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Chapter 1

INTRODUCING IPS

Interacting particle systems (IPS for short) is a large and active field of probability theory

devoted to the rigorous study of certain models composed of a large or infinite number of

particles living on a lattice and evolving as a whole as a Markov process.

The field started at the end of the 1960’s with seminal works by F.Spitzer and R.L.Dobrushin,

and by 1975 four classic models had already been introduced: the stochastic Ising model, the

contact process, the exclusion process, and the voter model. The first book on IPS, which is still

one of the reference books was written by T.Liggett in 1985 [Lig85]. The original motivation

for the field came from statistical mechanics, a branch of mathematical physics that studies the

the collective behavior of systems composed of a large number of particles (atoms, molecules,

droplets, grains...) by using a probabilistic model encoding the microscopic interactions with

the goal to understand the macroscopic laws (see [FV17] for an excellent introduction to the

topics). A key idea in statistical mechanics is indeed, though real systems evolve according

to deterministic laws, a stochastic description is well suited in the presence of a large number

of microscopic components, due to the fact that following the deterministic laws is impossible

and the knowledge of the initial configuration inevitably contains some alea. A central object

in statistical mechanics is the Gibbs distribution that provides the probability of observing

a certain microscopic state of the system when it is in equilibrium at a certain temperature.

Studying the properties of this distribution when the system size is very large (or infinite) as

well as numerically sampling configurations according to this distribution is often a particularly

hard task especially in presence of a phase transition, namely when for the physical system an

abrupt change of the macroscopic behavior occurs for a small change of a control parameter (e.g.

the temperature). This phenomenon, from the statistical mechanics view point, corresponds to

an emergence of long range correlations in the probability distribution when approaching the
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transition and to the non-uniqueness of the Gibbs distribution.

After these pioneering works the field of IPS rapidly expanded with the introduction of many

other models. It was rapidly understood that these models, besides allowing to sample the

equilibrium Gibbs measure, can also be used to model the evolution of physics systems out

of equilibrium either in the pre-asymptotic regime of approach to equilibrium or for systems

constantly driven out of equilibrium (e.g. by their boundary conditions). Furthermore, IPS

rapidly turned out to have interesting applications as models of collective complex behavior in

many other fields besides physics, including biology (models for spread of infections), social

sciences (e.g. opinion dynamics models) and economics.

To summarize, IPS were born as auxiliary models in the framework of statistical mechanics and

rapidly evolved as an independent field at the border among probability theory and various fields

of applied mathematics. Though the theory of Markov processes was already well established

when IPS were introduced in the ’70s, studying IPS turned out to be particularly challenging.

Indeed, issues that arise for IPS due to the presence of a large or infinite number of particles

needed developing new tools and the field is still evolving today with many beautiful issues for

several paradigmatic models being still open.

In these lectures my aim is to give an introduction to IPS. We will start by constructing the

processes, then we will focus on two classic models: the stochastic Ising model and the contact

process. Studying these two models we will have the occasion to meet some of the tools that have

been developed for IPS in particular coupling and duality, and to review the basic questions:

determining the large time behavior, the invariant laws and their domain of attraction, the speed

of convergence to equilibrium. Many important facets of the IPS field will not be covered by this

mini-course. A crucial missing part are scaling limits, which link the evolution of the microscopic

discrete stochastic IPS with some macroscopic continuous equations. These are either PDE or

stochastic PDE depending on whether one is looking at the law of large numbers or the central

limit theorem scaling. This part has been in particularly very much developed for the so called

exclusion type IPS, those for which particles are locally conserved, namely elementary moves

correspond to jump of particles. The interested reader may have a look at the classic books

[Spo91] or [KL99] to have an idea of the vastness of this subject.
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1.1 An informal definition of the most popular IPS

1.1 Notation

To define an IPS we have to choose a (finite or infinite) lattice, namely a countable vertex set

Λ and edge set E, and a finite local (on site) state space S and to specify the rates at which

transition occurs from two different configuration in the state space X := SΛ. The dynamics

follows a Markov process whose elementary moves will always correspond to the modification

of the configuration on a finite number of sites and the rate at which they occur depend on the

configuration on a certain finite neighbourhood of the to-be-updated sites 1.

We will use the greek letters σ and η to denote configurations, i.e. elements of X and denote

by (ηt)t ⩾ 0 the Markov process on the space SΛ. Given a lattice site x ∈ Λ and configuration

η, we denote by η(x) the configuration at site x. We also adopt the notation x ∼ y to say that

|x−y| = 1, or there is an edge on the graph from x to y. In these notes we will deal always with

the case in which S contains only two possible states, more precisely S = {0, 1} (or S = {±1}

for the stochastic Ising model) and Λ ⊂ Zd. For S = {0, 1} we denote by δ0, δ1 the measures

concentrated on the configuration in which all sites have occupation variable equal to 0 and to

1, respectively. Analogous definition for the measures δ+ and δ− when S = {+,−}. If |Λ| is

finite, saying that the transition η → η′ with η, η′ ∈ Ω occurs at rate r(η, η′) means that, when

t ↓ 0, it holds

P (ηt = η′|η0 = η) = r(η, η′)t+ o(t).

If |Λ| is infinite, the probability for a specific configuration to occur is typically zero, and one

gets informally the intuitive meaning of rate by replacing on the left hand side with P (ηt|V =

η′V |η0 = η) with V ⊂ Λ and |V | large but finite.

We say that a measure µ is an invariant law for an IPS if, when the system at time zero is

distributed according to µ, then at all later times it is also distributed according to µ. A more

precise definition will be given in chapter 3. In order to define the models we need a few more

definitions

Definition 1.1.1 (Exponential variable). We say that X is an exponential variable of parameter

c with c ∈ R+ is X is a real positive random variable with cumulative distribution F (x) = 1−e−cx

which yields a mean value E(X) = c−1. For T ∈ (0,∞) we will use the short notation an

exponential time of mean T to denote an exponential variable of parameter 1/T .
1Note that in general, though the whole process is Markovian, the single particle evolution is not (due to

interactions).
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Definition 1.1.2 (Flipped configuration and exchanged configuration). Let the onsite config-

uration space be S = {0, 1} and fix a configuration η ∈ X and a site x ∈ Λ. Then we call

configuration η flipped at x the configuration ηx ∈ X defined as follows

ηx(y) =

1− η(y) if y = x

η(y) if y ̸= x
(1.1.1)

If instead S = {−1,+1} we let

ηx(y) =

−η(y) if y = x

η(y) if y ̸= x
(1.1.2)

For S = {0, 1} pr S = {±1}, η ∈ X and x, y ∈ Λ we also call configuration η exchanged at

x, y the configuration ηx,y defined as follows

ηxy(z) =


η(y) if z = x

η(x) if z = y

η(z) otherwise

(1.1.3)

1.2 Contact process (CP)

CP is a model of spread of infection. The on-site configuration space is S = {0, 1}, with 0 (resp.

1) representing healthy (resp. infected) individuals. Here

• Infected individuals become healthy after an exponential time of mean 1, independently of

the others (namely the recovery times of different infected individuals are independent).

• an healthy individual at site x in configuration η becomes infected after an exponential

time of mean 1/(λNx(η)) with λ ⩾ 0 a parameter that is called the infection rate and Nx

the number of infected nearest neighbours of x.

More precisely, when the system is in configuration η, it flips to ηx after an exponential time of

mean 1/r(x, η) with

r(x, η) =

1 if η(x) = 1

λ
∑

y,y∼x η(y) if η(x) = 0
(1.1.4)

It is easily seen that if the initial configuration contains only healthy individuals we will

always have only healthy individuals, namely δ0 is an invariant law.
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What happens if we start with some infections? do infections typically survive at later times?

The answer depends on the value of the infection rate λ and on the lattice.

If Λ is finite, then any initial configuration is eventually attracted to δ0, which is the unique

invariant law. This is an easy consequence of the finiteness of the state space and of the

irreducibility of the dynamics (revise finite state Markov chain theory).

If instead S = Zd CP on Λ = Zd undergoes a phase transition, namely there exists λc(d)

depending on d and with 0 < λc(d) <∞ such that

• for λ < λc(d): δ0 is the unique invariant measure and all initial measures are attracted to

δ0;

• for λ > λc(d): there are other invariant measures besides δ0. We shall see that an important

role is played by the measure towards which the process is attracted starting from a

configuration in which all individuals are infected which in this regime does not coincide

with δ0;

In the following lectures we will prove the above results and furthermore we will prove that λc

is also the value at which the infection survival probability starting from a single infected sites

starts to be positive, namely θ(λ) = 0 for λ < λc and θ(λ) > 0 for λ > λc where

θ(λ) := Pη̄[ηt ̸= 0⃗ ∀t ⩾ 0]

with η̄ the configuration which is 1 in the origin and zero elsewhere and 0⃗ the configuration

which is 0 on all sites. Furthermore the function θ is continuous, strictly increasing and concave.

Proving these statements is not easy, for example proving continuity at λc, namely θ(λc) = 0

was proved only in 1990 almost twenty years after the model was introduced. Concerning the

value of the (dimension dependent) λc the only avaialble results are upper and lower bounds.

1.3 Voter model (VM)

VM is a model of opinion spread. Again, S = {0, 1}, and here 0 and 1 represent voters for

two different parties, say 0 is a republican voter, 1 a democrat voter. The dynamics evolves as

follows: after an exponential time of mean 1, the voter at site x chooses uniformly at random

one of its neighbours and adopts its opinion.

More precisely, when the system is in configuration η, it flips to ηx after an exponential time of

mean 1/r(x, η) with

r(x, η) =
1

2d

∑
y,y∼x

1η(y)̸=η(x) (1.1.5)
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Figure 1.1: Survival probability of CP in dimension 1 as a function of the infection probability.

From the above definition it follows immediately that for VM both δ0 and δ1 are invariant

measures.

What happens if Λ = Zd and we start from a mixture of opinions? can we preserve a mixture

of opinions or are we deemed to a totalitarian situation?

Here the answer strongly depends on the spatial dimension

• for d = 1, 2: δ0 and δ1 are the only two extremal invariant measures : the process is

attracted to a single opinion state;

• for d ⩾ 3 there is a whole family of extremal invariant measures (that are ergodic under

translations): a mixture of opinions can survive.

1.4 The Stochastic Ising model (SIM)

SIM is a dynamical version of the Ising model (the celebrated model for magnetism that has

been introduced in 1925 by Ising to model ferromagnetic material) which was introduced in

1963 by Glauber and very much studied since the seminal works of Dobrushin in the 1970s.

The usual convention is to let the onsite space state be S = {+1,−1} 2. Here sites represents

atoms in a ferromagnetic material, e.g. iron, and ±1 are the two possible orientations (up and

down) of the spin on each atom. The elementary moves of the dynamics are spin flips and the

rates are chosen to take into account the fact that a spin ”prefers” to be aligned with its nearest

2One can of course easily rephrase the model on the state space S = {0, 1}
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neighbours. More precisely the spin at site x in configuration η it flips to ηx after an exponential

time of mean 1/r(x, η) with

r(x, η) = e−β
∑

y∼x η(x)η(y) ≡ e−2dβ+2βÑx(η)

where Ñx(η) is the number of spins n.n. to x whose spin is not aligned with x and β is a positive

constant is called inverse temperature since in the physical interpretation it corresponds to J/kT

with k the Boltzmann’s constant, J the energy difference between aligned and not aligned spins

and T the temperature. Notice that

• the larger β, the strongest the bias to align spins

• the higher the number of non aligned neighbours, the highest the flip rate

• if β = 0 (= infinite temperature) SIM is an independent spin dynamics with a unique

invariant measures, the product measure with µx(+1) = µx(−1) = 1/2

• δ+1 and δ−1 are no more invariant laws.

We will see that the invariant measures of SIM coincide with the Gibbs measure of the Ising

model and

• in d = 1 SIM has a unique invariant measure ;

• for d ⩾ 2 there exists βc(d) with 0 < βc(d) < ∞ separating the regime (β < βc) in which

we have a unique invariant measure and the regime (β > βc) in which uniqueness is broken.

This corresponds to the ferromagnetic/paramagnetic phase transition in real materials;

• if we define the spontaneous magnetization, m(β) as m(β) := limt→∞ E+(ηt(0)) where E+

is the expectation under the process started from the up configuration (i.e. from η s.t.

η(x) = 1 for all x ∈ Λ), it holds m(β) = 0 for all β in d = 1 and for β ⩽ βc for d ⩾ 2,

while m(β) > 0 for β > βc. Furthermore when m(β) = 0 there is no long range order in

the large time limit, namely the correlation bvetween the value of the spin at site 0i and

j thends to zero as the distance from i and j goes to infinity.

An alternative interpretation of the Ising model is as a model for collective decision making.

Each site is a person that has to decide his (binary) state. It does so according to a utility

function: if we set β > 0 it is more advantageous to make the same choice as the neighbour we

take, instead for β < 0 it is more advantageous to make the opposite decision. In the physics

interpretation the choice β < 0 is also meaningful: it models antiferromagnetic materials.
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Figure 1.2: Spontaneous magnetization of SIM in dimension 2 as a function of the inverse

temperature.

1.5 Friedrickson-Andersen 1 spin facilitated model (FA-1f) and other KCM

FA-1f is an IPS used to model the liquid glass transition that occurs for rapidly cooled liquids

when we approach the dynamical arrest to the amorphous solid glass state. Here S = {0, 1}: 0

represents facilitating sites, i.e. regions that are not dense and thus facilitate motion, 1 represent

highly packed regions. The dynamics evolves as follows: each site waits the ring of an exponential

clock of mean time one and then ”tries” to update its value. I say ”tries”, because when the

clock on site x rings, before updating the configuration at x we have to check whether a certain

local constraint is satisfied: at least 1 of the nearest neighbours of x should be empty. Then

• if the constraint is satisfies the configuration at x is updated to 0 at rate q and to 1 at

rate 1− q and we go to the next clock ring

• otherwise no update occurs and we go to the next clock ring

More precisely the spin at site x in configuration η it flips to ηx after an exponential time of

mean 1/r(x, η) with

r(x, η) = cx(η)(qη(x) + (1− q)(1− η(x)) (1.1.6)

with

cx(η) = (1−
∏

y,y∼x

η(y)) (1.1.7)

Notice that
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• the rate to update the configuration on a given site does not depend in the configuration

on that site, but only on the state of its neighbours (at variance with SIM);

• the completely filled configuration is blocked, so δ1 is an invariant measure;

• the completely empty configuration is not an invariant measure (unless q = 1);

FA-1f model belongs to a class of IPS called the kinetically constrained models or KCM . These

can be obtained by varying the choice of the constraint that allows the update (changing the

neighbourhood, changing the threshold value..). The only requirement is that the constraint has

finite range and does not depend on the configuration on the to-be-updated site. For example,

two other very much studied KCM are

• the East model on Z for which the constraint to update x requires x+ 1 to be empty

• the FA-2f model on Zd with d ⩾ 2 for which the constraint to update x requires at least 2

empty nearest neighbours.

In formulas, the rate at which η flips to ηx is given by (1.1.6) albeit with

cx(η) = (1− η(x+ 1)) for East (1.1.8)

and

cx(η) =

1 if
∑

y:y∼x(1− ηx) ⩾ 2

0 otherwise
for FA-2f (1.1.9)

We will see in Chapter 3 that FA-1f and all other KCM have, beside the trivial measure con-

centrated on the completely filled configuration, another invariant measure which depends on q

but not on the constraints.

1.6 Simple Symmetric Exclusion process (SSEP)

SSEP is a models in which particles can move and never disappear (it is conservative). S = {0, 1},

1 are particles and 0 are empty sites. After an exponential time of mean 1, a particle chooses

uniformly at random a nearest neighbours and ”tries” to jump there. I say ”tries” because it

has to check whether the arrival site is empty (i.e. to satisfy the exclusion constraint). If it is

the case the jump occurs, otherwise the particle does not change position. Namely, η is updated

to ηxy after an exponential time of mean 1/r(x, y, η) with

r(x, y, η) =


1
2d1Iη(x)̸=η(y) if x ∼ y

0 otherwise
(1.1.10)
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Here

• δ0 and δ1 are invariant measures;

• for any density parameter ρ ∈ [0, 1] the Bernoulli(ρ) product measure

πρ :=
∏
i

ρη(i)(1− ρ)1−η(i)

is an invariant measure.

The name of this model comes from the following features:

• simple = jumps to nearest neighbours;

• symmetric= equal rate to jump to any of the empty nearest neighbours;

• exclusion : occupancy by a multiple number of particle is not allowed

Several variations of SSEP have been considered: long jumps, non symmetric rates (ASEP),

totally asymmetric rates (TASEP), multiple occupancy . . .

1.7 Other notable examples

• Potts model. The onsite state space is S = {1, 2 . . . q} with q ⩾ 2. Here each site x ∈ Λ at

rate one updates its occupation variable. The new value, s′ is chosen in S with probability

eβNx,s′ (η)∑
s∈S e

βNx,s′ (η)

where β ∈ R is a fixed parameter called (as for SIM) inverse temperature, and for any

triple s ∈ S, x ∈ Λ, η ∈ X we let Nx,s(η) be the number of sites nearest neighbours of x

which, in the configuration η, have occupation variable equal to s. Here in dimension d ⩾ 2

there exists βc(d) with 0 < βc(d) < ∞ such that for β ⩽ βc there is a unique invariant

measure while for β ⩾ βc(d) there are q invariant measures.

• Biased voter model. Here S = {0, 1} and the move 1 → 0 occurs with rate equal to the

fraction of 0 neighbours but the move 0 → 1 occurs with rate (1 + s) times the fraction

of 1 neighbour with s > 0. This model is relevant as a model of evolution of two genetic

types one of which (type 1) is more fit than the other and hence reproduces at a lerger

rate. At rate one an organism dies and it is replaced by a clone of one of its nearest

neighbour chosen randomly albeit not uniformly (there is a bias favouring type 1). Here

12



(at variance with the standard VM) even starting with a single 1 if s is sufficiently high

1’s might survive.

• another class of widely studied models are reaction diffusion models. Here S = {0, 1} and

occupied sites are called particles. Models in this class include

– coalescing random walks. Here each particle jumps at rate one to a uniformly chosen

neighbour and when two particle meets at the same site they coalesce

– annihilating random walks. Here each particle jumps at rate one to a uniformly

chosen neighbour and when two particle meets at the same site both particles die

– branching and coalescing random walks. Here each particle jumps at rate one to a

uniformly chosen neighbour and gives birth at rate λ > 0 to a new particle on a

uniformly chosen nearest neighbours. When two particle meets at the same site they

coalesce

Exercise 1. Prove that for q = 2 the above definition of the Potts model corresponds to the

definition of SIM properly time rescaled.

IPS are easy to simulate numerically. If you want to play with some already built programs

for CP, VM, SIM or POTTS you might have a look at this webpage https://mate.dm.uba.ar/ leo-

rolla/simulations/

Remark 1.1.3. All models considered above have the property that in the large time limit they

converge to an invariant measure. This is not always the case, there are cases of IPS with

periodic behavior.

1.8 Phase transitions

Figures (1.2) and (1.4) are examples of phase transitions: an abrupt change of behavior occurs

for CP and for SIM by varying smoothly the control parameter (λ and β respectively). The

value at which the change of behavior occurs is called critical point. As we have explained in the

sections below and we will see in detail in the following, the critical point separates a regime (for

λ < λc and β < βc) in which there is a unique invariant law (which is attained at large times)

from a regime in which there are more invariant laws. For both models at the critical point

the order parameter (θ(λ) and m(β)) are continuous and there is a single invariant law. These

two property correspond to a phase transition which is dubbed by physicists second order (or
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continuous) phase transition. The same is true for the Potts models when q < q̄(d) where the

threshold q̄(d) equals 4 in dimension d = 2. Instead, for q ⩾ q̄(d) the order parameter has a jump

at criticality and the model displays multiple invariant laws at this point. This phenomenon

correspond to a phase transition which is dubbed by physicists forstorder (or discontinuous)

phase transition. Proving whether a phase transition is first or second order is often a hard

task. For CP it was proven 20 years after the introduction of the model (though the result had

been conjectured much earlier based on numerical simulations). For the Ising model the result

was proved in 1944 by Onsager in d = 2 [Ons44] by proving an explicit solution of the model.

In higher dimensions the model is not explicitly solvable and the result was proven only 70 (!)

years later [AS15].

Second order phase transition are associated to the occurrence of a power law behavior near

criticality and to the occurrence of universal critical exponents.

For the Ising model it holds

m(β) ∼ (β − βc)
ν as β ↓ βc

where ν is a critical exponent, which is given by ν = 1/8 in dimension 2 (this follows from the

exact solution of Onsager), ν ∼ 0.326 in dimension 3 and ν = 1/2 in d ⩾ 4.

For the contact process, it holds

θ(λ) ∼ (λ− λc)
ν as λ ↓ λc

with a critical exponent ν ∼ 0.276 for d = 1 ; ν ∼ 0.583 for d = 2; ν ∼ 0.813 for d = 3 and ν = 1

for d ⩾ 4.

In theoretical physics, renormalization group theory is used to explain these critical exponents

and calculate them. According to this theory (which is not mathematically rigorous), critical

exponents have a certain degree of universality. For example, if we define a modified model

CP in which infected sites can infect also non-nearest neighbour up to a finite range, the new

model will have a different critical point, but the critical exponent ν will have the same value

independent of the range. Also, in two dimensions changing from the square lattice to, e.g.,

the triangular lattice has no effect on ν. So far, there is no mathematical theory that can

explain critical behavior, except in high dimensions (where one uses a technique called the lace

expansion) and in a few two-dimensional models.
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Chapter 2

CONSTRUCTING IPS

We will now proceed to construct a continuous time Markov process (ηt)t ⩾ 0 with ηt ∈ X that

evolves according the IPS dynamics informally stated in the previous chapter. We will do this

for simplicity of notation only for spin IPS, namely those IPS for which the elementary moves are

of the form η → ηx (for exclusion type processes like SSEP the procedure is similar). Informally,

we wish to construct a Markov process that satisfies

P (ηt+δ = ηx|ηt = η) = δr(x, η) + o(δ) (2.0.1)

If the lattice Λ is finite, it is not difficult to check that such a construction is feasible for any

choice of the rates, provided the rates are finite. However, if |Λ| is infinite, the process might

not be well defined due to the fact that many spin flip might occur at the same time. Indeed

we will see that in order for the process to be well defined we should impose proper conditions

not only on the boundedness of the rates but also on their range, i.e. on their spatial support.

2.1 The finite volume case: Poisson (or graphical) construction

Let’s proceed step by step and start by formally constructing a Markov process which satisfies

(2.0.1) when Λ is finite.

1.1 CP on finite volume

Let’s consider for simplicity the case of the contact process, whose rates are defined in (1.1.4).

Recall that X = {0, 1}Λ and define a set M = {Hx}x∈Λ ∪ {Ix,y}x,y∈Λ,y∼x, as follows
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• Hx : X → X is the transformation that heals site x namely sets its value to 0 and leaves

the other sites unchanged. Namely Hxη(k) = η(k) if k ̸= x and Hxη(y) = 0.

• Ix,y : X → X is the transformation that infects y if x is infected. Namely Ix,yη(k) = η(k)

if k ̸= y and Ix,yη(y) = max(η(y), η(x)).

We associate to each map m ∈ M a sequence of i.i.d random variables (σ
(k)
m )k ⩾ 1 that are

exponentially distributed and of mean 1/rm, where

rHx = 1, ∀x ∈ Λ

rIx,y = λ ∀x, y ∈ Λ, y ∼ x

Then we define for m ∈ M the random times (t
(i)
m )i ⩾ 1

t(i)m :=
i∑

k=1

σk

that we call arrival times of the map m.

Lemma 2.1.1. Fix m ∈ M. The random set of its arrival times (t
(i)
m )i ⩾ 1 satisfies the following

(i) Fix s, t ∈ R+ with 0 ⩽ s ⩽ t < ∞. Then the number of arrival times that fall in the time

interval [s, t] is Poisson distributed with mean (t− s), namely

P (Ns,t = k) = e−(t−s)λ
k

k!

where the integer random variable Ns,t is defined as Ns,t := |[s, t] ∩ {∪i ⩾ 1t
(i)
m }|

(ii) Fix n ∈ N and (si, ti)
n
i=1 with 0 ⩽ si ⩽ ti < ∞ and such that [si, ti] ∩ [sj , tj ] = ∅ for all

i ̸= j. Then the n random variables (Nsi,ti)
n
i=1 are independent.

The proof of this lemma follows immediately from the definition of arrival times 1.

We let

∆ := ∪m∈M ∪ℓ∈N (m, tℓ(m))

∆s,t := ∆ ∩ (M× (s, t]). (2.1.1)

1The result can be restated by saying that (t
(i)
m )i ⩾ 1 form a Poisson Point Set in [0,∞) of intensity rmdt with

dt the Lebesgue measure. See [Swaa] Section 1.6 for a rigorous definition of Poisson Point Set.
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Namely ∆ is the set of all couples (m,u) where m is a map and u is one of its arrival times, and

∆s,t is the set of all couples (m,u) where m is a map, u belongs to the interval [s, t] and it is

one of the arrival times of the map m. Note that, thanks to the fact that |M| <∞ and rm <∞

for each m

• for any t <∞ |∆s,t| is finite with probability one

• for any couple (m, τ), (m′, τ ′) ∈ ∆s,t it holds τ ̸= τ ′.

Thus, with probability one, we can re-order ∆s,t in increasing order of the arrival times

∆s,t := {(m1, τ1), . . . (mn, τn)}, with τ1 < · · · < τn

Let ψ∆s,t : X → X be the composition of the maps in reverse order

ψ∆s,t(η) := mn · · · · ·m1(η) (2.1.2)

with the convention ψ∆s,t = 1I if ∆s,t = ∅.

Note that for s ⩽ u ⩽ t it holds

ψ∆u,t · ψ∆s,u = ψ∆s,t .

The easiest way to understand this definition is by making a drawing as in Fig. 2.1: on

the column over site x I mark with a cross each arrival time of Hx, and with an arrow from

x → x+ 1 each arrival times of Ix,x+1 and with an arrow from x → x− 1 each arrival times of

Ix,x−1.

We are now ready to construct the IPS.

Theorem 2.1.2. Let η ∈ X and set

ηηt := ψ∆0,t(η), t ⩾ 0

with ∆ and ∆0,t(∆) defined as in (2.1.1) and ψ∆0,t defined in (2.1.2). Then

• (ηηt )t ⩾ 0 is a Markov process on the space DX [0,∞] of cadlag functions from [0,∞) to X

with initial condition ηη0 = η

• for any f ∈ C(X) with C(X) the space of continuous real functions on X equipped with the

supremum norm ||f || := supx∈X |f(x)|, it holds

lim
t→0

Eη(f(ηt))− f(η)

t
=
∑
m∈M

rm(f(m(η))− f(η)) =
∑
x

r(x, η)(f(ηx)− f(η)). (2.1.3)

where we denote by Eη the mean over the Markov process (ηηt )t ⩾ 0.
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Figure 2.1: Graphical construction for CP in d = 1 on the finite volume Λ := [0, 4]. Here

ψ∆0,t = I4,3 I1,0 I2,3 I1,2H4H0H2. We highlight in green the path of influence from (1, 0) to

(3, t). If we let η(0) = η(2) = 0 and η(1) = η(3) = η(4) = 1 we have ψ∆0,t(η) = η′ with η′(x) = 1

for x ∈ [0, 3] and η′(4) = 0. If instead η(1) = η(3) = η(4) = 1 and η(1) = 0 we get η′(3) = 1 and

η′(1) = η′(2) = η′(4) = 0.
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The above theorem says in particular that the process satisfies the informal condition (2.0.1).

Indeed, if we let f : X → {0, 1} f(σ) := 1σ=ηx and apply (2.1.3), using Eη(1ηt=ηx) = P (ηt = ηx)

and f(η) = 0 and
∑

y r(y, η)f(η
y) = r(x, η) we get

lim
t→0

P (ηt = ηx)

t
= r(x, η).

Here and in the following, when confusion does not arise, we let ηηt = ηt for simplicity of notation.

Note that the initial config η can be any configuration, also a random one, but if it is random

it should be independent on ∆.

Proof. By definition ηt has paths that are cadlag (right continuous and left limited). So to prove

it is a Markov process we have to prove that the Markov property holds, namely that

Eη(f(ηt)|Fs) = Eηsf(ηt−s) (2.1.4)

where for all s ⩾ 0, Fs is the σ-algebra

Fs := σ(ηs′ : s
′ ∈ [0, s]).

Note that, for s ⩽ t, it holds by definition Fs ⊂ Ft so that (Ft)t ⩾ 0 is a filtration. Thanks to

the independence of the sets of arrival times on distinct time intervals (see Lemma 2.1.1 (i))

and the independence from the initial configuration of the arrival times, (2.1.4) can be easily

proven. We are left with proving (2.1.3). From the condition on the finiteness of the sum of

rates,
∑

m∈M rm <∞, and using Lemma 2.1.1 it follows that the probability that two or more

arrival times fall in the interval [0, t] is O(t2) and the probability that a single arrival time falls

of a chosen map m falls in this interval is rmt+O(t2). This implies that

Eη(f(ηt)) = f(η) + t
∑
m∈M

rm(f(m(η))− f(η)) +O(t2) (2.1.5)

which yields (2.1.3).

1.2 IPS on finite volume: the general case

Exercise 2. Show that all other IPS mentioned in Section 1.1 can be constructed on a finite

volume Λ along analogous lines as done above for CP. The difference will be the choice of the

maps and of the associated rates.

Remark 2.1.3. The representation of an IPS in terms of maps is not unique, namely choosing

M and (rm)m∈M determine uniquely the process but the converse is not true.
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2.2 The infinite volume case: Poisson (or graphical) construc-

tion

We shall now extend the construction of the previous section to the infinite volume setting and

see that it actually makes sense for all the models defined in section 1.1. Let Λ ⊂ Zd be an

infinite volume, S a finite on-site configuration space, and X = SΛ. Consider a countable set

M of maps m : X → X, and a set of bounded positive rates {rm}m∈M. In analogy to the finite

volume case we would like to construct a Markov process (ηt)t ⩾ 0 such that (2.1.3) holds. If we

try to proceed as for the finite volume case, the first problem we encounter is that
∑

m rm = ∞

so {t : (t,m) ∈ ∆} is dense in R+ and it is now not possible to order the elements of ∆s,t

according to their arrival times.

The key observation is to notice that the maps and the rates of the processes that interest us are

defined in such a way that with high probability only finitely many points of ∆0,t are necessary

to determine the value of the process at a given space time point (x, t). Thus it will actually be

possible to order these finely many ”relevant” space time points according to their arrival times

and proceed essentially as for the finite volume case.

In order to formalise the above observation we should introduce the notion of path of influence.

For concreteness, we start by treating the case of CP on Z, then we will extend the procedure

to general models.

2.1 CP on Z

In this section we let Λ = Z and define M = ∪x∈ZHx ∪x,y∈Z,x∼y Ix,y with Hx and Ix,y defined

as for the finite volume CP. Let us introduce for each map m ∈ M the sets D(m) ⊂ Λ and

{Ri(m)}i∈Λ ⊂ Λ as follows

D(m) := {i ∈ Λ : ∃η ∈ X : η(i) ̸= m(η)(i)} (2.2.1)

and, for any i ∈ Λ, we let

Ri(m) := {j ∈ Λ : ∃η ∈ X s.t. m(η)(i) ̸= m(ηj)(i)}. (2.2.2)

In words D(m) is the set of sites whose value can be possibly changed by m and Ri(m) is the

sets of sites that are m-relevant for i.

It is not difficult to verify that it holds

D(Hx) = {x}, D(Ix,y) = {y} (2.2.3)
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and

Rz(Hx) =

∅ if z = x

z otherwise
(2.2.4)

Rz(Ix,y) =

{x, y} if z = y

z otherwise
(2.2.5)

Definition 2.2.1 (Paths). A path in Λ is a pair of functions (γt−, γt) defined in an interval

[s, u] with s ⩽ u and taking values in Λ that verify

lim
t↓→t0

γt− = γt0 for t0 ∈ [s, u) (2.2.6)

lim
t↑→t0

γt = γt0− for t0 ∈ (s, u] (2.2.7)

Note that γt0− can be different from γt0.

Definition 2.2.2 (Paths of influence). Fix ∆ ∈ M× [0,∞) a realisation of the Poisson point

processes associated to the maps in M as in the finite volume case. For any i, j ∈ Z and

0 ⩽ s ⩽ u we say that there is a path of influence from (i, s) to (j, u) iff γs− = i, γu = j and

• whenever γt− ̸= γt for t ∈ [s, u] necessarily there exists m ∈ M s.t. (m, t) ∈ ∆, γt = D(m)

and γt− ∈ Rγt(m)

• for each (m, t) ∈ ∆ with t ∈ [s, u] and γt ∈ D(m) it holds γt− ∈ Rγt(m).

We write (i, s) → (j, u) for the event there is a path of influence from (i, s) to (j, u). and

(i, s) ̸→ (j, u) for the complementary event. We also set, for any finite A ⊂ Z, {(i, s) → A×{u}}

if there exists j ∈ A s.t. (i, s) → (j, u) and let

ξA,u
s := {i ∈ Λ : (i, s) → A× {u}} (2.2.8)

with the convention ξA,u
u = A.

For example, in Fig. 2.1, it holds (2, 0) ̸→ (3, t) and (1, 0) → (3, t). Furthermore, if we let

s = 0, u = t and A = {3, 4} it holds ξA,u
s = {1, 3}.

Remark 2.2.3. The above definition is equivalent to saying that, if we make a graphical rep-

resentation of ∆ as in the finite volume case, the existence of a path of influence from (i, s) to

(j, s) is equivalent to the existence of a path in the graphical representation that, when following

the positive time direction,
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• either grows vertically (namely γt = γt−) or it moves horizontally of one step to the right

or to the left (so that in this case γt = γt− ± 1

• moves horizontally only if it meets an arrow (but can also go upward when meeting an

arrow)

• never meets a cross.

Remark 2.2.4. Note that, for any A ⊂ Z and for any 0 ⩽ s ⩽ t the value at time t of the process

on all sites belonging to A can be constructed by the knowledge of the value of the configuration

at time s only on the sites belonging to ξA,t
s .

The following result will play a key role

Lemma 2.2.5.

(i) For any finite A ⊂ Z it holds 2

E[|ξA,u
s |] ⩽ |A|e(2λ−1)(u−s) 0 ⩽ s ⩽ u

(ii) For each i ∈ Λ and s ⩽ u, the set

{(m, t) ∈ ∆s,u : D(m)× {t} → (i, u)}

is finite almost surely.

Proof. Proof of (i). Fix A and set for simplicity of notation

ξt := ξA,u
u−t.

The idea is to use the fact that (ξt)t ⩾ 0 is a Markov process and to prove using its generator

∂E(|ξt|)
∂t

⩽ (2λ− 1)E[|ξ0|] (2.2.9)

In order to prove this result we start by a cut-off procedure. Let (Λn)n∈N be a sequence of finite

sets such that Λn ↑ Λ. Pick n large enough so that A ⊂ Λn and set

ξnt := {i ∈ Λ : (i, u− t) →n A× {u}} (2.2.10)

2here the mean E is over the randomness in ∆
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where →n denotes the presence of a path of influence that stays inside Λn. Observe that ξnt ⊂ ξmt

for n < m and

ξnt ↑ ξt for all t ⩾ 0.

It is not difficult to verify that (ξnu−t)t∈[0,u] is a Markov process taking values in the finite space

of subsets of Λn and with generator acting on function f : Λn → R as

Lnf(B) =
∑

m∈Mn

rm(f(Bm)− f(B))

where Mn := {m ∈M : D(m) ∩ Λn ̸= ∅} and

Bm = B \ i if m = Hi

Bm = B if m = Iij and j ̸∈ B

Bm = B ∪ {i} if m = Iij and j ∈ B

Let (Pn
t )t ⩾ 0 be the associated semigroup and define the function g : Λn → R as

g(B) := |B|.

Then

Lng(B) =
∑

m∈Mn

rm(g(Bm)− g(B)) ⩽
∑
i∈B

(|B|+ 1− |B|) + 2λ(|B|+ 1− |B|) = |B|(2λ− 1)

(2.2.11)

Let K = 2λ− 1 Notice now that

∂

∂t
(e−KtPn

t g) = −Ke−KtPn
t g + e−KtPn

t Lng = e−KtPn
t (Lng −Kg) ⩽ 0

and therefore

e−KtPn
t g ⩽ e−KtPn

t g|t=0 = g(ξn0 ) = |A|

where we used the fact that by definition

ξn0 = A.

This yields

E(|ξnt |) ⩽ |A|eKt ∀t ∈ [0, u].

Now letting n→ ∞ so that ξnt → ξt = ξu,Au−t the result of point (i) is proven.

The proof of point (ii) follows along similar lines.
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Fix i ∈ Z and 0 ⩽ s ⩽ u < ∞, in view of Lemma 2.2.5, we can order the relevant arrival

times as

{(m, t) ∈ ∆s,u : D(m)× {t} → (i, u)} = {(m1, t1), . . . (mn, tn)}

with t1 < · · · < tn. Then we define

ψ∆s,u(η)(i) = mn ◦ · · · ◦m1(η)(i) (2.2.12)

and we can define the probability kernels3

{pt(η, ·)}t ⩾ 0 := {P(ψ∆,0,t(η) ∈ ·)}t ⩾ 0. (2.2.13)

Then, along the same lines as Theorem 2.1.2 for the finite volume case, we can prove the following

Theorem 2.2.6.

(i) The probability kernels {pt(η, ·)}t ⩾ 0 define a continuous transition probability, namely

they satisfy the following properties

– (x, t) → Pt(, ·) is a continuous map from X × [0,∞) → P(X);

–
∫
X ps(x, dy)pt(y, ·) = ps+t(x, ·) for all x ∈ X and s, t ⩾ 0

– p0(x, ·) = δx for all x ∈ X

As a consequence, they can be used define a Feller semigroup (Pt)t ⩾ 0 by letting

Ptf(η) :=

∫
X
pt(η, dη

′)f(η′) for any f ∈ B(X).

(ii) Let L be the generator of the semigroup (Pt)t ⩾ 0, namely the operator acting as

Lf(η) := lim
t→0

Ptf(η)− f(η)

t
, (2.2.14)

where the limit is intended in the topology of the supremum norm on C(X) and the operator

is defined on functions f ∈ D(L) with D(L) ⊂ C(X) the set of functions for which the above

limit exists. Then the action of L on functions that depend on finitely many coordinates,

i.e. on functions that satisfy

sup
η∈X

∑
x

|f(ηx)− f(η)| <∞

3A probability kernel on X is a function K from X ×B(X) (with B(X) the Borel sigma field generated by the

open sets of X) to [0, 1] s.t. (i) for all x ∈ X, K(x, ·) is a probability measure on X and (ii) for all A ∈ B(X),

K(·, A) is a real measurable function on X.
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can be written as follows

Lf(η) =
∑
x∈Z

r(x, η)(f(ηx)− f(η)) (2.2.15)

with r(x, η) the rates of CP (1.1.4).

The Markov process (ηt)t ⩾ 0 with values on X and cadlag sample paths from [0,∞) to X

associated to the Feller semigroup Pt defined above is the contact process on Z.

2.2 Some reminders from Markov process theory

Let B(X) be the set of real, bounded B(X)-measurable functions on X and C(X) the set

of continuous functions. Given a continuous transition probability (see Theorem ?? (i) for a

definition) the associated Feller semigroup (Pt)t ⩾ 0 is defined by letting

Ptf(η) :=

∫
X
pt(η, dη

′)f(η′) for any f ∈ B(X).

From the continuity of the transition probability it follows that the collection of operators

(Pt)t ⩾ 0 is a collection of linear operators that verify the following properties:

(i) if f ∈ C then for any t ⩾ 0 it holds Ptf ∈ C

(ii) limt→0 ||Ptf − f || = 0

(iii) PsPt = Ps+tf

(iv) P0f = f

(v) if f ⩾ 0 then Ptf ⩾ 0

(vi) Pt1 = 1

Conversely any collection (Pt)t ⩾ 0 of linear operators Pt : C(X) → C(X) satisfying the six prop-

erties (i)-(vi) is called a Feller semigroup and it corresponds to a unique continuous transition

probability on X. Given a Feller semigroup we can construct a stochastic process (ηt)t ⩾ 0 with

values on X and cadlag sample paths from [0,∞) to X by letting η0 = η and setting for any

f ∈ C(X)

Eη(f(ηt)|Fs) = Pt−sf(ηs) a.s. ∀s ⩽ t. (2.2.16)
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where for s ⩾ 0, we let Fs be the σ-algebra generated by (ηt)t ⩾ 0, namely

Fs := σ(ηs′ : s
′ ∈ [0, s])

and Eη denote the mean over the process. Note that, for s ⩽ t, it holds by definition Fs ⊂ Ft

so that (Ft)t ⩾ 0 is indeed a filtration. This stochastic process is a Markov process. Indeed it

satisfies the strong Markov property, namely if we denote by Pη the law of the process started

from η it holds

Pη(ηt+δ ∈ A|Ft) = P ηt(ηδ ∈ A) (2.2.17)

a.s. for every η ∈ X, A ∈ F , t ⩾ 0, δ ⩾ 0. This can be proven easily setting f = 1A and using

(2.2.16) which yields

Pη(ηt+δ ∈ A|Ft) = Eη(f(ηt+δ|Ft)) = Pδ(f(ηt)) = Eηt(f(ηδ)) = Pηt(ηδ ∈ A).

2.3 IPS on infinite volume: the general case

Let m be a map from X → X where X = SΛ and Λ is an infinite volume (typically, Λ = Zd).

We define D(m) ⊂ Λ as in(2.2.1) and, for i ∈ Λ, {Ri(m)} ⊂ Λ as in (2.2.2). We say that a map

m is local if D(m) is finite and Ri(m) is finite for all i ∈ D(m).

Exercise 3. Verify that all the possible elementary moves for each of the processes defined in

Chapter 1.1 can be recast in term of local maps.

For the Voter Model (VM), whose rates as defined by equation (1.1.5), a natural choice of

maps to make the Poisson construction is M = {Vx,y}x∈Zd,y∼x with rm = 1/(2d) for each m and

Vx,y defined as the transformation that sets the variable on y equal to η(x) and leaves the other

sites unchanged, namely

Vx,y(η)(z) =

η(x) if z = y

η(z) otherwise
. (2.2.18)

Verify that for this maps it holds D(Vx,y) = {y},

Rz(Vx,y) =

x if z = y

z otherwise
(2.2.19)
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Let M be a countable set of local maps and (rm)m∈M be non negative constants and ∆ the

Poisson point processes constructed as for the CP by associating to each map m ∈ M a Poisson

point process on R+ with intensity rmdt with dt the Lebesgue measure and taking the union

over all maps.

We should now state two assumptions on the rates that will be crucial in the construction

of the process

(A1) supi∈Λ
∑

m∈M:i∈D(m) rm <∞

(A2) K <∞, where

K := sup
i∈Λ

∑
m:i∈D(m)

rm(|Ri(m)| − 1) <∞ (2.2.20)

Define paths of influence as in Definition 2.2.2 and, for each times 0 ⩽ s ⩽ u <∞ and each

set A ⊂ Λ defined the set ξA,u
s ⊂ Λ as in (2.2.8) .

The following result is a key ingredient for the construction of the IPS on infinite volume

Lemma 2.2.7 (Exponential bound on paths of influence and finitely many relevant clock rings).

Suppose that (A1) and (A2) hold. Then

• for any finite A ⊂ Λ, it holds

E[|ξA,u
s |] ⩽ |A|eK(u−s) 0 ⩽ s ⩽ u

• for each i ∈ Λ and s ⩽ u, the set

{(m, t) ∈ ∆s,u : D(m)× {t} → (i, u)}

is finite almost surely

Assumption (A1) guarantees that in each finite time interval there are only finitely many

events that may change the state of any fixed lattice site. Assumption (A2) is necessary to

guarantee that the influence coming (in the same time interval) from all other lattice points is

also under control. The proof follows analogous line as Lemma 2.2.5 , a full proof can be found

in [Swaa] Section 1.6.

In view of this result, for a fixed i ∈ Λ and 0 ⩽ s ⩽ u <∞, we can a.s. order the relevant arrival

times as

{(m, t) ∈ ∆s,u : D(m)× {t} → (i, u)} = {(m1, t1), . . . (mn, tn)}
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with t1 < · · · < tn and define

ψ∆,s,u(η)(i) = mn ◦ · · · ◦m1(η)(i).

Then, along the same lines as the proof of Theorem 2.1.2 the following can be proven

Theorem 2.2.8. Fix a countable collection M of local maps and (rm)m∈M non negative con-

stants that satisfy assumptions (A1) and (A2) above. Let

pt(η, ·) := P(ψ∆,0,t(η) ∈ ·)

with ∆ a Poisson point process on M × [0,∞) with intensity rmdt. Then {pt(η, ·)}t ⩾ 0 is a

continuous transition probability and the corresponding Markov process has a generator that

acts on functions that depend on finitely many coordinate as

Lf(η) =
∑
m∈M

rm(f(m(η))− f(η)).

Exercise 4. Go back to exercise 3 and verify that the transition rates of the local maps that you

constructed for the different models of section 1.1 satisfy assumptions (A1)–A(3).

Remark 2.2.9. The Poisson construction provides not only a rigorous construction of IPS but

also a very powerful tool to couple processes started in different initial configurations and/or

evolving with different parameters. In case of processes started from different initial conditions,

the idea is to couple them by the using the same realisation of the Poisson processes for the

arrival times of the maps. Two questions that may be easily solved using the powerful coupling

tool provided by the graphical construction are stated below in Exercise 5 and 6. An alternative

rigorous construction of IPS via the generator (instead of the Poisson processes) is also possible.

It may be found on Liggett’s book [Lig85] or Swart’s lecture notes ([Swaa] or [Swab]).

Given η, σ ∈ X we say that σ dominates η, and denote this as η < σ, if for all x ∈ Λ it holds

η(x) ⩽ σ(x).

Exercise 5. Consider two CP starting from two different initial configurations, η1, η2 such that

η1 < η2. Fix i ∈ Λ and t ⩾ 0 prove that

if it holds Eη1(ηt(i)) > 0 then necessarily Eη2(ηt(i)) > 0.

Exercise 6. Fix η ∈ {0, 1}Z and 0 < λ1 < λ2 < ∞. Consider two CP process started from η,

the first one with infection rate λ1, the second one with infection rate λ2. Let E1 (resp. E2)

be the mean over the first (resp, second) CP process. Fix t ⩾ 0 and x ∈ Λ, prove that a.s.

E1(ηt(x)) ⩽ E2(ηt(x)).
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If you have a hard time figuring out how to do properly Exercise 5 and 6, I suggest re-trying

after studying next chapter (in particular after understanding the notion of coupling and how

to use this tool).
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Chapter 3

SOME USEFUL TOOLS AND GENERAL RESULTS

3.1 Some additional notation

Recall that S is a finite on-site configuration space, Λ ⊂ Zd is a finite or infinite volume, and

X is the configuration space X = SΛ. We endow X with the product topology 1, so that it is

a compact metrizable space 2, namely there exists a countable collection of compact sets whose

union forms the space. This follows by Tychonoff’ theorem using the fact that S is compact. For

(ηn)n∈B a sequence of elements of X we set limn→∞ ηn → η iff we have point-wise convergence,

namely ηn(x) → η(x) for all x ∈ Λ.

We will also call B(X) the Borel sigma-field generated by the open subsets of X, B(X) the set

of real, bounded B(X)-measurable functions on X, and C(X) are the continuous functions 3on

X. Finally, we denote by P(X) the space of probability measures on X endowed with the weak

topology 4. Since X is compact, P(X) is also compact.

For η ∈ X and µ ∈ P(X), we denote by

• Pη and Eη respectively the law of the IPS started at η and the expectation over this

process;

• (Pt)t ⩾ 0 the semigroup of the Markov process, which is defined by its action on f ∈ C

Ptf(η) := Eη(f(ηt)) ∀t ⩾ 0

1Recall that open sets in the product topology are (finite or infinite) unions of sets of the form πi∈IUi with

Ui ̸= the whole space Xi only for a finite number of indexes.
2We can for example choose as metric d(η, ξ) =

∑
x∈Λ 2−|x|1Iη(x)̸=ξ(x)

3Note that C(X) can be viewed as a Banach space with norm ||f || = supη∈X |f(η)| .
4Namely, we let µn → µ for n → ∞ iff for all f ∈ C it holds

∫
fdµn →

∫
fdµ, where C = C(X) is the set of

real continuous functions on X viewed as a Banach space with norm ||f || = supη∈X |f(η)|.
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• Pµ the law of the IPS with initial distribution µ, i.e.

Pµ =

∫
X
Pηµ(dη)

and

Eµ(f(ηt)) =

∫
X
Eη(f(ηt))µ(dη) =

∫
X
Ptfdµ

• µPt the the distribution at time t of the process started from µ, i.e. the measure satisfying

5 for all f ∈ C ∫
X
fd(µPt) :=

∫
X
Ptfdµ

From now on we will drop the index X from the integral over the whole configuration space,

namely we set for simplicity of notation
∫
fdµ :=

∫
X fdµ.

3.2 Invariant (or stationary) measures

Definition 3.2.1 (Invariant (or stationary) measures). We say that µ ∈ P is invariant if∫
Ptfdµ =

∫
fdµ, ∀ t ⩾ 0, ∀ f ∈ C(X)

namely if

µPt = µ, ∀t ⩾ 0.

We denote by I the set of invariant measures. As a consequence, for any µ ∈ I and for any

measurable set A, it holds

Pµ(ηs ∈ A) = Pµ(ηs+t ∈ A), ∀s, t ≥ 0.

which follows immediately using Pµ(ηs ∈ A) =
∫
Ps1Adµ.

The invariant measures satisfy the following properties:

Theorem 3.2.2 (Properties of I).

(i) I is a compact and convex subset of P(X);

5The fact that this relation determines µPt uniquely is a consequyence of the Riesz representation theorem.
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(ii) Given an initial measure π, if the weak limit limt→∞ πPt exists, i.e. if exists µ t.q.

lim
t→∞

∫
Ptfdπ = µ(f), ∀f ∈ C

then µ ∈ I;

(iii) I is non empty;

(iv) µ ∈ I iff µ(Lf) = 0 for any f ∈ D(L) with D(L) the domain 6 of the generator L, namely

the sets of continuous functions for which the limit (2.2.14) exists.

Proof. (i) Since I is a subset of the compact set P(X) we only have to show that it is closed

to prove that it is compact. Let {µn}n∈N be such that

1. µn ∈ I for all n;

2. there exists µ ∈ P such that limn→∞ µn = µ.

By definition it holds

(a) µn = µnPt ∀n ;

(b) limn→∞
∫
fdµn =

∫
fdµ for any f ∈ C;

(c) if f ∈ C, it holds Ptf ∈ C for any t ⩾ 0

Therefore ∫
Ptfdµ = lim

n→∞

∫
Ptfdµn = lim

n→∞

∫
fdµn =

∫
fdµ,

which implies that µ ∈ I. We used: (b) and (c) to obtain the first equality; (a) to obtain

the second equality; and (b) to obtain the third equality. Convexity of I follows by defi-

nition;

∫
Psfdµ = lim

t→∞

∫
Pt(Psf)dπ = lim

t→∞

∫
Pt+sfdπ =

∫
fdµ

where we used point (c) above and the fact that a Feller semigroup verifies (see Section

2.1) PtPsf = Pt+sf for any s, t ⩾ 0 and f ∈ C.
6See [Lig85] for a formal definition of the domain. For practical purposes you can think of the domain as being

the sets of local functions, i.e. continuous functions that depend on finitely many coordinates.
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(iii) Fix a measure µ ∈ P and a sequence of real positive numbers {Tn}n∈N such that limn→∞ Tn =

∞. Define a sequence of measures {µn}n∈N by letting for all f ∈ C(X)∫
fdµn :=

1

Tn

∫ Tn

0
dt

∫
fd(µPt) =

1

Tn

∫ Tn

0
dt

∫
Ptfdµ (3.2.1)

The compactness of P yields the existence of a converging subsequence, namely the exis-

tence of a measure µ̃ ∈ P and an increasing sequence {ai}i∈N with ai ∈ N, ∀i s.t.

lim
n→∞

µ̃an = µ̃ (3.2.2)

We will now prove that µ̃ is an invariant measure, which implies in particular that I is

non empty. Note that∫
Psfdµ̃ = lim

n→∞

∫
Psfdµan = lim

n→∞
T−1
an

∫ Tan

0
dt

∫
PtPsfdµ =

lim
n→∞

T−1
an

∫ Tan

0
dt

∫
Pt+sfdµ = lim

n→∞
T−1
an

∫ Tan+s

s
g(τ)dτ =

lim
n→∞

T−1
an

[∫ Tan

0
g(τ)dτ +

∫ Tan+s

Tan

g(τ)dτ −
∫ s

0
g(τ)dτ

]
(3.2.3)

where

g(τ) :=

∫
Pτfdµ

By noticing that |g(τ)| ⩽ supη∈X |f(η)| we get

lim
n→∞

T−1
an

∣∣∣∣∣
∫ Tan+s

Tan

g(τ)dτ −
∫ s

0
g(τ)dτ

∣∣∣∣∣ = 0

which, inserted in (3.2.3), yields∫
Psfdµ̃ = lim

n→∞
T−1
an

∫ Tan

0

∫
Pτfdµ = lim

n→∞

∫
fdµan =

∫
fdµ̃ (3.2.4)

where in the second equality we used (3.2.1) and in the third equality we used (3.2.2).

(iv) Let f ∈ D(L) and µ ∈ I. Then∫
Lfdµ = lim

t→0

∫
Ptfdµ−

∫
fdµ

t
= 0

and the if condition is proven. In order to prove the only if condition suppose that for any

function f ∈ D(L) it holds µ(Lf) = 0. In order to prove that µ ∈ I we proceed as follows.

Fix g ∈ C and λ ⩾ 0, and let f1 = f1(g, λ) ∈ D be defined via

(1I− λL)f1 = g
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(the existence of f1 is guaranteed by Theorem 3.2.3). By integrating and using the hy-

pothesis µ(Lf1) = 0 we get ∫
f1dµ =

∫
gdµ.

We extend the above definition letting for n ⩾ 1

fn = (1I− λL)−ng.

By iterating the above argument we get∫
fndµ =

∫
gdµ. (3.2.5)

Therefore, letting λ := t
n we get

lim
n→∞

∫
(1I− t

n
L)−ngdµ =

∫
gdµ. (3.2.6)

On the other hand, using again Theorem 3.2.3 we have

lim
n→∞

(1I− t

n
L)−nf = Ptf

which, together with (3.2.6) implies µ ∈ I.

Theorem 3.2.3 (Hille Yoshida). There is a one to one correspondence between Markov semi-

groups and generators given as follows

Lf = lim
t→0

Ptf − f

t
∀f ∈ D(L)

Ptf = lim
n→∞

(1I− t

n
L)−nf ∀ f ∈ C(X), t ⩾ 0

where D(L) ⊂ C(X) is the set of functions for which limt→0
Ptf−f

t exists. Furthermore

• for f ∈ D(L) it holds Ptf ∈ D(L)

• the following backward forward equation holds

d

dt
Ptf = Pt(Lf) = L(Ptf) ∀ f ∈ D(X)

• for any λ ⩾ 0 and g ∈ C(X), there exists a function f ∈ D(L) s.t. (1I − λL)f = g.

Furthermore this function satisfies f :=
∫∞
0 e−tPλt gdt.

We will not provide a prove of the Hille Yoshida theorem, the interested reader can find it

Chapter 1 of [?].
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3.3 Ergodicity

Definition 3.3.1 (Ergodicity and phase transitions). We say that an IPS is ergodic7 if the

following two conditions hold:

(i) there is only one invariant measure, I = {µ}

(ii) limt→∞ πPt = µ for any π

We say that a phase transition occurs for an IPS if:

(a) the definition of the IPS contains a parameter (temperature, density, . . . ) that can vary

in a (finite or infinite) real interval I = [a, b]

(b) if we denote by λ the parameter, there exists a value λc ∈ I such that the IPS is ergodic for

λ < λc and it is not ergodic for λ > λc or vice versa. In this case, we call λc the critical

value.

Remark 3.3.2 (Irreducibility and Ergodicity on finite volume). Given a Markov processes on

a finite state X, |X| <∞ we say that it is irreducible if for any couple (η, η′) ∈ X ×X it holds

Pη(ηt = η′) > 0 for some t ⩾ 0. A finite state irreducible Markov process has a unique stationary

measure. If the following stronger requirement holds ∃t > 0 s.t. for any couple (η, η′) ∈ X ×X

it holds Pη(ηt = η′) > 0 (note the inversion of the two conditions in the assumption!) then the

process is ergodic, namely convergence to the stationary measure holds starting from any initial

condition.

Instead, for processes with infinite state space X, it is not enough to exhibit for each couple

(η, η′) ∈ X × X a (possibly infinite) chain of moves with positive transition rate connecting

η to η′ to deduce the uniqueness of the stationary measure. For example, for SIM in the low

temperature regime there is more than one invariant measure, and yet the existence of a chain

of moves that connect any two configurations is guaranteed by the fact that the rate at which

we can change the value of the spin at a given site is strictly positive in any configuration.

Theorem 3.3.3 (A sufficient condition for ergodicity). Consider an IPS with local maps satis-

fying assumptions (A1) and (A2) stated in Section 2.3 and let K be defined as in (2.2.20).

If K < 0 the IPS is ergodic.

7The term ergodic (which is the current jargon in IPS) can be misleading. Indeed the term ergodic usually

denotes a process for which all events that are invariant under time shifts have probability either zero or one.

Actually the stationary process of an ergodic (in the sense of definition 3.3.1) IPS is ergodic in this sense. However,

the converse is not true.
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The proof of the above theorem is left as an exercice. It follows easily from the construction

of the Markov process in Section 2.3 and using the result from Lemma 2.2.7. Hint: if there does

not exist an influence path starting at time zero and reaching time t, the configuration at time

t does not depend on the initial configuration . . .

3.4 Reversibility

Definition 3.4.1 (Reversible measure). We say that µ ∈ P is a reversible measure for the

process if ∫
fPtg dµ =

∫
g Ptfdµ, ∀t ⩾ 0, ∀f, g ∈ C(X)

Remark 3.4.2 (Reversibility vs stationarity). A reversible measure is necessarily invariant.

Indeed, letting g := 1 in the above definition, we get the condition for stationarity .

Theorem 3.4.3. A measure µ is reversible iff for all f, g ∈ D it holds∫
fLg dµ =

∫
gLfdµ

namely iff L is self-adjoint w.r.t. µ.

Exercise 7. Prove Theorem 3.4.3 along analogous lines as Theorem 3.2.2 (iv).

We can extend the definition of the IPS to negative times (ηt)t∈R by setting

E[f(ηt)|Fs] = Pt−sf(ηs), ∀f ∈ C ∀s s.t. −∞ < s ⩽ t

With this definition, if µ is stationary it holds

Pµ(ηt ∈ ·) = µ(·), ∀t ∈ R, (3.4.1)

namely the process with distribution µ at time 0 preserves this distribution at any time.

Lemma 3.4.4. If µ is reversible, the processes {ηt}t ⩾ 0 and {η−t}t ⩾ 0 started at time zero from

µ have the same law, i.e.

Pµ((η−t)t∈R ∈ ·) = Pµ((ηt)t∈R ∈ ·), (3.4.2)

namely the process is time reversible.
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Proof. Let P ∗
t be the adjoint operator of Pt on L

2(X,µ) (the space of functions with µ(f2) <∞)

which is defined by requiring that for all f, g it holds

µ(gP ∗
t f) = µ(fPtg) (3.4.3)

Note that P ∗
t is the semigroup of the time-reversed process, indeed for all g it holds

µ(gP ∗
t f) =

∫
fPtgdµ = Eµ(f(η0)g(ηt)) = Eµ(E(f(η0)g(ηt)|ηt)) =

∫
E(f(η0|ηt = ξ)g(ξ)µ(dξ)

thus

P ∗
t f(η) = E(f(η0)|ηt = η)).

Since Definition 3.4.1 together with the definition of P ∗
t in (3.4.3) imply that µ is reversible iff

Pt = P∗t, this means that µ is a reversible measure iff the law of the stationary process equals

the law of the time reversed process

From the above remark it is easily seen that CP cannot have reversible measure.

Lemma 3.4.5 (Invariance and reversibility in finite volume). Given a Markov process on X

with |X| < ∞, there exists c(η, η′) ⩾ 0 s.t. c(η, η) = 0 and the action of the generator on any

continuous function can be written as

Lf(η) =
∑
η′∈X

c(η, η′)(f(η′)− f(η))

The following holds

• µ ∈ P(X) is invariant iff ∑
η

[µ(η)c(η, ξ)− µ(ξ)c(ξ, η)] = 0 ∀ξ

• µ ∈ P(X) is reversible iff

µ(ξ′)c(ξ′, ξ) = µ(ξ)c(ξ, ξ′) ∀ξ, ξ′.

Note that this condition, which is called detailed balance, corresponds to requiring that each

term is zero in the sum appearing in the stationarity condition.

Proof. Theorem 3.2.2(iv) and the finiteness of X imply that µ is invariant iff µ(L1Iξ) = 0 for

any ξ ∈ X. Then note that L1Iξ(η) = 1η ̸=ξc(η, ξ) − 1η=ξ
∑

η′ c(ξ, η
′) and therefore µ(L1Iξ) =∑

η ̸=ξ µ(η)c(η, ξ) − µ(ξ)
∑

η′ c(ξ, η
′). Theorem 3.4.3 in finite volume implies that reversibility

holds iff µ(1IξL1Iξ′) = µ(1Iξ′L1Iξ) for any two configuraitions ξ, ξ′.
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Exercise 8. Prove that FA-1f model (see Section 1.5) on Zd, for any q ∈ (0, 1] and for any

d ⩾ 1 has, besides the trivial invariant measure δ1, another invariant measure (which depends

on q) . Note that this in particular implies that this model is never ergodic (see definition 3.3.1).

[ Hint. Consider FA-1f on a finite interval [a, b] with empty boundary condition on b + 1 and

a − 1. This model is irreducible and therefore has a unique invariant measure, which is easily

seen not to be δ1. Search for the explicit form of this invariant measure. Notice that there is a

measure that satisfies the detailed balance condition stated in Remark 3.4.5, which is therefore

the unique invariant measure of this finite volume process. Which is this measure? From the

knowledge of the finite volume reversible measure try to guess which is a reversible invariant

measure for the model on Zd and verify that it satisfy the sufficient and necessary condition for

reversibility of Theorem 3.4.3 ]

3.5 Monotonicity or attractivness

For X = {0, 1}Zd
we define the following partial order

η ⩽ ξ iff η(x) ⩽ ξ(x) ∀x ∈ Zd

We say that a function f : X → R is increasing if

η ⩽ ξ implies f(η) ⩽ f(ξ)

and we let N ⊂ C be the set of continuous increasing functions. For example, for any A ⊂ Zd

with |A| <∞, the function fA(η) :=
∏

x∈A η(x) is increasing.

Remark 3.5.1. Given µ1, µ2 two probability measures on S, if it holds

µ1(f) = µ2(f) ∀f ∈ N

then µ1 = µ2. This follow from the observation that we can rewrite any function g : X → R as

f1 − f2 with f1 and f2 increasing.

Given µ1, µ2 two probability measures on S we say that µ1 is stochastically dominated by

(or stochastically smaller than) µ2 and we write µ1 ⩽ µ2 if the following holds:∫
fdµ1 ⩽

∫
fdµ2 ∀f ∈ N
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Recall that δ0 ∈ P(X) (respectively δ1 ∈ P(X)) is the measure concentrated on the configu-

ration in which all sites have occupation variables equal to zero (respectively to one). Therefore

from the above definition it follows immediately that for any µ ∈ P(X) it holds

δ0 ⩽ µ ⩽ δ1 (3.5.1)

Definition 3.5.2. We say that an IPS is monotone (or attractive) if µ1 ⩽ µ2 implies µ1Pt ⩽ µ2Pt

for all t ⩾ 0.

Exercise 9. Prove that Definition 3.5.2 is equivalent to the following: ”We say that an IPS is

monotone if for any f ∈ N and any t ⩾ 0, the function Ptf also belongs to N .”

[Hint: use that fact that for any µ ∈ P(X), any function f and for any time t ⩾ 0 it holds∫
fd(µPt) =

∫
Ptfdµ.

Recall that we call spin IPS an interacting particle system for which the configuration space

is of the form SΛ with onsite space S = {0, 1} (or any other two state space) and all elementary

moves are all of the form η → ηx with ηx the configuration in which only the value at site x has

been changed w.r.t. configuration η. Therefore the corresponding generator takes the form

Lf(η) =
∑
x∈Λ

r(x, η)(f(ηx)− f(η) (3.5.2)

Theorem 3.5.3. A spin IPS is monotone iff the following holds: for any couple of configurations

η, ξ that satisfy η ⩽ ξ it holds

(i) r(x, η) ⩽ r(x, ξ) if η(x) = ξ(x) = 0

(ii) r(x, η) ⩾ r(x, ξ) if η(x) = ξ(x) = 1

Note that these conditions on the rates roughly say that an occupation variable tries to align

with its neighbours, hence the name ”attractive”. Indeed (i) requires that the rate to flip from

0 to 1 is higher in a configuration that has more ones, while (ii) requires that the rate to flip

from 1 to 0 is higher in a configuration that has more zeros.

Exercise 10. Use Theorem 3.5.3 to prove that

• CP, VM are monotone

• FA-1f model is not monotone.
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Exercise 11. Consider SIM under the change of variables η ∈ {±1}Λ → η̃ ∈ {0, 1}Λ with

η̃(x) = 1−η(x)
2 for all x and prove using Theorem 3.5.3 that it is monotone.

Before giving the proof of Theorem 3.5.3 we should understand better the notion of stochastic

domination among measure by introducing the notion of coupling .

Definition 3.5.4 (Coupling). A coupling of two random variables is a joint construction of the

variables on a common probability space. More precisely, given µ1 ∈ P(X) and µ2 ∈ P(X), a

coupling is a measure µ on X ×X whose marginals are µ1 and µ2 , i.e. such that for i ∈ [1, 2]

and any A ⊂ X it holds µ({η : η(i) ∈ A}) = µi(A), where for η ∈ X × X we denote by η(1))

(respectively η(2) the first (respectively the second) coordinate of η.

Theorem 3.5.5 (Strassen). Given µ1, µ2 on X, it holds

µ1 ⩽ µ2

iff ∃ a coupling µ on X ×X s.t.

µ{η = (η1, η2) : η1 ⩽ η2} = 1

Proof. A direction of the proof is easy. Fix f an increasing function. If a coupling µ with the

property µ{η : η(1) ⩽ η(2)} = 1 exists, with probability 1 w.r.t. µ it holds f(η(1)) ⩽ f(η(2)).

Therefore

µ1(f) =

∫
f(η(1))dµ(η) ⩽

∫
f(η(2))dµ(η) ⩽ µ2(f)

The other direction is more tricky, full proof on [Lig85] (Theorem 2.4, pag 72).

Exercise 12. Fix p1, p2 ∈ [0, 1] with p1 < p2. Let X = {0, 1}Λ with |Λ| <∞ and

µi =
∏
x∈Λ

p
η(x)
i (1− pi)

1−η(x) for i ∈ {1, 2}.

Construct a coupling µ of µ1 and µ2 such that µ{η = (η1, η2) : η1 ⩽ η2} = 1. [Hint. Case

|Λ| = 1. Let z be a uniform random variable on the interval [0, 1]. If you set η1 = 1Iz<p1 and

η2 = 1Iz<p2 it follows that η1 ⩽ η2 and it is easily checked that η1 is distributed with µ1 and η2

is distributed with µ2. Therefore we have provided the coupling. It is now very easy to extending

the coupling to the case |Λ| > 1.]

Neither Definition 3.5.4 nor Theorem 3.5.5 give an efficient way to check whether, given

µ1, µ2 ∈ P, one of the two measures is stochastically dominated by the other. A precious result
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is the following sufficient condition. For η, ξ ∈ X let η∨ξ ∈ X and η∧ξ ∈ X be the configurations

defined by

η ∨ ξ(x) = max(η(x), ξ(x)), η ∧ ξ(x) = min(η(x), ξ(x))

Theorem 3.5.6 (Holley theorem). Given µ1, µ2 that assign a strictly positive probability to any

point in X, if it holds

µ1(η ∧ ξ)µ2(η ∨ ξ) ⩾ µ1(η)µ2(ξ) ∀η, ξ ∈ X

then it holds

µ1 ⩽ µ2.

We refer the reader to [Lig85] pag. 75 for a detailed proof. The strategy of the proof is to

construct a Markov chain (ηt, ξt) on X × X with starting point η, ξ s.t. η ⩽ ξ and preserving

this property during the evolution and such that the first (resp. second) marginal is a Markov

chain with stationary measure µ1 (resp. µ2).

We are now ready to prove the necessary and sufficient condition for an IPS to be monotone.

Proof of Theorem 3.5.3. We should prove that

(a) any IPS satisfying conditions (i) and (ii) is necessarily monotone

(b) any monotone IPS satisfies conditions (i) and (ii)

Proof of (a). Fix µ1, µ2 ∈ P s.t. µ1 ⩽ µ2. Our goal is to show that (i) and (ii) imply that

for any t > 0 it holds µ1Pt ⩽ µ2Pt. To this aim we construct a coupling of Pµ1 ,Pµ2 that

preserves the partial order at any fixed time, namely a probability P ({η1t }t ⩾ 0, {η2t }t ⩾ 0)

with marginals Pµ1 and Pµ2 and such that P ({η1t ⩽ η2t ∀t ⩾ 0}) = 1. If we exhibit such a

coupling, then the result follows by Theorem 3.5.5.

In order to construct the coupling with the desired properties notice that, since µ1 ⩽ µ2

and again thanks to Theorem 3.5.5, there exists a distribution µ onX×X that is a coupling

for µ1, µ2 and that satisfies µ(η1 ⩽ η2) = 1. Consider the Markov process (ηt × ξt)t ⩾ 0

on the configuration space X ×X with initial configuration η0 × ξ0 distributed according

to µ and with elementary moves corresponding to (i) either the simultaneous change of η

and ξ on the same site; or (ii) only η changes on a single site; or (iii) only ξ changes on a

single site x. These moves occur at the following rates
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1) (η, ξ) → (ηx, ξx) at rate r(x, η)1Iη(x)=ξ(x)=0 + r(x, ξ)1Iη(x)=ξ(x)=1;

2) (η, ξ) → (ηx, ξ) at rate (r(x, η)− r(x, ξ)) 1Iη(x)=ξ(x)=1 + r(x, η)1Iη(x)=01Iξ(x)=1;

3) (η, ξ) → (η, ξx) at rate (r(x, ξ)− r(x, η)) 1Iη(x)=ξ(x)=0 + r(x, ξ)1Iη(x)=01Iξ(x)=1

It is immediate to verify that

• if η ⩽ ξ, each elementary move preserves this partial order. Thus since the event

η ⩽ ξ has probability one under the initial distribution, at any time it holds ηt ⩽ ξt

with probability one.

• (i) and (ii) and the partial order among η and ξ guarantee that all the transition

rates of the constructed process are non negative, thus the process is well defined

• each marginal process evolves according to the correct transition rates

Proof of (b). Consider a monotone spin IPS. Fix a site x ∈ Λ and define a function

f : X → R by letting f(η) = η(x). Since f is increasing, by monotonicity of the process

also Ptf is increasing. Choose two configurations η, ξ s.t.

η(x) = ξ(x) and η ⩽ ξ.

Then it holds

Lf(η)− Lf(ξ) = lim
t→0

Ptf(η)− Ptf(ξ)− f(η) + f(ξ)

t
⩽ 0 (3.5.3)

where we used the fact that: f(η) = η(x) = ξ(x) = f(ξ) , and Ptf(η) ⩽ Pff(ξ) (recall

that η ⩽ ξ and Ptf is increasing). Furthermore it holds

Lf(η) =
∑
y

r(y, η)(f(ηy)− f(η)) = r(x, η)(1− 2η(x)) (3.5.4)

Putting (3.5.4) and (3.6.7) together yields

r(x, η)(1− 2η(x)) ⩽ r(x, ξ)(1− 2ξ(x))

which immediately imply the validity of conditions (i) and (ii).

Theorem 3.5.7 (Invariant measures for monotone spin IPS). For a monotone spin IPS it holds

(a) δ0Ps ⩽ δ0Pt for all s ∈ [0, t]
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(b) δ1Ps ⩾ δ1Pt for all s ∈ [0, t]

(c) δ0Pt ⩽ µPt ⩽ δ1Pt for all t ⩾ 0 and any µ

(d) limt→∞ δ0Pt and limt→∞ δ1Pt exist. We let ν
¯
:= limt→∞ δ0Pt and ν̄ := limt→∞ δ1Pt

(e) let µ ∈ P. If ν := limt→∞ µPt exists, it holds ν
¯
⩽ ν ⩽ ν̄

(f) ν
¯
et ν̄ are extremal on I

Proof.

(a) Fix s, t with s ⩽ t. From (3.5.1) it follows that δ0 ⩽ δ0Pt−s. Due to monotonicity this

order is preserved at any later time, thus δ0Ps ⩽ δ0Pt−sPs = δ0Pt;

(b) analogous to (a)

(c) Follows immediately using (3.5.1) and the fact that the IPS is monotone;

(d) Fix any increasing sequence of times {tn}n∈N and let µn := δ0Ptn . By point (a) we have

that µn ⩽ µm for any n < m, thus limn→∞ µn exists and belongs to P due to compactness.

Suppose that we fix two increasing sequences of times {t1n}n∈N and {t2n}n∈N and call µ1

and µ2 the corresponding limit measures. Then it follows that for any f ∈ N it holds

µ1(f) = µ2(f), which implies µ1 = µ2 by Remark 3.5.1. We proceed analogously to prove

the existence of limt→∞ δ1Pt

(e) it follows from (c), (d) and monotonicity

(f) ν
¯
et ν̄ are invariant thanks to Theorem 3.2.2. To prove extremality we proceed by con-

tradiction. Suppose that ν̄ is not extremal, namely suppose that ∃µ1, µ2 ∈ I with µ1

and µ2 different from ν̄ and α ∈ (0, 1) s.t. ν̄ = αµ1 + (1 − α)µ2. Since µ1, µ2 are

invariant measures they can be obtained as infinite limit of a process started with them-

selves, thus (e) implies µ1, µ2 ⩽ ν̄. Therefore for any f ∈ N it holds µi(f) ⩽ ν̄(f) and

ν̄(f) = αµ1(f) + (1 − α)µ2(f) which implies µ1(f) = µ2(f) = ν̄(f). Thus we deduce

that for any f ∈ N it holds µ1(f) = µ2(f) = ν̄(f) which implies by Remark 3.5.1 that

µ1 = µ2 = ν̄ thus contradicting the hypothesis.

The interested reader might have a look at Theorem 3.13 p.152 in [Lig85] which proves that

r(x, η) + r(x, ηx) > 0 ∀x ∈ Z, ∀η ∈ X : η(x− 1) ̸= η(x+ 1)
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is a sufficient condition for one-dimensional (Λ = Z) attractive IPS that guarantees that the

only extremal invariant measures are ν
¯
and ν̄. This condition is satisfied by CP, SIM, and VM.

Corollary 3.5.8. For a monotone spin IPS the following three conditions are equivalent

1. the process is ergodic

2. I is a singleton

3. ν̄ = ν
¯

3.6 Duality

Duality is a very useful tool that allows sometimes to connect two different IPS expressing the

law of one process in term of the other and vice versa.

A first example: consider VM in d=1 and focus on the evolution of the position of the boundaries

separating islands of 0’s and 1’s. It is not difficult to realise that these boundaries evolve as

simple symmetric annihilating random walks on Z: when two boundaries meet they annihilate

and otherwise each boundary moves as a random walks jumping at rate 1/2 to each of its 2

nearest neighbours. So one can translate the probability law of one-dimensional VM in terms of

the law for one-dimensional simple symmetric annihilating random walks. These two systems

are dual one to the other 8.

Let us start by giving an abstract definition of duality. We will later provide specific exam-

ples.

Definition 3.6.1 (Duality and Self-duality). Given two Markov processes (ηt)t ⩾ 0 and (ξt)t ⩾ 0

on space states X and Y , and given H(η, ξ) a bounded measurable function on X × Y , we say

that (ηt)t ⩾ 0 and (ξt)t ⩾ 0 are dual to each other w.r.t. H if

EηH(ηt, ξ) = EξH(η, ξt), ∀η ∈ X, ξ ∈ Y, t ⩾ 0 (3.6.1)

We say that (ηt)t ⩾ 0 is self dual if it is dual w.r.t. H to a process (ξt)t ⩾ 0 that has the same law

as (ηt)t ⩾ 0.

8Actually duality here holds configuration wise, namely in a stronger sense than the one given by Definition

3.6.1.
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Theorem 3.6.2. [A class of duality relations for spin IPS]

Let

X = {0, 1}Zd
, Y := {A : A ⊂ Zd, |A| <∞}

and

H(η,A) :=
∏
x∈A

(1− η(x)) for A ̸= ∅, H(η, ∅) := 1 (3.6.2)

Fix c : Zd → R and p : Zd × Y → [0, 1] satisfying

(A1) supx c(x) <∞

(A2) c(x) ⩾ 0 ∀x ∈ Zd,

(A3) p(x,A) ⩾ 0 ∀x ∈ Zd, ∀A ∈ Y

(A4)
∑

B∈Y p(x,B) = 1 ∀x ∈ Zd

(A5) supx c(x)
∑

A |A|p(x,A) <∞.

Fix η ∈ X, A ∈ Y and define two Markov processes (ηt)t ⩾ 0 on X and (At)t ⩾ 0 on Y as follows

• (ηt)t ⩾ 0 is the spin IPS with η0 = η and rates

r(x, η) := c(x)

[
η(x)

∑
A⊂Y

p(x,A)H(η,A) + (1− η(x))
∑
A⊂Y

p(x,A)(1−H(η,A))

]
(3.6.3)

• (At)t ⩾ 0 is the Markov process with A0 = A and rate q(A,B) to go from state A to B

defined by

q(A,B) :=
∑
x∈A

c(x)
∑

F :(A\{x})∪F=B

p(x, F ) for A ̸= ∅ (3.6.4)

q(∅, B) = 1 if B = ∅,

q(∅, B) = 0 if B ̸= ∅

Notice that assumption (A5) guarantees that for any t ⩾ 0 it holds |At| <∞, thus (At)t ⩾ 0 is a

Markov process on Y . Then (ηt)t ⩾ 0 and (At)t ⩾ 0 are dual to each other w.r.t. the function H

defined in (3.6.2).

Proof of Theorem 3.6.2. Let L and L̄ be the generator of (ηt)t ⩾ 0 and (At)t ⩾ 0, so that

LH(η,A) =
∑
x∈Zd

r(x, η)[H(ηx, A)−H(η,A)] (3.6.5)
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L̄H(η,A) =
∑
B∈Y

q(A,B)[H(η,B)−H(η,A)] (3.6.6)

Using the form of the rates (see (3.6.3) and (3.6.4)), assumption (A4) and the form of the

function H (see (3.6.2)) we get

LH(η,A) =
∑
x∈A

c(x)

[
(2η(x)− 1)

∑
F⊂Y

p(x, F )H(η, F ) + (1− η(x))

]
[H(ηx, A)−H(η,A)] =

∑
x∈A

c(x)

[
η(x)

(∑
F⊂Y

p(x, F )H(η, F )

)
H(η,A \ x) + (1− η(x))

(∑
F⊂Y

p(x, F )H(η, F )− 1

)
H(η,A)

]
Noticing that for x ∈ A it holds

H(η,A)(1− η(x)) = H(η,A \ x)(1− η(x)) = H(η,A)

we get

LH(η,A) =
∑
x∈A

c(x)

[(∑
F⊂Y

p(x, F )H(η, F )

)
H(η,A \ x)−H(η,A)

]
(3.6.7)

Using (3.6.2) and (3.6.4) we get

H(η, F )H(η,A \ x) = H(η,A \ x ∪ F )

and ∑
B

q(A,B) =
∑
x∈A

cx

which, inserted in (3.6.7) yield

LH(η,A) = L̄H(η,A) ∀η ∈ X, ∀A ∈ Y (3.6.8)

Therefore, letting Pt (respectively P̄t) be the semigroup associated to L (respectively to L̄)

and using Theorem 3.2.3 which gives LPtf = Pt(Lf) we get

d

dt
EηH(ηt, A) =

d

dt
PtH(η,A) = L(PtH(η,A)) = Pt(LH(η,A)) =

Pt(L̄H(η,A)) = L̄PtH(η,A) = L̄ (EηH(ηt, A)) (3.6.9)

and
d

dt
EAH(η,At) =

d

dt
P̄tH(η,A) = L̄P̄tH(η,At) = L̄

(
EAH(η,At)

)
(3.6.10)

The above equations (3.6.9) and (3.6.10) say that the quantities EAH(η,At) and EηH(ηt, A),

which are equal at time 0 since η0 = η and A0 = A, satisfy the same differential equation

47



d
dt t = L̄f . Since the assumptions (A1)-(A5) guarantee that the process generated by L is unique

it follows that

EηH(ηt, A) = EAH(η,At) for all t ⩾ 0

Remark 3.6.3. Let ∅ denote the configuration η ∈ X s.t. η(x) = 0 for all x ∈ Zd. The

configuration ∅ is a trap for the process (ηt)t ⩾ 0. More precisely, if ηs = ∅, then it holds ηt = ∅

for all t ⩾ s with probability one. Indeed if η = ∅ it holds r(x, η) = 0 for all x ∈ Zd (use

H(∅, A) = 1 for all A). The same is true for the process (At)t ⩾ 0, for which the configuration ∅

(now denoting as an element of Y ) is a trap.

Corollary 3.6.4. Fix η ∈ X and A ∈ Y , and let Pη and PA be the laws defined in Theorem

3.6.2. It holds

Pη(ηt(x) = 0 ∀x ∈ A) = PA(η(x) = 0∀x ∈ At) ∀ t ⩾ 0

Proof. The proof follows easily by noticing that

Eη

(∏
x∈A

(1− ηt(x))

)
= Pη (ηt(x) = 0 ∀x ∈ A)

and

EA

(∏
x∈At

(1− η(x)

)
= PA (η(x) = 0 ∀x ∈ At)

Exercise 13. Prove that if we let

c(x) := 1 + 2dλ, p(x,A) :=
1

1 + 2dλ
1IA=∅ +

λ

1 + 2dλ

∑
y:y∼x

1IA={x,y}

the two functions satisfy (A1)–(A5) of Theorem 3.6.2. Furthermore using (3.6.2), (3.6.3) and

(3.6.4) it follows that (ηt)t ⩾ 0 is CP(d, λ), i.e. the contact process with infection parameter λ on

Zd and (At)t ⩾ 0 is the process evolving as the subset of Zd containing all the infected sites of a

CP(d, λ).

Hint. The present choice of c and p together with (3.6.3) and (3.6.4) yield

r(x, η) = η(x) + (1− η(x))λ
∑
y:y∼x

η(y)

q(A,B) = |{x : x ∈ A,A \ x = B}|+ λ|{(x, y) : x ∈ A,A ∪ y = B, y ∼ x}|
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Remark 3.6.5. As a by-product of Exercise 13 we have proven that CP is self-dual. For an

alternative proof of self-duality for the contact process the interested reader might read section

2.1 of [Swaa] (see in particular Lemma 2.1 therein) 9.

Exercise 14 (Duality of the Voter model with coalescing random walks). Let

c(x) := 1, p(x,A) :=
1

2d

∑
y:y∼x

1IA={y}.

Prove that

• these functions satisfy (A1)–(A5) of Theorem 3.6.2

• with this choice (ηt)t ⩾ 0 is the voter model (VM) while (At)t ⩾ 0 evolves on Y with rate

q(A,B) = |{(x, y) : x ∈ A,B = (A \ {x}) ∪ {y}, y ∼ x}|

• Att ⩾ 0 can be equivalently described as a Markov process (σt)t ⩾ 0 on X by making the

identification σ(X)(x) = 1 iff x ∈ A evolving with generator

LCrwf(η) =
∑
x

1

2d

∑
y,y∼x

(f(η̄xy(x)− f(η))

where we let

η̄xy(z) :=


0 if z = x

max(η(x), η(y)) if z = y

η(z) otherwise

(3.6.11)

In words, this correspond to random walks that move at rate 1 to a randomly chosen

neighbour, coalesce when they meet and otherwise evolve independently.

9The proof presented by Swart is completely graphical (and less abstract) and based on a simple observation.

Draw the occurrences of the arrival times of the infection and healing maps as described in Section 2.1. For

A ⊂ Zd and s, t ⩾ 0, let ηA,s
t be the set of points i ∈ Zd s.t. ∃y ∈ A with (y, s) → (i, A). Let also η+,A,s

t be the

set of points i ∈ Zd s.t. there exists y ∈ A with (i, s− t) → (y, s). Then the law of η+,A,s
t and ηA,s

t coincide. The

proof of the above result can be done as follows: (1) take a piece of paper, (2) draw a realisation of the arrows

and crosses corresponding to the arrival times of the infection and healing maps of CP (see Section 2.1) , (3) turn

the paper upside down, (4) invert the direction of each infection arrow and put a − sign in front of each time

(so that e.g. an original horizontal line at time 10 is now at time −10), (5) notice that thanks to the fact that

infections from i → i+1 have the same rate as infections from i → i− 1, the crosses and arrows that you see now

are still distributed as for a contact process, (6) notice that a path of influence occurs now from j,−(s+ t) iff in

your original (non upside down) picture a path of influence was occurring from i, s to j, s+ t.
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Remark 3.6.6 (Duality of the Voter model with annihilating random walks). An IPS can have

different dual processes (with respect to different functions H). For example, the VM is also dual

to annihilating random walks. More let (σt)t ⩾ 0 be a Markov process on (0, 1)Z
d
with generator

LArwf(σ) =
∑
x

1

2d

∑
y,y∼x

(f(σ̄xy(x)− f(σ))

where

σ̃xy(z) :=


0 if z = x

σ(x) + σ(y) mod(2) if z = y

σ(z) otherwise .

(3.6.12)

For any η, σ ∈ X it holds

Eη [(−1)ηt·σ] = Eσ [(−1)η·σt ]

with (ηt) ⩾ 0 the VM and η · σ ⊂ X the configuration which equals point-wise the product of the

two configurations,

η · σ(x) = η(x)σ(x). (3.6.13)

The following theorem is the key ingredient to prove that for the contact process the critical

value of λ separating the regime in which CP started from a single infection dies out from the

regime in which it survives coincides with the critical value separating the ergodic and non

ergodic regimes. We postpone this proof (see Theorem 4.1.4) to the next chapter where the

contact process is studied in detail. Below, we will show another application of this theorem to

the case of the voter model (see Theorem 3.6.10).

Theorem 3.6.7. [Duality and Ergodicity] Let (ηt)t ⩾ 0 and (At)t ⩾ 0 be defined as in Theorem

3.6.2. Then (ηt)t ⩾ 0 is ergodic iff (At)t ⩾ 0 is ergodic, namely iff it holds

PA(τ <∞) = 1 ∀A ∈ Y

where τ is a random time corresponding to the extinction time of At, namely

τ := inf{t ⩾ 0 : At = ∅}.

The importance of this theorem is seen by noticing that (At)t ⩾ 0 lives on the state space Y

of finite subsets of Zd, therefore extinction is in general easier to prove .

Corollary 3.6.8. VM is not ergodic, namely δ0 = ν
¯
̸= ν̄ = δ1.
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Proof. By definition coalescing random walk never die out, namely starting from any finite

number of random walks there is at least one walker at any subsequent time, therefore it holds

PA(τ < ∞) = 0. This, together with Theorem 3.6.7, implies that VM is not ergodic. Of

course this could have been proved immediately by noticing that starting from the configuration

completely one and the configuration completely zero are traps for VM and therefore ν
¯
̸= ν̄

Proof of Theorem 3.6.7.

• If it holds

PA(τ <∞) = 1 ∀A ∈ Y,

then using Theorem 3.6.2, we write for any µ, any A and any t ⩾ 0

Pµ(ηt(x) = 0 ∀x ∈ A) =

∫
EηH(ηt, A)µ(dη) =

∫
EAH(η,At)µ(dη) =

= PA(τ ⩽ t) +

∫
PA(η(x) = 0∀x ∈ At, τ > t)µ(dη)

Now letting t→ ∞ and using the hypothesis we get

lim
t→∞

Pµ(ηt(x) = 0 ∀x ∈ A) = 1 ∀µ ∈ P(X), A ∈ Y

Thus limt→∞ µPt = δ0 and so (ηt)t ⩾ 0 is ergodic.

• Suppose that we know that (ηt)t ⩾ 0 is ergodic, thus limt→∞ δ1Pt = δ0 indeed ergodicity

the upper invariant measure equals the lower invariant measure, and the latter is δ0 since

the completely empty configuration is a trap for the dynamics (see Remark 3.6.3) By using

the same formulas as before with the choice µ = δ1

Pδ1(ηt(x) = 0 ∀x ∈ A) = PA(τ ⩽ t) +

∫
PA(η(x) = 0∀x ∈ At, τ > t)δ1(dη)

The second term in the r.h.s. is zero since At ̸= ∅ on the event τ > t and δ1 is concentrated

on all one configuration. If we now let t → ∞ and use the hypothesis limt→∞ δ1Pt = δ0 ,

we get

1 = PA(τ ⩽ ∞) = PA(τ ⩽ ∞)
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Theorem 3.6.9. Let (At)t ⩾ 0 be defined as in Theorem 3.6.7. If

sup
x

(
c(x)

∑
F∈Y

p(x, F )(|F | − 1)

)
= ω <∞

then (At)t ⩾ 0 is ergodic.

Proof. Let f : Y → R be defined setting f(A) = |A| Then it holds

Lf(A) =
∑
B⊂Y

q(A,B)(|B| − |A|) =
∑
x∈A

c(x)
∑
F∈Y

p(x, F )[|(A \ {x} ∪ F )− |A|) ⩽ (3.6.14)

⩽
∑
x∈A

c(x)
∑
F∈Y

p(x, F )(|F | − 1) ⩽ ω|A| = ωf(A) (3.6.15)

Exercise 15. Use Theorem 5.0.9 to prove that for λ < 1/2d the contact process is ergodic.

As anticipated, using Theorem 3.6.7 we can prove easily ergodicity results for some processes.

An example is the following result for the voter model.

Theorem 3.6.10. Let (ηt)t ⩾ 0 be the VM on Zd started at time zero from a Bernoulli(p) product

measure, µp, with p ∈ [0, 1]. For d = 1, 2 it holds

lim
t→∞

µPt = (1− p)δ0 + pδ1

For d ⩾ 3

lim
t→∞

µPt = νp with νp(⃗0) = νp(⃗1) = 0

with 0⃗ (resp. 1⃗ ) the completely empty (resp. completely filled) configuration.

Proof. Fix σ ∈ {0, 1}Zd
, we call (see the notation in the hint for this exercise) (σt)t ⩾ 0 the

coalescing r.w. process evolved starting from σ. Notice that the limit limt→∞ |σt| exists, since

for coalescing r.w. |σt| is non increasing in time. Let

N(σ) := lim
t→∞

|σt|,

by general results for random walks (recurrence in d = 1, 2 and transience for d ⩾ 3) it holds

that N(σ) = 1 a.s. in d = 1, 2

P [N(σ) ⩾ 2] > 0 for all σ s.t. |σ| ⩾ 2.
(3.6.16)
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Then using the duality relation (3.6.1) connecting the VM process (ηt)t ⩾ 0 and the coalescing

random walks guaranteed by Theorem 3.6.2 and Exercise 14, we deduce

Pη(|ηt · σ| = 0) = Pσ(|η · σt| = 0)

where the notation · has been defined in (3.6.13). Therefore µpPt converges weakly to a proba-

bility law νp characterised by 10∫
P η(|ηt · σ| = 0)dµp(η) = E

[
(1− p)|σt|

]
(3.6.17)

Letting t → ∞ and using (3.6.16) we get νp = (1 − p)δ0 + pδ1 for d = 1, 2 Furthermore, again

using general results on random walks it can be proven that in d ⩾ 3 for any n ⩾ 1 and any

ϵ > 0 we can find a configuration σ with |σ| = n and all walkers sufficiently far from each other

so that P (N(σ) = n ⩾ 1− ϵ). As a consequence using (??) and letting t→ ∞ we get

νp(⃗0) ⩽ (1− ϵ)(1− p)n + ϵ

where 0⃗ is the completely empty configuration. This, thanks to the arbitrariness of n and ϵ,

yields νp(⃗0) = 0 for any p > 0. By symmetry between 1’s and 0’s. we also have νp(⃗1) = 0 for

any p < 1.

10Here we use Stone - Weierstrass theorem that guarantees that, for any µ, ν probability laws on the sigma

algebra of subsets of Zd if for any finite B ⊂ Zd it holds
∫
µ(dA)1IA∩B≠=∅ =

∫
ν(dA)1IA∩B≠=∅ then µ = ν.
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Chapter 4

CONTACT PROCESS

4.1 Main results

For λ ⩾ 0 and d ∈ N we call CP(d, λ) the contact process on Zd with infection rate λ which has

been constructed in Chapter 1. From Chapter 3 we already know that CP(d, λ) is a monotone

spin IPS and the lower invariant measure is independent on λ and is concentrated in the com-

pletely empty configuration, ν
¯
= δ0. The upper invariant measure depends instead on λ and we

denote it by ν̄λ.

Exercise 16. Fix λ1, λ2 > 0 with λ1 ⩽ λ2. Prove that ν̄λ1 ⩽ ν̄λ1. As a consequence, ρ(λ) :=

ν̄λ(η(x)) is non decreasing in λ.

[Hint. Use the graphical construction to couple the process with infection rate λ1 and the

process with infection rate λ2. Both CP(d, λ1) and CP(d,λ2) have healing rate 1, so we can

take the same realisation of the arrival times for the healing maps. Infection maps instead

have different rates for the two process. Recall that for CP(d, λ), for any oriented couple of

neighbouring sites, the arrival times of the infection maps form a Poisson Point Set (PPS) of

intensity λ on R+. Find a way to construct a coupling of a PPS of intensity λ1 and a PPS of

intensity λ2 such that whenever an arrival time occurs for the first PPS it also occur for the

latter.]

We denote by Pη
d,λ the law of CP(d, λ) started by η and (with slight abuse of notation) for

any A ⊂ Zd we denote by PA
d,λ the law of the CP(d, λ) started from a configuration ηA with

ηA(x) = 1 iff x ∈ A. Note that a configuration η ∈ X can be either be identified by specifying

the occupation variable for each site, namely by specifying η(x)x∈Zd or equivalently by specifying

the set of its occupied sites. Therefore in the following when for A ⊂ Zd we write η = A it

means that η(x) = 1 if x ∈ A and η(x) = 0 if x ∈ Ac. We are now ready to introduce the notion
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of survival probability , that is the probability that starting from a single infected site infection

survives at any time, namely

θd(λ) := P{x}
d,λ (ηt ̸= ∅ ∀t ⩾ 0). (4.1.1)

By recalling the graphical construction of the contact process performed in Section 2.1 (and in

particular Definition 2.2.2, Remark 2.2.4 and Theorem 2.2.6) it is easy to verify that

θd(λ) = P{(x, 0) → ∞} (4.1.2)

with P the probability over ∆ ⊂ M× [0,∞), i.e. on the Poisson point processes associated to

the healing and infection maps and we recall that {(x, 0) → ∞}is the event that there a path

of influence from (x, 0) to at least one point with time coordinate t for all t ⩾ 0. Notice that by

translation invariance the r.h.s. does not depend on x.

Definition 4.1.1. If θd(λ) > 0 we say that CP(d, λ) survives, otherwise we say that it dies out.

We also define the critical infection rate for survival, λ̄c(d), as

λ̄c(d) := sup{λ ⩾ 0 : CP(d, λ) dies out}.

Exercise 17. Use the graphical construction to prove that for any λ1, λ2 with λ1 < λ2

• if CP( d, λ2) dies out, then CP(d, λ1) also dies out;

• if CP(d, λ1) survives, then CP(d, λ2) also survives

In other words, it holds

λ̄c(d) = inf{λ ⩾ 0 : CP(d, λ) survives}.

Remark 4.1.2. We could have defined survival starting from any finite sets of infections, it

would have been an equivalent definition. Namely for any finite non-empty set A ⊂ Zd the

following holds

• P{A}
d,λ (ηt ̸= ∅ ∀t ⩾ 0) = 0 if λ < λ̄c(d)

• P{A}
d,λ (ηt ̸= ∅ ∀t ⩾ 0) > 0 if λ > λ̄c(d)

Indeed from the graphical construction it holds

P{A}
d,λ (ηt ̸= ∅ ∀t ⩾ 0) = P((A, 0) → ∞)

56



with

{(A, 0) → ∞} := ∪j∈A{(j, 0) → ∞}

And therefore

θd(λ) = P((x, 0) → ∞) ⩽ P((A, 0) → ∞) ≤
∑
j∈A

P((j, 0) → ∞) = |A|θd(λ)

Exercise 18. Use the graphical construction to prove that the contact process is additive, namely

that for any η, ξ the CP(d, λ) started at η ∨ ξ has the same law of (ηt ∨ ξt)t ⩾ 0, the max at each

time among the CP(d, λ) started at η and ξ.

Recall the definition of ergodicity given in Definition 3.3.1, the definitions of upper and lower

invariant measures for attractive spin IPS (see Theorem3.5.7) and the result of Corollary 3.5.8.

Let λc(d) be the critical threshold for ergodicity, namely

λc(d) := sup{λ ⩾ 0 : ν
¯
= ν̄}

Exercise 19. Prove that for any λ1, λ2 with λ1 < λ2

• if CP( d, λ2) is ergodic, then CP(d, λ1) is also ergodic;

• if CP(d, λ1) is not ergodic, then CP(d, λ2) is also not ergodic.

In other words it holds

λc(d) := inf{λ ⩾ 0 : ν
¯
̸= ν̄}.

The main results for CP on Zd are the two following theorems that we will prove in the

remainder of this chapter:

Theorem 4.1.3. For any d ∈ Z+, the critical threshold for survival coincides with the critical

threshold for ergodicity, namely λc(d) = λ̄c(d).

Theorem 4.1.4. For any d ∈ Z+ it holds 0 < λc(d) <∞.

Before presenting the proofs of Theorems 4.1.3 and 4.1.4, we sketch an approximated argu-

ment supporting the occurrence of a phase transition and present other results for CP whose

proofs go beyond the scope of these lectures.

Remark 4.1.5 (A mean field argument supporting the occurrence of a phase transition). Let

ρt(x) := Eµ(ηt(x)).
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Then, using d
dtPtf = PtLf with f(η) = η(x) we get

d

dt
ρt(x) = −ρt(x) + λ

∑
y:y∼x

Eµ(ηt(y)(1− ηt(x)) (4.1.3)

where we used

Lη(x) = r(x, η)(1− 2η(x)) = −η(x) + λ(1− η(x))
∑
y∼x

η(y).

By the translation invariance of the dynamics, if µ is translation invariant, ρt(x) does not

depend on x. The mean field approximation consist in neglecting higher order corrections in

(4.1.3) namely letting

Eµ(ηt(y)(1− ηt(x)) ∼ Eµ(ηt(y))Eµ(1− ηt(x)) = ρt(1− ρt).

With this approximation we get

d

dt
ρt = −ρt + 2dλρt(1− ρt) (4.1.4)

which has a single stationary solution (ρ = 0) for λ ⩽ 1/(2d) and an additional stationary

solution ρ = 1− 1
2dλ for λ > 1/(2d).

Theorem 4.1.6 (Complete convergence). For any π ∈ P it holds

lim
t→∞

πPt = ρ(A)ν̄λ + (1− ρ(A))δ0

where

ρ(A) :=

∫
Pη(ηt ̸= ∅, ∀t ⩾ 0)dπ(η).

This implies in particular that ν̄ and δ0 are the only extremal invariant measures for CP.

We emphasise that complete convergence does not follow from monotonicity. A counterex-

ample is the case of CP on regular trees, where despite monotonicity it has been proven that

there exists λ̃c s.t. λ̃c > λc and for λ ∈ (λc, λ̃c) complete convergence does not hold (see [Lig85]).

Another issue which has been studied is the following: for λ > λc, how do infected areas

look like at large time when we start from a single infection and we condition on survival? the

answer is that the growth of the infected regions is linear with time, a result that goes under

the name of shape theorem for CP.

Let us conclude by discussing the behavior at criticality and stating a major result, which

we do not have time to prove in this course and a conjecture that despite very clear numerical

confirmation and non rigorous analytical results in the physics community, still lacks a full

rigorous proof.
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Theorem 4.1.7 (Continuity). For any d ∈ Z+ it holds θd(λc) = 0

Conjecture 1. ∃β = β(d) > 0 s.t. for CP on Zd it holds

θ(λ) ∼ (λ− λc)
β for λ ↓ λc,

namely limλ→λc log θ(λ)/ log(λ− λc)
β = 1. Furthermore

• β is universal once the spatial dimension has been fixed, namely should not change by

varying some details in the definition of CP (while λc is certainly not universal),

• β(d) = 1 for d ⩾ 4

4.2 Survival vs ergodicity: proof of Theorem 4.1.3

The key ingredients of this proof are: (i) the self duality of the contact process (see Exercise 13)

and (ii) Theorem 3.6.7 that connects survival and ergodicity for some special couples of dual

processes, those defined in Theorem 3.6.2.

Proof. Fix λ > 0. Theorem 3.6.7 and Exercise 13 imply that CP(λ) is ergodic iff for any A a

finite subset of Zd it holds PA(τ < ∞) = 1, with PA the evolution of the infected sets of the

CP(λ) when at time 0 the set of infected sites coincides with A. On the other hand the event

{τ <∞} is the complementary of the survival event, thus

PA(τ <∞) = 1− PA(ηt ̸= 0∀t ⩾ 0).

Thus Remark 4.1.2 guarantees that PA(τ < ∞) = 1 if λ < λ̄c and PA(τ < ∞) < 1 if λ > λ̄c,

yielding λc = λ̄c.

4.3 λc ∈ (0, 1): proof of Theorem 4.1.4

Let us start by stating three Lemmas that will be proven in the following

Lemma 4.3.1. λc(d) ⩾ 1
2d

Lemma 4.3.2. λc(d) ⩽ λc(1)/d

Lemma 4.3.3. λc(1) <∞
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Proof of Theorem 4.1.4. The proof follows immediately gathering the results of the three Lem-

mas above.

Exercise 20. In order to prove Theorem 4.1.4 it is enough to prove a milder version of the

inequality in Lemma 4.3.2, namely λc(d) ⩽ λc(1). As an exercice, find a proof of this result

(shorter than the proof of Lemma 4.3.2 provided below).

Prof of Lemma 4.3.1. Notice that the cardinality of the set of infections, |At|, decreases by 1

at rate |At| and increases by 1 at a rate which is upper bounded by 2dλ|At| (since a site can

create a new infection only on an empty nearest neighbour). Thus if 2dλ < 1, |At| has a drift

to decrease and will eventually hit 0 (since at time 0 we start from |A0| = 0). Therefore CP(λ)

certainly dies out if λ < 1/(2d), which yields λc ⩾ 1/(2d).

Proof of Lemma 4.3.2. The idea here is to couple versions of CP on different dimensions and

with different parameters λ. More precisely we consider

• (At)t ⩾ 0 the CP on Zd with infection rate λ and started with a single infected site at the

origin, namely A0 = {(0, . . . , 0)}

• (Ãt)t ⩾ 0 the CP on Z with infection rate dλ and started with Ã0 = {0}.

Now we will prove that it holds

PA0
d,λ(At ̸= ∅) ⩾ PÃ0

1,dλ(Ãt ̸= ∅) ∀t ⩾ 0. (4.3.1)

This implies in particular that if Ãt survives also At survives , namely

if dλ > λc(1) then necessarily λ > λc(d)

which yields

λc(d) ⩽
λc(1)

d

We are left with proving inequality (4.3.1). Define the projection map πd : Zd → Z as

πd(x1, . . . , xd) :=

d∑
i=1

xi

and let for A ⊂ Zd

πd(A) := {πd(x) : x ∈ A} ⊂ Z.

Fix Ã ⊂ Z and A ⊂ Zd. Suppose that Ã ⊂ πd(A), then necessarily for each x ∈ Ã the set

{y ∈ A : x = πd(y)} is not empty. Choose one of the sites in this set and denote it y = yx,A,Ã.

60



We will now construct a coupling of the processes (At)t ⩾ 0 and (Ãt)t ⩾ 0 s.t.

Ãt ⊂ πd(At) ∀t ⩾ 0 (4.3.2)

This implies that if Ãt ̸= ∅ also At ̸= ∅ and (4.3.1) follows.

Let us start by noticing that Ã0 = πd(A0) so that (4.3.2) holds at time 0. Then fix the

Poisson point processes to construct (At)t ⩾ 0, namely the realisation of the arrival times of the

healing maps for each site, and of the 2d infection maps pointing from each site to its nearest

neighbours. Now we construct a coupled process (Ãt)t ⩾ 0 (which in the following we will call

the tilde process) as follows. We let Ã0 = 0 and let it evolve according to the following rules

• whenever an healing event occurs for a site y ∈ Zd, if y = yx,AtÃt for an x ∈ Z, in the tilde

process we heal at this time site x ∈ Z;

• whenever an infection event from y ∈ Zd to one of the d points y− e⃗i occurs, if there exists

x ∈ Z s.t. y = yx,AtÃt , in the tilde process we infect at this time site x−1 if x was infected;

• analogously, whenever an arrival time of the infection map from x ∈ Zd to one of the d

points x+ e⃗i occurs, if y = yx,AtÃt for an x ∈ Z, in the tilde process we infect at this time

site x+ 1 if x was infected;

• on any other time the tilde process does not evolve

It is not difficult to verify that the marginal under this coupling of (Ãt)t ⩾ 0, is a CP on Z with

infection parameter dλ and that this coupling preserves the relation Ãt ⊂ πd(At).

There are several alternative proves of Lemma 4.3.3 using comparison with different types

of oriented percolation. One of these proof uses comparison with directed (or oriented) edge

percolation on Z2. Another proof, that we have decided to follow here, uses comparison with

directed (or oriented) site percolation on Z2. The interested reader may find the first proof on

Section 2.5 and 2.6 of [Swaa] or on Section 7.2, 7.3 and 7.4 of [Swab].

Definition 4.3.4 (Directed (or oriented) site percolation on Z2). Let G0 be the set of sites of

the form x = (2i, 0) with i ∈ Z, and draw from each x ∈ G0 two arrows directing to x± e⃗1 + e⃗2.

The tips of the arrows points towards sites of the form x = (2i + 1, 1), we call this set of sites

G1 and then draw for each x ∈ G1 two arrows directing to x± e⃗1 + e⃗2. Continuing in the same

way we construct an oriented lattice with vertex set G containing all sites x of the form 2i, 2j
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or 2i + 1, 2j + 1 with i ∈ Z, j ∈ Z+ and such that from each site of Gi there are two oriented

edges pointing towards two sites of Gi+1. In other words G corresponds to a lattice Z2 rotated

of 45 degrees and multiplied by a factor
√
2 and with edges having an upwards orientation. Fix

p ∈ [0, 1] and declare each site x ∈ G to be open with probability p and closed with probability

1−p, independently from all other. More precisely let µp be Bernoulli product measure at density

p on {0, 1}G, and pick a configuration σ distributed with µp and declare x open iff σ(x) = 1. Fix

x, y ∈ G, we say that x is connected to y and write x→ y iff there is a path that

• connects x to y

• traverses only edges along the orientation of the arrows

• all sites visited by the path (including x and y) are open.

Let C0 be the set of all sites that are connected to the origin

C0 := {x ∈ Z2 : (0, 0) → x}

and let

pc := sup{p ∈ [0, 1] s.t. µp (|C0| = ∞) = 0}

Exercise 21. Prove that

pc = inf{p ∈ [0, 1] : µp (|C0| = ∞) > 0}.

[Hint: use the result of exercise 12 to prove monotonicity in p of µp (|C0| = ∞) ]

Exercise 22. Prove that

pc ⩾
1

2
.

[Hint: Let Ni = |C0 ∩Gi| and show that this is a branching process that dies out if p < 1/2.]

Theorem 4.3.5.

pc <
80

81
(4.3.3)

Proof of Theorem 4.3.5. The type of argument used in the above proof, known as Peierls contour

argument, is a basic tool that is often used in statistical mechanics/percolation theory. Fix a

configuration σ ∈ {0, 1}G, where we recall that 0 and 1 are closed and open sites respectively.
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Figure 4.1: Coupling of the graphical construction of CP and coupled oriented percolation. The

red dots are sites in G. Red dots encircled in black are open sites, when they are coloured green

they are open and belong to the open connected cluster of the origin, C0. Site (0, 4δ) belongs to

C0. We highlight in green the influence path connecting it to (0, 0) in the graphical construction.

63



Figure 4.2: The oriented lattice, CN and its contour ΓN

Let CN be the set if sites connected to O = (0, 0) or to one of the N sites of G lying on the left

of O

CN := CN (η) = ∪N
i=1(x : (−2i, 0) → x).

We want to lay a contour around CN . Consider now for each site x ∈ G a square of side
√
2

centered around x and tilted of 45 degrees w.r.t. the horizontal and vertical axes, as in Fig. 4.3.

Then colour all squares that either contain a site of CN or contain a site of the form (−2i+1,−1)

with i = 1, . . . , N . If |CN | <∞ we can define an external contour for this coloured region, ΓN .

We let |ΓN | be its length measured in number of diagonal segment of length
√
2 and GN,n be

the set of the different contours of length n obtained when varying σ ∈ {0, 1}Z2
. Using Claim

4.3.6 and a union bound we get
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µp(|CN | <∞) ⩽
∞∑

n=2N

µp(σ : ΓN (σ) ∈ GN,n) ⩽
∞∑

n=2N

3n(1− p)n/4 (4.3.4)

For p > 80/81 it holds 3(1 − p)1/4 < 1 which implies that limN→∞
∑∞

n=2N 3n(1 − p)n/4 = 0.

This, together with (4.3.4) yields

for p > 80/81 ∃ N̄(p) s.t. ∀N > N̄(p) it holds µp(|CN | = ∞) > 0.

Furthermore, by translation invariance it holds

µp(|CN | = ∞) ⩽ (N + 1)µp(|C0| = ∞)

which, together with the former conclusion implies

µp(|C0| = ∞) > 0 ∀p > 80/81

yielding pc ⩽ 80/81.

We are left with stating and proving a technical result on contours that was a key ingredient

of the previous proof.

Claim 4.3.6. The following holds

(i) |ΓN | ⩾ 2N for all σ ∈ {0, 1}Z2

(ii) |GN,n| ⩽ 3n

(iii) if σ is such that ΓN (σ) ∈ GN,n, we can identify at least n/4 sites adjacent to ΓN that are

closed

Proof. (i) follows trivially by the definition of ΓN . (ii) is a consequence of the fact that when

we travel along the contour at each point we have at most three choices on how to proceed

(the contours does not come back to itself). In order to prove (iii) we start by noticing that

if we follow ΓN counter clock wise, each time it turns left there must be a closed site on a

specific vertex external to the contour and adjacent to it (see Fig. 4.3). Indeed, if we give

to each diagonal edge of ΓN an orientation which correspond to traveling along the contour

counterclockwise, when γN contains an edge from x to x + e⃗2 − e⃗1, necessarily x + e⃗2 is closed

(otherwise ΓN should have moved around it), when it contains the edge from x to x− e⃗2 − e⃗1,
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necessarily x − e⃗1 + e⃗2 is closed (otherwise ΓN should have moved around it). Then letting nl

and nr be the number of left (right) directed diagonal edges of γn and using nl + nr = n and

nl = nr, we get nl = n/2. Gathering the above observations and noticing that at most two

edges of γn directed to the left identify the same closed site, point (iii) is proven.

We are now ready to prove Lemma 4.3.3 thus concluding the proof of Theorem 4.1.4.

Proof of Lemma 4.3.3. The proof uses a coupling argument that shows that for λ sufficiently

large but finite and δ sufficiently small there exists p > 80/81 such that the probability that

for CP(1, λ) the infection survives up to time nδ is larger than the probability for oriented

site percolation on Z2 with probability p that there exists y ∈ Z such that C0 contains (y, n).

Therefore, thanks to Theorem 4.3.5, CP necessarily survives for λ sufficiently large but finite,

namely λc <∞.

The coupled construction of CP and OP is obtained as follows. Start by fixing ∆ a realisation

of the Poisson Point processes associated to the healing and infection maps the define CP in

d = 1 and draw the corresponding graphical representation. Then superimpose to this graphical

representation the oriented lattice G with vertical coordinate shrinked by δ, with δ > 0 a fixed

parameter (see Fig. 4.3) so that the vertexes of G are now of the form (x, nδ) with x ∈ Z and

n ∈ Z+ s.t. |x| and n have the same parity. Given a site (x, nδ) ∈ G we let it be open if and

only if in the graphical construction of CP these two conditions are satisfied:

(i) there is no cross in the time interval (n− 1)δ, (n+1)δ on the vertical line at site x, i.e. no

arrival time of the healing map Hx;

(ii) there are a right and a left arrow starting from site x in the time interval (nδ, (n + 1)δ),

namely there is at least one arrival time of the infection map Ix,x+1 and of Ix,x−1.

We leave as an exercice to prove that with the above definition

(a) sites of G are open and closed independently and the probability that a site is open is

p(δ) = e−2δ(1− e−λδ)2

(b) if (0, 0) → (x, nδ) (where connection is in the sense of the open paths for oriented per-

colation), necessarily there is a path of influence (in the sense of the connection fixed by

the graphical representation, see Section 2.1) from the space time point (0, 0) to the space

time point (x, nδ)
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We exploit now our freedom in the choice of δ > 0 and fix it to δ̄(λ) = log(λ + 1)/λ to

maximise p(δ). This yields

p(δ̄(λ)) =
λ

1 + λ

(
1

λ+ 1

)2λ

.

Since the above expression tends to 1 as λ → ∞ we get, using Theorem 4.3.5, that for λ

sufficiently large the probability for a site to be open is > pc. From point (b) above it follows

that survival of the contact process holds.

67



68



Chapter 5

STOCHASTIC ISING MODEL (SIM)

Fix β ⩾ 0 and d ∈ N, we call SIM(d, β) the Stochastic Ising Model (SIM) on Zd, namely the

spin interacting particle system on X = {−1,+1}Zd
with the rate to flip a spin at site x for the

configuration η given by r(x, η) where for each x ∈ Zd r(x, ·) is a function (that depends on β)

from X → R defined as

r(x, η) = e−β
∑

y,y∼x η(x)η(y) = e−2dβ+2βÑx(η) (5.0.1)

with Ñx(η) =
∑

y∼x 1η(y)̸=η(x). In formulas, the generator of the dynamics acts on local functions

f : X → R as

Lf(η) =
∑
x∈Zd

r(x, η)(f(ηx)− f(′η)) (5.0.2)

where

ηx(y) =

−η(y) if y = x

η(y) if y ̸= x
(5.0.3)

Notice that this can be also reformulated (modulo a time rescaling) by saying that in con-

figuration η we refresh the state of site x by setting it to + at rate r+(x, η) and we refresh it

setting it to − at rate r−(x, η) where

r+(x, η) =
eβN

+(x,σ)

eβN+(x,σ) + eβN−(x,σ)

r−(x, η) =
eβN

−(x,σ)

eβN+(x,σ) + eβN−(x,σ)

with

N+(x, η) :=
∑
y∼x

1Iη(y)=+

and analogous definition for N−(x, η).
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Remark 5.0.1. Recall (see Exercise 11) that SIM(d, β) is monotone. Thus, thanks to Corollary

3.5.8, ergodicity of the process holds iff ν̄ = ν where ν̄ (resp. ν) is the measure attained at infinite

time evolving from δ+ (resp. from δ−). Note also that (as for VM and unlike CP), SIM is ±1

symmetric. Namely the law of the trajectory of the process starting from any configuration η

coincides with the law of the spin-reversed trajectory where by spin-reversed trajectory we mean

that at each time all spins are flipped. This implies that, for any function f : X → R, it holds

ν̄(f) = ν(f̃)

where f̃ : X → R is the function defined by letting f̃(η) = f(η̃) with η̃ the configuration obtained

by flipping each spin in η.

Let us provide a possible graphical construction for SIM. Define for each x ∈ Zd and A ⊂

Nx := {y : y ∼ x} two maps m−
x,A and m+

x,A from Ω to Ω as follows:

m−
x,Aσ(y) =

−1 if y = x and σ(z) = −1 ∀z ∈ A

σ(y) otherwise
(5.0.4)

m+
x,Aσ(y) =

1 if y = x and σ(z) = 1∀z ∈ A

σ(y) otherwise
(5.0.5)

Then it is just a direct calculation to verify that

Lf(σ) =
∑
x

r(x, η)(f(ηx)− f(η)) =
∑
ξ∈±

∑
x

∑
A∈Nx

e−2dβ(1− e−2β)|A|e2β|A|
(
f(mξ

x,Aσ)− f(σ)
)

where the sum over x runs on all sites of Zd, the sum over A ∈ Nx also includes the case A = ∅.

For example if d = 2 and σ(x) = +1 and 3 of its nearest neighbours are −1 we get from the

previous formula a spin flip rate

e−4β + e−4βe2β(1− e−2β) = e−2β

which indeed corresponds to (5.0.1).

Recalling the definition of D(m) and Rx(m) given in (2.2.1) and (2.2.2) we can easily check

that D(m±
x,A) = {x} and Ry(m

±
x,A) = A ∪ {i} if A ̸= ∅, otherwise Ry(m

±
x,∅) = ∅ and verify that

the maps satisfy assumptions A1-A2 of Section 2.3. Therefore, thanks to Theorem 2.2.8, SIM

is a will defined Markov process. Here the set of maps is M = ∪ξ∈± ∪x∈Zd ∪A∈Nx , so the points

of Poisson Point Process ∆ are of the form (ξ, x,A, t). Furthermore, in this setting the paths of

influence (see Definition 2.2.2) are paths such that

70



• ∀t ∈ [s, u] s.t. γt− ̸= γt there exists (ξ, x,A, t) ∈ ∆ s.t. γt− ∈ A, γt = x;

• ̸ ∃(ξ, x,A, t) ∈ ∆ s.t. A = ∅, t ∈ [s, u], γt = x

Pictorially we can draw at each (ξ, x,A, t) ∈ ∆ a circle at (x, t) containing the sign of ξ and

with arrows arriving from the points of A to x and a path of influence is a path which goes

vertically in the positive direction, can follows the arrows, never crosses circles which do not

have incoming arrows (this are the points at which the spin at the corresponding site flips to

either plus or minus, regardless of the state of the system at the prior time)

Lemma 5.0.2. For any d ⩾ 1 there exists β̄(d) > 0 s.t. for β ⩽ β̄(d) SIM is ergodic

Proof. Recall formula (2.2.20) defining the constant K which enters in the exponential bound

of Lemma 2.2.7 of influence path, we get

K(β) = 2
∑

A⊂Nx

e−2dβ(1− e−2β)|A|e2β|A|(|A| − 1A=∅) = 2
[
2d(1− e−β)− e−2dβ

]
(5.0.6)

Set β̄ := sup{β > 0 : K(β) < 0}. From (5.0.6) it follows immediately that β̄ > 0. The result

than follows by Lemma 2.2.7.

The main content of this chapter will be the prove of the following result.

Theorem 5.0.3 (Phase transition for the Ising model).

• SIM(1, β) is ergodic at any β ⩾ 0, namely in one dimension there is at any temperature a

unique invariant measure

• there exists a critical value βc = βc(d) satisfying 0 < βc <∞ s.t. SIM(d, β) is ergodic for

β < βc and not ergodic for β > βc.

In order to prepare the proof of this result we should first consider the model on finite volume.

Definition 5.0.4 (Finite volume SIM). Let Λ ⊂ Zd be a finite volume and τ ∈ {±}∂Λ with

∂Λ ⊂ Zd \ Λ the set of sites outside Λ that have a nearest neighbour inside Λ. We define SIM

on Λ with boundary condition τ by letting its generator act on functions from f : {0, 1}Λ → R

as

Lτ
Λf(η) :=

∑
x∈Λ

rτ (x, η)(f(ηx)− f(η)
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with

rτ (x, η) = r(x, ητ )

where ητ is a configuration that coincides with η inside Λ, with τ on ∂Λ and with the completely

filled configuration outside (the latter condition is completely arbitrary, since the dynamics uses

only flips inside Λ, whose rate depend only on Λ ∪ ∂Λ).

Definition 5.0.5 (Finite and Infinite volume Gibbs measure for the Ising model). Fix β ∈ R+.

Let Λ ⊂ Zd be a finite volume and τ ∈ {±}∂Λ. The finite volume Gibbs measure for the Ising

model on Λ with boundary condition τ and at inverse temperature β is the measure µτΛ,β that

associates to a configuration η ∈ {±}Λ the weight

µτΛ,β(η) :=
exp

(
−β
∑

x∈Λ
∑

y∼x η
τ (x)ητ (y)

)
∑

σ exp−
(
β
∑

x∈Λ
∑

y∼x σ
τ (x)στ (y)

) . (5.0.7)

where the configuration ητ (that depends on η and τ) has been defined in Definition 5.0.4. We

say that a measure µ on Ω = {−1,+1}Zd
is an infinite volume Gibbs measure for the Ising model

at inverse temperature β, if ∀Λ ⊂ Zd with |Λ| <∞ and for µ almost every τ ∈ {−1,+1}Zd\Λ it

holds

µ
(
{σ(i)}i∈Λ ∈ ·

∣∣σ(i) = τ(i)∀i ∈ Zd \ Λ
)
= µτΛ,β(σ)

Remark 5.0.6. A similar procedure can be used to define the Gibbs measure of other statistical

mechanics models (besides the Ising model). In general for a statistical mechanics model one

defines a configuration space (which for the Ising model is {±}Zd
) an energy function (which

for the Ising model is H(σ) = −
∑

x,y,x∼y σ(x)σ(y)). Then the finite volume Gibbs measure are

defined as

µτΛ,β(η) :=
exp (−βH(ητ ))∑
σ exp− (βH(στ ))

(5.0.8)

Then via the same procedure as in Definition 5.0.5 one can define the infinite volume measures.

Exercise 23. Prove that

• the unique invariant mesure of SIM at inverse temperature β on finite volume Λ with

boundary condition τ is the finite volume Gibbs measure µτΛ,β

• this invariant measure is also reversible.

[Hint: use Remark 3.4.5]
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The next result shows that the definition of infinite volume Gibbs measures is not void and

furthermore these measure are reversible invariant measure for SIM.

Theorem 5.0.7. Let {Λn}n∈N ⊂ Zd be a sequence of finite sets invading Zd, namely Λn ⊂ Λm

for n ⩽ m and limn→∞ Λn = Zd. Let XΛn ∈ Ω be a random variable distributed with the measure

νn which gives occupation value +1 to all sites outside Λn and satisfies

νn({XΛn(i)}|i∈Λn ∈ ·) = µΛn,β
+ (·).

Then the following holds

(i) limn→∞ νn = ν̄, where ν̄ is the upper invariant measure of SIM on Zd at inverse tempera-

ture β

(ii) ν̄ is a reversible measure for SIM on Zd at inverse temperature β

(iii) ν̄ satisfies the requirement of Definition 5.0.5, namely it is an infinite volume Gibbs mea-

sure at temperature β

Analogous statements hold for −1 boundary conditions, in which case the limiting law is ν.

Proof. Let

• {Xt}t ⩾ 0 the infinite volume SIM started from a completely plus configuration, namely at

X0 satisfying X0(i) = +1 for all i ∈ Zd

• {XΛn
t }t ⩾ 0 be a process obtained setting XΛn

t (i) = +1 for all t ⩾ 0 and i ∈ Zd \ Λn and

letting XΛn
t |Λn evolve as SIM on Λn with boundary condition τ = +1

Using the graphical construction it is not difficult to prove that we can couple the above defined

processes so that for all n ⩽ m it holds

Xt ⩽ XΛm
t ⩽ XΛn

t ∀t ⩾ 0.

Note that if we take the limit t → ∞ XΛn
t is asymptotically distributed as νn and Xt as ν̄. So

we get

ν̄ ⩽ νm ⩽ νn. (5.0.9)

Furthermore the limit limn→∞ νn exists and it is an invariant measure for SIM on infinite volume.

Let us call ν this limit law. Combining this observation with the inequality (5.0.9) and the fact

that by monotonicity ν̄ is the largest invariant measure yields

ν = ν̄.
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This proves (i). Statement (ii) follows by first proving that {XΛn
t }t ⩾ 0 is reversible w.r.t. νn

(see Exercise 23) and then taking the n → ∞ limit. Statement (iii) follows from the fact that

νn have the correct conditional distributions.

The above theorem says that SIM provides indeed an ”algorithmic way” of sampling con-

figurations distributed w.r.t. Gibbs measures for the Ising model, a particularly difficult task

when β > βc and correlations becomes long range. Before continuing with the study of SIM,

let us mention that there are also other ways of defining a spin IPS so that the Gibbs measure

are invariant for this dynamics. One of this choices, which goes under the name of Metropolis

dynamics is to choose spin flip rates

r̃(x, η) = min(1, e−β∆H), with ∆H = (ηx)−H(η)

and H formally defined as H(σ) = −
∑

x,y∈Zd,x∼y σ(x)σ(y) (H is not well defined due to the

infinite sum, but the rates contain only the difference that is well defined).

Definition 5.0.8 (Spontaneous magnetisation). We call spontaneous magnetisation for SIM on

Zd at inverse temperature β the following quantity

m(β, d) :=

∫
η(0)ν̄(dη)

Note that, by translation invariance, for all x ∈ Zd it holds
∫
η(x)ν̄(dη) = m(β, d). Furthrmore,

thanks to the ± symmetry (see Remark 5.0.1) it holds∫
η(i)ν(dη) = −m(β, d)

Lemma 5.0.9. SIM on infinite volume is ergodic iff m(β, d) = 0.

Exercise 24. Prove the above Lemma.

In view of Lemma 5.0.9 in order to prove Theorem 5.0.3 it is enough to prove the following

Theorem 5.0.10 (Phase transition for the Ising model).

• for d = 1 it holds m(β, 1) = 0 for any β ⩾ 0

• for d ⩾ 2 there exists a critical value βc = βc(d) s.t. m(β) = 0 for β < βc and m(β) > 0

for β > βc.
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In turn, the proof of Theorem 5.0.10 follows immediately from the following three lemma

Lemma 5.0.11. The function m(β, d) is

• nondecreasing and right-continuous in β

• nondecreasing in d.

Lemma 5.0.12 (No phase transition in dimension one ). Fix β ⩾ 0, there exists a unique

infinite volume Gibbs measure on {−1,+1}Z with inverse temperature β.

Lemma 5.0.13. In dimension 2 there exists β̄ <∞ s.t. for β > β̄ it holds m(β, 2) > 0.

Indeed, Lemma 5.0.12 proves the result of Theorem 5.0.10 in dimension 1, while Lemma 5.0.2

together with Lemma 5.0.11 and Lemma 5.0.13 complete the result in d ⩾ 2. We are therefore

left with proving Lemmas 5.0.11, 5.0.12 and 5.0.13.

Proof of Lemma 5.0.12. This proof uses as a key ingredients the fact that ν̄ is invariant under

translation invariance and under mirror reflections, in particular for any x, y ∈ Z it holds

ν̄({σ(x) = +}) = ν̄({σ(y) = +})

and

ν̄({σ(x) = +, σ(y) = −}) = ν̄({σ(y) = +, σ(x) = −}).

Another key ingredient is the use of Theorem 5.0.7 with together with the definition of infinite

volume Gibbs measures (see Definition 5.0.5)

ν̄(σ(x− 1) = −, σ(x) = +, σ(x+ 1) = −|σ(x− 1) = −, σ(x+ 1) = −) = e−2β.

The last ingredient is that the upper invariant measure inherits from the finite volume Gibbs

measures the following property: for all s, s′, s′′ ∈ ± it holds

ν̄(σ(x− 1) = s|σ(x) = s′, σ(x+ 1) = s′′) = ν̄(σ(x− 1) = s|σ(x) = s′).

Putting all this ingredients together and with some algebra we discover that

ν̄(σ(x) = −|σ(x+ 1) = +) = ν̄(σ(x) = +|σ(x+ 1) = −)

which yields, setting for simplicity of notation

A := ν̄(σ(x) = −|σ(x+ 1) = +), B := ν̄({σ(x) = −})
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B = A ν̄({σ(x+ 1) = +}) + ν̄({σ(x) = −}|{σ(x+ 1) = −})ν̄({σ(x+ 1) = −}) (5.0.10)

= A(1−B) + (1−A)B (5.0.11)

where in the last equality we used translation invariance which yields ν̄(σ(x + 1) = +) =

1− ν̄(σ(x+ 1) = −) = 1− ν̄(σ(x) = −) This implies

B = ν̄({σ(x+ 1) = −}) = 1

2

thus m(β, 1) = 0. (We refer the reader to Lemma 3.16 of [Swaa] for a more formal proof.)

The proof of Lemma 5.0.11 is based on a result known as Griffiths’ inequalities. Let Λ ⊂ Zd,

|Λ| <∞. Let P(Λ) be the set of all subsets of Λ and given A ∈ P(Λ) and σ ∈ {−1,+1}Λ let

f(σ,A) :=
∏
i∈A

σ(i)

and

f(σ, ∅) := 1

and J : P(Λ) → R. We let µJ be a measure on ΩΛ := {−1,+1}Λ defined as

µJ(σ) :=
e
∑

A⊂Λ JAσA

ZJ

where

ZJ :=
∑

σ′∈ΩΛ

e
∑

A JAσ′
A

and for simplicity of notation we let JA := J(A) and σA = f(σ,A). Notice that

• ∂
∂JA

logZJ =
∫
µJ(dσ)σA

• ∂2

∂JA∂JB
logZJ =

∫
µJ(dσ)σAσB −

∫
µJ(dσ)σA

∫
µJ(dσ)σB

Lemma 5.0.14 (Griffiths’ inequalities). If for all A ⊂ Λ it holds JA ⩾ 0 then

• ∂
∂JA

logZJ ⩾ 0, for all A ⊂ Λ

• ∂2

∂JA∂JB
logZJ ⩾ 0 for all A,B ⊂ Λ

Proof. By definition

ZJ =
∑
σ

e
∑

A JAσA =
∑
σ

∞∑
n=0

1

n!

∑
A1

· · ·
∑
An

(

n∏
k=1

JAk
)
∑
σ

n∏
k=1

σAk
= 2|Λ|

∞∑
n=0

1

n!

∑
A1

· · ·
∑
An

1A1∆...∆An=∅(

n∏
k=1

JAk
)
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with A∆B the symmetric difference of A and B.

Use the fact that ∑
σ

n∏
k=1

σAk
=
∑
σ

σA1∆...∆An

and the right hand side above is zero unless A1∆ . . .∆An = ∅. Analogously

∂

∂JA
logZJ =

1

ZJ
2|Λ|

1

n!

∑
A1

· · ·
∑
An

1A∆A1∆...∆An=∅(
n∏

k=1

JAk
)

which yields immediately the first result. The proof of the second result is analogous (just more

lengthy . . . )

Proof of Lemma 5.0.11. Up to an additive constant we can rewrite the finite volume Hamltonian

with plus boundary conditions as

HΛ
+ = − !

2

∑
i,j∈Λ,i∼j

σ(i)σ(j)− 1

2

∑
i∈Λ,j∈∂Λ

σ(i)

Thus

µΛ,β+ = µJ

with

JA :=


1
2β for A = {i, j} with i ∼ j, i, j ∈ Λ

1
2β |{j ∈ Λc : i ∼ j| for A = i with i ∈ Λ

0 otherwise

(5.0.12)

Then
∂

∂β

∫
µΛ,β+ (dσ)σ(i) ⩾ 0

follows by noticing that increasing β corresponds to increasing J . Now using Theorem 5.0.7 it

follows that
∂

∂β
m(β, d) ⩾ 0.

The monotonicity in d is proven analogously: for d < d′ view Zd as a subset of Zd′ . If we

now ”switch on” the interaction among sites in Zd and Zd′ \Zd the magnetisation will be higher

in any point of Zd.

For the proof continuity of m(β, d) in β we start by choosing a sequence {βn} with for each

βn ↓ β. Let νn be the upper invariant measure of SIM at temperature βn, namely νn := ν̄βn . By

compactness of the space there exists a probability law ν s.t. νn → ν with ν. Then, by using the

fact that νn are invariant laws for SIM at temperature βn, one can show that ν is an invariant
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measure for SIM at inverse temperature β 1 . Furthermore, since we proved that m(β) is non

decreasing in β, we have limβ↓βn m(βn) = ν(σ(0)) ⩾ m(β). But since ν̄β is the largest invariant

law at inverse temperature β we get ν = ν̄β.

Proof of Lemma 5.0.13. The proof of this Lemma uses a contour argument similar in spirit to

the one we used for the contact process in the previous chapter to prove that λc(1) > ∞. Let

Λn be the square of side 2n + 1 centred around the origin Λn = [−n, n]2. Fix a configuration

σ ∈ Λn and let σ̄ ∈ ΩΛn∪∂Λn be the configuration that equals +1 on ∂Λn and σ inside Λn. Let

En be the collection of edges in Λn ∪ ∂Λn, namely the collection of couples of sites {i, j} with

i ∼ j. We let Γ(σ) be all the closed curves of the configuration σ obtained by drawing a ”dual

edge—” perpendicular to any edge joining two neighbouring disagreeing spins, namely

Γ(σ) := {{i, j} ∈ En : σ̄(i) ̸= σ̄(j)}.

Note (see Fig. 5.1) that

• Γ(σ) forms a collection of closed curves (these closed curves are those that surround all

the connected components of − spin and of +1 spins in the configuration σ);

• given Γ(σ) we can reconstruct σ in a unique way

• the origin has spin configuration +1 iff it is surrounded by an even number of closed curves

We now let Gn be the collection of all possible closed curves

Gn := {Γ(σ) : σ ∈ ΩΛn}

and note that for each Γ ∈ Gn it holds

ν̄{σ : Γ(σ) = Γ} =
e−β|Γ|∑

Γ′∈Gn
e−β|Γ′|

with |Γ| the length of the curve Γ.

Therefore given a collection of nearest neighbour edges which formes a single closed curve γ

containing the origin it holds

ν̄{σ : γ ⊂ Γ(σ)} =

∑
Γ∈Gn:γ⊂Γ e

−β|Γ|∑
Γ′∈Gn

e−β|Γ′| ⩽

∑
Γ∈Gn:γ⊂Γ e

−β|Γ|∑
Γ∈Gn:γ⊂Γ e

−β|Γ| +
∑

Γ∈Gn:γ∩Γ=∅ e
−β|Γ|

1To prove this result let P β
t denote the semigroup of SIM at inverse temperature β. Then for each function f and

each t ⩾ 0 write |νP β
t (f)−ν(f)| ⩽ |νP β

t (f)−νnP
β
t (f)|+|νnP β

t (f)−νnP
βn
t (f)|+|νnP βn

t (f)−νn(f)|+|νn(f)−ν(f)|.

It is now not difficult to upper bound this terms (sending n → ∞ on the r.h.s.) to discover that |νP β
t (f)−ν(f)| = 0
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Figure 5.1:

Peierls contours for the Ising model
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=

∑
Γ∈Gn:γ⊂Γ e

−β|Γ|∑
Γ∈Gn:γ⊂Γ e

−β|Γ| + eβ|γ|
∑

Γ∈Gn:γ⊂Γ e
−β|Γ| =

1

1 + eβ|γ|
⩽ e−β|γ|

Using the fact that there are at most k3k different curves of length k surrounding the origin

we get

µΛn,β
+ (N0) ⩽

∞∑
k=4

k3ke−kβ

with N0 the number of closed curves surrounding the origin. Since the r.h.s. goes to 0 as β → ∞,

we can certainly choose β sufficiently large (uniformly in n) so that the probability of the event

N0 = 0, is > 3/4. This in turn implies∫
µΛn,β
+ (dσ)σ(0) = µ+({N0 is 0 or odd})− µ+(N0{ is even}) ⩾ 3

4
−
(
1− 3

4

)
=

1

2
.

We conclude by discussing some results and conjecture concerning the behavior at criticality.

SIM in dimension 2 is exactly solvable, Onsager has shown that βc(d) = log(1 +
√
2) and

m(β, 2) = (1− (sinhβ)−4)1/8, where sinh(β) = 1/2(eβ − e−β). This yields

m(β, 2) ∼ (β − βc)
1/8 as β ↓ βc.

Furthermore it is possible to prove that ν̄ and ν are the only two extremal invariant mea-

sures, namely complete convergence holds as for the contact process. Instead in higher spatial

dimensions there exists spatially non homogeneous invariant measures.

In higher dimension the value of the critical exponent is not known, based on numerical sim-

ulations and non-rigorous renormalisation group theory it is conjecture that in three dimension

the exponent is ∼ 0.308.
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