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Abstract
Kinetically constrained models (KCM) are reversible interacting particle systems on
Z
d with continuous-time constrained Glauber dynamics. They are a natural non-

monotone stochastic version of the family of cellular automatawith random initial state
known as U -bootstrap percolation. KCM have an interest in their own right, owing
to their use for modelling the liquid-glass transition in condensed matter physics. In
two dimensions there are three classes of models with qualitatively different scaling
of the infection time of the origin as the density of infected sites vanishes. Here we
study in full generality the class termed ‘critical’. Together with the companion paper
by Hartarsky et al. (Universality for critical KCM: finite number of stable directions.
arXiv e-prints arXiv:1910.06782, 2019) we establish the universality classes of critical
KCM and determine within each class the critical exponent of the infection time as
well as of the spectral gap. In this workwe prove that for criticalmodels with an infinite
number of stable directions this exponent is twice the one of their bootstrap percola-
tion counterpart. This is due to the occurrence of ‘energy barriers’, which determine
the dominant behaviour for these KCM but which do not matter for the monotone
bootstrap dynamics. Our result confirms the conjecture of Martinelli et al. (Commun
Math Phys 369(2):761–809. https://doi.org/10.1007/s00220-018-3280-z, 2019), who
proved a matching upper bound.
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1 Introduction

Kinetically constrained models (KCM) are interacting particle systems on the integer
latticeZ

d , which were introduced in the physics literature in the 1980s by Fredrickson
and Andersen [16] in order to model the liquid-glass transition (see e.g. [17,31] for
reviews), a major and still largely open problem in condensed matter physics [5].
A generic KCM is a continuous-time Markov process of Glauber type characterised
by a finite collection U of finite nonempty subsets of Z

d\{0}, its update family. A
configuration ω is defined by assigning to each site x ∈ Z

d an occupation variable
ωx ∈ {0, 1}, corresponding to an empty or occupied site respectively. Each site x ∈ Z

d

waits an independent, mean one, exponential time and then, iff there exists U ∈ U
such that ωy = 0 for all y ∈ U + x , site x is updated to empty with probability q and
to occupied with probability 1 − q. Since each U ∈ U is contained in Z

d\{0}, the
constraint to allow the update does not depend on the state of the to-be-updated site. As
a consequence, the dynamics satisfies detailed balance w.r.t. the product Bernoulli(1−
q) measure, μ, which is therefore a reversible invariant measure. Hence the process
started at μ is stationary.

Both fromaphysical and fromamathematical point of view, a central issue forKCM
is to determine the speed of divergence of the characteristic time scales when q → 0.
Two key quantities are: (i) the relaxation time Trel, i.e. the inverse of the spectral gap of
the Markov generator (see Definition 2.5) and (ii) the mean infection time E(τ0), i.e.
the mean over the stationary process started at μ of the first time at which the origin
becomes empty. Several works have been devoted to the study of these time scales for
some specific choices of the constraints [2,9,12,13,25,27] (see also [17] section 1.4.1
for a non exhaustive list of references in the physics literature). These results show
that KCM exhibit a very large variety of possible scalings depending on the update
familyU . A question that naturally emerges, and that has been first addressed in [26],
is whether it is possible to group all possible update families into distinct universality
classes so that all models of the same class display the same divergence of the time
scales.

Before presenting the results and the conjectures of [26], we should describe the
key connection of KCM with a class of discrete monotone cellular automata known
as U -bootstrap percolation (or simply bootstrap percolation) [8]. For U -bootstrap
percolation on Z

d , given an update family U and a set At of sites infected at time
t , the infected sites in At remain infected at time t + 1, and every site x becomes
infected at time t + 1 if the translate by x of one of the sets in U is contained in At .
The set of initial infections A is chosen at randomwith respect to the product Bernoulli
measure with parameter q ∈ [0, 1], which identifies withμ: for every x ∈ Z

d we have
μ(x ∈ A) = q. One then defines the critical probability qc

(
Z
d ,U

)
to be the infimum

of the q such that with probability one the whole lattice is eventually infected, namely⋃
t≥0 At = Z

d . A key time scale for this dynamics is the first time at which the
origin is infected, τBP. In order to study this infection time for models on Z

2, the
update families were classified by Bollobás et al. [8] into three universality classes:
supercritical, critical and subcritical, according to a simple geometric criterion (see
Definition 2.1). In [8] they proved that qc

(
Z
2,U

) = 0 ifU is supercritical or critical,
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and it was proved by Balister et al. [4] that qc
(
Z
2,U

)
> 0 if U is subcritical.

For supercritical update families, [8] proved that τBP = q−Θ(1) w.h.p. as q → 0,
while in the critical case τBP = exp(q−Θ(1)). The result for critical families was later
improved by Bollobás et al. [7], who identified the critical exponent α = α(U ) such
that τBP = exp(q−α+o(1)).

Back to KCM, if we fix an update family U and an initial configuration ω and we
identify the empty sites with infected sites, a first basic observation is that the clusters
of sites thatwill never be infected in theU -bootstrap percolation correspond to clusters
of sites which are occupied and will never be emptied under the KCM dynamics. A
natural issue is whether there is a direct connection between the infection mechanism
of bootstrap percolation and the relaxation mechanism for KCM, and, more precisely,
whether the scaling of Trel and E(τ0) is connected to the typical value of τBP when the
law of the initial infections is μ. It is not difficult to establish that μ(τBP) provides a
lower bound for E(τ0) and Trel (see [27, Lemma 4.3] and (10)), but in general, as we
will explain, this lower bound does not provide the correct behaviour.

Martinelli et al. [26] proposed that the supercritical class should be refined into
unrooted supercritical and rooted supercritical models in order to capture the richer
behavior of KCM. For unrooted models the scaling is of the same type as for boot-
strap percolation, Trel ∼ E(τ0) = q−Θ(1) as q → 0 [26, Theorem 1(a)],1 while for
rooted models the divergence is much faster, E(τ0) ∼ Trel = eΘ((log q)2) (see [26,
Theorem 1(b)] for the upper bound and [25, Theorem 4.2] for the lower bound).

Concerning the critical class, the lower bound with μ(τBP) mentioned above and
the results of [8] on bootstrap percolation imply that Trel and E(τ0) diverge at least as
exp(q−Θ(1)). In [26, Theorem 2] an upper bound of the same formwas established and
a conjecture [26, Conjecture 3] was put forward on the value of the critical exponent ν
such that both E(τ0) and Trel scale as exp(| log q|O(1)/qν), with ν in general different
from the exponent of the corresponding bootstrap percolation process. Furthermore,
a toolbox was developed for the study of the upper bounds, leading to upper bounds
matching this conjecture for all models. Themain issue left open in [26]was to develop
tools to establish sharp lower bounds. Afirst step in this directionwas done byMarêché
et al. [25] by analyzing a specific critical model known as the Duarte model for which
the update family contains all the 2-elements subsets of the North, South and West
neighbours of the origin. Theorem 5.1 of [25] establishes a sharp lower bound on
the infection and relaxation times for the Duarte KCM that, together with the upper
bound in [26, Theorem 2(a)], proves E

Duarte(τ0) = exp (Θ((log q)4/q2)) as q → 0,
and the same result holds for Trel. The divergence is again much faster than for the
corresponding bootstrap percolation model, for which it holds τBP = eΘ((log q)2/q)

w.h.p as q → 0 [30] (see also [6], fromwhich the sharp value of the constant follows),
namely the critical exponent for the Duarte KCM is twice the critical exponent for the
Duarte bootstrap percolation.

Both for Duarte and for supercritical rooted models, the sharper divergence of time
scales for KCM is due to the fact that the infection time of KCM is not well approxi-
mated by the infection mechanism of the monotone bootstrap percolation process, but

1 For the lower bound of Trel one does not need to use the boostrap percolation results, as Trel ≥
q−minU∈U |U |/|U | by plugging the test function 1{ω0=0} in Definition 2.5.
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is instead the result of a much more complex infection/healing mechanism. Indeed,
visiting regions of the configuration space with an anomalous amount of empty sites
is heavily penalised and requires a very long time to actually take place. The basic
underlying idea is that the dominant relaxation mechanism is an East-like dynamics
for large droplets of empty sites. Here East-like means that the presence of an empty
droplet allows to empty (or fill) another adjacent droplet but only in a certain direction
(or more precisely in a limited cone of directions). This is reminiscent of the relaxation
mechanism for the East model, a prototype one-dimensional KCM for which x can
be updated iff x − 1 is empty, thus a single empty site allows to create/destroy an
empty site only on its right (see [15] for a review on the East model). For supercritical
rooted models, the empty droplets that play the role of the single empty sites for East
have a finite (model dependent) size, hence an equilibrium density qeff = qΘ(1). For
the Duarte model, droplets have a size that diverges as � = | log q|/q and thus an
equilibrium density qeff = q� = e−(log q)2/q . Then a (very) rough understanding of
the results of [25,26] is obtained by replacing q with qeff in the time scale for the East
model T East

rel = eΘ((log q)2) [2]. The main technical difficulty to translate this intuition
into a lower bound is that the droplets cannot be identified with a rigid structure. In
[25] this difficulty for the Duarte model was overcome by an algorithmic construction
that allows to sequentially scan the system in search of sets of empty sites that could
(without violating the constraint) empty a certain rigid structure. These are the droplets
that play the role of the empty sites for the East dynamics.

In [26] all critical models which have an infinite number of stable directions (see
Sect. 2.1), of which the Duarte model is but one example, were conjectured to have a
critical exponent ν = 2α, with α = α(U ) the critical exponent of the corresponding
bootstrap percolation dynamics (defined in Definition 2.2). The heuristics is the same
as for the Duarte model, the only difference being that droplets would have in general
size � = | log q|O(1)/qα . However, the technique developed in [25] for the Duarte
model relies heavily on the specific form of the Duarte constraint and in particular on
its oriented nature,2 and it cannot be extended readily to this larger class.

In thiswork, togetherwith the companionpaper byHartarsky et al. [20],we establish
in full generality the universality classes for critical KCM, determining the critical
exponent for each class.

Here we treat all choices of U for which there is an infinite number of stable
directions and prove (Theorem 2.8) a lower bound for Trel and E(τ0) that, together
with the matching upper bound of [26, Theorem 2], yields

E(τ0) = e| log q|O(1)/q2α

for q → 0 and the same result for Trel. Our technique is somewhat inspired by the
algorithmic construction of [25], however, the nature of the droplets which move in
an East-like way is here much more subtle, and in order to identify them we construct
an algorithm which can be seen as a significant improvement on the α-covering and
u-iceberg algorithms developed in the context of bootstrap percolation [7].

2 Note that, since the Duarte update rules contain only the North, South and West neighbours of the origin,
the constraint at a site x does not depend on the sites with abscissa larger than the abscissa of x .
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In the companion paper [20] we prove for the complementary class of models,
namely all critical models with a finite number of stable directions, an upper bound
that (together with the lower bound from bootstrap percolation) yields instead

E(τ0) = e| log q|O(1)/qα

for q → 0 and the same result for Trel.
A comparison of our results with Conjecture 3 of [26] is due. The class that we

consider here is, in the notation of [26], the class of models with bilateral difficulty
β = ∞, hencebelong to theα-rooted class defined therein.Therefore, ourTheorem2.8
proves Conjecture 3(a) in this case. We underline that it is not a limitation of our lower
bound strategy that prevents us from proving Conjecture 3(a) for the other α-rooted
models, namely those with 2α ≤ β < ∞. Indeed, as it is proven in the companion
paper [20], in this case the conjecture of [26] is not correct, since it did not take
into account a subtle relaxation mechanism which allows to recover the same critical
exponent as for the bootstrap percolation dynamics.

The plan of the paper is as follows. In Sect. 2 we develop the background for both
KCM and bootstrap percolation needed to state our result, Theorem 2.8. In Sect. 3
we give a sketch of our reasoning and highlight the important points. In Sect. 4 we
gather some preliminaries and notation. Section 5 is the core of the paper—there we
define the central notions and establish their key properties, culminating in the Closure
Proposition 5.20. In Sect. 6 we establish a connection between the KCM dynamics
and an East dynamics and use this to wrap up the proof of Theorem 2.8. Finally, in
Sect. 7 we discuss some open problems.

2 Models and background

2.1 Bootstrap percolation

Before turning to our models of interest, KCM, let us recall recent universality results
for the intimately connected bootstrap percolation models in two dimensions. U -
bootstrap percolation (or simply bootstrap percolation) is a very general class of
monotone transitive local cellular automata on Z

2 first studied in full generality by
Bollobás et al. [8]. Let U , called update family, be a finite family of finite nonempty
subsets, called update rules, of Z

2\{0}. Let A, called the set of initial infections, be
an arbitrary subset of Z

2. Then the U -bootstrap percolation dynamics is the discrete
time deterministic growth of infection defined by A0 = A and, for each t ∈ N,

At+1 = At ∪ {x ∈ Z
2 : ∃U ∈ U ,U + x ⊂ At }.

In other words, at any step each site becomes infected if a rule translated at it is
already fully infected, and infections never heal. We define the closure of the set A by
[A] = ⋃

t≥0 At and we say that A is stablewhen [A] = A. The set of initial infections
A is chosen at randomwith respect to the product Bernoulli measureμwith parameter
q ∈ [0, 1]: for every x ∈ Z

2 we have μ(x ∈ A) = q.
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Arguably, the most natural quantity to consider for these models is the typical (e.g.
mean) value of τBP, the infection time of the origin.

The combined results of Bollobás et al. [8] and Balister et al. [4] yield a pre-
universality partition of all update families into three classeswith qualitatively different
scalings of the median of the infection time as q → 0. In order to define this partition
we will need a few definitions.

For any unitary vector u ∈ S1 = {z ∈ R
2 : ‖z‖ = 1} (‖ · ‖ denotes the Euclidean

norm in R
2) and any vector x ∈ R

2 we denote Hu(x) = {y ∈ R
2 : 〈u, y − x〉 < 0}

— the open half-plane directed by u passing through x . We also set Hu = Hu(0). We
say that a direction u ∈ S1 is unstable (for an update familyU ) if there existsU ∈ U
such that U ⊂ Hu and stable otherwise. The partition is then as follows.

Definition 2.1 (Definition 1.3 of [8]) An update family U is

– supercritical if there exists an open semi-circle of unstable directions,
– critical if it is not supercritical, but there exists an open semi-circle with a finite
number of stable directions,

– subcritical otherwise.

The main result of [8] then states that in the supercritical case τBP = q−Θ(1)

with high probability as q → 0, while in the critical one τBP = exp(q−Θ(1)). The
final justification of the partition in Definition 2.1 was given by Balister et al. [4]
who proved that the origin is never infected with positive probability for subcritical
models for q > 0 sufficiently small, i.e. qc

(
Z
2,U

)
> 0 if U is subcritical. From

the bootstrap percolation perspective supercritical models are rather simple, while
subcritical ones remain very poorly understood (see [19]). Nevertheless, most of the
non-trivial models considered before the introduction of U -bootstrap percolation,
including the 2-neighbour model (see [1,22] for further results), fall into the critical
class, which is also the focus of our work.

Significantly improving the result of [8], Bollobás et al. [7] found the correct expo-
nent determining the scaling of τBP for critical families. Moreover, they were able to
find log τBP up to a constant factor. To state their results we need the following crucial
notion.

Definition 2.2 (Definition 1.2 of [7]) Let U be an update family and u ∈ S1 be a
direction. Then the difficulty of u, α(u), is defined as follows.

– If u is unstable, then α(u) = 0.
– If u is an isolated stable direction (isolated in the topological sense), then

α(u) = min{n ∈ N : ∃K ⊂ Z
2, |K | = n, |[Z2 ∩ (Hu ∪ K )]\Hu | = ∞}, (1)

i.e. the minimal number of infections allowing Hu to grow infinitely.
– Otherwise, α(u) = ∞.

We define the difficulty of U by

α(U ) = inf
C∈C

sup
u∈C

α(u), (2)
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where C = {Hu ∩ S1 : u ∈ S1} is the set of open semi-circles of S1.

It is not hard to see (Theorem 1.10 of [8], Lemma 2.6 of [7]) that the set of stable
directions is a finite union of closed intervals of S1 and that (Lemmas 2.7 and 2.10
of [7]) (1) also holds for unstable and strongly stable directions, that is directions in
the interior of the set of stable directions (but not for semi-isolated stable directions
i.e. endpoints of non-trivial stable intervals). Furthermore (see [7, Lemma 2.7], [8,
Lemma 5.2]), 1 ≤ α(u) < ∞ if and only if u is an isolated stable direction, so thatU
is critical if and only if 1 ≤ α(U ) < ∞. As a final remark we recall that, contrary to
determining whether an update family is critical, finding α(U ) is a NP-hard question
[21].

We are now ready to describe the universality results. A weaker form of the result
of [7] is that τBP = exp(q−α(U )+o(1)) with high probability as q → 0. For the full
result however, we need one last definition.

Definition 2.3 A critical update family U is balanced if there exists a closed semi-
circle C such that maxu∈C α(u) = α(U ) and unbalanced otherwise.

Then [7] provides that for balanced models τBP = exp(Θ(1)/qα(U )) with high prob-
ability as q → 0, while for unbalanced ones τBP = exp(Θ((log q)2)/qα(U )). These
are the best general estimates currently known. We refer to [28,29] for recent surveys
on these results as well as on sharper results for some specific models.

2.2 Kinetically constrainedmodels

Returning to KCM, let us first define the general class of KCM introduced by Cancrini
et al. [9] directly on Z

2. Fix a parameter q ∈ [0, 1] and an update family U as in the
previous section. The corresponding KCM is a continuous-time Markov process on
Ω = {0, 1}Z2

which can be informally defined as follows. A configurationω is defined
by assigning to each site x ∈ Z

2 an occupation variable ωx ∈ {0, 1} corresponding to
an empty (or infected) and occupied (or healthy) site respectively. Each site waits an
independent exponentially distributed time with mean 1 before attempting to update
its occupation variable. At that time, if the configuration is completely empty on at
least one update rule translated at x , i.e. if ∃U ∈ U such thatωy = 0 for all y ∈ U+x ,
then we perform a legal update or legal spin flip by setting ωx to 0 with probability q
and to 1with probability 1− q . Otherwise the update is discarded. Since the constraint
to allow the update never depends on the state of the to-be-updated site, the product
measure μ is a reversible invariant measure and the process started at μ is stationary.
More formally, the KCM is the Markov process on Ω with generator L acting on
local functions f : Ω �→ R as

(L f )(ω) =
∑

x∈Z2

cx (ω) (μx ( f ) − f ) (ω), (3)

for any ω ∈ Ω , where μx ( f ) denotes the average of f when the occupation variable
at x has law Ber(1 − q) and the other occupation variables are set to {ωy}y �=x , and
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cx is the indicator function of the event that there exists U ∈ U such that U + x is
completely empty, i.e. ωU+x ≡ 0. We refer the reader to chapter I of [24], where the
general theory of interacting particle systems is detailed, for a precise construction
of the Markov process and the proof that L is the generator of a reversible Markov
process {ω(t)}t≥0 on Ω with reversible measure μ.

The corresponding Dirichlet form is defined as

D( f ) =
∑

x∈Z2

μ
(
cxVarx ( f )

)
, (4)

where Varx ( f ) denotes the variance of the local function f with respect to the variable
ωx conditionally on {ωy}y �=x . The expectation with respect to the stationary process

with initial distributionμwill be denoted byE = E
q,U
μ . Finally, given a configuration

ω ∈ Ω and a site x ∈ Z
2, we will denote by ωx the configuration obtained from ω

by flipping site x , namely by setting (ωx )x = 1− ωx and (ωx )y = ωy for all y �= x .
For future use we also need the following definition of legal paths, that are essentially
sequences of configurations obtained by successive legal updates.

Definition 2.4 (Legal path) Fix an update familyU , then a legal path γ inΩ is a finite
sequence γ = (

ω(0), . . . , ω(k)
)
such that, for each i ∈ {1, . . . , k}, the configurations

ω(i−1) and ω(i) differ by a legal (with respect to the choice of U ) spin flip at some
vertex v = v(ω(i−1), ω(i)).

As mentioned in Sect. 1, our goal is to prove sharp bounds on the characteristic time
scales of critical KCM. Let us start by defining precisely these time scales, namely the
relaxation time Trel (or inverse of the spectral gap) and the mean infection time E(τ0)

(with respect to the stationary process).

Definition 2.5 (Relaxation time Trel) Given an update family U and q ∈ [0, 1], we
say that C > 0 is a Poincaré constant for the corresponding KCM if, for all local
functions f , we have

Varμ( f ) = μ( f 2) − μ( f )2 ≤ C D( f ). (5)

If there exists a finite Poincaré constant, we define

Trel = Trel(q,U ) = inf
{
C > 0 : C is a Poincaré constant

}
.

Otherwise we say that the relaxation time is infinite.

A finite relaxation time implies that the reversible measure μ is mixing for the semi-
group Pt = etL with exponentially decaying time auto-correlations (see e.g. [3,
Section 2.1]).

Definition 2.6 (Infection time τ0) The random time τ0 at which the origin is first
infected is given by

τ0 = inf
{
t ≥ 0 : ω0(t) = 0

}
,
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where we adopt the usual notation letting ω0(t) be the value of the configuration ω(t)
at the origin, namely ω0(t) = (ω(t))0.

The East model We close this section by defining a specific example of KCM on Z,
the East model of Jäckle and Eisinger [23], which will be crucial to understand our
results (KCM on Z are defined in the same way as KCM on Z

2). It is defined by an
update family composed by a single rule containing only the site to the left of the
origin (−1). In other words, site x can be updated iff x − 1 is empty. For this model

both Trel and E(τ0) scale as exp
(

(log q)2

2 log 2

)
as q → 0, see [2,9,12].3 One of the key

ingredients behind this scaling is the following combinatorial result [32] (see [14, Fact
1] for a more mathematical formulation).

Proposition 2.7 Consider the East model on {1, . . . , M} defined by fixing ω0 = 0 at
all time. Then any legal path γ connecting the fully occupied configuration (namely
ω s.t. ωx = 1 for all x ∈ {1, . . . , M}) to a configuration ω′ such that ω′

M = 0 goes
through a configuration with at least �log2(M + 1)� empty sites.
This logarithmic ‘energy barrier’, to employ the physics jargon, and the fact that at
equilibrium the typical distance to the first empty site is M = Θ(1/q) are responsible
for the divergence of the time scales as roughly 1/q�log2(M+1)� = eΘ((log q)2).

2.3 Result

In this paper we study critical KCM with an infinite number of stable directions or,
equivalently, with a non-trivial interval of stable directions. Recall that E denotes the
expectation with respect to the stationary KCM process.

Theorem 2.8 Let U be a critical update family with an infinite number of stable
directions. Then there exists a sufficiently large constant C > 0 such that

E(τ0) ≥ exp
(
1/

(
Cq2α(U )

))
,

as q → 0 and the same asymptotics holds for Trel.

This theorem combined with the upper bound of Martinelli et al. [26, Theorem 2(a)],
determines the critical exponent of these models to be 2α in the sense of Corollary 2.9
below.We thus complete the proof of universality and Conjecture 3(a) of [26] for these
models.4

Corollary 2.9 Let U be a critical update family with an infinite number of stable
directions. Then

q2α(U ) logE(τ0) = (− log q)O(1)

3 Actually these references focus on the study of Trel. Amatching upper bound forE(τ0) follows from (10).
The lower bound forE(τ0) follows easily from the lower bound forP(τ0 > t)with t = exp (log(q)2/2 log 2)
obtained in the proof of Theorem 5.1 of [11].
4 The conjecture involuntarily asks for a positive power of log q, whichwe do not expect to be systematically
present (see Conjecture 7.1).
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as q → 0 and the same holds for Trel.

Universality for the remaining critical models is proved in a companion paper by
Hartarsky et al. [20] and, in particular, Conjecture 3(a) of [26] is disproved for models
other than those covered by Theorem 2.8. It is important to note that Theorem 2.8
significantly improves the best known results for all models with the exception of the
recent result of Marêché et al. [25] for the Duarte model. Indeed, the previous bound
had exponent α, and was proved via the general (but in this case far from optimal)
lower bound with the mean infection time for the corresponding bootstrap percolation
model [27, Lemma 4.3].

3 Sketch of the proof

In this section we outline roughly the strategy to derive our main result, Theorem 2.8.
The hypothesis of infinite number of stable directions provides us with an interval of
stable directions. We can then construct stable ‘droplets’ of shape as in Fig. 3 (see
Definitions 5.5 and 5.6), wherewe recall fromSect. 2.1 that a set is stable if it coincides
with its closure. Thus, if all infections are initially inside a droplet, this will be true at
any time under the KCM dynamics. The relevance and advantage of such shapes come
from the fact that only infections situated to the left of a droplet can induce growth
left. This is manifestly not feasible without the hypothesis of having an interval of
stable directions. It is worth noting that these shapes, which may seem strange at first
sight, are actually very natural and intrinsically present in the dynamics. Indeed, such
is the shape of the stable sets for a representative model of this class – the modified
2-neighbour model with one (any) rule removed, that is the three-rule update family
with rules {(−1, 0), (0, 1)},{(−1, 0), (0,−1)},{(0,−1), (1, 0)} (it can also be seen as
the modified Duarte model with an additional rule). The stable sets in this case are
actually Young diagrams.

We construct a collection of such droplets covering the initial configuration of
infections, so that it gives an upper bound on the closure. To do this, we devise an
improvement of the α-covering algorithm of Bollobás et al. [7]. It is important for us
not to overestimate the closure as brutally. Indeed, a key step and the main difficulty
of our work is the Closure Proposition 5.20, which roughly states that the collections
of droplets associated to the closure of the initial infections is equal to the collection
for the initial infections. This is highly non-trivial, as in order not to overshoot in
defining the droplets, one is forced to ignore small patches of infections (larger than
the ones in [7]), which can possibly grow significantly when we take the closure for
the bootstrap percolation process and especially so if they are close to a large infected
droplet. In order to remedy this problem, we introduce a relatively intrinsic notion
of ‘crumb’ (see Definition 5.1) such that its closure remains one and does not differ
too much from it. A further advantage of our algorithm for creating the droplets over
the one of [7] is that it is somewhat canonical, with a well-defined unique output,
which has particularly nice ‘algebraic’ description and properties (see Remark 5.10).
Another notable difficulty we face is systematically working in roughly a half-plane
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(see Remark 5.21 for generalisations) with a fully infected boundary condition, but
we manage to extend our reasoning to this setting very coherently.

Finally, having established the Closure Proposition 5.20 alongside standard and
straightforward results like an Aizenmann-Lebowitz Lemma 5.13 and an exponen-
tial decay of the probability of occurrence of large droplets (Lemma 5.15), we finish
the proof via the following approach, inspired by the one developed by Marêché et
al. [25] for the Duarte model. The key step here (see Sect. 6) is mapping the KCM
legal paths to those of an East dynamics via a suitable renormalisation. Roughly
speaking, we say that a renormalised site is empty if it contains a large droplet of
infections. However, for the renormalised configuration to be mostly invariant under
the original KCM dynamics, we rather look for the droplets in the closure of the
original set of infections instead. This is where the Closure Proposition 5.20 is used
to compensate the fact that the closure of equilibrium is not equilibrium. In turn,
this mapping together with the combinatorial result for the East model recalled in
Sect. 2.2 (Proposition 2.7), yield a bottleneck for our dynamics corresponding to the
creation of log(1/qeff) droplets, where 1/qeff is the equilibrium distance between
two empty sites in the renormalized lattice, and qeff ∼ e−1/qα

. This provides for
the time scales the desired lower bound q log(qeff )eff ∼ e1/q

2α
of Theorem 2.8. The

last part of the proof follows very closely the ideas put forward in [25] for the
Duarte model. However, in [25], there was no need to develop a subtle droplet algo-
rithm since, owing to the oriented character of the Duarte constraint, droplets could
simply be identified with some large infected vertical segments. It is also worth
noting that, thanks to the less rigid notion of droplets that we develop in the gen-
eral setting, some of the difficulties faced in [25] for Duarte are no longer present
here.

4 Preliminaries and notation

Let us fix a critical update family U with an infinite number of stable directions for
the rest of the paper. We will omit U from all notation, such as α(U ).

Directions The next lemma establishes that one can make a suitable choice of 4 stable
directions, which we will use for all our droplets. At this point the statement should
look very odd and technical, but it simply reflects the fact that we have a lot of freedom
for the choice and we make one which will simplify a few of the more technical points
in later stages. Nevertheless, this is to a large extent not needed besides for concision
and clarity.

A direction u ∈ S1 is called rational if tan u ∈ Q ∪ {∞}.
Lemma 4.1 There exists a set of rational stable directions S = {u1, u2, v1, v2} with
difficulty at least α such that (see Fig. 1)

– The directions appear in counterclockwise order u1, u2, v1, v2.
– No u ∈ S is a semi-isolated stable direction.
– u3−i belongs to the cone spanned by vi and ui for i ∈ {1, 2} i.e. the strictly smaller
interval among [vi , ui ] and [ui , vi ] contains u3−i .
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Fig. 1 Illustration of Lemma 4.1 and its proof. Thickened arcs represent intervals of strongly stable direc-
tions. Solid dots represent isolated and semi-isolated stable directions. The difficulties of the isolated stable
directions are indicated next to them and yield that the difficulty of the model is α = 2. The directions
chosen in Lemma 4.1 are the solid vectors u1, u2, v1 = v′1 and a direction v2 in the strongly stable interval
ending at v′2 sufficiently close to v′2. Note that the definition of v′2 (and v′1) disregards stable directions with
difficulty smaller than α as present on the figure

– 0 is contained in the interior of the convex envelope of S .
– Either u2 < v1 − π/2 or u1 > v2 + π/2.
– (Hu1 ∪ Hu2) ∩ Z

2 is stable or, equivalently, �U ∈ U ,U ⊂ Hu1 ∪ Hu2 .
– the directions

u′ = (u1 + u2)/2,

u′
1 = (3u1 + u2)/4,

u′
2 = (u1 + 3u2)/4

are rational.

Proof SinceU has an infinite number of stable directions and they form a finite union
of closed intervals with rational endpoints [8, Theorem 1.10], there exists a non-empty
open interval I ′′′ of stable directions. Further note that the set J of directions u such
that there exists a rule U ∈ U and x ∈ U with 〈x, u〉 = 0 is finite, so one can find a
non-trivial closed subinterval I ′′ ⊂ I ′′′ which does not intersect J . The directions u1
and u2 will be chosen in I ′′, which clearly implies that they are strongly stable and
thus with infinite difficulty. Moreover, if there exists U ∈ U with U ⊂ Hu1 ∪ Hu2 ,
by stability of u2, we have U ∩ (Hu1\Hu2) �= ∅, which contradicts I ′′ ∩ J = ∅.

SinceU is critical it does not have two opposite strongly stable directions, so there
is no strongly stable direction in I ′′ + π . If there are any (isolated or semi-isolated)
stable directions in I ′′ + π , we can further choose a non-trivial open subinterval
I ′ ⊂ I ′′, for which this is not the case (there is a finite number of isolated and semi-
isolated stable directions). Let π > δ > 0 be such that the angle between any two
consecutive directions of difficulty at least α is at most π −δ (it is well defined by (2)).
We then choose a non-trivial closed subinterval I ′ ⊃ I = [u1, u2] with u1 rational
and u′

1 = (3u1 + u2)/4 rational and with 0 < u2 − u1 < δ < π . It easily follows
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from the sum and difference formulas for the tangent function that u′, u′
2 and u2 are

also rational.
Let

v′
1 = max{v ∈ (u2, u1 + π) : α(v) ≥ α},

v′
2 = min{v ∈ (u2 − π, u1) : α(v) ≥ α}.

These both exist, since I + π does not contain stable directions, both (u2, u2 + π)

and (u1 −π, u1) contain directions with difficulty at least α by (2) and the set of such
directions is closed. If v′

1 is not semi-isolated, we set v1 = v′
1 and similarly for v2.

Otherwise, we choose a rational strongly stable direction sufficiently close to v′
1 as

v1 and similarly for v2. We claim that this choice satisfies all the desired conditions.
Indeed, all directions inS are stable non-semi-isolated rational with difficulty at least
α and the last but one condition was already verified.

One does have that u1 is in the cone spanned by v2 and u2, which is implied by
v2 ∈ (u2 − π, u1) and similarly for u2, so the third condition is also verified. If
v′
2 − v′

1 ≥ π , then there is an open half circle contained in (v′
1, v

′
2) with no direction

of difficulty at least α, which contradicts (2), so v2 − v1 < π and the same holds for
u1 − v2, u2 − u1 and v1 − u2 by the definition of v′

1 and v′
2, the fact that v1 and v2 are

sufficiently close to them and the fact that I was chosen smaller than π . Thus 0 is in
the convex envelope of S .

Finally, if one has both v1 − u2 ≤ π/2 and u1 − v2 ≤ π/2, then one obtains
v′
2 − v′

1 > π − δ, since I is smaller than δ. However, v′
1 and v′

2 are consecutive
directions of difficulty at least α, which contradicts the definition of δ. ��

Notation For the rest of the paper we fix directions S = {u1, u2, v1, v2} as in
Lemma 4.1 and assume without loss of generality that u2 < v1 − π/2.

Let us fix large constants

1 � C1 � C ′
2 � C2 � C3 � C ′

4 � C4 � C5,

each of which can depend on previous ones as well as on U and S . We will also
use asymptotic notation whose constants can depend on U and S , but not on C1 or
the other constants above. All asymptotic notation is with respect to q → 0, so we
assume throughout that q > 0 is sufficiently small.

For any two sets K , ∂ ⊂ R
2 we define [K ]∂ = [(K ∪ ∂) ∩ Z

2]\∂ .
Finally, we make the convention that throughout the article all distances, balls and

diameters are Euclidean unless otherwise stated. We say that a set X ⊂ R
2 is within

distance δ of a set Y ⊂ R
2 if d(x,Y ) ≤ δ for all x ∈ X where d is the Euclidean

distance.
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Fig. 2 The open domain ∂ defined in (6) is shaded, while its complement Λ is not. The lines are the
boundaries of the three half-planes defining ∂ . Note that if a0 /∈ Hu′ , then Λ becomes simply a cone

5 Droplet algorithm

In this section we define our main tool—the droplet algorithm. It can be seen as a
significant improvement on theα-covering andu-iceberg algorithms [7,Definitions 6.6
and 6.22], many of whose techniques we adapt to our setting.

We will work in an infinite domain Λ defined as follows (see Fig. 2). Fix some
vector a0 ∈ R

2 and let

∂ = Hu′ ∪ Hu′1(a0) ∪ Hu′2(a0),

Λ = R
2\∂,

(6)

where the directions u′, u′
1 and u

′
2 are those defined in Lemma 4.1. In other words, Λ

is a cone with sides perpendicular to u′
1 and u′

2 cut along a line perpendicular to u′.
The reader is invited to simply think that ∂ is a half-plane directed by u′, which will
not change the reasoning.

5.1 Clusters and crumbs

Let Γ be the graph with vertex set Z
2 but with x ∼ y if and only if ‖x − y‖ ≤ C2.

Let Γ ′ be defined similarly with C2 replaced by C ′
2. Given a finite K ⊂ Λ ∩ Z

2, we
say that κ ⊂ K is a connected component of K in Γ if the subgraph of Γ induced by
the vertex set κ is connected and there do not exist vertices x ∈ K\κ and y ∈ κ such
that x ∼ y in Γ .

Crumbs For a given finite set K ⊂ Λ∩Z
2 of infections we would like to have a notion

of a connected component being ‘big’ or ‘small’. ‘Small’ components will be dubbed
‘crumbs’ and will play a negligible perturbative role in the bootstrap percolation pro-
cess, by inducing only ‘very localised’ growth and being ‘well isolated’ from the rest
of the infections. A sufficient condition for this, as identified in [7], is that |κ| < α.
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However, contrary to what was the case in [7], we need the notion of ‘crumb’ to be
stable under the closure (with respect to the bootstrap percolation process), i.e. the
closure of a ‘crumb’ to still be a ‘crumb’. We thus identify as ‘crumb’ any component,
which is the closure of a set of size less than α. Also taking into account the boundary,
this leads us to the following notion.

Definition 5.1 (Crumb)Fix a finite set K ⊂ Λ∩Z
2 and let κ be a connected component

of K in Γ . We say that κ is a crumb for K if the following conditions hold.

– For all x ∈ κ we have d(x, ∂) > C2.
– There exists a set Pκ ⊂ Z

2 such that [Pκ ] ⊃ κ and |Pκ | = α − 1.

First properties of crumbs It follows from the definition that a crumb κ for K is
at distance more than C2 from ∂ ∪ (K\κ). Moreover, the closure of a crumb is
within bounded distance from the crumb, as we shall see in Corollary 5.17 (see
Fig. 5a). Also, crumbs have diameters much smaller than C3, as we shall see in
Corollary 5.17. The proofs of this corollary and Observation 5.16, which it follows
from, are both independent of the rest of the argument and are only postponed for
convenience. Nevertheless, we allow ourselves to use these (easy) results ahead of
their proofs.

These properties justify and quantify the intuition that crumbs are ‘small’, that they
only grow ‘locally’, and it is clear that (if we disregard the boundary) the closure of a
crumb is a crumb.

Modified crumbs Unfortunately, if K is the union of two crumbs at distance slightly
larger than C2, it is not necessarily true that [K ] is still composed of crumbs (recall
that, albeit locally, crumbs can grow under the bootstrap percolation process), which
can be disastrous. This is the reason for introducing ‘modified crumbs’ withC ′

2 � C2,
so that in the scenario above all connected components of [K ] in Γ ′ are ‘modified
crumbs’ (there may now be more than two of them).

Definition 5.2 (Modified crumb) We define a modified crumb by replacing in Defini-
tion 5.1 Γ by Γ ′ and C2 by C ′

2.

In the sequel we will encounter more ‘modified’ notions and constants (like C ′
2).

These will be applied to K equal to the closure [K ′]∂ of some K ′, which is our
initial set of infections. Our ultimate goal is to ensure that simply using these modi-
fied notions based on (much smaller) modified constants will compensate the closure
operation.

Clusters We next consider connected components which are not crumbs. Since they
can be very large (particularly so if we are working with the closure of a set), we
cut them up into (possibly overlapping) pieces termed ‘clusters’, which have bounded
size. Roughly speaking, a ‘cluster’ is any ‘big, but not too big’ connected set of
infections.

Definition 5.3 (Cluster) Fix a finite set K ⊂ Λ∩Z
2. Let κ be a connected component

of K in Γ which is not a crumb. We say that a subset C of κ is a cluster for K if the
following conditions hold.
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– diam(C) ≤ C3.
– C is connected in Γ (i.e. C is a connected component of C in Γ ).
– Either C = κ or for all x ∈ κ\C and y ∈ C such that x ∼ y in Γ we have
diam(C ∪ {x}) > C3.

A cluster is called boundary cluster if it is at distance at most C2 from ∂ . For a cluster
C we denote by Q(C) the smallest open quadrilateral with sides perpendicular to S
containing the set {x ∈ R

2 : d(x,C) < C4}.
We similarly define modified cluster and modified boundary cluster by replacing

Γ by Γ ′ and C2 by C ′
2. For a cluster or modified cluster C we denote by Q′(C) the

smallest open quadrilateral with sides perpendicular to S containing the set {x ∈
R
2 : d(x,C) < C ′

4}.

Identifying clusters and crumbs In order to identify the clusters and crumbs of K , one
may proceed as follows. Determine the connected components of K in Γ and consider
each of them separately. For a given component κ first check if it is at distance at most
C2 from ∂ . If so, then it is not a crumb and will give rise to clusters. If not, then check
if κ is the closure of at most α − 1 sites. If this second verification succeeds, then κ

is determined to be a crumb and, as mentioned above, it must have diameter much
smaller than C3.

If κ is thus determined not to be a crumb, we proceed to identify its clusters. If
diam(κ) ≤ C3, then there is a single cluster—κ—andwe are done. If not, we construct
the clusters of κ by the following algorithm. Initialise the set C = ∅. If there exists
y ∈ κ\C such thatC∪{y} is connected in Γ and has diameter at mostC3, then replace
C by C ∪ {y} and repeat. If several such y exist, then we do this for each possible y in
parallel. The clusters containing x are all possible sets C obtained via this algorithm
to which no y can be added.

In particular, this provides uswith a partition of K intowell separated crumbs, single
clusters equal to their corresponding connected component and sets of overlapping
clusters whose union is a connected component of diameter larger than C3.

First properties of clusters Following the algorithm above, we obtain some basic
properties of clusters.

Observation 5.4 Let C be a non-boundary cluster or non-boundary modified cluster
for a finite K ⊂ Λ ∩ Z

2. Then |C | ≥ α.

Proof Let κ be the connected component of K in Γ containing C . If diam(κ) ≤ C3,
then C = κ and κ would be a crumb if we had |κ| ≤ α − 1, by taking Pκ ⊃ κ . If,
on the contrary, diam(κ) > C3, then diam(C) ≥ C3 − C2 (by the third condition of
Definition 5.3) and we can choose C3 large enough to have C3−C2

C2
≥ α. ��

Finally, for every cluster C we have diam(C) ≤ C3, soC intersects at most 25C
2
3 other

clusters. Also, Q(C) ⊃ [C], since Q(C) ∩ Z
2 ⊃ C is stable. Furthermore, we have

diam(Q(C)) = Θ(C4), as diam(C) ≤ C3. Analogous statements hold for modified
clusters.
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Fig. 3 The shaded region D is a distortedYoung diagram (DYD) as inDefinition 5.5. The larger quadrilateral
with vertices x , x1, y and x5 is Q(D). Note that Q(D) can degenerate into a triangle, but we call it a
quadrilateral nevertheless. On the figure |D| is the length of the v1 side, but this is not always the case. The
thickened region is the cut distorted Young diagram (CDYD) C(D) of D. The vertical line is the boundary
between Λ on its left and ∂ on its right

5.2 Distorted Young diagrams

We now define the shape that our ‘droplets’ will have, which resembles Young dia-
grams.5 The following definitions are illustrated in Fig. 3.

5 For the 3-rulemodel alluded to in Sect. 3 stable sets consist precisely of Young diagrams and the directions
S provided by Lemma 4.1 can be arbitrarily close to the four axis directions, yielding Young diagrams.

123



306 I. Hartarsky et al.

Definition 5.5 (DYD)A distorted Young diagram (DYD) is a subset of R
2 of the form

(Hv1(x) ∩ Hv2(x)) ∩
⋂

i∈I
(Hu1(xi ) ∪ Hu2(xi )) (7)

for a finite set I , some set X = {xi : i ∈ I } of vectors xi ∈ R
2 and x ∈ R

2. The
vectors xi and x are uniquely defined up to redundancy (and up to the convention that
all xi are on the topological boundary of the DYD). Alternatively, a DYD can also be
defined by

(Hv1(x) ∩ Hv2(x)) ∩
⋃

i∈I
(Hu1(yi ) ∩ Hu2(yi )), (8)

where yi are the convex corners of the diagram rather than the concave ones.

For any DYD D we denote by y the vector such that

〈y, u j 〉 = sup
a∈D

〈a, u j 〉 = max
i∈I 〈yi , u j 〉

for j ∈ {1, 2}. We further denote

Q(D) = Hu1(y) ∩ Hu2(y) ∩ Hv1(x) ∩ Hv2(x),

i.e. the minimal open quadrilateral containing D with sides directed by S . In these
terms, for any cluster or modified cluster C we have that Q(C) and Q′(C) are DYD,
Q(Q(C)) = Q(C) and Q(Q′(C)) = Q′(C).

Definition 5.6 (CDYD) A cut distorted Young diagram (CDYD) is a subset of R
2 of

the form

Λ ∩ (Hu1(y) ∩ Hu2(y)) ∩
⋂

i∈I
(Hu1(xi ) ∪ Hu2(xi ))

for a finite set I and some vectors xi ∈ R
2 and y ∈ Λ. Alternatively, one can write

Λ ∩
⋃

i∈I
(Hu1(yi ) ∩ Hu2(yi )),

where yi ∈ Λ are the convex corners.

For a DYD, D, we denote by C(D) the CDYD defined by the same xi and y or
the same yi . We extend the notation C(D) to CDYD by setting C(D) = D if D is
a CDYD. Note that by Lemma 4.1 all DYD and CDYD are stable for the bootstrap
percolation dynamics (restricted to Λ). Also pay attention to the fact that CDYD are
not necessarily connected, contrary to DYD.
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Definition 5.7 (Size) For a DYD D we set π(D) = {x ∈ R : ∃ y ∈ D, 〈y, v1+π/2〉 =
x} to be its projection (parallel to v1) and |D| = supπ(D) − inf π(D) to be its size –
the length of the projection. For a CDYD D we denote its size diam(D)/C1 by |D|.

Note that if D is a DYD, then |D| = |Q(D)| by Lemma 4.1 and the assumption
we made that u2 < v1 − π/2. Furthermore, for all DYD diam(D) = Θ(|D|) again
by Lemma 4.1 with constants depending only on S . One should be careful with the
meaning of size for disconnected CDYD, but it will not cause problems, as all CDYD
arising in our forthcoming algorithm are connected.

Observation 5.8 Note that for any d ≥ 1 the number of discretised DYD and CDYD
(i.e. intersections of a DYD or CDYD with Z

2) containing a fixed point a ∈ R
2 of

diameter at most d is less than cd for some constant c depending only on S .

Proof Note that a DYD or CDYD is uniquely determined by its rugged edge formed
by its u1 and u2-sides. However, this edge injectively defines an oriented percolation
path with directions perpendicular to u1 and u2 on the lattice

{x ∈ R
2 : ∃x1, x2 ∈ Z

2, 〈x, u1〉 = 〈x1, u1〉, 〈x, u2〉 = 〈x2, u2〉}

(except its endpoints, which lie on similar lattices). Since the graph-length of this path
is bounded by O(d) and its endpoints are within distance d from a, the result follows.

��

5.3 Span

We next introduce a procedure of merging DYD and CDYD. This will be used only for
couples of intersecting ones, but can be defined regardless of whether they intersect.
The operation is illustrated in Fig. 4.

Lemma 5.9 For any two DYD, D1 and D2, the minimal DYD containing D1 ∪ D2
is well defined. We denote it by D1 ∨ D2 and call it their span. The operation ∨ is
associative6 and commutative.

Proof Let D1 be defined by Y 1 = {y1i : i ∈ I }, x1 (see (8)) and similarly for D2. Let
x ∈ R

2 be the vector such that Hvi (x
1) ∪ Hvi (x

2) = Hvi (x) for i ∈ {1, 2}. Let Y
be the set of yi ∈ Y 1 ∪ Y 2 such that for all y j ∈ Y 1 ∪ Y 2 with yi �= y j we have
Hu1(y j ) ∩ Hu2(y j ) �⊃ Hu1(yi ) ∩ Hu2(yi ). We denote by D the DYD defined by Y , x
and claim that for any DYD D′ ⊃ D1 ∪ D2 we have D′ ⊃ D, which is enough to
conclude that D = D1 ∨ D2 is well defined. Let D′ be defined by Y ′, x ′.

Note that for each yi ∈ Y (and in fact in Y1 ∪ Y2) there is a sequence of points in
D1 or D2 converging to yi , so that (by extraction of a subsequence) there exists y′j
with Hu1(y

′
j )∩Hu2(y

′
j ) ⊃ Hu1(yi )∩Hu2(yi ). Similarly, there is a sequence of points

in D1 or D2 converging to the boundary of Hv1(x), so that Hv1(x
′) ⊃ Hv1(x) and

similarly for v2. Thus, we do have D′ ⊃ D.

6 Associativity was referred to as commutativity by previous authors [8].
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Fig. 4 The shaded region D1 and thickened region D2 are DYD. Their respective quadrilaterals Q(Di )

are completed by dashed lines. Their span D1 ∨ D2 is hatched and its quadrilateral Q(D1 ∨ D2) is also
completed by dashed lines

Finally, the commutativity is obvious and the associativity follows from the char-
acterisation of D1 ∨ D2 as the minimal DYD containing both D1 and D2. ��

We analogously define the span D1 ∨ D2 of two CDYD D1 and D2 – the minimal
CDYD containing both – and note that it coincides with their union (which is also
commutative and associative).We also define the spanC∨D of aDYD D and aCDYD
C as the minimal CDYD containing (C ∪D)\∂ , which coincides with C ∨C(D). The
proof that it is well defined is analogous to Lemma 5.9.

We have thus defined an associative and commutative binary operation ∨ on all
DYD and CDYD. Moreover, the idempotent unary operation C(·) is distributive with
respect to ∨ and C(D1) ∨ D2 = C(D1 ∨ D2). Furthermore, the span of several DYD
is the minimal DYD containing all of them, while the span of several DYD and at least
one CDYD is the minimal CDYD containing all the corresponding CDYD.
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5.4 Droplet algorithm and spanned droplets

A droplet is any DYD contained in Λ or CDYD. We are now ready to define our
droplet algorithm, which takes as input a finite set K ⊂ Λ ∩ Z

2 of infections and
outputs a set D of disjoint connected droplets. It proceeds as follows.

– Form an initial collection of DYD D consisting of Q(C) for all clusters C of K .
If a DYD D ∈ D intersects ∂ , replace it by its CDYD, C(D), to obtain a droplet.

– As long as it is possible, replace two intersecting droplets of D by their span. If
the span intersects ∂ , replace it by its CDYD to obtain a droplet.

– Output the collection D obtained when all droplets are disjoint.

We similarly define the modified droplet algorithm by replacing Q(C) by Q′(C) and
clusters by modified clusters above.

The output D is clearly a collection of disjoint connected droplets. Indeed, by
induction all xi corners of droplets remain in Λ (see Fig. 4), so that DYD remain
connected when replaced by CDYD.

Remark 5.10 From the results of Sect. 5.3 it is clear that the order of merging does
not impact the output of the algorithm, which is thus well defined. It can also be
expressed as the minimal collection of disjoint droplets containing the intersection
with Λ of the original collection of quadrilaterals. This minimal collection is well
defined. Consequently, the union of the output is increasing in the input.

Definition 5.11 (Spanned droplets) Let D be a droplet and K ⊂ Z
2. We say that D is

spanned for K with boundary ∂ if the output of the droplet algorithm for K ∩ D has a
droplet containing D. We omit K and ∂ if they are clear from the context. Similarly,
D is modified spanned if the output of the modified droplet algorithm for K ∩ D has
a droplet containing D.

Note that, when seen as an event, a droplet being spanned is monotone. It is also
clear that each droplet appearing in (the intermediate or final stages of) the droplet
algorithm is spanned and similarly for the modified droplet algorithm. Indeed, the
clusters responsible for creating a droplet in the course of the algorithm are contained
in the droplet, so each of them is still a cluster of K ∩ D (recall that crumbs have
diameter much smaller than C3).

5.5 Properties of the algorithm

We next establish several properties of the algorithm. The approach is similar to the
one of [7] with the notable exception of the key Closure Proposition 5.20. We start
with the following purely geometric statement.

Lemma 5.12 (Subadditivity) Let D1 and D2 be two DYD or CDYD with non-empty
intersection. Then

|D1 ∨ D2| ≤ |D1| + |D2|.

Furthermore, if D is a DYD intersecting ∂ , then |C(D)| ≤ |D|.
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Proof First assume that D1 and D2 are DYD. Since |D| = |Q(D)| for any DYD D
and D1 ∨ D2 ⊂ Q(Q(D1) ∨ Q(D2)), it suffices to prove the assertion for merging
quadrilaterals instead of DYD. But in that case it is not hard to check directly and
is a particular case of Lemma 15 of the first arXiv version of [8] (or Lemma 23 of
the second version). Since similar (but actually slightly more involved) details were
omitted in the proof of the corresponding Lemma 4.6 of [8] and differed to earlier
versions, we will not go into useless detail here either. To give a sketch of a possible
argument, one can check that for fixed shapes of Q(D1) and Q(D2) the maximal
Q(Q(D1)∨ Q(D2)) is achieved when their intersection is reduced to a vertex. Yet, in
those configurations one can obtain the v1 and v2 sides of Q(Q(D1)∨ Q(D2)) as the
union of those of Q(D1) and translates of those of Q(D2) (see Fig. 4). This concludes
the proof, as only v1 and (possibly) v2 sides contribute to | · | by Lemma 4.1.

Next assume that D1 is a DYD and D2 is a CDYD. Let Y = {yi : i ∈ I } be
the set of vectors defining C(D1) and let a ∈ D1 ∩ D2. Since Y ⊂ D1, we have
that d(yi , a) ≤ diam(D1). It then easily follows that the CDYD defined by only
one corner, yi , which we denote C(yi ), is within distance O(diam(D1)) from C(a).
But then C(D1) = ⋃

i∈I C(yi ) is within distance O(diam(D1)) from C(a). Thus,
|D1 ∨ D2| ≤ (diam(D2) + O(diam(D1)))/C1 ≤ |D2| + |D1|, since diam(D1) =
O(|D1|) and all implicit constants depend only onS and are thus much smaller than
C1.

Next assume that D1 and D2 are CDYD. Then the statement is trivial, because
D1 ∨ D2 = D1 ∪ D2, so diam(D1) + diam(D2) ≥ diam(D1 ∨ D2) by the triangle
inequality.

Finally, let D be a DYD intersecting ∂ . Then, |C(Q(D))| ≥ |C(D)| and |Q(D)| =
|D|, so we may assume that D = Q(D) and prove |C(D)| ≤ |D|. But in this case it
is easy to see that diam(C(D)) = O(diam(D)) = O(|D|) with constants depending
only onS , which concludes the proof. ��

The subadditivity lemma will be used to prove the next two adaptations of classical
results.

Lemma 5.13 (Aizenman-Lebowitz)Let K be a finite set and let D be a spanned droplet
with |D| ≥ C2

4 . Then for all C2
4/C1 ≤ k ≤ |D|/C1 there exists a connected spanned

droplet D′ with k ≤ |D′| ≤ 2k. The same statement holds for modified spanned
droplets.

Proof By Lemma 5.12 at each step of the droplet algorithm the largest size of a droplet
appearing in the collection at most doubles. Initially the largest size is at most C1C4
and in the end there is a (unique) droplet D′′ ⊃ D, so that |D′′| ≥ |D|/C1 ≥ C2

4/C1 >

C1C4. Then there is a stage of the algorithm at which the maximal size of a droplet
in D is between k and 2k, which is enough since all droplets appearing in the droplet
algorithm are connected and spanned. The proof for modified spanned droplets is
identical, using the modified droplet algorithm. ��

Lemma 5.14 (Extremal) Let K ⊂ Z
2 and let D be a droplet spanned for K . Then the

total number of disjoint clusters for K ∩ D in D is at least diam(D)/C2
4 .
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Proof In this proof all clusters will be clusters for K ∩ D. Assume that at the initial
stage of the algorithm there are k clusters (not disjoint). One can then find k/C ′

4 disjoint
ones, since their diameter is at most C3. Furthermore, by Lemma 5.12 the total size
of droplets in the collection D is decreasing, so that |D|/C1 ≤ |D′| ≤ kC1C4, where
D′ ⊃ D is some droplet in the output of the algorithm. Indeed, |Q(C)| ≤ C1C4 for
all clusters C . This concludes the proof, since |D| ≥ diam(D)/C1 for all DYD and
CDYD. ��

We next transform this extremal bound into an exponential decay of the probability
that a droplet is spanned until saturation at the critical size. In the following lemma,
we identify the configuration ω having law μ and the set of its zeroes.

Lemma 5.15 (Exponential decay) Let D be a droplet with |D| ≤ 2/(C5qα). Then

μ(D is spanned for ω) ≤ exp(−C4|D|).

Proof Let D be a droplet with |D| ≤ 2/(C5qα), so that diam(D) = d ≤ 2C1/(C5qα).
By Lemma 5.14 if D is spanned for ω, it contains at least d/C2

4 disjoint clusters for
ω ∩ D, each one having diameter at most C3. Each non-boundary cluster has at least
α sites by Observation 5.4, while boundary clusters are non-empty and located at
distance at most C2 from ∂ . Thus, we have the union bound

μ(D is spanned forω)

≤
d/C2

4∑

l=0

(
C2α
3 d2

l

)(
C3d

d/C2
4 − l

)
qlα+(d/C2

4−l)

≤
d/C2

4∑

l=d/(2C2
4 )

(C ′
4q

αd2/l)l .ed +
d/C2

4∑

l ′=d/(2C2
4 )

(C ′
4qd/l ′)l ′ .ed

≤
d/C2

4∑

l=d/(2C2
4 )

(
C ′
4e

2C2
4qα

1/(2C2
4 )

· 2C1

C5qα

)l

+
d/C2

4∑

l ′=d/(2C2
4 )

(
2C2

4C
′
4e

2C2
4q

)l ′

≤ exp(−C4d),

recalling that C5 is sufficiently large depending on C4, C ′
4 and C1. ��

Our next aim is to prove that the closure of a set is contained in its droplet collec-
tion up to very local infections next to initial ones. To that end we will need some
preliminary results, similar to those used by Bollobás et al. [7].

Observation 5.16 (Lemma 6.5 of [7]) Let u be a rational non-semi-isolated stable
direction. Let K ⊂ Z

2 with |K | < α(u) (if α(u) = ∞ the condition is that K is finite,
but there is no a priori bound on its size). Then there exists a constant C(U , u, |K |)
not depending on K such that [K ]Hu is within distance C(U , u, |K |) from K .
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Since we will require some improvements later, we spell out a proof of the above
result for completeness (actually our proof is slightly different from the one in [7]).

Proof of Observation 5.16 We prove the statement by induction on |K |. For a K = {x}
this is easy, since if 〈x, u〉 is sufficiently large [K ]Hu = K and otherwise there is a
single possible configuration for each value of 〈x, u〉 up to translation. Assume the
result holds for |K | < n. If one can write K = K1 � K2 with K1, K2 �= ∅ and
d(K1, K2) > 2C(U , u, n−1)+O(1), then [K ]Hu = [K1]Hu �[K2]Hu , since [K1]Hu

and [K2]Hu are at sufficiently large distance, hence no site can use both to become
infected. Assume that, on the contrary, there are no large gaps between parts of K .
There is a finite number of such K up to translation and for each of these [K ] is
finite (e.g. since K is contained in a quadrilateral with sides perpendicular to S ), so
within uniformly bounded distance from K . Therefore, if Hu is sufficiently far from
K , [K ]Hu = [K ]. Otherwise, there is a finite number of possible K up to translation
perpendicular to u and for each of them [K ]Hu is finite, so that one can indeed find a
finite uniform constant C(U , u, n) as claimed. ��
A quantitative version of this result was proved by Hartarsky and Mezei [21]. An easy
corollary of Observation 5.16 is the fact that crumbs can only grow very locally (see
Fig. 5a).

Corollary 5.17 LetC1 be sufficiently large depending onU . Let K ⊂ Z
2 with |K | < α.

Then [K ] is within distance C1/(6α) from K . Also, for a (modified) crumb κ we have
that diam([κ]) ≤ αC2 and [κ] is within distance C1 from κ .

Proof The first assertion follows from Observation 5.16, since if it were wrong, one
could simply translate a set K sufficiently far from a half-plane yielding a contradiction
with the observation.

Next consider a (modified) crumb κ and Pκ minimal with |Pκ | < α and [Pκ ] ⊃ κ .
Then [κ] ⊂ [Pκ ] is within distance C1/(6α) from Pκ . If the sites of Pκ are not
connected in the graph Γ ′′ on Z

2 with connections at distance at most C1 + C2, then
either κ is not connected in Γ or Pκ is not minimal, which are both contradictions.
Similarly, if there is no site of κ at distance smaller than C1/(2α) from a C1/(2α)-
connected component of Pκ , that component can be removed from Pκ , contradicting
minimality. Hence, Pκ is within distance C1/2 from κ . The result is then immediate,
as [κ] is within distanceC1/2+C1/(6α) from κ and its diameter is at mostC1/(3α)+
diam(Pκ), while diam(Pκ) ≤ (α − 1)(C1 + C2). ��

In order to treat infection at the concave corners of droplets we will need the
following modification of Observation 5.16.

Corollary 5.18 Let u1 and u2 be rational strongly stable directions such thatHu1∪Hu2
is stable for the bootstrap percolation dynamics i.e. �U ∈ U ,U ⊂ Hu1 ∪ Hu2 . Let
K ⊂ Z

2 with |K | ≤ α − 1. Then [K ]Hu1∪Hu2
is within distance C(U , u1, u2) from

K .

Proof We apply a similar induction to the one in the proof of Observation 5.16. The
only difference is that we can no longer use translation invariance. If d(K , Hu2) >
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(a)

(b)

Fig. 5 Illustrations of Corollary 5.17, Lemma 5.19 and Proposition 5.20. a The dots represent the sites of
a crumb. The (disconnected) circled shape bounds its closure. Note that crumbs may have gaps of size C2
while the growth allowed is only C1 � C2. b The shaded region is the shrunken DYD D̊ of the largest
DYD D. The solid circles represent crumbs and the dashed arcs are the bound for their growth provided by
Lemma 5.19. The modified clusters of the closure are included in the dotted DYD

C(U , u1, |K |) + O(1), by Observation 5.16, we have [K ]Hu1∪Hu2
= [K ]Hu1

and
similarly for u1 and u2 interchanged. We can thus assume that K is within distance
C ′(U , u1, u2) from the origin. But then

[K ∪ Hu1 ∪ Hu2 ] ⊂ Hu1 ∪ Hu2 ∪ Hu′(C
′′(U , u1, u2)u

′),

where u′ = (u1 + u2)/2, since the latter region is stable by the hypothesis on u1, u2.
��

We next transform these results for infinite regions into a result for droplets. It states
that a crumb next to a droplet cannot grow significantly (see Fig. 5b).

Lemma 5.19 Let C1 be sufficiently large depending onU andS . Let D be a DYD at
distance at least C3 from ∂ or be a CDYD and let κ be a crumb. Then [κ]D∪∂ = [κ]D
is within distance C1 of κ .

Proof Assume that D is a DYD at distance at least C3 from ∂ . The proof of [7,
Lemma 6.10] applies using (7), Observation 5.16, Corollary 5.18 and the arguments
in the proof of Corollary 5.17 to give the result for [κ]D , which is therefore at distance
at least C2 − C1 from ∂ since d(κ, ∂) ≥ C2, so that in fact [κ]D = [κ]D∪∂ .
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Assume next that D is a CDYD. Then actually D ∪ ∂ can be viewed as a DYD
on the entire plane without boundary specified by an infinite number of vectors xi ,
so that we are in the previous case. In order to avoid introducing the corresponding
notion of infinite DYD, one can consider an increasing exhaustive sequence of DYD
Di converging to D ∪ ∂ in the product topology and apply the previous result for
[κ]Di , which will thereby apply to D ∪ ∂ . Finally, [κ]D = [κ]D∪∂ follows, since
d([κ]D∪∂ , ∂) ≥ C2 − C1. ��

The next proposition is key to making the output of the algorithm essentially invari-
ant under the KCM dynamics without having to pay for the fact that the closure for the
bootstrap percolation dynamics of infections at equilibrium is not at all at equilibrium
itself. The proof is illustrated in Fig. 5b.

Proposition 5.20 (Closure) Let K be a finite set and D ′ be the collection of droplets
given by the modified droplet algorithm with input [K ]∂ . Let D be the output of the
droplet algorithm for K . Then

∀D′ ∈ D ′ ∃D ∈ D, D′ ⊂ D.

Proof Let K be the set of crumbs for K . Set κ0 = ⋃
κ∈K κ . ��

Claim 1 For each crumb κ ∈ K its closure [κ] = [κ]∂ consists of at most α − 1
modified crumbs of [κ] all contained within distance C1 from κ .

Proof of Claim 1 There exists a set Pκ as in Definition 5.1, such that [Pκ ] ⊃ κ and thus
[Pκ ] ⊃ [κ], which proves that all connected components of [κ] for Γ ′ are modified
crumbs. The fact that [κ] is within distance C1 of κ (and thus at distance at least C ′

2
from ∂) was proved in Corollary 5.17, which also shows that [κ] = [κ]∂ , since κ is at
distance more than C2 from ∂ . ��
We can thus define K ′(κ) to be the set of modified crumbs of [κ]∂ , so that their
union is disjoint and equal to [κ]∂ . Moreover, crumbs inK are at distance at least C2
from each other, so for any two of them κ1 �= κ2 we have that any κ ′

1 ∈ K ′(κ1) and
κ ′
2 ∈ K ′(κ2) are at distance at least C2−2C1 � C ′

2 and also at such distance from ∂ ,
so that [κ0]∂ = ⋃

κ∈K [κ]∂ has no modified cluster and consists of modified crumbs
at distance at most C1 from κ0.

For a droplet D ∈ D consider the set of vectors Y and x (x is absent for CDYD)
defining it. Then define Y̊ = Y + C4u0/C1 and x̊ = x + C4v0/C1, where u0 ∈ R

2 is
the vector such that 〈u0, u1〉 = 〈u0, u2〉 = −1 and v0 is defined identically in terms
of v1 and v2. We denote by D̊ the droplet defined by Y̊ and x̊ and call it a shrunken
droplet. Let D0 = ⋃

D∈D D and D̊0 = ⋃
D∈D D̊. It is clear that D̊ is at distance at

least C4/C1 from Λ\D for all droplets D. In particular, all shrunken droplets are at
distance at least C4/C1 from each other and shrunken DYD are at distance at least
C4/C1 from ∂ , so that Lemma 5.19 applies to them and [D̊0]∂ = D̊0.

Claim 2 D̊0 ∪ κ0 ⊃ K .
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Proof of Claim 2 Note that it is enough to prove that the clusters of K are contained
in D̊0. Assume that there exists a ∈ K\D̊0 and a ∈ C for some cluster. Then,
Q(C) ∩ Λ is contained in some D ∈ D , which is defined by Y and x (x is absent for
CDYD). Then since a /∈ D̊, either for all ẙi ∈ Y̊ we have a /∈ Hu1(ẙi ) ∩ Hu2(ẙi ) or
a /∈ Hv1(x̊) ∩ Hv2(x̊). In the former case, a − C4u0/C1 /∈ Hu1(yi ) ∩ Hu2(yi ) for all
yi ∈ Y . However, Q(C) contains the ball of radiusC4 centered at a and ‖u0‖ = O(1),
so we get a contradiction. If a /∈ Hv1(x̊)∩Hv2(x̊), the first point on the segment from
a to a − C4v0/C1 that is not in D is in Λ and in Q(C), hence a contradiction. ��
Claim 3 The set [K ]∂\[κ0]∂ is within distance C3 of D̊0.

Proof of Claim 3 By Claim 2 we have K0 = D̊0 ∪ κ0 ⊃ K . It then clearly suffices to
prove that [K0]∂\[κ0]∂ is within distance C3 of D̊0.

Consider a crumb κ ∈ K at distance at mostC2 from D̊0, so at distance at mostC2
from a shrunken droplet D̊ and necessarily at distance at least C4/C1 −C2 −C3 from
any other shrunken droplet and from ∂ if D is a DYD. By Lemma 5.19 [κ]D̊ = [κ]D̊∪∂
is within distance C1 of κ . Hence,

[K0 ∪ ∂] = D̊0 ∪ ∂ ∪ [κ0] ∪
⋃

κ,D

[κ]D̊, (9)

where the last union is on couples (κ, D) as above. Indeed, all [κ]D̊ and [κ] (for
different κ) are at distance at least C2 − 2C1 from each other and from D̊0\D̊ (by
the reasoning above), so for each site of Λ the intersection of the ball of radius O(1)
centered at it with the set on the right-hand side of (9) coincides with the intersection
with one of the sets [κ ∪ D̊], [κ] or D̊0∪∂ , which are all stable, so no infections occur,
which proves (9).

The claim follows easily from (9), since for every couple κ, D the set [κ]D̊ is within

distance C1 of κ , which is itself at distance at most C2 from D̊0, and κ has diameter
much smaller than C3 by Corollary 5.17. ��

LetC ′ be amodified cluster of [K ]∂ and assume for a contradiction thatC ′ ⊂ [κ0]∂ .
From Definition 5.3 we get that C ′ is also a modified cluster of [κ0]∂ , but this is a
contradiction, since [κ0]∂ only consists of modified crumbs.

Since any modified cluster C ′ of [K ]∂ has diameter at most C3 (by Definition 5.3)
and intersects [K ]∂\[κ0]∂ , which is within distance C3 of D̊0 by Claim 3, we get that
C ′ is within distance 2C3 of D̊0. Therefore,

⋃
C ′∈C ′([K ]∂ ) Q

′(C ′) ⊂ D0 ∪ ∂ , where
the union is over all modified clusters of [K ]∂ , since diam(Q′(C ′)) � C4/C1 ≤
d(D̊0,Λ\D0). As D is the output of the droplet algorithm, D0 is the union of dis-
joint DYD non-intersecting ∂ and CDYD, so it necessarily contains

⋃
D′∈D ′ D′ (see

Remark 5.10), which concludes the proof.

Remark 5.21 It should be noted that the algorithm is more easily and naturally defined
with no boundary, but that will not be sufficient for our purposes. However, this ‘free’
algorithm is trivially obtained as a specialisation of ours. It is also possible to deal
with more general boundaries, with infinite input sets, as well as with droplets defined
by more directions and possibly with several rugged sides.
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Fig. 6 The domain V is the thickened triangle, a portion of which is displayed. Solid lines separate columns
Ci . Inside the domain is drawn a DYD, which witnesses Φ(ω)3 =↑

6 Renormalised East dynamics

In this section we map the original dynamics into an East one and conclude the proof
of our main result. In Sect. 6.1 we introduce the necessary notation for the relevant
geometry. In Sect. 6.2 we consider a renormalised dynamics on the slices of Fig. 6
by algorithmically selecting certain modified spanned droplets of size Ω(1/qα). In
Sect. 6.3 we further renormalise to recover an exact East dynamics where q is replaced
by qeff corresponding to the probability of spanning such a droplet. Finally, in Sect. 6.4
we prove Theorem 2.8 roughly as in [25].

6.1 Geometric setup

Let us start by defining the domain V we will work in, recalling the notation from
Lemma 4.1. Roughly speaking, V is an isosceles trianglewith height e1/(C5qα) directed
by u′ (see Fig. 6). It is divided into ‘columns’ Ci perpendicular to u′ of width roughly
1/qα , so that the origin of Z

2 is in the middle of the last column, close to the tip of V .
More formally, set L = 1/(C5qα) and let ι be the smallest x ≥ 1 such that the site

x
2qα u′ is in Z

2, so that ι = 1 + O(qα). This way our columns will have width ι/qα

and be separated along rational lines. We define the domain

V = Hu′(e
Lu′)\

(
Hu′2(−ι/(2qα)u′) ∪ Hu′1(−ι/(2qα)u′)

)
.

Let us choose C5 so that half the number of columns

N = eLqα/(2ι) + 1/4 = eLqα(1/2+ O(qα))

is an integer. We then partition the domain V = ⋃2N
i=1 Ci into columns with

Ci = {x ∈ V : eL − ι(i − 1)/qα > 〈x, u′〉 ≥ eL − ιi/qα},
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so that 0 is in the middle ofC2N and eLu′ ∈ Z
2.We shall refer toCi as the i-th column.

Finally, define the half-plane containing Ci+1, but not intersecting Ci

Hi = Hu′((e
L − ιi/qα)u′)

and the natural boundary for Ci

∂i = Hi ∪ ∂̄,

obtained by considering C j , j ≥ i + 1 as fully infected, where

∂̄ = Hu′2(−ι/(2qα)u′) ∪ Hu′1(−ι/(2qα)u′).

Note that these boundaries are of the form considered in Sect. 5.

6.2 Arrow variables

Let ω ∈ Ω . We will now define a collection of arrow variables which depend only
on the restriction of ω to V . We naturally identify the restriction of ω to V with the
subset of V where ω is 0 and we use the notation ω = ∅ to indicate that all sites are
filled (healthy) in V , namely ωx = 1 for all x ∈ V . Let ω(0) = ω ∩ V . We define the
position of the first up-arrow as the smallest index i1(ω) ∈ {1, 2, . . . , 2N } such that
there is a modified spanned droplet of size at least L for [ω(0)]∂i1(ω)

with boundary
∂i1(ω). If no such i1 exists, we say that there are no up-arrows and set i1(ω) = ∞. We
further denote ω(1) = ω(0) ∩Hi1(ω) as soon as i1(ω) < ∞, while otherwise ω(1) = ∅.

We define the set I (ω) = {i1(ω), i2(ω), . . . } ⊂ {1, . . . , 2N } containing the posi-
tions of up-arrows recursively as follows. If there are no up-arrows, then I = ∅.
Otherwise, we set I (ω) = {i1(ω)} ∪ I (ω(1)) and ω(k) = (ω(k−1))(1), which defines
ω(k) for all k. Let us note that if i1(ω) �= ∞, then i1(ω) < i1(ω(1)), since by definition
[ω(1)]∂i1(ω)

= ∅. Finally, we define Φ(ω) ∈ {↑,↓}{1,...,2N } as

Φ(ω)k =
{
↑ if k ∈ I (ω),

↓ otherwise.

The next Lemma states that the probability to find at least one up-arrow decays as

qeff = e−L .

Lemma 6.1

μ(i1 < ∞) ≤ qeff .

Proof Fix 1 ≤ i ≤ 2N and consider the event i1 = i . It is clearly included in
the event Ei that there is a modified spanned droplet of size at least L for [ω(0)]∂i
with boundary ∂i . By Proposition 5.20 there is also a spanned droplet of size at least
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L/C1 for ω(0)\∂i with boundary ∂i . By Lemma 5.13 this implies that there is also a
spanned connected droplet of size between L/C2

1 and 2L/C2
1 . Then one can rewrite

Ei as the union over all such droplets D of the event that D is spanned. Note that
for each discretised DYD D ∩ Z

2 the event that there exists a spanned DYD D′ with
D′ ∩Z

2 = D∩Z
2 coincides with the event that a suitably chosen such D′

0 is spanned.
Indeed, the intersection of twoDYD is a DYD by (7) and the spanning of all D′ depend
only on the finite number of sites in D ∩ Z

2, so there is a finite number of possible
events associated to different D′ and one can consider the intersection of a D′ defining
each of these events. The same reasoning holds for CDYD and so for each discretised
droplet D ∩ Z

2 one can bound the probability that there exists a spanned droplet
with such discretisation using Lemma 5.15. Thus, by the union bound on discretised
droplets counted in Observation 5.8, one obtains

μ(Ei ) ≤ |V |.eL2e−C4L/C2
1 ≤ qeff/(2N ),

which concludes the proof. ��
We next consider the event of having at least n up-arrows

B(n) = {ω ∈ Ω : |I (ω)| ≥ n}.

Corollary 6.2 For any 1 ≤ n ≤ 2N we have

μ(B(n)) ≤ qneff .

Proof We prove the statement by induction on n. The base, n = 1, is given by
Lemma 6.1. For n > 1 we have

μ(|I | ≥ n) =
2N∑

i=1

μ(i1(ω) = i; |I (ω ∩ Hi )| ≥ n − 1)

≤
2N∑

i=1

μ(i1 = i)μ(|I | ≥ n − 1)

≤qneff ,

where we used that the event i1 = i only depends on ω\Hi (i1 is a stopping time for
the filtration induced by the columns) and that the event |I | ≥ n − 1 is increasing for
the order defined by ω � ω′ when ω ⊂ ω′. ��

We will now state a key deterministic property of the arrows under legal moves of
the KCM dynamics.

Lemma 6.3 Let ω ∈ Ω . Let x ∈ Ci be such that ωx = 1 and the constraint at x is
satisfied by ω ∪ ∂̄ . Assume that Φ(ω) �= Φ(ωx ). Let j = max{k : Φ(ω)k �= Φ(ωx )k}.
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Then

Φ(ω)[i−1, j] = (↑,↓,↑,↓,↑, . . . )

Φ(ωx )[i−1, j] = (↑,↑,↓,↑,↓, . . . )

Φ(ω)[0,i−1] = Φ(ωx )[0,i−1]

with the convention that Φ(ω)0 =↑ for all ω.

Proof We denote Φ := Φ(ω) and Φ ′ := Φ(ωx ). Clearly, Φ[0,i−1] = Φ ′[0,i−1], since
those values do not depend on ω ∩ Hi−1. ��
Claim 1 Let k ≥ i . If Φk =↑, then Φ[k+1,2N ] ≥ Φ ′[k+1,2N ] for the lexicographic order
associated to ↑<↓. If Φ ′

k =↑, then Φ[k+1,2N ] ≤ Φ ′[k+1,2N ].

Proof of Claim 1 The two assertions being analogous, we only prove the first one, so
assume that Φk =↑. Let j ′ = min{l > k : Φl =↑}. Then there is a modified spanned
droplet of size at least L for [ω(0) ∩ Hk]∂ j ′ with boundary ∂ j ′ . But this is also true
for ωx instead of ω, as they coincide in Hk , and in particular the position of the first
up-arrow of Φ ′ after k is at most j ′. ��
Claim 2 Let k ≥ i − 1 be such that Φk = Φ ′

k =↓. Then k > j i.e. Φ[k,2N ] = Φ ′[k,2N ].

Proof of Claim 2 We can clearly assume that k < 2N . Further assume for a contradic-
tion that Φk+1 =↑ and Φ ′

k+1 =↓. Let i ′ = max{l < k : Φl =↑}. Then there exists a
modified spanned droplet D of size at least L for [ω(0) ∩Hi ′ ]∂k+1 with boundary ∂k+1.
By Lemma 5.13 we can assume that L ≤ |D| ≤ C1L . However, if d(D,Ck+1) > C5,
then D is also modified spanned for [ω(0) ∩ Hi ′ ]∂k with boundary ∂k , contradicting
the definition of i ′. Indeed, from the output of the modified droplet algorithm for
[ω(0) ∩ Hi ′ ]∂k ∩ D with boundary ∂k we can create a collection D̂ of droplets for
∂k+1 by extending CDYD appropriately, thus D̂ contains Q′(C ′)\∂k = Q′(C ′)\∂k+1
for every modified cluster C ′ of [ω(0) ∩ Hi ′ ]∂k ∩ D with boundary ∂k . Moreover, the
modified clusters of [ω(0) ∩ Hi ′ ]∂k+1 ∩ D with boundary ∂k+1 are contained in the

modified clusters of [ω(0) ∩ Hi ′ ]∂k ∩ D with boundary ∂k , so D̂ contains the output
of the modified droplet algorithm for [ω(0) ∩ Hi ′ ]∂k+1 ∩ D with boundary ∂k+1 by
Remark 5.10, itself containing D.

Therefore, d(D,Ck+1) ≤ C5. Moreover, D is not modified spanned for [(ωx )(0) ∩
Hk−1]∂k+1 with boundary ∂k+1 (otherwise Φ ′[k,k+1] �= (↓,↓)). Therefore, there exists
a site y ∈ D such that

y ∈ [ω(0) ∩ Hi ′ ]∂k+1\[(ωx )(0) ∩ Hk−1]∂k+1 .

We consider two subcases. First assume that d(x, R
2\Hi−1) ≥ C1. Then, the

constraint at x is satisfied by (ω ∩ Hi−1) ∪ ∂̄ , so [ω(0) ∩ Hk−1]∂k+1 = [(ωx )(0) ∩
Hk−1]∂k+1 , and there is a path

P ⊂ [ω(0) ∩ Hi ′ ]∂k+1\[(ωx )(0) ∩ Hk−1]∂k+1
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from R
2\Hk−1 to y such that each two consecutive sites are at distance at most O(1).

But d(y, R
2\Hk−1) ≥ ι/qα − diam(D)−C5 ≥ C2(L + 1), so one can find a subpath

P ′ ⊂ Ck ∩ P of diameter at least C2L . Yet, it is clear that P ′ ⊂ [ω(0) ∩Hi ′ ]∂k implies
the existence of a modified spanned droplet of size larger than L with boundary ∂k , so
one would have an up-arrow of Φ in [i ′ + 1, k]—a contradiction. If, on the contrary,
d(x, R

2\Hi−1) ≤ C1, we can redo the same reasoning, but P needs to extend to either
R
2\Hk−1 or x , both of which are sufficiently far from y.
Thus, Φk+1 = Φ ′

k+1, as the case Φk+1 =↓, Φ ′
k+1 =↑ is treated identically. But

then either both are ↑, in which case we are done by Claim 1 or both are ↓ and we are
done by induction. ��
It is easy to see that the only non-identical arrow sequences Φ[i−1, j] and Φ ′[i−1, j]
satisfying the two claims are (↑,↓,↑,↓, . . . ) and (↑,↑,↓,↑, . . . ) (in this order using
that ωx = 1). Indeed, by Claims 1 and 2 Φk �= Φ ′

k for all i ≤ k ≤ j , by Claim 1 one
cannot have two consecutive up-arrows neither in Φ nor in Φ ′ in the interval [i, j]
and by Claim 2 Φi−1 = Φ ′

i−1 =↑.

6.3 Renormalised East dynamics

We partition {1, . . . , 2N } into blocks Bi = {2i − 1, 2i} for 1 ≤ i ≤ N . Given ω ∈ Ω ,
we define η(ω) ∈ {0, 1}{1,...,N } by

η(ω)i = 1{∀ j∈Bi :Φ(ω) j=↓}

for all i ∈ {1, . . . , N }. Let

n =  L! =
⌊

1

C5qα

⌋
<  log2 N!.

Recall the definition of legal paths, Definition 2.4. Given an event E ⊂ Ω and
a legal path γ = (ω(0), . . . , ω(k)) we will say that γ ∩ E = ∅ if ω(i) /∈ E for all
i ∈ {0, . . . , k}. Also, given ω ∈ Ω and A ⊂ Ω , we say that γ connects ω to A
if ω(0) = ω and ω(k) ∈ A . Recall that B(n) ⊂ Ω is the set of configurations with
at least n up-arrows. The following is a straightforward but important corollary of
Lemma 6.3.

Corollary 6.4 For any legal path (ω(0), . . . , ω(k)), the path (η(ω(0)), . . . , η(ω(k))) is
legal for the East model on {1, . . . , N } defined by fixing η0 = 0.

Proof By Lemma 6.3 η(ω( j)) �= η(ω( j+1)) implies that Φ(ω( j)) and Φ(ω( j+1)) only
differ on an alternating chain of arrows ending in some Bi , preceded by↑. Then clearly
η(ω( j))l = η(ω( j+1))l for all l �= i and η(ω( j))i−1 = 0. ��

Let Ω↓ and Ω2N↑ be respectively the set of configurations which do not have up-
arrows, and the set of configurations with an up-arrow in the 2N -th column, namely

Ω↓ = {ω ∈ Ω : Φ(ω) = (↓, . . . ,↓)},
Ω2N↑ = {ω ∈ Ω : Φ(ω)2N =↑}.
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Combining the last corollary with Proposition 2.7, we obtain the most important
input for the proof of the main result.

Corollary 6.5 Foranyω ∈ Ω↓ there does not exist a legal pathγ withγ∩B(n+1) = ∅

connecting ω to Ω2N↑ .

6.4 Proof of Theorem 2.8

To prove Theorem 2.8 it is sufficient to prove the lower bound for the mean infection
time and use the following inequality (see [10, Theorem4.4] and also [26, Section 2.2])

Trel ≥ qE(τ0). (10)

However, it is instructive to construct at this stage a test function that directly gives
the desired lower bound on Trel without going through the comparison with the mean
infection time. Indeed, the mechanism will appear more clearly this way.

Proof of Theorem 2.8 for Trel We define the event

˜A = {ω ∈ Ω : ∃a legal path γ with γ ∩B(n) = ∅ connectingω ∪ (Z2\V ) toΩ↓}

and the test function f : Ω → {0, 1}

f = 1 ˜A .

Then, by Definition 2.5 we get

Trel ≥ μ( ˜A )(1− μ( ˜A ))

D( f )
, (11)

where the Dirichlet form D( f ) is defined in (4).

Lemma 6.6 (Bounds on μ( ˜A ))

μ( ˜A )
(
1− μ( ˜A )

)
≥ exp

(
log q

C4qα

)
.

Proof By Lemma 6.1 we have

μ( ˜A ) ≥ μ(Ω↓) ≥ 1− qeff ≥ 1/2.

On the other hand,

1− μ( ˜A ) ≥ μ(Ω2N↑ ) ≥ qC1L ≥ exp(C1 log q/(C5q
α)),

where we used Corollary 6.5 for the first inequality together with the fact that if
(ω(0), . . . , ω(k)) is a legal path, then (ω(k), . . . , ω(0)) is one as well, and for the second
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inequality we notice that for the 2N -th arrow to be up it is sufficient to have an empty
segment of length C1L in C2N . ��
Lemma 6.7 (Estimate of the Dirichlet form) D( f ) ≤ exp

(−1/(C3
5q

2α)
)
.

Proof Using the fact that f (ω) depends only on the values of ω in V , we get

D( f ) =
∑

x∈V
μ(cxVarx ( f ))

= q(1− q)
∑

x∈V
μ

(
cx1{ω∈ ˜A , ωx /∈ ˜A } + cx1{ω/∈ ˜A , ωx∈ ˜A }

)

≤ |V |μ(B(n − 1)),

(12)

since, by Lemma 6.3 ||I (ω)|−|I (ωx )|| ≤ 1 when cx = 1, so the indicators both imply
ω ∈ B(n − 1). Indeed, ω ∈ ˜A implies the existence of a legal path γ from Ω↓ to
ω∪(Z2\V )with each configuration not inB(n). Since cx = 1, the path γ̄ obtained by
adding the transition fromω∪(Z2\V ) toωx∪(Z2\V ) is also legal, thus the hypothesis
ωx /∈ ˜A is not satisfied unless ωx ∈ B(n) (and similarly for ω /∈ ˜A , ωx ∈ ˜A ). Thus,
the result follows by using Corollary 6.2. ��

Then the lower bound for Trel of Theorem 2.8 follows from (11), Lemma 6.6 and
Lemma 6.7.

The above proof, together with the matching upper bound of Theorem 2(a) of
[26] indicate that the bottleneck dominating the time scales is indeed the creation of
Θ(log(1/qeff)) simultaneous droplets of probability qeff .

Proof of Theorem 2.8 for E(τ0) The proof of the lower bound for the infection time
follows a similar route, with some complications due to the fact that we have to
identify a (sufficiently likely) initial set starting from which we have to go through the
bottleneck configurations before infecting the origin.

By [25, Corollary 3.4], to prove the desired lower bound on E(τ0) it suffices to
construct a local function φ = φq such that

(i) μ(φ2) = 1,

(ii) μ(φ)4

D(φ)
≥ exp(1/(C4

5q
2α)),

(iii) φ(ω) = 0 if ω0 = 0.

Inspired by [25] we let

Ωg = Ω↓ ∩ {ω ∈ Ω : ωΛ0 = 1}

where Λ0 = {x ∈ Z
2 : d(x, 0) ≤ 1/(4qα)} ⊂ C2N and

A = {ω ∈ Ω : ∃ a legal path γ with γ ∩B(n) = ∅ connectingω ∪ (Z2\V ) toΩg}.

Then we set

φ(·) = 1A (·)/μ(A )1/2. (13)
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We are now left with proving that this function satisfies (i)–(iii) above.
Property (i) follows immediately from (13). In order to verify (ii) we start by

establishing a lower bound on μ(A ). By definition it holds that

μ(A ) ≥ μ(Ωg) ≥ μ(ωΛ0 = 1)μ(Ω↓) ≥ e−O(1)/q2α−1
(1− qeff) = e−O(1)/q2α−1

,

(14)

where we used Harris’ inequality [18] ({ωΛ0 = 1} and Ω↓ are increasing events if we
consider thatω ≤ ω′whenωx ≤ ω′

x for all x ∈ Z
2), Lemma6.1 and |Λ0| = O(1/q2α).

Furthermore, one can repeat the proof of Lemma 6.7 to obtain

D(φ) ≤ e−1/(C3
5q

2α). (15)

Thus, recalling (14), Property (ii) holds.
We are therefore only left with proving the next lemma establishing Property (iii),

completing the proof of Theorem 2.8.

Lemma 6.8 Let ω be such that ω0 = 0. Then any legal path connecting Ωg to ω

intersectsB(n).

As in the lower bound on 1 − μ( ˜A ) for Trel, the proof relies on Corollary 6.5, but
an additional complication arises due to the fact that emptying the origin does not a
priori require creating a critical droplet nearby.

Proof of Lemma 6.8 Suppose for a contradiction that there exists a configuration ω

with ω0 = 0, a configuration ω(0) ∈ Ωg and a legal path γ = (ω(0), . . . , ω(k)) with
ω(k) = ω andω( j) /∈ B(n) for all j ∈ {0, . . . , k}. Assuming without loss of generality
that ω( j) �= ω( j−1) for all j , let x j be such that ω( j) = (ω( j−1))

x j . Consider the path
γ̃ = (ω̃(0), . . . , ω̃(k)) obtained by performing the same updates as for γ except for
flips in the column C2N , which are performed only if they correspond to emptying
sites. More precisely, we let ω̃(0) = ω(0) and

ω̃( j) =
{

(ω̃( j−1))
x j if x j /∈ C2N or (ω̃( j−1))x j = 1,

ω̃( j−1) otherwise.

It is not difficult to verify by induction that γ̃ is also a legal pathwith ω̃( j) ≤ ω( j) for all
j (whereω ≤ ω′ whenωx ≤ ω′

x for all x ∈ Z
2) and that ω̃( j) andω( j) coincide outside

of C2N . Then (ω̃(k))0 ≤ (ω(k))0 = 0 and by definition (ω̃(0))Λ0 = 1. Therefore, since
insideC2N each site that has been emptied in γ is also empty in ω̃(k), we conclude that
necessarily ω̃(k) ∩C2N contains a (modified) spanned droplet of size 1/(4C1qα) > L
with boundary ∂2N = ∂̄ . Indeed, there is a path of sites x with steps of size O(1)
from Z

2\Λ0 to 0 such that (ω̃(k))x = 0. This means that ω̃(k) ∈ Ω2N↑ . Furthermore,
for all j we have Φ(ω̃( j))[1,2N−1] = Φ(ω( j))[1,2N−1], as those do not depend on the
sites in C2N . Thus, using Corollary 6.5, together with the facts that ω̃(0) ∈ Ωg ⊂ Ω↓,
ω̃(k) ∈ Ω2N↑ and γ̃ ∩B(n + 1) = ∅, we reach a contradiction. ��
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7 Open problems

With Theorem 2.8 the scaling of the infection time is determined up to a polyloga-
rithmic factor. The next natural question is to pursue determining this factor in the
spirit of the refined universality result of [7]. For the moment there is only one critical
model with infinitely many stable directions for which this is known — the Duarte
model [25]. In that case the corrective factor is Θ((log q)4). However, for bootstrap
percolation there are already two different possible behaviours of this factor depending
on whether the model is balanced or unbalanced (see Definition 2.3). Based on this
one could expect the following.

Conjecture 7.1 Let U be a critical update family with an infinite number of stable
directions.

– If U is balanced, then

E(τ0) = exp

(
Θ(1)

q2α

)
.

– If U is unbalanced, then

E(τ0) = exp

(
Θ

(
(log q)4

)

q2α

)

.

The same asymptotics hold for Trel.

In other words we expect the lower bound of Theorem 2.8 to be sharp for balanced
models, while the upper bound of [26, Theorem 2(a)] to be sharp for unbalanced ones.
The balanced case is not hard and only requires an improvement of the approach of
[26]. It will be treated in a future work, since it shares none of the techniques discussed
here. In the unbalanced case the (log q)4 should arise as the square of the (log q)2 factor
for bootstrap percolation, itself caused by the one-dimensional geometry and larger
size of critical droplets. This is indeed what happens for the Duarte model [25], an
example of unbalanced critical constraint.
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