 2.1.1 implies that

Lf(η) =
∑
x

r(x, η)(f(ηx)− f(η)). (2.1.5)

We call (Pt)t > 0 the semigroup of the process, and L the generator of the process. The definitions

of these operators carry through to the infinite volume case.
2Measurable here means w.r.t. the Borel σ-field generated by the open subsets of X
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1.2 IPS on finite volume: the general case

Exercise 3. Show that all other IPS mentioned in Section 1.1 can be constructed on a finite

volume Λ along the same lines as done above for CP. The difference will be the choice of the

maps and of the associated rates.

2.2 The infinite volume case: Poisson (or graphical) construc-

tion

We shall now extend the construction of the previous section to the infinite volume setting and

see that it actually makes sense for all the models defined in section 1.1. Let Λ be an infinite

volume, S a countable on-site configuration space, and X = SΛ. Consider a countable set M

of maps m : X → X, and a set of bounded positive rates {rm}m∈M. In analogy to the finite

volume case we would like to construct a Markov process (ηt)t > 0 with generator acting on local

functions as ∑
m∈M

rm(f(m(η)− f(η)) =
∑
x∈Λ

r(x, η)(f(ηx)− f(η)).

If we try to proceed as for the finite volume case, the first problem we encounter is that
∑

m rm =

∞ so {t : (t,m) ∈ ∆} is dense in R and it is not more possible to order the elements of ∆s,t

according to their arrival times.

The key observation is to notice that the maps and the rates of the processes that interest us are

defined in such a way that with high probability only finitely many points of ∆0,t are necessary

to determine the value of the process at a given space time point (x, t). Thus it will actually be

possible to order these finely many relevant points according to their arrival times and proceed

essentially as for the finite volume case.

In order to formalise the above observation we should introduce the notion of path of influence.

For concreteness, we start by treating the case of CP on Z, then we will extend the procedure

to general models.

2.1 CP on Z

Let M = ∪x∈ZHx ∪x,y∈Z,x∼y Ix,y with Hx and Ix,y defined as for the finite volume CP. Fix

∆ ∈M× [0,∞) a realisation of the Poisson point processes associated to these maps and draw

the corresponding graphical construction as in Fig. 2.1 albeit for the infinite volume Λ. For any
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i, j ∈ Z and 0 6 s 6 u we say that there is a path of influence from (i, s) to (j, u) iff there is a

path that

• grows vertically in time

• moves horizontally only following the direction of the arrows

• never meets a cross.

We denote by (i, s) → (j, u) (respectively (i, s) 6→ (j, u) ) the event that a path of influence

exists (resp. does non exist). For example, in Fig. 2.1 it holds (2, 0) 6→ (3, t) and (1, 0)→ (3, t).

We also set, for any finite A ⊂ Z

ξA,us := {i ∈ Λ : (i, s)→ A× {u}}. (2.2.1)

For example, in Fig. 2.1, for s = 0 and A = {3, 4} it holds ξA,us = {1, 3}.

The following claim will play a key role

Claim 2.2.1. For any finite A ⊂ Z, it holds 3

E[|ξA,us |] 6 |A|e2dλ(u−s) 0 6 s 6 u

For each i ∈ Λ and s 6 u, the set

{(m, t) ∈ ∆s,u : D(m)× {t} → (i, u)}

is finite almost surely.

Exercise 4. Prove the above claim. [ Hint. Use the definition of arrival times and paths of

influence. ]

In view of Claim 2.2.1, for a fixed i and 0 6 s 6 u < ∞, we can order the relevant arrival

times as

{(m, t) ∈ ∆s,u : D(m)× {t} → (i, u)} = {(m1, t1), . . . (mn, tn)}

with t1 < · · · < tn. Then we define

ψ∆s,u(η)(i) = mn ◦ · · · ◦m1(η)(i)

3here the mean E is over the randomness in ∆
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and, along the same line as for the finite volume case (Theorem 2.1.1), it follows that

pt(η, ·) := P(ψ∆,0,t(η) ∈ ·)

is the transition kernel of a Markov process and it is a continuous map from X× [0,∞)→ P(X),

with P(X) the space of probability measures on X. The continuity of the kernels implies that

the Markov process correspondent to the collection of kernels pt(η, ·)t > 0 is Feller, namely if we

let the semigroup (Pt)t > 0 be defined as

Ptf(η) :=

∫
X
pt(η, dη

′)f(η′)

it holds Pt(f) ∈ C(X) for any f ∈ C(X). As for the finite volume case we can also prove that

the generator L correspondent to this semigroup (see Definition 2.1.2) acts on functions that

depend on finitely many coordinate as

Lf(η) =
∑
x∈Z

r(x, η)(f(ηx)− f(η))

with r(x, η) the rates of CP (1.2.5). Thus we have succeeded in constructing CP on the infinite

volume Z.

2.2 IPS on infinite volume: the general case

We should start by introducing the notion of local maps. LetM be a set of maps from X → X.

For m ∈ M, we let D(m) ⊂ Λ be the set of vertex whose value can be possibly changed by m,

namely

D(m) := {x ∈ Λ : ∃η ∈ X : η(x) 6= m(η)(x)}.

Let also Ri(m) ⊂ Λ be the sets of sites that are m-relevant for i, where for j, i ∈ Λ we say that

j is m-relevant for i if

∃η ∈ X s.t. m(η)(i) 6= m(ηj)(i).

For example for the maps used in Section 2.1 for CP it holds

• D(Hx) = {x}, Ry(Hy) = ∅, Rz(Hy) = {z} for z 6= y

• D(Ix,y) = {y},

Rz(Ix,y) =

{x, y} if z = y

z otherwise
(2.2.2)
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For the Voter Model (VM), whose rates as defined by equation (1.2.6), a natural choice of

maps to make the Poisson construction isM = {Vx,y}x∈Zd,y∼x with rm = 1/(2d) for each m and

Vx,y defined as the transformation that sets the variable on y equal to η(x) and leaves the other

sites unchanged, namely

Vx,y(η)(z) =

η(x) if z = y

η(z) otherwise
. (2.2.3)

For this maps it holds D(Vx,y) = {y},

Rz(Vx,y) =

x if z = y

z otherwise
(2.2.4)

We say that a map m is local if D(m) is finite and Ri(m) is finite for all i ∈ D(m).

Exercise 5. Verify that the above maps for CP and for VM are local and that all the processes

defined in Section 1.1 can be recast in term of local maps.

We say that there is a path of influence γ ⊂ Λ × [s, u] from (i, s) to (j, u) (and denote this

by if (i, s)→ (j, u)) if

• when γt− 6= γt necessarily there exists m ∈M with (m, t) ∈ ∆, γt ∈ D(m), γt− ∈ Rγt(m)

• if m, t ∈ ∆ for t ∈ [s, u] and γt ∈ D(m) then γt− ∈ Rγt(m).

and we let for A ⊂ Λ and u ∈ Λ (i, s) → A × {u} iff there is a path of influence from (i, s) to

(j, u) for some j ∈ A. We also set

ξA,us := {i ∈ Λ : (i, s)→ A× {u}}.

Exercise 6. Verify that the above definition coincides with the one given previously for the

specific case of CP on Z.

We are now ready to state two Lemma (that correspond to Claim 2.2.1 for CP on Z) that

are a key ingredient for the construction of the IPS on infinite volume

Lemma 2.2.2 (Exponential bound on paths of influence). Suppose that

sup
i∈Λ

∑
m:i∈D(m)

rm <∞ (2.2.5)
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and

K := sup
i∈Λ

∑
m:i∈D(m)

rm(|Ri(m)| − 1) <∞. (2.2.6)

Then, for any finite A ⊂ Λ, it holds

E[|ξA,us |] 6 |A|eK(u−s) 0 6 s 6 u

Lemma 2.2.3 (Finitely many relevant clock rings). Suppose that condition (2.2.5) holds and

furthermore

K1 := sup
i∈Λ

∑
m:i∈D(m)

rm|Ri(m)| <∞. (2.2.7)

Then, for each i ∈ Λ and s 6 u, the set

{(m, t) ∈ ∆s,u : D(m)× {t} → (i, u)}

is finite almost surely.

A full proof of the two above Lemma can be found in [Swaa] Section 1.6. In view of Lemma

2.2.3, for a fixed i and 0 6 s 6 u <∞, we can order the relevant arrival times as

{(m, t) ∈ ∆s,u : D(m)× {t} → (i, u)} = {(m1, t1), . . . (mn, tn)}

with t1 < · · · < tn. Then, as for CP on Z, we define

ψ∆,s,u(η)(i) = mn ◦ · · · ◦m1(η)(i).

The following theorem, which concludes the Poisson construction of infinite volume IPS, can be

proven using Lemma 2.2.2 and Lemma 2.2.3 along analogous lines are the one of Theorem 2.1.1

for the finite volume case (a complete proof may be found in [Swaa], see Theorem 1.15 therein).

Theorem 2.2.4. Fix a countable collection M of local maps and (rm)m∈M non negative con-

stants that satisfy condition 4

sup
x∈Zd

∑
m:x∈D(m)

rm(|Rx(m)|+ 1) <∞). (2.2.8)

4Note that condition (2.2.8) is the combination of conditions (2.2.5) and (2.2.7) (under which Lemma 2.2.3

holds) and it implies condition (2.2.6) of Lemma 2.2.2.
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Let

Pt(η, ·) := P(ψ∆,0,t(η) ∈ ·)

with ∆ a Poisson point process onM× [0,∞) with intensity rmdt. Then Pt(η, ·) is the transition

kernel of a Markov process with generator that acts on functions that depend on finitely many

coordinate as

Lf(η) =
∑
m∈M

rm(f(m(η))− f(η)).

Exercise 7. Go back to exercise 5 and verify that the transition rates of the local maps that you

constracted for FA-1f and SIM satisfy condition (2.2.8).

Remark 2.2.5. The Poisson construction provides not only a rigorous construction of IPS but

also a very powerful tool to couple processes started in different initial configurations and/or

evolving with different parameters. In case of processes started from different initial conditions,

the idea is to couple them by the using the same realisation of the Poisson processes for the

arrival times of the maps. Two questions that may be easily solved using the powerful coupling

tool provided by the graphical construction are stated below in Exercise 8 and 9. An alternative

rigorous construction of IPS via the generator (instead of the Poisson processes) is also possible.

It may be found on Liggett’s book [Lig85] or Swart’s lecture notes ([Swaa] or [Swab]).

Given η, σ ∈ X we say that σ dominates η, and denote this as η < σ, if for all x ∈ Λ it holds

η(x) 6 σ(x).

Exercise 8. Consider two CP starting from two different initial configurations, η1, η2 such that

η1 < η2. Fix i ∈ Λ and t > 0 prove that

if it holds Eη1(ηt(i)) > 0 then necessarily Eη2(ηt(i)) > 0.

Exercise 9. Fix η ∈ {0, 1}Z and 0 < λ1 < λ2 < ∞. Consider two CP process started from η,

the first one with infection rate λ1, the second one with infection rate λ2. Let E1 (resp. E2)

be the mean over the first (resp, second) CP process. Fix t > 0 and x ∈ Λ, prove that a.s.

E1(ηt(x)) 6 E2(ηt(x)).

If you have a hard time figuring out how to do properly Exercise 8 and 9 I suggest re-trying

after studying next chapter (in particular after understanding the notion of coupling and how

to use this tool).
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Chapter 3

SOME USEFUL TOOLS AND GENERAL RESULTS

3.1 Some additional notation

Recall that X = SΛ denotes the configuration space, with Λ the vertex set and S the on-site

configuration space and (see Definition 2.1.2) for η ∈ X and µ ∈ P(X), we let

• Pη be the law of the IPS started at η and Eη be the corresponding expectation

• (Pt)t > 0 be the semigroup of the Markov process, so that ∀t > 0 it holds Ptf(η) = Eη(f(ηt))

Note that X is a compact metrizable space, with measurable structure given by the Borel σ-

algebra of subsets of X. We let P(X) be the set of probability measures on X that we will

endow with the topology of the weak convergence, i.e. µn → µ for n → ∞ iff for all f ∈ C it

holds
∫
fdµn →

∫
fdµ, where C = C(X) is the set of real continuous functions on X viewed as a

Banach space with norm ||f || = supη∈X |f(η)|. Note that P(X) is compact w.r.t. the topology

of weak convergence because X is compact. For µ ∈ P(X) we also let

• Pµ be the law of the IPS with initial distribution µ, i.e.

Pµ =

∫
X
Pηµ(dη)

and

Eµ(f(ηt)) =

∫
X
Eη(f(ηt))µ(dη) =

∫
X
Ptfdµ

• µPt be the the distribution at time t of the process started from µ, i.e. the measure

satisfying 1 for all f ∈ C ∫
X
fd(µPt) :=

∫
X
Ptfdµ

1The fact that this relation determines µPt uniquely is a consequyence of the Riesz representation theorem.
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From now on we will drop the index X from the integral over the whole configuration space,

namely we set for simplicity of notation
∫
fdµ :=

∫
X fdµ.

3.2 Invariant (or stationary) measures

Definition 3.2.1 (Invariant (or stationary) measures). We say that µ ∈ P is invariant if∫
Ptfdµ =

∫
fdµ, ∀ t > 0, ∀ f ∈ C(X)

namely if

µPt = µ, ∀t > 0.

We denote by I the set of invariant measures. As a consequence, for any µ ∈ I and for any

measurable set A, it holds

Pµ(ηs ∈ A) = Pµ(ηs+t ∈ A), ∀s, t ≥ 0.

The invariant measures satisfy the following properties:

Theorem 3.2.2 (Properties of I).

(i) I is a compact and convex subset of P(X);

(ii) Given an initial measure π, if the weak limit limt→∞ πPt exists, i.e. if exists µ t.q.

lim
t→∞

∫
Ptfdπ = µ(f), ∀f ∈ C

then µ ∈ I;

(iii) I is non empty;

(iv) µ ∈ I iff µ(Lf) = 0 for any f ∈ D(L) with D(L) the domain 2 of the generator L.

Note that property (ii) means that any measure which is obtained as a limit distribution

under the evolution is necessarily invariant. Before proving the theorem, we state a result that

plays a crucial role in the proof of point (iv).

2See [Lig85] for a formal definition of the domain. For practical purposes you can think of the domain as being

the sets of local functions, i.e. continuous functions that depend on finitely many coordinates.
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Theorem 3.2.3 (Hille Yoshida). There is a one to one correspondence between Markov semi-

groups and generators given as follows

Lf = lim
t→0

Ptf − f
t

∀f ∈ D(L)

Ptf = lim
n→∞

(1I− t

n
L)−nf ∀ f ∈ C(X), t > 0

where D(L) ⊂ C(X) is the set of functions for which limt→0
Ptf−f
t exists.

Furthermore

• for f ∈ D(L) it holds Ptf ∈ D(L)

• the following backward forward equation holds

d

dt
Ptf = Pt(Lf) = L(Ptf) ∀ f ∈ D(X)

We will not provide a prove of the Hille Yoshida theorem, the interested reader can find it

Chapter 1 of [EK85].

Proof. (i) Since I is a subset of the compact set P(X) we only have to show that it is closed

to prove the claimed property. Let {µn}n∈N be such that

1. µn ∈ I for all n;

2. there exists µ ∈ P such that limn→∞ µn = µ.

By definition it holds

(a) µn = µnPt ∀n ;

(b) limn→∞
∫
fdµn =

∫
fdµ for any f ∈ C;

(c) if f ∈ C, it holds Ptf ∈ C for any t > 0

Therefore ∫
Ptfdµ = lim

n→∞

∫
Ptfdµn = lim

n→∞

∫
fdµn =

∫
fdµ,

which implies that µ ∈ I. We used: (b) and (c) to obtain the first equality; (a) to obtain

the second equality; and (b) to obtain the third equality. Convexity of I follows by defi-

nition;
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(ii) Recall that the semigroup verifies the following property

(d) for f ∈ C and any s, t > 0 it holds PtPsf = Pt+sf .

Therefore ∫
Psfdµ = lim

t→∞

∫
Pt(Psf)dπ = lim

t→∞

∫
Pt+sfdπ =

∫
fdµ

where we used point (c) and (d).

(iii) Fix a measure µ ∈ P and a sequence {Tn}n∈N such that limn→∞ Tn = ∞. Define a

sequence of measures {µn}n∈N by letting for all f ∈ C(X)∫
fdµn :=

1

Tn

∫ Tn

0
dt

∫
fd(µPt)

The compactness of P yields the existence of a converging subsequence, namely the ex-

istence of a measure µ̃ ∈ P and an increasing sequence {ai}i∈N with ai ∈ N, ∀i s.t.

limn→∞ µ̃n = µ̃ where µ̃n := µan . Therefore ∀s > 0 it holds∫
Psfdµ̃ = lim

n→∞

∫
Psfdµ̃n = lim

n→∞

∫
Psfd

(
1

Tan

∫ Tan

0
µPtdt

)
=

= lim
n→∞

T−1
an

∫ Tan

0

(∫
PtPsfdµ

)
dt = lim

n→∞
T−1
an

∫ Tan

0

(∫
Pt+sfdµ

)
dt =

= lim
n→∞

T−1
an

∫ Tan+s

s

(∫
Pτfdµ

)
dτ = lim

n→∞

∫
fd

(
T−1
an

∫ Tan

0
µPτdτ

)
=

∫
fdµ̃

which implies µ̃ ∈ I. In order to obtain the second-last equality we used the fact that∣∣∣ ∫ Tan+s

s

(∫
Ptfdµ

)
−
∫ Tan

0

(∫
Ptfdµ

) ∣∣∣ 6 2s sup
η∈X

f(η)

and therefore, since f ∈ C(X), limn→∞ T
−1
an = 0 and s is fixed, it holds

lim
n→∞

T−1
an

∣∣∣ ∫ Tan+s

s

(∫
Ptfdµ

)
−
∫ Tan

0

(∫
Ptfdµ

) ∣∣∣ = 0

For the other equalities we used=: PtPs = Pt+s, the definition of µPt, the definition of µn

and the fact that limn→∞ µ̃n → µ̃.

(iv) Let f ∈ D(L). Then ∫
Lfdµ = lim

t→0

∫
Ptfdµ−

∫
fdµ

t
= 0
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and it follows immediately that µ ∈ I implies
∫
Lfdµ = 0.

Suppose that for any function f ∈ D(L) it holds µ(Lf) = 0. In order to prove that µ ∈ I

we proceed as follows. Fix g ∈ C and λ > 0, and let f1 = f1(g, λ) ∈ D be defined via

(1I− λL)f1 = g,

which implies by integrating ∫
f1dµ =

∫
gdµ.

We extend the above definition letting for n > 1

fn = (1I− λL)−ng.

By iterating the above argument we get∫
fndµ =

∫
gdµ. (3.2.1)

Therefore by using Hille Yoshida theorem (Theorem 3.2.3) to get∫
Ptgdµ = lim

n→∞

∫
(1I− t

n
L)−ngdµ =

∫
gdµ

et which implies µ ∈ I. In order to establish the above result we use the definition of the

semigroup for the first equality and (3.2.1) with the choice

λ :=
t

n

to obtain the second equality.

3.3 Ergodicity

Definition 3.3.1 (Ergodicity and phase transitions). We say that an IPS is ergodic3 if the

following two conditions hold:

(i) there is only one invariant measure, I = {µ}
3The term ergodic (which is the current jargon in IPS) can be misleading. Indeed the term ergodic usually

denotes a process for which all events that are invariant under time shifts have probability either zero or one.

Actually the stationary process of an ergodic (in the sense of definition 3.3.1) IPS is ergodic in this sense. However,

the converse is not true.

29



(ii) limt→∞ πPt = µ for any π

We say that a phase transition occurs for an IPS if: (i) the definition of the IPS contains

a parameter (temperature, density, . . . ) that can vary in a (finite or infinite) real interval

R = [a, b] (ii) if we denote by λ the parameter, there exists a value λc ∈ R such that the IPS is

ergodic for λ < λc and it is not ergodic for λ > λc or vice versa. In this case, we call λc the

critical value.

Remark 3.3.2 (Irreducibility). Given a Markov processes on a finite state X, we say that it is

irreducible if for any couple (η, η′) ∈ X ×X it holds Pη(ηt = η′) > 0 for some t > 0. A finite

state irreducible Markov process has a unique stationary measure.

Instead, for processes with infinite state space X, it is not enough to exhibit for each couple

(η, η′) ∈ X ×X a chain of moves with positive transition rate connecting η to η′ to deduce the

uniqueness of the stationary measure. For example, for SIM in the low temperature regime there

is more than one invariant measure, and yet the existence of a chain of moves that connect any

two configurations is guaranteed by the fact that the rate at which we can change the value of

the spin at a given site is strictly positive in any configuration.

We will conclude by stating two sufficient conditions for ergodicity.

Theorem 3.3.3. A sufficient condition for ergodicity is that M < infx infη{r(x, η) + r(x, ηx)}

with M = supx
∑

y 6=x supη |r(x, ηy)− r(x, η)|. Furthermore under this condition the convergence

to the unique invariant measure is exponentially fast.

The interested reader may find the proof of Theorem 3.3.3 on page 31 of [Lig85]. Let’s just

note that the conditions of the above theorem go in the right direction: they essentially require

that the individual spin flip rate exceeds the dependence of the rate on the environment.

Exercise 10. Use Theorem 3.3.3 to prove that there is an ergodic regime for CP (at small

enough λ) and for SIM (at small enough β).

A different sufficient condition for ergodicity is the following

Theorem 3.3.4. Let K be defined as in (2.2.6). If K < 0 the IPS is ergodic.

The proof of the above result follows easily from Lemma 2.2.2. The fact that this condition is

sufficient but not necessary can be easily seen by noticing that CP (for all values of λ) does not

satisfy the condition K < 0, and yet it is ergodic when λ is small enough as proven in Exercise

10.
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3.4 Reversibility

We will now introduce the of reversibility, which as we shall see is stronger than the notion of

invariance.

Definition 3.4.1 (Reversible measure). We say that µ ∈ P is reversible for the process if∫
fPtg dµ =

∫
g Ptfdµ, ∀t > 0, ∀f, g ∈ C(X)

Remark 3.4.2 (Reversibility vs stationarity). Letting g := 1 in the above definition it is easily

seen that reversibility implies stationarity .

Theorem 3.4.3. A measure µ is reversible iff for all f, g ∈ D it holds∫
fLg dµ =

∫
gLfdµ

namely iff L is self-adjoint w.r.t. µ.

Exercise 11. Prove Theorem 3.4.3 along analogous lines as Theorem 3.2.2 (iv).

Remark 3.4.4 (Invariance and reversibility in finite volume). For a continuous time Markov

chain on a countable set X with transition rate c(η, η′) the generator L acts on continuous

functions as

Lf(η) =
∑
η′∈X

c(η, η′)(f(η′)− f(η))

Thus

• µ ∈ P(X) is invariant iff µ(L1Iξ) = 0 for any ξ ∈ X which 4 yields the condition∑
η

[µ(η)c(η, ξ)− µ(ξ)c(ξ, η)] = 0 ∀ξ

• µ ∈ P(X) is reversible iff µ(1IξL1Iξ′) = µ(1Iξ′L1Iξ) for any two configuraitions ξ, ξ′. This

corresponds to the so called detailed balance condition

µ(ξ′)c(ξ′, ξ) = µ(ξ)c(ξ, ξ′) ∀ξ, ξ′

which corresponds to requiring that each term is zero in the sum appearing in the station-

arity condition.

4Use L1Iξ(η) = 1η 6=ξc(η, ξ)− 1η=ξ
∑
η′ c(ξ, η

′)
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Exercise 12. Prove the necessary and sufficient conditions for stationarity and for reversibility

on finite volume stated in Remark 3.4.4.

Exercise 13. Prove that for SIM on a finite volume at inverse temperature β the Gibbs measure

are reversible (and thus stationary) for the process.

Exercise 14. Prove that, at any q ∈ (0, 1] and for any d > 1, FA-1f is not ergodic on Zd. [

Hint. Consider FA-1f on a finite interval [a, b] with empty boundary condition on b + 1 and

a− 1. Search for a measure that satisfies the detailed balance condition stated in Remark 3.4.4.

Since for any couple η, η′ the transition rate c(η, η′) is zero unless the two configuration differ

on a single site, you have to search for a measure that satisfies µ(η)r(x, η) = µ(ηx)r(x, ηx) with

r(x, η) defined by (1.2.8) and (1.2.9).

From the knowledge of the finite volume reversible measure in this case try to guess which is a

reversible invariant measure for the model on Zd (besides δ1). ]

3.5 Monotonicity or attractivness

For X = {0, 1}Zd we define the following partial order

η 6 ξ iff η(x) 6 ξ(x) ∀x ∈ Zd

We say that a function f : X → R is increasing if

η 6 ξ implies f(η) 6 f(ξ)

and we let M⊂ C be the set of continuous increasing functions.

Exercise 15. (very easy one!) Let A ⊂ Zd with |A| < ∞ and set fA(η) :=
∏
x∈A η(x). Show

that fA ∈M.

Given µ1, µ2 two probability measures on S we say that µ1 is stochastically dominated by

(or stochastically smaller than) µ2 and we write µ1 6 µ2 if the following holds:∫
fdµ1 6

∫
fdµ2 ∀f ∈M

Definition 3.5.1. We say that an IPS is monotone (or attractive) if µ1 6 µ2 implies µ1Pt 6 µ2Pt

for all t > 0.

32



Exercise 16. Prove that Definition is equivalent to the following: ”We say that an IPS is

monotone if for any f ∈M and any t > 0, the function Ptf also belongs to M.”

Theorem 3.5.2. A spin IPS is monotone iff the following holds: for any couple of configurations

η, ξ that satisfy η 6 ξ it holds

(i) r(x, η) 6 r(x, ξ) if η(x) = ξ(x) = 0

(ii) r(x, η) > r(x, ξ) if η(x) = ξ(x) = 1

Exercise 17. Use Theorem 3.5.2 to prove that

• CP, VM are monotone

• FA-1f model is not monotone.

Exercise 18. Consider SIM under the change of variables η ∈ {±1}Λ → η̃ ∈ {0, 1}Λ with

η̃(x) = 1−η(x)
2 for all x and prove using Theorem 3.5.2 that it is monotone.

Before giving the proof of Theorem 3.5.2 we should understand better the notion of stochastic

domination among measure by introducing the notion of coupling .

Definition 3.5.3 (Coupling). A coupling of two random variables is a joint construction of the

variables on a common probability space. More precisely, given µ1, µ2 on X, a coupling is a

measure µ on X×X whose marginals are µ1 and µ2 , i.e. such that for i ∈ [1, 2] and any A ⊂ X

it holds µ({η : ηi ∈ A}) = µi(A), where for η ∈ X×X we denote by η1 (resp. η2 the first (resp.

second ) coordinate of η.

Theorem 3.5.4 (Strassen). Given µ1, µ2 on X, it holds

µ1 6 µ2

iff ∃ a coupling µ on X ×X s.t.

µ{η = (η1, η2) : η1 6 η2} = 1

Proof. A direction of the proof is easy. Fix f an increasing function. If a coupling µ with the

property µ{η = (η1, η2) : η1 6 η2} = 1 exist, with probability 1 w.r.t. µ it holds f(η1) 6 f(η2).

Therefore

µ1(f) = Eµf(η1) 6 Eµf(η2) 6 µ2(f)

The other direction is more tricky, full proof on [Lig85] (Theorem 2.4, pag 72).
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Exercise 19. Fix p1, p2 ∈ [0, 1] with p1 < p2. Let X = {0, 1}Λ with |Λ| <∞ and

µi =
∏
x∈Λ

p
η(x)
i (1− pi)1−η(x) for i ∈ {1, 2}.

Construct a coupling µ of µ1 and µ2 such that µ{η = (η1, η2) : η1 6 η2} = 1. [Hint. Case

|Λ| = 1. Let z be a uniform random variable on the interval [0, 1]. If you set η1 = 1Iz<p1 and

η2 = 1Iz<p2 it follows that η1 6 η2 and it is easily checked that η1 is distributed with µ1 and η2

is distributed with µ2. Therefore we have provided the coupling. It is now very easy to extending

the coupling to the case |Λ| > 1.]

Neither Definition 3.5.3 nor Theorem 3.5.4 give an efficient way to check whether, given

µ1, µ2 ∈ P, one of the two measures is stochastically dominated by the other. A precious result

is the following sufficient condition. Let η ∨ ξ and η ∧ ξ be the configurations defined by

η ∨ ξ(x) = max(η(x), ξ(x)), η ∧ ξ(x) = min(η(x), ξ(x))

Theorem 3.5.5 (Holley theorem). Given µ1, µ2 that assign a strictly positive probability to any

point in X, if it holds

µ1(η ∧ ξ)µ2(η ∨ ξ) > µ1(η)µ2(ξ) ∀η, ξ ∈ X

then it holds

µ1 6 µ2.

We refer the reader to [Lig85] pag. 75 for a detailed proof. The strategy of the proof is to

construct a Markov chain (ηt, ξt) on X × X with starting point η, ξ s.t. η 6 ξ and preserving

this property during the evolution and such that the first (resp. second) marginal is a Markov

chain with stationary measure µ1 (resp. µ2).

We are now ready to prove the necessary and sufficient condition for an IPS to be monotone.

Proof of Theorem 3.5.2. We should prove that

(a) any IPS satisfying conditions (i) and (ii) is necessarily monotone

(b) any monotone IPS satisfies conditions (i) and (ii)

Proof of (a). Fix µ1, µ2 ∈ P s.t. µ1 6 µ2 . We must show that (i) and (ii) imply that

for any t > 0 it holds µ1Pt 6 µ2Pt. To this aim we construct a coupling of Pµ1 ,Pµ2 that

34



preserves the partial order at any fixed time, namely a probability P ({η1
t }t > 0, {η2

t }t > 0)

with marginals Pµ1 and Pµ2 and such that P ({η1
t 6 η2

t ∀t > 0}) = 1. If we exhibit such a

coupling, then the result follows by Theorem 3.5.4.

In order to construct the coupling with the desired properties notice that, since µ1 6 µ2,

there is a distribution µ onX×X that is a coupling for µ1, µ2 and that satisfies µ(η1 6 η2) =

1. Consider the Markov process on X×X that evolves from µ and has the following rates:

1) if η(x) = ξ(x) = 0 then

• (η, ξ)→ (ηx, ξx) at rate r(x, η)

• (η, ξ)→ (η, ξx) at rate r(x, ξ)− r(x, η)

2) if η(x) = ξ(x) = 1 then

• (η, ξ)→ (ηx, ξx) at rate r(x, ξ)

• (η, ξ)→ (ηx, ξ) at rate r(x, η)− r(x, ξ)

3) if η(x) = 0 and ξ(x) = 1 then

• (η, ξ)→ (ηx, ξ) at rate r(x, η)

• (η, ξ)→ (η, ξx) at rate r(x, ξ).

It is immediate to verify that

• (i) and (ii) guarantee that all the transition rates of the constructed process are non

negative, thus it is well defined

• each transition preserves the partial order

• each marginal process evolves according to the correct transition rates

Proof of (b). Consider a monotone spin IPS, fix a site x ∈ Λ and define f(η) = η(x).

Since f is increasing, by monotonicity of the process also Ptf is increasing. Choose two

configurations η, ξ s.t.

η(x) = ξ(x) and η 6 ξ.

Then it holds

Lf(η)− Lf(ξ) = lim
t→0

Ptf(η)− Ptf(ξ) + η(x)− ξ(x)

t
6 0 (3.5.1)

where we used the fact that: η(x) = ξ(x) , η 6 ξ and Ptf increasing. Furthermore it holds

Lf(η) =
∑
y

r(y, η)(f(ηy)− f(η)) = r(x, η)(1− 2η(x)) (3.5.2)
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Thus it can be easily seen that (3.6.5) together with (3.5.2) imply that (i) and (ii) neces-

sarily hold.

Theorem 3.5.6 (Invariant measures for monotone spin IPS). For a monotone spin IPS it holds

(a) δ0Ps 6 δ0Pt for all s ∈ [0, t]

(b) δ1Ps > δ1Pt for all s ∈ [0, t]

(c) δ0Pt 6 µPt 6 δ1Pt for all t > 0 and any µ

(d) limt→∞ δ0Pt and limt→∞ δ1Pt exist. We let ν
¯

:= limt→∞ δ0Pt and ν̄ := limt→∞ δ1Pt

(e) let µ ∈ P. If ν := limt→∞ µPt exists, it holds ν
¯
6 ν 6 ν̄

(f) ν
¯

et ν̄ are extremal on I

Proof.

(a) Fix s, t with s 6 t. Since δ0 is concentrated on the smallest element of X, it necessarily

holds δ0 6 δ0Pt−s. Due to monotonicity this order is preserved at any later time, thus

δ0Ps 6 δ0Pt−sPs = δ0Pt.

(b) analogous to (a)

(c) use δ0 6 µ 6 δ1 and use monotonicity to get the claim.

(d) Fix any increasing sequence of times {tn}n∈N and let µn := δ0Ptn . By point (a) we have

that µn 6 µm for any n < m, thus limn→∞ µn exists and belongs to P due to compactness.

Suppose that we fix two increasing sequences of times {t1n}n∈N and {t2n}n∈N and call µ1

and µ2 the corresponding limit measures. Then it follows that for any f ∈ M it holds

µ1(f) = µ2(f), which implies µ1 = µ2. We proceed analogously to prove the existence of

limt→∞ δ1Pt

(e) it follows from (c), (d) and monotonicity

(f) ν
¯

et ν̄ are invariant thanks to Theorem 3.2.2. To prove extremality we proceed by con-

tradiction. Suppose that ν̄ is not extremal, namely suppose that ∃µ1, µ2 ∈ I with µ1

and µ2 different from ν̄ and α ∈ (0, 1) s.t. ν̄ = αµ1 + (1 − α)µ2. Since µ1, µ2 are
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invariant measures they can be obtained as infinite limit of a process started with them-

selves, thus (e) implies µ1, µ2 6 ν̄. Therefore for any f ∈ M it holds µi(f) 6 ν̄(f) and

ν̄(f) = αµ1(f) + (1− α)µ2(f) which implies µ1(f) = µ2(f) = ν̄(f). Thus we deduce that

for any f ∈ M it holds µ1(f) = µ2(f) = ν̄(f) which implis µ1 = µ2 = ν̄ and contradicts

the hypothesis.

The interested reader might have a look at Theorem 3.13 p.152 in [Lig85] which provides a

a sufficient condition for an IPS in d = 1 to have that only extremal invariant measures are ν
¯

and ν̄}. This condition is satisfied by CP, SIM, and VM.

Corollary 3.5.7. For a monotone spin IPS the following three conditions are equivalent

1. the process is ergodic

2. I is a singleton

3. ν̄ = ν
¯

3.6 Duality

Duality is a very useful tool that allows sometimes to connect two different IPS expressing the

law of one process in term of the other and vice versa.

A first example: consider VM in d=1 and focus on the evolution of the position of the boundaries

separating islands of 0’s and 1’s. It is not difficult to realise that these boundaries evolve as

simple symmetric annihilating random walks on Z: when two boundaries meet they annihilate

and otherwise each boundary moves as a random walks jumping at rate 1/2 to each of its 2

nearest neighbours. So one can translate the probability law of one-dimensional VM in terms of

the law for one-dimensional simple symmetric annihilating random walks. These two systems

are dual one to the other 5.

Let us start by giving an abstract definition of duality. We will later provide specific exam-

ples.

5Actually duality here holds configuration wise, namely in a stronger sense than the one given by Definition

3.6.1.
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Definition 3.6.1 (Duality and Self-duality). Given two Markov processes (ηt)t > 0 and (ξt)t > 0

on space states X and Y , and given H(η, ξ) a bounded measurable function on X × Y , we say

that (ηt)t > 0 and (ξt)t > 0 are dual to each other w.r.t. H if

EηH(ηt, ξ) = EξH(η, ξt), ∀η ∈ X, ξ ∈ Y, t > 0

We say that (ηt)t > 0 is self dual if it is dual w.r.t. H to a process (ξt)t > 0 that has the same law

as (ηt)t > 0.

Theorem 3.6.2. [A class of duality relations for spin IPS]

Let

X = {0, 1}Zd , Y := {A : A ⊂ Zd, |A| <∞}

and

H(η,A) :=
∏
x∈A

(1− η(x)) for A 6= ∅, H(η, ∅) := 1 (3.6.1)

Fix c : Zd → R and p : Zd × Y → [0, 1] satisfying

(A1) supx c(x) <∞

(A2) c(x) > 0 ∀x ∈ Zd,

(A3) p(x,A) > 0 ∀x ∈ Zd, ∀A ∈ Y

(A4)
∑

B∈Y p(x,B) = 1 ∀x ∈ Zd

(A5) supx c(x)
∑

A |A|p(x,A) <∞.

Fix η ∈ X and A ∈ Y we define two Markov processes (ηt)t > 0 on X and (At)t > 0 on Y , as

follows

• (ηt)t > 0 is the spin IPS with η0 = η and rates

r(x, η) := c(x)

[
η(x)

∑
A

p(x,A)H(η,A) + (1− η(x))
∑
A

p(x,A)(1−H(η,A))

]
(3.6.2)

• (At)t > 0 is the Markov process on Y with A0 = A and rates

q(A,B) :=
∑
x∈A

c(x)
∑

F :(A\{x})∪F=B

p(x, F ) (3.6.3)

and we call Pη and PA the laws of the process (ηt)t > 0 and (At)t > 0.

Then (ηt)t > 0 and (At)t > 0 are dual to each other w.r.t. the function H defined in (3.6.1).
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In words we can describe the process (At)t > 0 by saying that each x ∈ A is removed from A

at rate c(x) and replaced by the set F with probability p(x, F ). The assumption in (A5) implies

that |At| <∞ for any t > 0. We are left with proving Theorem 3.6.2.

Proof of Theorem 3.6.2. Let L and L̄ be the generator of (ηt)t > 0 and (At)t > 0, so that

LH(η,A) =
∑

r(x, η)[H(ηx, A)−H(η,A)]

L̄H(η,A) =
∑
B

q(A,B)[H(η,B)−H(η,A)]

Using the form of the rates and the function H, you can directly verify that

LH(η,A) = L̄H(η,A) ∀η ∈ X, ∀A ∈ Y

Now we can use this result, plus Hille Yoshida theorem (Theorem 3.2.3) and the definition of

semigroup to obtain

d

dt
EηH(ηt, A) =

d

dt
PtH(η,A) = L(PtH(η,A)) = Pt(LH(η,A)) =

= Pt(L̄H(η,A)) = L̄(PtH(η,A)) = L̄(EηH(ηt, A))

On the other hand it holds
d

dt
EAH(η,At) = L̄(EAH(η,At))

Therefore we obtain that EηH(ηt, A) and EAH(η,At) solve the same differential equation. Since

the two quantities are equal at time 0, they are necessarily equal at any later time, and the

duality relation

EηH(ηt, A) = EAH(η,At)

is proven.

Corollary 3.6.3. Fix η ∈ X and A ∈ Y , and let Pη and PA be the laws defined in Theorem

3.6.2. It holds

Pη(ηt(x) = 0 ∀x ∈ A) = PA(η(x) = 0∀x ∈ At) ∀ t > 0

Proof. The proof follows easily by noticing that

Eη
(∏
x∈A

(1− ηt(x)

)
= Pη (ηt(x) = 0 ∀x ∈ A)

and

EA
(∏
x∈At

(1− η(x)

)
= PA (η(x) = 0 ∀x ∈ At)
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Exercise 20. Prove that if we let

c(x) := 1 + 2dλ, p(x,A) :=
1

1 + 2dλ
δA=∅ +

λ

1 + 2dλ

∑
y:y∼x

1IA={x,y}

the two functions satisfy (A1)–(A5) of Theorem 3.6.2. Furthermore using (3.6.2) and (3.6.3) it

follows that (ηt)t > 0 is CP(d, λ), i.e. the contact process with infection parameter λ on Zd and

(At)t > 0 is the process evolving as the subset of Zd containing all the infected sites of a CP(d, λ).

Hint. The present choice of c and p together with (3.6.2) and (3.6.3) yield

r(x, η) = η(x) + (1− η(x))λ
∑
y:y∼x

η(y)

q(A,B) = |{x : x ∈ A,A \ x = B}|+ λ|{(x, y) : x ∈ A,A ∪ y = B, y ∼ x}|

Remark 3.6.4. As a by-product of Exercise 20 we have proven that CP is self-dual. For an

alternative proof of self-duality for the contact process the interested reader might read section

2.1 of [Swaa] (see in particular Lemma 2.1 therein) 6.

Exercise 21. Prove that if we let

c(x) := 1, p(x,A) :=
1

2d

∑
y:y∼x

1IA={y}

the two functions satisfy (A1)–(A5) of Theorem 3.6.2.

Prove that with this choice (ηt)t > 0 is the voter model (VM) and (At)t > 0 evolve as independent

random walks on Zd that jump to a neighbouring site at rate 1/2d and that coalesce when they

meet. Thus in any dimension VM is dual to coalescing RW.

Hint. The present choice of c and p together with (3.6.2) and (3.6.3) yield

r(x, η) =
1

2d

∑
y,y∼x

1Iη(y) 6=η(x)

q(A,B) = |{(x, y) : x ∈ A,B = (A \ {x}) ∪ {y}, y ∼ x}|
6The proof presented by Swart is completely graphical (and less abstract) and based on a simple observation.

Draw the occurrences of the arrival times of the infection and healing maps as described in Section 2.1. For

A ⊂ Zd and s, t > 0, let ηA,st be the set of points i ∈ Zd s.t. ∃y ∈ A with (y, s) → (i, A). Let also η+,A,st be the

set of points i ∈ Zd s.t. there exists y ∈ A with (i, s− t)→ (y, s). Then the law of η+,A,st and ηA,st coincide. The

proof of the above result can be done as follows: (1) take a piece of paper, (2) draw a realisation of the arrows

and crosses corresponding to the arrival times of the infection and healing maps of CP (see Section 2.1) , (3) turn

the paper upside down, (4) invert the direction of each infection arrow and put a − sign in front of each time

(so that e.g. an original horizontal line at time 10 is now at time −10), (5) notice that thanks to the fact that

infections from i→ i+ 1 have the same rate as infections from i→ i− 1, the crosses and arrows that you see now

are still distributed as for a contact process, (6) notice that a path of influence occurs now from j,−(s+ t) iff in

your original (non upside down) picture a path of influence was occurring from i, s to j, s+ t.
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The following very useful theorem is the key ingredient to prove that for the contact process

the critical value of λ separating the regime in which CP started from a single infection dies out

from the regime in which it survives coincides with the critical value separating the ergodic and

non ergodic regimes (see Theorem ??).

Theorem 3.6.5. [Duality and Ergodicity] Let (ηt)t > 0 and (At)t > 0 be defined as in Theorem

3.6.2, then (ηt)t > 0 is ergodic iff for all A ∈ Y it holds PA(τ < ∞) = 1 where τ := inf{t > 0 :

At = ∅}.

Corollary 3.6.6. VM is not ergodic, namely δ0 = ν
¯
6= ν̄ = δ1.

Proof. By definition coalescing random walk never die out, namely starting from any finite

number of random walks there is at least one walker at any subsequent time, therefore it holds

PA(τ <∞) = 0. This, together with Theorem 3.6.5, implies that VM is not ergodic.

Proof of Theorem 3.6.5. The key idea in the proof is that the processes defined in Theorem 3.6.2

are such that the completely healthy configuration is a trap for (ηt)t > 0, while A = ∅ is a trap

for (At)t > 0.

• Suppose that we know that the survival time for At is finite. Then, using Theorem 3.6.2,

we write for any µ and any A

Pµ(ηt(x) = 0 ∀x ∈ A) =

∫
EηH(ηt, A)µ(dη) =

∫
EAH(η,At)µ(dη) =

= PA(τ 6 t) +

∫
PA(η(x) = 0∀x ∈ At, τ > t)µ(dη)

Now letting t→∞ and using the hypothesis we get

lim
t→∞

Pµ(ηt(x) = 0 ∀x ∈ A) = 1 ∀µ ∈ P(X), A ∈ Y

Thus limt→∞ µPt = δ0 and so (ηt)t > 0 is ergodic.

• Suppose that we know that (ηt)t > 0 is ergodic, thus limt→∞ δ1Pt = δ0. By using the same

formulas as before with the choice µ = δ1 and taking again the limit t→∞ we get

Pδ1(ηt(x) = 0 ∀x ∈ A) = PA(τ 6 t) +

∫
PA(η(x) = 0∀x ∈ At, τ =∞)δ1(dη) = 0

If we now let t → ∞ the l.h.s. goes to 1 for all A and the second term in the r.h.s. goes

to 0 (since At 6= ∅ on the event τ =∞). Therefore we get 1 = PA(τ 6∞).
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Chapter 4

CONTACT PROCESS

4.1 Main results

Fix a spatial dimension d ∈ Z+ and an infection rate λ > 0. We call CP(d, λ) the contact process

with infection rate λ which has been constructed in Chapter 1. From Chapter 3 we already know

that CP(d, λ) is a monotone spin IPS and the lower invariant measure is independent on λ and

is concentrated in the completely empty configuration, ν
¯

= δ0. The upper invariant measure

depends instead on λ and we denote it by ν̄λ.

Exercise 22. Fix λ1, λ2 > 0 with λ1 6 λ2. Prove that ν̄λ1 6 ν̄λ1. As a consequence, ρ(λ) :=

ν̄λ(η(x)) is non decreasing in λ.

[Hint. Use the graphical construction to couple the process with infection rate λ1 and the

process with infection rate λ2. Both CP(d, λ1) and CP(d,λ2) have healing rate 1, so we can

take the same realisation of the arrival times for the healing maps. Infection maps instead

have different rates for the two process. Recall that for CP(d, λ), for any oriented couple of

neighbouring sites, the arrival times of the infection maps form a Poisson point set of intensity

λ on the time line and go back to Exercise 19 to have an idea on how to couple efficiently Poisson

point set of intensity λ1 and λ2.]

thm:CPerg

Let us introduce the notion of survival . We denote by Pηd,λ the law of CP(d, λ) started by η

and (with slight abuse of notation) for any A ⊂ Zd we denote by PAd,λ the law of the CP(d, λ)

started from a configuration ηA with ηA(x) = 1 iff x ∈ A. We also let

θd(λ) := P{x}d,λ (ηt 6= ∅ ∀t > 0) = P ((x, 0)→∞)

with P the measure on the Poisson point sets and {(x, 0)→∞} the event that there a path of
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influence (as defined in Section 2.2) from (x, 0) to at least one point with time coordinate t for

all t > 0 (i.e. a path following the direction of the arrows and never meeting crosses starting

at (x, 0) reaching any possible time). Notice that by translation invariance the r.h.s. does not

depend on x.

Definition 4.1.1. If θd(λ) > 0 we say that CP(d, λ) survives, otherwise we say that it dies out.

We also define the critical infection rate for survival, λ̄c(d), as

λ̄c(d) := sup{λ > 0 : CP(d, λ) dies out}.

Exercise 23. Use the graphical construction to prove that if λ1 < λ2 and if CP( d, λ2) dies out,

then CP(d, λ1) also dies out. This implies in particular that for all λ < λ̄c(d) CP dies out.

Remark 4.1.2. We could have defined survival starting from any finite sets of infections, it

would have been an equivalent definition. Namely for any finite non-empty set A ⊂ Zd the

following holds

• CP dies out iff P{A}d,λ (ηt 6= ∅ ∀t > 0) = 0

• CP survives iff P{A}d,λ (ηt 6= ∅ ∀t > 0) > 0

Indeed from the graphical construction it holds

P{A}d,λ (ηt 6= ∅ ∀t > 0) = P ((A, 0)→∞)

with

{(A, 0)→∞} := ∪j∈A{(j, 0)→∞}

And therefore

θd(λ) = P ((x, 0)→∞) 6 P ((A, 0)→∞) ≤
∑
j∈A

P ((j, 0)→∞) = |A|θd(λ)

Exercise 24. Use the graphical construction to prove that the contact process is additive, namely

that for any η, ξ the CP(d, λ) started at η ∨ ξ has the same law of (ηt ∨ ξt)t > 0, the max at each

time among the CP(d, λ) started at η and ξ.

Let λc(d) be the critical threshold for ergodicity, namely

λc(d) := sup{λ > 0 : ν
¯

= ν̄}

The main results for CP on Zd are the two following theorems that we will prove in the remainder

of this chapter:
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Theorem 4.1.3. For any d ∈ Z+, the critical threshold for survival coincides with the critical

threshold for ergodicity, namely λc(d) = λ̄c(d).

Theorem 4.1.4. For any d ∈ Z+ it holds 0 < λc(d) <∞.

Other major results, that we won’t prove since they require a heavier machinery are the

followings:

Theorem 4.1.5 (Continuity). For any d ∈ Z+ it holds θd(λc) = 0

Theorem 4.1.6 (Complete convergence). For any π ∈ P it holds

lim
t→∞

πPt = ρ(A)ν̄λ + (1− ρ(A))δ0

where

ρ(A) :=

∫
Pη(ηt 6= ∅, ∀t > 0)dπ(η).

This implies in particular that ν̄ and δ0 are the only extremal invariant measures for CP.

We emphasise that complete convergence does not follow from monotonicity. A counterex-

ample is the case of CP on regular trees, where despite monotonicity it has been proven that

there exists λ̃c s.t. λ̃c > λc and for λ ∈ (λc, λ̃c) complete convergence does not hold (see [Lig85]).

Another issue which has been studied is the following: for λ > λc, how do infected areas look

like at large time when we start from a single infection and we condition on survival? the rough

answer is that the growth of the infected regions is linear. Let us conclude with a conjecture

on the behavior at criticality that, despite very clear numerical confirmation and non rigorous

analytical results in the physics community, still lacks a full rigorous proof:

Conjecture 1. ∃β = β(d) > 0 s.t. for CP on Zd it holds

θ(λ) ∼ (λ− λc)β for λ ↓ λc,

namely limλ→λc log θ(λ)/ log(λ− λc)β = 1. Furthermore

• β is universal once the spatial dimension has been fixed, namely should not change by

varying some details in the definition of CP (while λc is certainly not universal),

• β(d) = 1 for d > 4
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4.2 Survival vs ergodicity: proof of Theorem 4.1.3

The key ingredients of this proof are: (i) the self duality of the contact process (see Exercise 20)

and (ii) Theorem 3.6.5 that connects survival and ergodicity for some special couples of dual

processes, those defined in Theorem 3.6.2.

Proof. Fix λ > 0. Theorem 3.6.5 and Exercise 20 imply that CP(λ) is ergodic iff for any A a

finite subset of Zd it holds PA(τ <∞), with PA the evolution of the infected sets of the CP(λ)

when at time 0 the set of infected sites coincides with A. On the other hand for CP survival

from a single site is equivalent to survival from any finite set A (see Remark 4.1.2). Thus for

CP the ergodic regime coincides with the regime in which the process dies out.

4.3 λc ∈ (0, 1): proof of Theorem 4.1.4

The proof follows immediately once the three lemmas below are proved.

Lemma 4.3.1. λc(d) > 1
2d

Lemma 4.3.2. λc(d) 6 λc(1)/d

Lemma 4.3.3. λc(1) <∞

Prof of Lemma 4.3.1. According to Theorem 3.6.5 CP(λ) dies out iff CP(λ) started from any

finite set dies out. Consider an initial finite set of infections A0 = A with |A| < ∞. Then |At|

decreases by 1 at rate |At| and increases by 1 at a rate which is upper bounded by 2dλ|At| (since

a site can create a new infection only on an empty nearest neighbour). Thus if 2dλ < 1, |At| has

a drift to decrease and will eventually hit 0. Therefore CP(λ) certainly dies out if λ < 1/(2d),

which yields λc > 1/(2d).

Proof of Lemma 4.3.2. The idea here is to couple versions of CP on different dimensions and

with different parameters λ. More precisely we consider

• (At)t > 0 the CP on Zd with infection rate λ and started with A0 = {(0, . . . , 0)} (only the

site with all the d coordinates equal to zero is infected)

• (Bt)t > 0 the CP on Z with infection rate dλ and started with B0 = {0}.
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Now we will prove that it holds

P(0,...,0)(At 6= ∅) > P0(Bt 6= ∅) ∀t > 0. (4.3.1)

This implies in particular that if Bt survives also At survives , namely

if dλ > λc(1) then necessarily λ > λc(d)

which yields

λc(d) 6
λc(1)

d

We are left with proving inequality (4.3.1). Define the projection map πd : Zd → Z as

πd(x1, . . . , xd) :=
d∑
i=1

xi

and let for A ⊂ Zd

πd(A) := {πd(x) : x ∈ A} ⊂ Z.

Note that with this notation B0 ⊂ πd(A0) (actually π(A0) = B0 We will now construct a

coupling of the processes (At)t > 0 and (Bt)t > 0 preserving this property at any later time,

namely satisfying

Bt ⊂ πd(At). (4.3.2)

This implies that at any time if Bt 6= ∅ also At 6= ∅ and (4.3.1) follows. Start by associating

to each y ∈ Z, the point x̄(y) ∈ Zd s.t. x̄(y)~e1 = y and x̄(y)~ei = 0 for i > 2. Then fix the

Poisson point processes to construct (At)t > 0 (namely the realisation of the arrival times of the

healing maps for each site, and of the 2d infection maps pointing from each site to its nearest

neighbours). Now we construct a coupled process B̃t as follows. We let B̃0 = B and let it evolve

according to the following rules

• whenever an event occurs for the healing maps of a site x ∈ Zd (i.e. in the d+1-dimensional

drawing of the graphical representation for (At)t > 0 we see a cross) and if x = x̄(y) for

some y ∈ Z, we heal at this time site y, namely we set it healthy if it was occupied;

• whenever an event occurs for the infection map from x ∈ Zd to one of the d points x− ~ei
occurs (i.e. in the d + 1-dimensional drawing of the graphical representation for (At)t > 0

we see an arrow from x to x − ~ei), if x = x̄(y) for some y ∈ Z, we infect at this time site

y − 1 if y was infected;
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• analogously, whenever an arrival time of the infection map from x ∈ Zd to one of the d

points x+ ~ei occurs, and if x = x̄(y) for some y ∈ Z, we infect at this time site y + 1 if y

was infected;

• on all the other times the process does not evolve.

It is not difficult to verify that the marginal under this coupling of (B̃t)t > 0, has the same

evolution as the process Bt (use the fact that the union of the arrival times of d Poisson point

sets of intensity λ is a Poisson point set of intensity dλ), namely the above construction provides

a coupling of (At)t > 0 and (Bt)t > 0. Furthermore, it is also not difficult to verify that this

coupling conserves the relation Bt ⊂ πd(At).

There are several alternative proves of Lemma 4.3.3. One of these proof uses comparison

with directed (or oriented) edge percolation on Z2. Another proof, that we have decided to follow

here, uses comparison with directed (or oriented) site percolation on Z2. The interested reader

may find the first proof on Section 2.5 and 2.6 of [Swaa] or on Section 7.2, 7.3 and 7.4 of [Swab].

Definition 4.3.4 (Directed (or oriented) site percolation on Z2). Draw from each site of x ∈ Z2

two arrow directing towards its two neighbours in the positive direction, namely an arrow from

x→ x+~e1 and an arrow from x→ x+~e2. Fix p ∈ [0, 1] and let µp be Bernoulli product measure

at density p on Z2, namely each site, independently from all others, is empty with probability

1 − p and filled with probability p. We also say that filled sites are open and empty sites are

closed. We let x→ y for x, y ∈ Z2 iff there is a path that

• connects x to y

• traverses only edges along the orientation of the arrows

• visits only open sites.

Let C0 be the set of all sites that are connected to the origin

C0 := {x ∈ Z2 : (0, 0)→ x}

and let

pc := sup{p ∈ [0, 1] s.t. µp (|C0|) =∞) = 0}

Theorem 4.3.5.

pc <
80

81
(4.3.3)
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Proof. The proof goes through a Peierls contour argument very similar to the one you met for

the proof of the transition for the Ising model in the first part of the course. I did not have time

to detail it here ((4.3.3)) but it must to be studied for the exam: please find all details on file

Additional.pdf.

Proof of Lemma 4.3.3. The proof uses a coupling argument that shows that for λ sufficiently

large and δ sufficiently small then CP observed at times ti = iδ dominates oriented percolation

on Z2 with µp > 80/81 1 and therefore, thanks to Theorem 4.3.5, CP necessarily survives. I did

not have time to detail the coupling in my notes but it must be studied for the exam: please

find all details in the file Additional.pdf.

1Actually this domination holds for an oriented lattice Z2 that has been tilted of 45, see the first page of file

Additional.pdf for details
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