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Abstract

The Fredrickson-Andersen 2-spin facilitated model on Z¢ (FA-2f) is a paradigmatic
interacting particle system with kinetic constraints (KCM) featuring dynamical facil-
itation, an important mechanism in condensed matter physics. In FA-2f a site may
change its state only if at least two of its nearest neighbours are empty. Although the
process is reversible w.r.t. a product Bernoulli measure, it is not attractive and features
degenerate jump rates and anomalous divergence of characteristic time scales as the
density g of empty sites tends to 0. A natural random variable encoding the above fea-
tures is o, the first time at which the origin becomes empty for the stationary process.
Our main result is the sharp threshold

d-ad,2)+o(1) b
70 = exp <+> w.h.p.
ql/d=D

with A(d, 2) the sharp threshold constant for 2-neighbour bootstrap percolation on
74, the monotone deterministic automaton counterpart of FA-2f. This is the first sharp
result for a critical KCM and it compares with Holroyd’s 2003 result on bootstrap
percolation and its subsequent improvements. It also settles various controversies accu-
mulated in the physics literature over the last four decades. Furthermore, our novel
techniques enable completing the recent ambitious program on the universality phe-
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nomenon for critical KCM and establishing sharp thresholds for other two-dimensional
KCM.
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1 Introduction

Fredrickson—Andersen j-spin facilitated models (FA-jf) are a class of interacting
particle systems that were introduced by physicists in the 1980s [14] to model the
liquid/glass transition, a major and still largely open problem in condensed matter
physics [2, 7]. Later on, several models with different update rules were introduced,
and this larger class has been dubbed kinetically constrained models (KCM) (see e.g.
[16] and references therein). The key feature of KCM is that an update at a given vertex
x can occur only if a suitable neighbourhood of x contains only holes, the facilitating
vertices. The presence of this dynamical constraint gives rise to a mechanism dubbed
dynamical facilitation [39] in condensed matter physics: motion on smaller scales
begets motion on larger scales. Extensive numerical simulations indicate that indeed
KCM can display a remarkable glassy behaviour, featuring in particular an anomalous
divergence of characteristic time scales. As a good representative of a random variable
whose law encodes the above behaviour one could take 7, the first time the origin
becomes a hole (or infected, in the jargon of the sequel). In the last forty years physicists
have put forward several different conjectures on the scaling of ¢ as the equilibrium
density of the holes goes to zero for FA- jf models. However, to date a clear cut answer
on the form of this scaling has proved elusive due to the very slow dynamics and large
finite size effects intrinsic to its glassy dynamics.

From the mathematical point of view, the study of FA-jf and KCM in general
poses very challenging problems. This is largely due to the fact that these models do
not feature an attractive dynamics (in the sense of [30, Chapter III]), and therefore
many of the powerful tools developed to study attractive stochastic spin dynamics, e.g.
monotone coupling or censoring, cannot be used. A central issue has been therefore
that of developing novel mathematical tools to determine the long time behaviour
of the stationary process and, more specifically, to find the scaling of the associated
infection time of the origin, 7 in the sequel, as the density ¢ of the empty sites (the
facilitating ones) shrinks to zero.

With this motivation, an ambitious program was recently initiated in [33] to deter-
mine as accurately as possible the divergence of the infection time for the stationary
process, as ¢ — 0 for the FA- jf models in any dimension and for general KCM in two
dimensions. This program mirrors in some aspects the analogous program for general
U-bootstrap percolation cellular automata ({/-BP) launched by [10] and carried out in
[4, 9] and for j-neighbour bootstrap percolation [5, 18, 27, 28]. Indeed /-BP models
and j-neighbour bootstrap percolation can be viewed as the monotone deterministic
counterparts of generic KCM and FA- jf models respectively. Despite the above anal-
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ogy, the lack of monotonicity for KCM induces a much more complex behaviour and
richer universality classes than BP [22-25, 31, 32].

In spite of several important advances [12, 24, 25, 31-33], the sharp estimates of the
divergence of 7 for stationary KCM still remained a milestone open problem. Solving
it requires discovering the optimal infection/healing mechanism to reach the origin
and crafting the mathematical tools to transform the knowledge of this mechanism
into tight upper and lower bounds for 7y for the stationary process. In this paper we
solve this problem (see Sect. 1.5 for an account of our most prominent innovations)
for the first time and we establish the sharp scaling for FA-2f models in any dimension
(Theorem 1.3). In doing so, we also settle various unresolved controversies in the
physics literature (see Sect. 1.4 for a detailed account).

Our novel approach not only leads to deeper results, but also extends in breadth.
Indeed, it opens the way for accomplishing the final step [22] to complete the program
of [33] for establishing KCM universality.

1.1 Bootstrap percolation background

Let us start by recalling some background on j-neighbour bootstrap percolation. Let
2 = {0, 1}Zd and call a site x € Z? infected (or empty) for w € 2 if wy = 0 and
healthy (or filled) otherwise. For fixed 0 < g < 1, we denote by u, the product
Bernoulli probability measure with parameter g under which each site is infected with
probability g. When confusion does not arise, we write i = 4. Given two integers
1 < j < d the j-neighbour BP model (j-BP for short) on the d-dimensional lattice
74 is the monotone cellular automaton on £2 evolving as follows. Let Ag C Z< be
the set of initially infected sites distributed according to w. Then for any integer time
t > 0 we recursively define

Ap1 =AU {x € Z% IN. N A = j},

where N, denotes the set of neighbours of x in the usual graph structure of Z¢. In
other words, a site becomes infected forever as soon as its constraint becomes satisfied,
namely as soon as it has at least j already infected neighbours.

Remark 1.1 The j-BP is clearly monotone in the initial set of infection i.e. A, C A
forallt > 1if Ag C A6. Such a monotonicity will, however, be missing in the KCM
models analysed in this work.

A key quantity for bootstrap percolation is the infection time of the origin defined
as 1331) = inf{r > 0,0 € A;}. For j=l1, trivially, t(?P scales as the distance to the
origin of the nearest infected site and thus behaves w.h.p. as ¢~'/¢. For j > 1, the
typical value of r(])3P W.I.t. iy has been investigated in a series of works, starting with
the seminal paper of Aizenman and Lebowitz [1] and Holroyd’s breakthrough [28]
determining a sharp threshold for d = j = 2. We refer to [34] for an account of the
field and only recall the more recent results that include second order corrections to

the sharp threshold. Here and throughout the paper, when using asymptotic notation
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we refer to g — 0.! For2-BPind = 2, w.h.p. it holds [18, 27] that

2
@P:em(ﬁg(y—vq-@aﬁ> (L.D)

For j-BP for alld > j > 2, w.h.p. it holds [5, 42]

i Ad, )
w2 exp! ™! (L (1 o)) (2
B o] ( rd, ) (1— 2 1/(2(d—j+1))))) (13)
00 =X\ ST 4 ’ '

where exp® denotes the exponential iterated k times and A(d, j) are the positive con-
stants defined explicitly in [6, (1-3)]. We recall that A(2, 2) = 72 /18 [28, Proposition
5] and we refer the interested reader to [6, Table 1 and Proposition 4] for other values
ofd, j.

We are now ready to introduce the Fredrickson-Andersen model, a natural stochastic
counterpart of j-BP and the main focus of this work.

1.2 The Fredrickson-Andersen model and main result

For integers 1 < j < d the Fredrickson—Andersen j-spin facilitated model (FA-jf) is
the interacting particle system on 2 = {0, I}Zd constructed as follows. Each site is
endowed with an independent Poisson clock with rate 1. At each clock ring the state
of the site is updated to an independent Bernoulli random variable with parameter
1 — g subject to the crucial constraint that if the site has fewer than j infected (nearest)
neighbours currently, then the update is rejected. We refer to updates occurring at sites
with at least j infected neighbours at the time of the update as legal.

Remark 1.2 Contrary to the j-BP model, the FA- jf process is clearly non-monotone
because of the possible recovery of infected sites with at least j infected neighbours.
This feature is one of the major obstacles in the analysis of the process.

It is standard to show (see [30]) that the FA-jf process is well defined and it is
reversible w.r.t. i, When the initial distribution at time # = 0 is a measure v, the law
and expectation of the process on the Skorokhod space D ([0, 00), §2) will be denoted
by P, and E, respectively. As for j-BP let

790 = inf{t > 0, wo(t) = 0}

be the first time the origin becomes infected. Our main goal is to quantify precisely
E,, [t0], the average of 7o w.r.t. the stationary process as ¢ — 0. In order to keep the

i [ and g are real-valued functions of ¢ with g positive, we write /' = O(g) if there exists a (deterministic
absolute) constant C > 0 such that | f(g)] < Cg(g) for every sufficiently small ¢ > 0. We also write
f = 82(g) if f is positive and g = O(f). We further write f = @(g) if both f = O(g) and f = §2(g).
Finally, we write f = o(g) if for all ¢ > 0 for sufficiently small ¢ > 0 we have | f(¢)| < cg(q).
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setting simple and the results more transparent, we will focus on the FA-2f model.
Other models, including FA-jf for all values of 3 < j < d, are discussed in Sect. 1.3.
Recall the constants A(d, 2) from (1.2), (1.3), so that A(2,2) = 712/18.

Theorem 1.3 As g — 0 the stationary FA-2f model on 7.¢ satisfies:

7T2
E,,[70] = exp (%(1 —\/51.0(1))), (1.4)
7'[2
E,,[t0] < exp (%(1 +.q - 1og0(1)(1/q))), (1.5)
ifd =2, and
d-2d,?2)
Ey,[t0] > exp (W(l — 0(1))), (1.6)
Ad,2
Epolio) < exp (T (14 49D dog1/g)°)). )

if d > 3. Moreover, (1.4—1.7) also hold for Ty w.h.p.

In particular, recalling (1.2), (1.3), we have the following.

Corollary 1.4 Wh.p. 7o = (z2F)d+o).
The above are the first results that establish the sharp asymptotics of log E,, [70]
within the whole class of “critical” KCM.

Remark 1.5 We will not provide an explicit proof of the case d > 3 as it does not
require any additional effort with respect to the case d = 2. The only significant
difference is that the lower bound from (1.1) is not available in higher dimensions,
leading to a corresponding weakening of the lower bound (1.6) as compared to (1.4).

Remark 1.6 Despite the resemblance, our results are by no means a corollary of their
2-BP counterpart (1.1). While the lower bounds (1.4) and (1.6) do indeed follow rather
easily from (1.1) and (1.2) together with an improvement of the “automatic” lower
bound from [12, Theorem 6.9], the proof of (1.5) and (1.7) is much more involved. In
particular, it requires guessing an efficient infection/healing mechanism to infect the
origin, which has no counterpart in the monotone j-BP dynamics (see Sect. 1.5).

1.3 Extensions

1.3.1 FA-jf withj # 2

For the sake of completeness, let us briefly discuss the FA- jf model with other values
of j. The case j = 1 is the simplest to analyse and behaves very differently: relaxation

is dominated by the motion of single infected sites and time scales diverge as 1/¢®
(see [12, 38] for the values of the exponent). For d > j > 4 we believe that minor

@ Springer



998 I. Hartarsky et al.

modifications of the treatment of [33] along the lines provided by [6] should be suffi-
cient to prove that EMq [to] scales as r(?P (see (1.2), (1.3)). The only remaining case,
d > j = 3, should require some more work, still following the approach of [33]. Let
us emphasise that it should be possible to treat all d > j > 3, using the techniques of
the present paper. However, the much faster divergence of the scaling involved should
allow the less refined technique of [33] to work, as there is a much larger margin for
error, making those results easier. We leave the above considerations to future work.

1.3.2 More general update rules: L{-KCM

The full power of the method developed in the present work is required to treat two-
dimensional (/-KCM, a very general class of interacting particle systems with kinetic
constraints on Z2. These models and their bootstrap percolation counterpart, I{-BP,
are defined similarly to FA-jf and j-BP but with arbitrary local monotone constraints
(or update rules) ¢/ [12, 33]. There exist several very symmetric constraints, including
the so-called modified 2-BP, requiring two non-opposite neighbours to be infected,
for which the exact asymptotics of log 7EF, and sometimes even the higher order
corrections, are known [11]. Our methods should adapt to this setting to yield equally
sharp results for E,, [7o] of the corresponding ¢/-KCM. In this general setting the
outcome would again be of the form E,, . [to] =~ (rgp)2 as for FA-2f.

We warn the reader that the exponent 2 in two dimensions relating E,, Lol to
rgp is not general [23, 24] and only applies to ‘isotropic’ models [22]. Nevertheless,
developing the approach of the present work further, in [22] log E,, [70] is determined
up to a constant factor for all so-called “critical” KCM in two dimensions, matching
the lower bounds established in [23] and establishing a richer KCM analogue of the
BP universality result of [9].

1.4 Settling a controversy in the physics literature

Soon after the FA- jf models were introduced, some conjectures in the physics literature
predicted the divergence of E,, . [to] at a positive critical density g, ( [14, 15, 17]).
These conjectures were subsequently ruled out in [12], the first contribution analysing
rigorously FA- jf. After [12] and prior to the present work, the best known bounds on
the infection time were

£2(1) log?M(1/g)y
o (ql/(d—l)) < By o0l < eXp( q1/@=1n ) /=2
/A, ) —o(1) . o) .
[ G 1
exp’ ( g1/@=j+D ) < E,,[t0] < exp’ <—q1/(d—j+1))’ j=3. (L8

The lower bounds follow from the general lower bound [33, Lemma 4.3] E,, . [t0] =
£2 (median of t(])3P) together with the j-nBP lower bounds (see Sect. 1.1) while the
upper bounds were recently obtained by the second and third author in [33]. As such,
the above results do not settle a controversy between several conjectures that were put
forward in the physics literature.
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The first quantitative prediction for the scaling of E;,, [to] appeared in [35] where,
based on numerical simulations, a faster than exponential divergence in 1/g was
conjectured for FA-2f in d = 2. For the latter, the first to claim an exponential
scaling exp(®(1)/q) was Reiter [36]. He argued that the infection process of the
origin is dominated by the motion of macro-defects, i.e. rare regions having prob-
ability exp(—®(1)/q) and size poly(1/g) that move at an exponentially small rate
exp(—®(1)/q). Later Biroli, Fisher and the last author [41] considerably refined
the above picture. They argued that macro-defects should coincide with the criti-
cal droplets of 2-BP having probability exp(—m2/(9¢)) and that the time scale of the
relaxation process inside a macro-defect should be exp(c/,/q), i.e. sub-dominant with
respect to the inverse of their density, in sharp contrast with the prediction of [36].
Based on this and on the idea that macro-defects move diffusively, the relaxation time
scale of FA-2fin d = 2 was conjectured to diverge as exp(r2/(9¢)) ind = 2 [41, Sec-
tion 6.3]. Yet, a different prediction was later made in [40] implying a different scaling
of the form exp(27r2/(9¢)). Concerning the behaviour of FA-2f in higher dimensions,
in [41] the relaxation time was predicted to diverge as (r(l)gp )¢, though the prediction
was less precise than for the two dimensional case since the sharp results for 2-BP in
dimension d > 2 proved in [5] were yet to be established.

Theorem 1.3 settles the above controversy by confirming the scaling prediction of
[36, 41] and by disproving those of [35, 40]. Moreover, our result on the characteristic
time scale of the relaxation process inside a macro-defect (see Proposition 4.7) agrees
with the prediction of [41] and disproves the one of [36].

1.5 Behind Theorem 1.3: high-level ideas

The main intuition behind Theorem 1.3 is that for ¢ < 1 the relaxation to equilibrium
of the stationary FA-2f process is dominated by the slow motion of patches of infec-
tion dubbed mobile droplets or just droplets with very small probability of occurrence,
roughly exp(—m2/(9¢)). In analogy with the critical droplets of bootstrap percolation
(see [28]), mobile droplets have a linear size which is polynomially increasing in g
(with some arbitrariness), i.e. they live on a much smaller scale than the metastable
length scale ¢®(1/ g'/t=) arising in 2-BP percolation model. One of the main require-
ments dictating the choice of the scale of mobile droplets is the requirement that the
typical infection environment around a droplet is w.h.p. such that the droplet is able
to move under the FA-2f dynamics in any direction. Within this scenario the main
contribution to the infection time of the origin for the stationary FA-2f process should
come from the time it takes for a droplet to reach the origin.

In order to translate the above intuition into a mathematically rigorous proof, one
is faced with two different fundamental problems:

(1) aprecise, yet workable, definition of mobile droplets;
(2) an efficient model for their “effective” random evolution.

In [25, 32, 33] mobile droplets (dubbed “super-good” regions there) have been defined
rather rigidly as fully infected regions of suitable shape and size and their motion has
been modelled as a generalised FA-1f process on Z? [32, Section 3.1]. In the latter
process mobile droplets are freely created or destroyed with the correct heat-bath
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equilibrium rates but only at locations which are adjacent to an already existing
droplet. The main outcome of these papers have been (upper) bounds on the infection

o)
time of the origin of the form rp < 1/ pgg log(1/pp) w.h.p., where pp is the density

of mobile droplets.

While rather powerful and robust, the solution proposed in [25, 32, 33] to (1) and
(2) above has no chance to get the exact asymptotics of the infection time because of
the rigidity in the definition of the mobile droplets and of the chosen model for their
effective dynamics. Indeed, a mobile droplet should be allowed to deform itself and
move to a nearby position like an amoeba, by rearranging its infection using the FA-2f
moves. This “amoeba motion” between nearby locations should occur on a time scale
much smaller than the global time scale necessary to bring a droplet from far away
to the origin. In particular, it should not require to first create a new droplet from the
initial one and only later destroy the original one (the main mechanism of the droplet
dynamics under the generalised FA-1f process).

With this in mind we offer a new solution to (1) and (2) above which indeed leads to
determining the exact asymptotics of the infection time. Concerning (1), our treatment
in Sect. 4 consists of two steps. We first propose a sophisticated multiscale definition
of mobile droplets which, in particular, introduces a crucial degree of softness in
their microscopic infection’s configuration?. The second and much more technically
involved step is developing the tools necessary to analyse the FA-2f dynamics inside
a mobile droplet. In particular, we then prove two key features (see Propositions 4.6
and 4.7 for the case d = 2):

(1.a) to the leading order the probability pp of mobile droplets satisfies

. did.2) _ 0(og’(1/q))
ooz exp (- qU@ T 1/edD )

(1.b) the “amoeba motion” of mobile droplets between nearby locations occurs on
a time scale exp(O(10g(1/q)3)/q1/(2d_2)) which is sub-leading w.r.t. the main
time scale of the problem and only manifests in the second term of (1.5).

Property (1.a) follows rather easily from well known facts from bootstrap percolation
theory, while proving property (1.b), one of the most innovative steps of the paper,
requires a substantial amount of new ideas.

While properties (1.a) and (1.b) above are essential, they are not sufficient on
their own for solving problem (2) above. In Sect. 5 we propose to model (admittedly
only at the level of a Poincaré inequality, which however suffices for our purposes)
the random evolution of mobile droplets as a symmetric simple exclusion process
with two additional crucial add-ons: a coalescence part (when two mobile droplets
meet they are allowed to merge) and a branching part (a single droplet can create
a new one nearby as in the generalised FA-1f process). This model, which we call
g-CBSEP, was studied for the purpose of its present application in the preparatory
work [26]. Finally, the fact that g-CBSEP relaxes on a time scale proportional to the

2 This construction is inspired by one suggested by P. Balister in 2017, which he conjectured would remove
the spurious log-corrections in the bound (1.8) available at that time.
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inverse density of mobile droplets (modulo logarithmic corrections) (see Proposition
5.2) yields the scaling of Theorem 1.3. We emphasise that modelling the large-scale
motion of droplets by g-CBSEP instead of a generalised FA-1f process is an absolute
novelty, also with respect to the physics literature.

2 Proof of Theorem 1.3: lower bound

In this section we establish the lower bounds (1.4) and (1.6) of Theorem 1.3. Our proof
is actually a procedure to establish a general lower bound for [, [7] based on boot-
strap percolation. This approach improves upon a previous general result [33] Lemma
4.3 which lower bounds [E,, . [to] with the mean infection time for the corresponding
bootstrap percolation model.

Before spelling the details out, let us explain the proof idea. In BP it is known
that the origin typically gets infected by a rare “critical droplet” of size roughly 1/g
which can be infected only using internal infections. This droplet, initially at distance
~ (density of critical droplets) /¢ from the origin, grows linearly until hitting the
origin. Hence r(l)gp ~ (density of critical droplets)~!/¢. On the contrary, the leading
behaviour of 7( is governed by the inverse probability of a critical droplet, because
one needs to wait for a critical droplet to reach the origin under the FA-2f dynamics.
Thus, we expect tg ~ (t(l)gp)d.

In order to turn this idea into a proof we need a little notation. We call any cuboid
of Z¢ with faces perpendicular to the lattice directions simply cuboid. For a cuboid
R C 7% and n € §274 we denote by [n]g the set of sites x € R which can become
infected by legal updates (recall Sect. 1.2) only using infections in R. Equivalently,
[1n]g can be viewed as the set of sites eventually infected by 2-BP with initial condition
the set {x € R : n, = 0}. Note that [57]g is a union of disjoint cuboids. For x, y € R

. R . . ..
we write {x <—> y} for the event that [n]z contains a cuboid containing x and y.
The next proposition essentially states that the infection time is at least the inverse
density of critical droplets.

Proposition 2.1 Let V = [—¢, 014 with £ = £(q) be such that

g (0 € [nly) = o(1) 2.1
and let
v
p = sup g (x <— 0). (2.2)
xeVid(x,Ve)=1
Then
£2(1)
,qu [TO] - |V|2

and v = q/(p|V*) w.h.p.

Proof Let (n(7));>0 denote the stationary KCM on Z4,1etT = {w: 0 € [w]y} and
let T = inf{t > 0, n(t) € Z}. Given a configuration n € §2, we say that the origin
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is infectable inside V iff n € Z. The key observation here is that, by construction,
T0=>T.

Suppose that at time ¢ = 0 the origin is not infectable inside V or, equivalently,
that t > 0. Then we claim that at time T > 0 there exists a site x at the boundary
of V such that n(r) € {x PN 0}. In other words, at time t a suitable very unlikely
infection has appeared in V. To prove the claim assume t > 0 and consider the site
x € Z¢ which is updated at time 7. Necessarily x € V and d(x, V) = 1, since
otherwise [7°(t)]y = [n(r)]y, where n* (7) is the configuration equal to 1(t) except
at site x. Furthermore, by definition of 7, n(tr) € Z and n*(r) ¢ Z. But this implies
n(r) € {x PN 0}, since otherwise a change of the state at x could not change the
infectability of the origin inside V.

Recall now the rate one Poisson clocks discussed at the beginning of Sect. 1.2 and
let Ny (s) denote the random number of clock rings (legal or not) at sites in V up to
time 5. Let also n/) denote the configuration right after the j-th clock ring. By the
above we have

Ny (s)

P,O<t<s|Nve)< Y > PV elx < 0} Ny(s)).

j=1  xeV
d(x,V9=1

Yet, conditionally on the clock rings, n/) is distributed according to g for the sta-
tionary FA-2f process (see e.g. [23] Claim 3.11). Hence, recalling (2.2), we get

Py, (0 <7 <s|Ny(s)) = Nv)IVip. (2.3)
Using E(Ny (s)) = s| V], (2.3) gives

Py, (t <) =P, (t =0)+E(P,, (0 <t <s[Ny(s))
<o) +5|VI%p,

where [E denotes the average w.r.t. Ny (s) and we used (2.1) to get P, (v = 0) =
tg(@) = o(1). In conclusion, for all & > 0 we have

limsup P, (r0 < ¢/(IV|*p)) <limsupP,, (v < &/(IVI*p)) <=,
0 0

q— q—
which concludes the proof by Markov’s inequality. O

We can now easily deduce the lower bounds of Theorem 1.3 from Proposition 2.1
and the following bootstrap percolation results.

Theorem 2.2 (Eq. (5.11) of [1]) . For any d > 2 there exists ¢ = c(d) > 0 such that
(2.1) holds for any d > 2 and £ < exp(cq_l/(d_l)).
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FA-2f kinetically constrained model 1003

Theorem 2.3 (Theorem 6.1, Lemma 3.9 and Eq. (4) of [27]) . Letd = 2 and £ =
4%/ log(1/q"), where ¢’ = —log(1 — q). Fix a cuboid (i.e. rectangle) R C 7? with
side lengths a, b such that | <a <b <2fand b > L. Then

2 0@
mg(nlg = R) SCXP(— n—+£).

9 V4

Theorem 2.4 (Theorem 17 of [5]). Let d > 2 and ¢ > 0. Let Cq be sufficiently large
depending on d and ¢. Then for any q small enough, C > Cq not depending on q and
cuboid R with longest edge of length £ = C/q'/?=1 we have

d-Ard,2)—
ng(nlr = R) < GXP(— %)

Proof of the lower bounds (1.4) and (1.6) in Theorem 1.3 Fix d and £ as in Theorem 2.3.
Theorem 2.2 implies (2.1). Then Theorem 2.3 and a union bound over all possible
cuboids R C V = [—¢, £]? containing both 0 and some x with d(x, V¢) = 1 give
p < exp(—g—; + %). Thus, (1.4) follows from Proposition 2.1.

Fix d and ¢ as in Theorem 2.4. Theorem 2.2 implies (2.1). The upper bound on p
leading to (1.6) follows from Theorem 2.4 together with a union bound as above, so
we may conclude by Proposition 2.1. O

3 Constrained Poincaré inequalities

In this section we state and prove various Poincaré inequalities for the auxiliary chains
that will be instrumental in Sect. 4 (see Lemmas 4.9 and 4.10).

3.1 Notation

Given A C Z? and w € £2, we write w4 € 24 := {0, 1} for the restriction of w to
A and we denote by 4 the marginal of  on £24. The configuration (in £2 or £2,4)
identically equal to one is denoted by 1. Given disjoint Ay, Ay C 72, 0o e 2 A
and 0@ € §24,, wWe write o 0@ e £24,u4, for the configuration equal to oW in
Aj and to 0@ in As. For f : £ — R we will denote by w(f) its expectation w.r.t.
wand by 4 (f) and Var4(f) the mean and variance w.r.t. (4, given wz2, 4.

For sake of completeness, we recall the classic definitions of Dirichlet form,
Poincaré inequality, and relaxation time. Given a measure v and a Markov process with
generator L reversible w.r.t. v, the corresponding Dirichlet form D : Dom(£) — R
is defined as

D(f) == —v(f - L]). (3.1
For the FA-2f model, the definition of Sect. 1.2 yields the following Dirichlet form
D =Y wexVare(f)). (3.2)
xeZ4d
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with ¢, the indicator function of the event “the constraint at x is satisfied”, namely
for x € Z? and 5 € 2 we set

L if Zy'vx(l - 77y) = 2

. (3.3)
0 otherwise

cx(n) =

where y ~ x if x, y are nearest neighbours.
We say that a Poincaré inequality with constant C is satisfied by the Dirichlet form
if for any function f € Dom(L£) it holds

Var, (f) = CD(f). 34

Finally, the relaxation time is defined as the best constant in the Poincaré inequality,
namely
Var, (f)

sup .
febom(L) DP(f)
Var, (f)#0

A finite relaxation time implies that the reversible measure is mixing for the semigroup
P, = 'L with exponentially decaying correlations (see e.g. [37]), namely for all
f e L*(v) it holds

Trel = (3.5

Var, (P f) = v(f P f) = v(f)? < exp(=2t/Trer) Var, (f). (3.6)

3.2 FA-1f-type Poincaré inequalities

Fix A C Z? a connected set and let 27 = €24 \ 1. Given x € A let N{ be the set of
neighbours of x in A and let VA be the event that N contains at least one infection.
For any z € A consider the two Dirichlet forms

DM = wa( ) Lya Vare (9125 @i R
xeA

DFAIE () = MA( > Apva Vare(f) —i—Varz(f)), f:824— R
xeA
X#Z

Remark 3.1 The alert reader will recognise the above expressions as the Dirichlet
forms of the FA-1f process on .Qj" or on §2 4 with the site z unconstrained.

Our first tool is a Poincaré inequality for these Dirichlet forms.
Proposition 3.2 Let A be a connected subset of Z> and let z € A be an arbitrary site.
Then:
(1) forany f : 2% — R,

1

Var(f | £2) <
A qO(l)

DEAIT(f); (3.7)
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(2) forany f : 24 — R,

Var 4 (f) < DRATILa (), (3.8)

qO(l)

where the constants in the O(1) do not depend on z or A.

Proof Inequality (3.7) is proved in [8, Theorem 6.1]. In order to prove (3.8), consider
the auxiliary Dirichlet form

ma(Var(f)) + 1a (ﬂgx Vara(f | 21)).

The corresponding ergodic, continuous time Markov chain on £2,4, reversible w.r.t.
WU A, updates the state of z atrate 1 and, if w € Q7T it updates the entire configuration
w.rt. (.| .Qj{). Observe that two copies of this chain attempting the same updates
simultaneously couple as soon as they update the state of z to state 0 and then change
to the same configuration in .QX Thus, by [29, Corollary 5.3 and Theorem 12.4] the
relaxation time of this chain is O (1/q), as the first step occurs at rate g. Indeed, after
time 1/¢ there is probability §2(1) that the above sequence of two consecutive updates
has been performed.
Hence,

A

Vara(f) = 0(1/g) (ra®Var:(£) + wa(Lgy Vara(f 125)))

o1 HA + + -

m( (Var;(f)) + pna($2 )DZA ]f(f)>’

where the second inequality follows from (3.7). We may then conclude by observing
that 4 (Varz (f)) + pa($2 1) 1 )l/:\A_lf(f) < 2IDFA—1f,z(f).

Our second tool is a general constrained Poincaré inequality for two independent
random variables.

Proposition 3.3 (See [25, Lemma 3.10]). Let X1, X2 be two independent random
variable taking values in two finite sets X1, Xy respectively. Let also H C X with
P(X1 € H) > 0. Then for any f : X1 x Xy — R it holds

Var(f) < 2P(X1 € H)~'E(Vari(f) + Lix,ery Vara (/)

with Var; (f) = Var(f (X1, X2) | X)).

Roughly speaking, this states that the chain that updates X at rate 1 and X at rate
1 only if H occurs, has relaxation time given by the inverse probability of H.

3.3 Constrained block chains

In this section we define two auxiliary constrained reversible Markov chains and give
an upper bound for the corresponding Poincaré constants (Propositions 3.5 and 3.7).
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1006 I. Hartarsky et al.

Let (£2;, 71,-)?21 be finite probability spaces and let (£2, ) denote the associated
product space. For @ € §2 we write w; € §2; for its i coordinate and we assume for
simplicity that 77; (w;) > 0 for each w;. Fix A3 C §23 and for each w3 € A3 consider
an event 6(1%2 C £21 x £25. Analogously, fix A} C £2; and for each w; € A; consider
an event 8(2”’ % C £25 x £23. We then set

H= {a) tw3 € Az and (w1, wp) € Biofz},
K

={w:w € A and (w2, w3) 68213}
and let forany f : HUK — R

DU () = 7 (L Varg (f | H, @3) + L Varg (f | K, 01) THUK).

Observation 3.4 It is easy to check that 'De(ul& (f) is the Dirichlet form of the continuous
time Markov chain on HUK inwhich if o € 'H the pair (w1, wy) is resampled with rate
one from wy Q@ ma(- | B(fg) and if w € K the pair (w2, w3) is resampled with rate one
from 1y @ m3(- | B(;g). This chain is reversible w.r.t. w (- | H U K) and its constraints,
contrary to what happens for general KCM, depend on the to-be-updated variables.

Proposition 3.5 There exists a universal constant ¢ such that the following holds.
Suppose that there exist two events F1 2, F2 3 such that

{o: w3 € A3 and (01, w2) € Fi o} CHNK, (3.9)
{a) twy € Ap and (wy, w3) € ‘7:2,3} CHNK (3.10)
and let
7 (B)\2 7 (B35
T;ul)z = m ( ( 1’2)) max ( 2’3).
w3eA;, \T(F12)/ wieA w(F23)

Then, forall f : HUK — R,

Vary (f |HUK) < cT D).
Proof Consider the Markov chain (w(t));>0 determined by the Dirichlet form Dz(ul& as
described in Observation 3.4. Given two arbitrary initial conditions @ (0) an o’(0) we
will construct a coupling of the two chains such that with probability £2(1) we have
w(t) = &' (t) for any 1 > Ta(é)z. Standard arguments (see for example [29, Theorem
12.4 and Corollary 5.3]) then prove that for this chain it holds Tie) = O (Ta(u],z) and the
conclusion of the proposition follows. To construct our coupling, we use the following
representation of the Markov chain. We are given two independent Poisson clocks with
rate one and the chain transitions occur only at the clock rings. Suppose that the first
clock rings. If the current configuration w does not belong to H the ring is ignored.
Otherwise, a Bernoulli variable & with probability of success 7 (F7 2 | BT),Sz) is sampled.
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If§ = 1, then the pair (w1, w>) isresampled w.r.t. the measure 7 (- | Fi 2, B‘l')fz), while if
& = 0, then (w1, ) is resampled w.r.t. the measure 7 (- | F 10,2’ Bj”fz). Clearly, in doing
so the couple (w1, wy) is resampled w.r.t. 77 (- | Bi"fz). Similarly if the second clock rings
butwith H, (w;, w7), F1 2 and 6?32 replaced by K, (w7, w3), F», 3 and B;“’ ', respectively.
It is important to notice that 7 (- | Fi 2, Bfl‘)’%) = 7(-|Fi ) for all w3 € As, as, by
assumption, Fi» C [ Bﬁ”z Similarly, 7 (- | 2.3, 6’2”’13) = 7 (-|Fp3) for all
w] € ./41.

In our coupling both chains use the same clocks. Suppose that the first clock rings
and that the current pair of configurations is (w, @’). Assume also that at least one of
them, say w, is in ‘H (otherwise, both remain unchanged). In order to construct the
coupling update we proceed as follows.

w3 E.A}

— If o’ ¢ H then w is updated as described above, while ' stays still.
— If o € H we first maximally couple the two Bernoulli variables &, &’ correspond-
ing to w, o’ respectively. Then:

- if £ = & = 1, we update both (w1, w2) and (@}, ®}) to the same couple
(1, m2) € F12 with probability 7 (11, n2) | F1,2);

— otherwise we resample (w1, wy) and (a)’1 , a)/z) independently from their respec-
tive law given &, &'.

Similarly if the ring comes from the second clock. The final coupling is then equal to
the Markov chain on £2 x £2 with the transition rates described above. Suppose now
that there are three consecutive rings occurring at times #; < f, < t3 such that:

— the first and last ring come from the first clock while the second ring comes from
the second clock, and

— the sampling of the Bernoulli variables (if any) at times 71, #; and f3 all produce
the value one.

Then we claim that at time 73 the two copies are coupled.

To prove the claim, we begin by observing that after the first update at #; both copies
of the coupled chain belong to . Here we use (3.9). Indeed, if the first update is
successful for w (i.e. € H) then the updated configuration belongs to F1 2 X {w3} C
IC, because of our assumption & = 1. If, on the contrary, the first update fails (i.e.
® ¢ H) then w € K \ H before and after the update. The same applies to o'

Next, using again the assumption on the Bernoulli variables together with the previ-
ous observation, we get that after the second ring the new pair of current configurations
agree on the second and third coordinate. Moreover both copies belong to H thanks
to (3.10). Finally, after the third ring the two copies couple on the first and second
coordinates using again the assumption on the outcome for the Bernoulli variables.

In order to conclude the proof of the proposition it is enough to observe that for
any given time interval A of length one the probability that there exist1; < f, < 3 in
A satisfying the requirements of the claim is bounded from below by

. 2 . w1
¢ min 7w (Fi2|B7%)” min 7(Fs3|BYY),
w3€A3 ( 1'2) a)1€.A1 ( 2’3)

for some constant ¢ > 0. O
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In the same setting consider two other events C1 2 C 21 ® §22, C23 C §22 ® §23 and
let

M=A3NC 2, N=A10C2’3.
The Dirichlet form of our second Markov chain on M U N is then

D) =7 (L Var(£ €12, 03) + L Var(f | As, o, 2)

+1pr Var(f | Co3, @1) + Lpr Var(f | Ay, w2, w3) | M UN).
G.11)

Observation 3.6 Similarly to the first case, the continuous time chain defined by (3.11)
is reversible w.r.t. w (- | MUN)) and it can be described as follows. If o € M then with
rate one (w1, w2) is resampled w.r.t. w1 @ 72 (- | C12) and, independently at unit rate,
w3 is resampled w.r.t. w3 (- | A3). Similarly, independently from the previous updates at
rate one, ifw € N then (w;, w3) is resampled w.r.t. 1 @73 (- | C2.3) and, independently,
wy is resampled from 71 (- | Ay).

Proposition 3.7 There exists a universal constant ¢ such that the following holds.
Suppose that there exist an event C12 C C1,2 and a collection (Ag”’wz)(w1 )<Ci of

subsets of Az such that

{o: (@1, ) GCALQ and w3 € A7} C M NN, (3.12)

and let

T(z) _ max 7 (A3z) ﬂ(cl,Z)

= X = .
o (w) ,wz)Eél.z 7'[(.,4(;' ,wz) ”(CI,Z)

Then there exists ¢ > 0 such that forall f : MUN — R,
Var(f | MUN) < cTEADE(f).

Proof We proceed as in the proof of Proposition 3.5 with the following representation
for the Markov chain. We are given four independent Poisson clocks of rate one and
each clock comes equipped with a collection of i.i.d. random variables. The four
independent collections, the first being for the first clock etc, are

(@ 02 ()2 (@ e )

where the laws of the collections are 1 @ w2 (- | C1.2), w3 (- | A3z), 12 @ m3(- | C2.3) and
71 (- | Ay) respectively.

At each ring of the first and second clocks the configuration is updated with the
variables from the corresponding collection iff @ € M. Similarly for the third and
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fourth clocks with A/. In order to couple different initial conditions, we use the same
collections of clock rings and update configurations.

Suppose now that there are four consecutive rings t; < tp < 13 < t4, coming from
the first, second, third and fourth clocks in that order, such that:

— at #1 the proposed update (11, n2) of the first two coordinates belongs to CALZ, and
— at 1, the proposed update 73 of the third coordinate belongs to Ag’“ ),

We then claim that after #4 all initial conditions w are coupled. To prove this, we first
observe that after the second ring each chain belongs to NV Indeed, if @ ¢ M, then the
first two proposed updates are ignored and the configuration w € N \ M. If, on the
contrary, @ € M, then both updates are successful and the configuration is updated
to (71, m2,13) € C1o x A" € M NN by (3.12).

Since after 1, the state of the chain is necessarily in V, the third and fourth updates
to states (1), 13) and 1 respectively are both successful and thus any initial condition
leads to the state (1], 15, n3) after 4, which proves the claim. The proof is then
completed as in Proposition 3.5. O

4 Mobile droplets

This section, which represents the core of the paper, is split into two parts:

— the definition of mobile droplets together with the choice of the mesoscopic critical
length scale Lp characterising their linear size;
— the analysis of two key properties of mobile droplets namely:

— their equilibrium probability pp;
— the relaxation time of FA-2f in a box of linear size ® (L p) conditionally on
the presence of a mobile droplet.

Mobile droplets are defined as boxes of suitable linear size in which the configuration of
infection is super-good (see Definition 4.5). In turn, the super-good event (see Sect. 4.2)
is constructed recursively via a multi-scale procedure on a sequence of exponentially
increasing length scales (E,,)fl\’:1 (see Definition 4.2). While clearly inspired by the
classical procedure used in bootstrap percolation [28], an important novelty in our
construction is the freedom that we allow for the position of the super-good core of
scale ¢, inside the super-good region of scale £, 1. The final scale £y corresponds
to the critical scale Lp mentioned above and a convenient choice is Lp ~ q_”/ 2
(see (4.4)). There is nothing special in the exponent 17/2: as long as we choose a
sufficiently large exponent our results would not change. The choice of Lp is in fact
only dictated by the requirement that w.h.p. there exist no Lp consecutive lattice sites
at distance exp(log? " (1/¢)/q) from the origin which are healthy and Lp = ¢°(1/9).
Finally, similarly to their bootstrap percolation counterparts, the probability pp of
mobile droplets crucially satisfies pp =~ (1:(')3P)_2 (see Proposition 4.6) and in general
for FA-2f in dimension d it satisfies pp =~ (toBP)_d.

The extra degree of freedom in the construction of the super-good event provides a
much more flexible structure that can be moved around using the FA-2f moves without
going through the bottleneck corresponding to the creation of a brand new additional
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Fig.1 Black circles denote

infected sites. The boundary [ ]
condition w in the figure is fully
infected on 9, R and fully
healthy elsewhere. The rectangle
R is w-right-traversable (i.e

T (R) occurs) but it is neither PS
w-up-traversable, nor
w-left-traversable. It is also
down-traversable (7 (R) (] [}
occurs) but not traversable in
any other direction

droplet nearby. The main consequence of this feature (see Proposition 4.7) is that
the relaxation time of the FA-2f dynamics in a box of side Lp conditioned on being
super-good is sub-leading w.r.t. pp as g — 0 and it contributes only to the second
order term in Theorem 1.3.

4.1 Notation

For any integer n, we write [n] for the set {1, ..., n}. We denote by ey, e; the standard
basis of Z2, and write d (x, y) for the Euclidean distance between x, y € 7Z2. Given a
set A C Z2, weset dA := {y € Z? \ A,d(y, A) = 1}. Given two positive integers
a, b, we write R(a, b) C 72 for the rectangle [a] x [b] and we refer to a, b as the width
and height of R respectively. We also write 9, R (9; R) for the column {a + 1} x [b]
(the column {0} x [b]), and 9, R (94 R) for the the row [a] x {b+ 1} (the row [a] x {0}).
Similarly for any rectangle of the form R + x, x € Z*.

Given A C Z? and w € 2, we write w4 € 24 = {0, 1}A for the restriction of w
to A. The configuration (in §2 or §2 4) identically equal to one is denoted by 1. Given
disjoint A1, Ay C Z2, 0V € 24, andw® € £24,, we write - ©? € 24,04, for
the configuration equal to " in A1 and to @ in A,. We write 4 for the marginal
of 14 on §2 4 and Var 4 (f) for the variance of f w.r.t. i 4, given the variables (wx)x¢Aa.

4.2 Super-good event and mobile droplets

As anticipated, mobile droplets will be square regions of a certain side length in which
the infection configuration satisfies a specific condition dubbed super-good. The latter
requires in turn the definition of a key event for rectangles—aw-traversability (see also
[28])—together with a sequence of exponentially increasing length scales.

Definition 4.1 (w-Traversability). Fix a rectangle R = R(aj, ap) + x together with
n € $2r and a boundary configuration w € £23. We say that R is w-right-traversable
for n if each pair of adjacent columns of R U 9, R contains at least one infection in
n - o (see Fig. 1). We denote this event by 7% (R) C 2.
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We say that R is right-traversable for n if it is 1-right-traversable or, equivalently,
if it is w-right-traversable for all w. We denote this event by 7_, (R) = Ti (R) C $2pg.

Up/left/down-traversability and w-up/left/down-traversability is defined identically
up to rotating n and w appropriately (see Fig. 1).

In figures we depict traversability by solid arrows and w-traversability by dashed
arrows (see Fig. 1). Notice that right-traversability requires that the rightmost column
contains an infection. Similarly for the other directions.

Definition 4.2 (Length scales and nested rectangles). For all integer n we set’

, {1 if m =0, @
m = exp (m./q . .

and
A {R(ﬁn/z, Ln)2) if n is even, 42)

R(€+1)/2, €n—1)2) if nis odd,

(see Fig. 2). We say that a rectangle R is of class n if there exist w, z € Z? such that
AU=D 4y C R € A™ 4 7. We refer to single sites as rectangles of class 0.

Note that (A(zm))mzo is a sequence of squares, while (A(2m+1))m20 is a sequence of
rectangles elongated horizontally and A®) ¢ A®) if ny < ny. Moreover, for n =
2m > 0, a rectangle of class n is a rectangle of width £, and height ay € (£,,—1, €]
and for n = 2m + 1 it is a rectangle of height ¢,, and width a; € (£, €y +1]-

We are now ready to introduce the key notion of the w-super-good event on different
scales. This event is defined recursively on n and it has a hierarchical structure. Roughly
speaking, arectangle R of the form R = A®™+4x, x € Z?,is w-super-good if it contains
a 1-super-good rectangle R’ of the form R’ = A"~ 4 x’ called the core and outside
the core it satisfies certain w-traversability conditions (see Fig. 2).

Definition 4.3 (w-Super-good rectangles). Let us fix an integer n > 0, a rectangle
R = R(aj,a2) + x of class n and w € $§23r. We say that R is w-super-good for
n € §2g and denote the corresponding event by SG”(R) if the following occurs in
n-w.

— n = 0. In this case R consists of a single site and SG®(R) is the event that this
site is infected.

— n=2m.Foranys € [0, £,, — £p_1] write R = C; U (A”~D 4 x + se5) U Dy,
where Cy (Dy) is the part of R below (above) AM=D 4 x4 se,. With this notation
we set

SGY(R) :=T(Cs) NSG (A" ™D + x + se2) N T(Dy)

and let SG(R) = Uscjo.0,—¢,,_ ] SGL(R).

3 This choice of geometrically increasing length scales is inspired by [19].
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01 Ly 43

Y \/

Fig.2 An example of super-good configuration in the square A©®  The black square, of the form AD 4y,
is completely infected and it is a super-good core for the rectangle of the form AG) 4 x formed by it together
with the two hatched rectangles. This rectangle of the form A®) 4 x is also super-good because of the
right/left-traversability of the hatched parts (arrows) and it is a super-good core for the square containing it
and so on

— n = 2m + 1. In this case SG®(R) requires that there is a core in R of the form
AM=Dy xtseq, s €0, £m+1—~Cm], whichis 1-super-good, and the two remaining
rectangles forming R to the left and to the right of the core are w-left-traversable
and w-right-traversable respectively.

We will say that R is super-good if it is 1-super-good and denote the corresponding
event by SG(R).

Note that SG”(R) is monotone in the boundary condition in the sense that if R is
super-good then R is w-super-good for all w € £2;r. In order to make notation more
concise, whenever a SG event appears in an average or a variance with respect to a
rectangle R, we leave out the argument R of the SG event, unless confusion arises.
For example, g (SG) will stand for g (SG(R)).

Remark 4.4 (Irreducibility of the FA-2f chain in SG“(R)) It is not difficult to verify
that for all n € SG“(R), there exists a sequence of legal updates that transforms 7,
into the fully infected configuration. Since the FA-2f dynamics is reversible, the above
property implies that the FA-2f chain in R restricted to SG®(R) is irreducible.

Now let 810a(1/0)
N = [MW 4.3)
Va
and observe that
Iy = q—17/2+0(1). 4.4)

Definition 4.5 (Mobile droplets). Given w € §2, a mobile droplet for w is any square
R of the form R = AC®N) 4 x for which wg € SG(R). We set pp = i 4em (SG) to
be the probability of a mobile droplet.

The first key property of mobile droplets we will need is the following.
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Proposition 4.6 (Probability of mobile droplets). For alln < 2N,

2

[ a0 (SG) > exp ( - g—q(l + O(ﬂlogz(l/q))))-

In particular, this lower bound holds for pp.

The proof of Proposition 4.6 follows from standard 2-BP techniques and it is
deferred to “Appendix A”. The second property of mobile droplets requires a bit
of preparation.

For A C Zz, w € .QZz\A, n € £2 and x € A we denote by

) = cx(na - o)

with ¢, defined in (3.3), so that c;‘ *“ encodes the constraint at x in A with boundary
condition w. Given arectangle R of class n and w € £22\ g, let y“(R) be the smallest

constant* C > 1 such that the Poincaré inequality (recall Sect. 3.1)

Varg(f18G°) < C Y (et Vary(f)18G), (4.5)

X€ER

holds for every f : 2 — R. In the sequel we will sometimes refer to y“(R) as the
relaxation time of SG®(R). The fact that FA-2f restricted to SG”(R) is irreducible
(see Remark 4.4) implies that y“(R) is finite. However, proving a good upper bound
on y®(R) is quite hard.

Proposition 4.7 (Relaxation time of mobile droplets) . For alln < 2N
max y“(A™) < exp (O (log(1/g)m)).
In particular, recalling (4.3), on the final scale this yields

max y*(A®Y) < exp (0 (log(1/9))//4)-

Remark 4.8 We stress an important difference in the definition of y®(A™) w.rt. a
similar definition in [25, (12)]. Indeed, in (4.5) the conditioning w.r.t. the super-good
event SG*(R) appears in the Lh.s. and in the r.h.s. of the inequality, while in [25,
(12)] the conditioning was absent in the r.h.s. Keeping the conditioning also in the
r.h.s. is a delicate and important point if one wants to get a Poincaré constant which
is sub-leading w.r.t. pp ! Theorem 4.6 of [25] in the context of FA-2f would give a

Poincaré constant bounded from above by exp(log(1/¢)3/q), much bigger than fp I

4 The non-standard convention that relaxation times are at least 1 is made for convenience.
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4.3 Proof of Proposition 4.7

The proof of the constrained Poincaré inequality of Proposition 4.7 is unfortunately
rather long and technical but the main idea and technical ingredients can be explained
as follows.

Given the recursive definition of the super-good event SG®(A™) it is quite nat-
ural to try to bound from above its relaxation time in progressively larger and larger
volumes. A high-level “dynamical intuition” here goes as follows. After every time
interval of length @ (y1(A~D)) the core of A™, namely a super-good translate of
A®=D inside A™, will equilibrate under the FA-2f dynamics. Therefore, the relax-
ation time of SG(A™) should be at most Te(f';) x yH(A"=D) where Te(f'p is the time
that it takes for the core to equilibrate its position inside A", assuming that at each
time the infections inside it are at equilibrium. The main step necessary to transform
this rather vague idea into a proof is as follows.

In order to analyse the characteristic time scale of the effective dynamics of a core,
we need to improve and expand a well established mathematical technique for KCM
to relate the relaxation times of two w-super-good regions on different scales. Such a
technique introduces various types of auxiliary constrained block chains and a large
part of our argument is devoted to proving good bounds on their relaxation times (see
Sect. 3). The main application of this technique to our concrete problem is summarised
in Lemmas 4.9 and 4.10 below which easily imply Proposition 4.7. Let

A4 Ry, +1,¢,) ifn=2m,
RUpys1, 8+ 1) ifn=2m+1.

The two key steps connecting the relaxation times of super-good rectangles of increas-
ing length scale are as follows.

Lemma4.9 (From £|,/2) +1t0 £},/2)41) Forall0 <n <2N —1
max y (A" D) < exp(0 (log* (g))) max y (A" ™),
Lemma4.10 (From £|,/2) to £2) + 1) Forall0 <n < 2N — 1
max y (A" < g7 max y(4™).
Proof of Proposition 4.7 Lemmas 4.9 and 4.10 combined imply that

max y®(A®TD) < exp(0(log(g)?)) max y©(A™).
w w

Thus, Proposition 4.7 follows by induction over n. Indeed, y“(A®) = 1 for all
w € .QZz\A@), since the L.h.s. of (4.5) is zero. O

Before proving Lemma 4.9 formally, let us provide an informal description of the
argument. We seek to apply a bisection technique (see [12, 21]) proceeding by a further
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\%}

R(k)

Fig.3 The partition of R®+D) into the rectangles Vi, V5, V3. Here we illustrate the event 71 » N .A3. The
grey region A" 453 at the left boundary of V5 is SG and the dashed arrows in V| and V3 indicate their o-
traversability. The solid arrow in Vo \ (A" +se;) indicates instead the 1-traversability of V5 \ (A" +-sieq).
Clearly the entire configuration belongs to the events 7 and /C defined in (4.11), (4.12). Indeed, the two
(w-)right-traversability events together imply the w-right-traversability of (Vo U V3) \ (A 4 sier)

induction. At each step of this bisection, we divide by two the difference of the widths
(or heights) between our current rectangle (initially A®*+D) and A“ ) In order to
prove a recursive bound on the relaxation times y® of the intermediate rectangles of
class n + 1 arising in the process, we rely on Proposition 3.5 as follows.

We want to prove a Poincaré inequality on a larger rectangle, given such an inequal-
ity on a smaller one. We cover the larger one with two overlapping copies of the smaller
one. We then use the relaxation in the smaller one to move the core of shape A™,
witnessing it being super-good, to the intersection of the two translates. This makes the
second copy super-good and allows us to resample it as well, thanks to the lower-scale
Poincaré inequality. Thus, the events Fj > and 3 3 in Proposition 3.5 will roughly
correspond to finding the core in the aforementioned overlap region (see Fig. 3).

Proofof Lemma 4.9 Given 0 < n < 2N — 1, let K,, be the smallest integer K > 0
such that ((2/3)K(E ln/2)+1 — £1ny2))1 = 1 Gf K = 0, there is nothing to prove, since
AP = AUHDY Equations (4.1) and (4.3) give max,<oy—1 K, < O(log(1/q)).
Consider the (exponentially increasing) sequence

di = 12/ " W n)e1 — )], k< Ky, (4.6)

and let sy = dy+1 — di for k < K, — 1. Next consider the collection (R(k)),fio of

rectangles of class 7 + 1 interpolating between A1) and A®+D defined by

R _ | R(Em +di, b))  ifn=2m,
- Ryt1,lm +di) ifn=2m+1.
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By construction, R® ¢ R&*+D RO = A0+ and RK» = AC+D  Finally, recall
the events SG”(R) and SG¥(R) constructed in Definition 4.3 for any rectangle R of
classn + 1 < 2N and let

-2 -1
ar = max (1 re0r (SQ},( | SG”)) max (g (SGG 18G)) ™, 4.7)
where max,, is over all € £2,p« . In Corollary A.3 we prove that

1r(SG18G%) = ¢°0

uniformly over all rectangles R of class n + 1 < 2N, all possible values of the offset
s and all choices of the boundary configurations w, »’ € §23g. As a consequence

< (1/q)°W, 4.8
n;g%{lg%ak_(/q) (4.3)

With the above notation the key inequality for proving Lemma 4.9 is

max y®(R**D) < Cap x max y®(R®), k [0, K, — 1], (4.9)
w w

for some universal constant C > 0. Recalling that R© = A and REK») = A¢+D)
from (4.9) it follows that

Kn—1
max y“ (A7) < (CK" 1_[ ak) x max y“ (A1) (4.10)

which in turn implies Lemma 4.9 by (4.8) and K, < O(log(1/q)).

The proof of (4.9), which is detailed for simplicity only in the even case n = 2m,
relies on the Poincaré inequality for a properly chosen auxiliary block chain proved
in Proposition 3.5.

In order to exploit that proposition we partition R **1) into three disjoint rectangles
Vi, Va, V3 as follows (see Fig. 3):

Vi = R(sk, bm), Vo =R®\ vy, Vi = R\ R®),

Then, given a boundary configuration w € £2;px+1), let

H={neQW%™V neTVs)andn -2 € SG™(V; U Va)}, 4.11)
K=tme2y™ ineToWV)andn-ns € SGM(V,U V), (4.12)

where n; := ny,.In words, H requires that V3 is w-right-traversable and R® = v,uV,
isw- 1R+ R0 -SUPEr good and similarly for IC. Notice that H U K = Sg“’(R(k+1)).
Indeed, the width of V5 isin fact €,, +2d; —dx+1 > £, and therefore any configuration
in SG®(R**1) necessarily contains a super-good core in either V; U V5 or V, U V3.
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We next introduce two additional events (see Fig. 3)

1y, -0 1y, -w
Fip =86, " (ViuW) Fa3=8G," (V2 U V3). (4.13)

In words, F1 2 (F2.3) consists of super-good configurations in V1 U Vo (Vo U V3) with a
super-good core of type A inside V5 in the leftmost possible position. Monotonicity
in the boundary condition easily implies that

(n:meTl(Vz)andn -m € Fia} CHNK,

and similarly for 7, 3 (see Fig. 3).

We can now apply Proposition 3.5 with parameters £2; = 2y, fori € {1,2, 3},
Ar = TOWV1), A = T9(V3), BE, = SG(Vi U V), By = SGM(V2 U V3)
and F1 2, F»,3 from (4.13). We claim that

70— max (MR(k+1) (Sgmev, U Vz)))2 o PrO=D (8GN (V, U V3))

W peTe (v A R(k+1) (-7'—1,2) MR<k+l>(Jf2,3)
meTL(V3)

2 ly;-0 . 1 1y, -0 .
ax K g (SG5* 18G™ w)MskeH-R(k) (8Gy " 18G™ ) < ay.

Indeed, the second equality follows from (4.13) together with the fact that V| U V, =
R® and V,UVs = R® 4, while the inequality follows from (4.7). For the inequality
it suffices to use monotonicity in the boundary condition for the first term and observe
that S gg 1 (sper + R(k)) does not depend on 77 for the second one. Thus, Proposition
3.5 yields

Var gty (f 18G?) = Vargasn (f HUK) < cax
x et (L9 Var gasn (F | H, m3) + Lic Var gaeen (f | KCom) | HUK),
(4.14)

for some universal constant ¢ > 0.

In order to conclude the proof of (4.9) we are left with the analysis of the average
W.rt. Upa+n (- H U K) in the rh.s. of (4.14). Recalling (4.5) and (4.11), for any
n € T9(V3) we get

Var g+ (f | 'H, 03)
= Vargen (f | 73, SG™(RW))

< max  p RO x Y g (B0 Var, (£) 1 SG7). (4.15)

e
@ Eanr® xeR®

@ Springer



1018 I. Hartarsky et al.

An analogous inequality holds for Var(f | IC, n1) when 1 € 72(Vy). Finally, we
observe that for any x € R%®)

s (g geo (R Var, (£) | SG™ @ (RW)) | SG2(REHD))

(k) .
s (Lt (Lsgrogron g (. Vare (£) | 8G7 2 (RW))))
,uR(k+1)(Sg“’)
= pgisn (pgeR O Var () 1 562 (REHD)), (4.16)

since 1’}—( = ]l.Az ]lsgn3-m(R(k)) < lsgw(R(k+l)) by (41 1) and M R*k+1) = [ Rk) ® Mvy-. A
similar result relation holds for /C. Inserting (4.15) and (4.16) into (4.14), we get

Var g (f | SG?) < O(ay) x max y” (R®)
w/

(k+1)
x 3 g (RO N () 1567,

xeRKk+D)
which proves (4.9) in view of (4.5). O

The proof of Lemma 4.10 is similar to that of Lemma 4.9, but in this case we plan
to use Proposition 3.7 instead of Proposition 3.5. The reason why the same proof does
not apply is that the intersection of two distinct copies of A™ is never large enough
to contain another copy of A", Therefore, we are forced to look inside the A core
in order to shrink it by one line (see Fig. 4). Namely, we will position the core of type
A®=2) 5o that it is in the middle region corresponding to V5 in the previous proof.
We will then ask for events stronger than traversability on V; and V3 in order to fit the
structure in V; (see Fig. 4).

Proof of Lemma 4.10 Once again, we provide the details only in the case n = 2m. Let
us start with the case m = 0. Firstly, y@(A®) = 1 for all w by the definition (4.5),
as Var 40 (f | SG®) = 0 for all f and w. Moreover, SG2(AOD)y ¢ £2 40+ has 1,
2 or 3 elements (depending on w). If this space has a single point, y©(A®1) =1 as
for A and we are done. Otherwise, we are dealing with an irreducible reversible
Markov process on at most 3 states and transition rates bounded from below by ¢, so
max,, ya)(A((),+)) — qO(l).

Let m > 1. We begin by writing A" = R(¢,, + 1, £,,) = Vi U V5 U V3, where
V1 denotes the leftmost column, V3 the rightmost column and V; all the remaining
columns (see Fig. 4). By construction V1 UV, and V, U V3 are translates of A®™  Then,
for any given w € §2, 4.+, we introduce the events

M =T2(V3) NSG(V1 U Va) = SGE(A™T))
N = T2 (V) NSG(V, U V3) = SGP(ATD)

and observe that SG (A1) = M U N/, since the only possible values of the offset
s in Definition 4.3 in our case are 0 and 1. In order to be able to use Proposition 3.7 we

@ Springer



FA-2f kinetically constrained model 1019

I %) / I3

1 V3

Fig.4 The partition of A into the rectangle V> and the two columns V; and V3. Here we illustrate the
event SG(V»): the grey region is a super-good rectangle of the type A=) while the patterned rectangles
are 1-traversable in the arrow directions. If there is at least one infection in I3 then the rectangle V> U V3
is super-good. Similarly, an infection in /; suffices to make V; U V; super good

need some further events. The first one is the event SG(V>) which is best explained by
Fig. 4. It corresponds to requiring that inside the rectangle V, = R(¢,, — 1, £;,) + €
there exists a 1-super-good square R(£,,—1, £;,—1) + x and the remaining rectangles
in Vo\ R(¢;,—1, £m—1) +x which sandwich R(£,,—1, £,,—1) + x are 1-traversable. The
formal definition is as follows.

Definition 4.11 (Shrunken super-good) . Let R = R({,, — 1, £,,) = V, — e1. We say
that E(R) occurs if there exist integers 0 < s; < £, —{,,—1 —land 0 < s5p <
£, — € —1 such that the intersection of the following events, in the sequel s_gsl 5 (R),
occurs (see Fig. 4)

SQ(A(”‘2) + s1e1 + s2e2);

T (R(s1, m—1) + 52€2);

TRy — 1 — 1 — 51, L—1) + (51 + €m—1)€1 + 52€2);
T, (Rl — 1, 52));

%(R(Em — 1,8y — 1 —852) + (52 + £—1)e€2).

The event SG(V5) is defined by translation of SG(R). Then for any 1y € SG(V»), the
segments /1 and /3 are given by

Ii(m) =R, Lyu-1) +s2(n2)ex C Vi =R, L),
I3(m) = R(1, £y—1) +s2(n2)ex + £e1 C V3 = Vi +{,eq,
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1020 I. Hartarsky et al.

where s2(12) is an arbitrary one of the choices of s, such that 1, € @SleZ(R) for
some s1.

As before, let n; := ny,. Recalling Definition 4.3 and Figs. 2 and 4, it is not hard
to check that

A

Cia={nelvuy, me SG(V2), 11y # 1} C SG(ViU W), 4.17)

since I extends the horizontal_traversability, while the vertical one and the core of
type A”~2 are witnessed by SG(V2). For n € C; > we set

AT = Ao # 1. (4.18)
By (4.17) and its analogue for /3 we have
(neun:m -me Cipandn; € AP MO
We can finally apply Proposition 3.7 with parameters £2; = 2y, fori € {1,2, 3},

Cip=SG(ViUW), Cos = SG(VaU V3), A) = T2 (V1), Ay = T(V3) and C1 2
and AJ"" as above. Set

7O _ Baen (A3) g0 (Cr)
aux = Max AT NS
neCi 2 MA(11,+)( 3 ) A4 (CI,Z)

(4.19)

Then Proposition 3.7 gives that for some ¢ > 0 we have

Var 4o+ (f | SG%) = Var 4o+ (f | M UN)
< T2 x pyon (ILM Var yo+ (f | C1,2, 13) + La Var oo (f 1C2,3, 1)

+1aq Var gon (f | Az, n1,m2) + La Var gon (f | AL, n2, m3) | M U/\/)~
(4.20)

By (4.18), min, s  ft0.+) (AJ"™) > g. Furthermore, in Lemma A.4 we will estab-

lish that py,uv, ((fl,z [C12) > g?W. Combining these observations with (4.19), we
get
T2 < g7 oW, (4.21)

We now turn to examine the four averages w.r.t. i 4.+ (- | M U N) appearing in
the r.h.s. of (4.20). Recall that M U N = SG®(A™1)). Proceeding as for the r.h.s.
of (4.14), we obtain that

1 p00 (Tag Var g (f 1 Cr2. m3) 4+ Lar Var ga0 (f [ €23, 1) | MUN)
<00 A x> g (2 Var, () 1 8G°). 4.22)

xeAm+)
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Indeed, the only difference is that C1 2 = S Q(A(")), so that we recover a 1 boundary

(n) (n,+)
condition, and we use that c;‘ 1 < cf o1 and similarly for V, U V3 instead of A,
We will now explain how to upper bound the third average in (4.20),

paon (Laa Var g (F LAz, m ) | MU, (4.23)

the fourth one being similar. We need to distinguish two cases, according to whether
the boundary condition w has an infection on the column V3 + e; or not.

Assume wy,+e, = 1. In this case Az = 7, (V3) = 2y, \ {1} and Proposition 3.2(1),
gives that

Var 4.0 (f | Az, 1. m2) = Vary, (f | T (V3))
<q 0D 3" (6 Vare(f) | T (V3),  (4.24)

xeV3

with ¢x(n) = 1 if x has at least one infected neighbour inside V3 and ¢,(n) = 0
otherwise. For x € V3 let

Ax = pgon (Tve v (G Var () | T2 (V) IMUN). 425

Recall that SGP(A™H)) = MUN D M = SG(A™) N T, (V3) and p y+) =
M @ py;. Then we have

_ MaeD (M)
e M A+ (8G@)
_ HpenH (M)
e (SG?)

< g7 1y (gm0 (Vare (f) |SGA™)) | &, = 1),

1 pns (& Vary (f) | M)

1 po ) (Ex g (Vare (f) | SG(A™)) | M)

the inequality using M C SG®(A™1)), the fact that ¢, = 1 implies 7_, (V3) and
w(Cx |75 (V3)) > q (here we use that V3 is not a singleton, which follows from
m > 1). Then, by the law of total variance, we get

A < g7y (Var gy po (f 1SGA™)) | &, = 1). (4.26)

Next, we use Proposition 3.3 with parameters P = 400 (- | SG(AMY)), X| =
Nams X2 =nx, H =1{n € 2 4m : Nx—e; = 1}, in order to write

2
Var(yuam (f 18G(A™) < ; Hxua (Var yon (f 18G(A™))

+]l{nx—el =0} Varx(f) | Sg(A(n))) (427)
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Recalling (4.5), we get

Var 4o (f 18G) < ¥ (A™) D7y (¢ Vary () 8G)
yeA®
()l +),0
<y'A™) 37 pam(e Var, ()| SG), (4.28)
yeAm
because cf(n)’l < cf(n"“’“’ forany y € A®™ and w € 272\ pn.+ . Finally, observe

~ (n,4) . . . .
that ]l{nx_e1=0}cx < cf *“ because if x € V3 has an infected neighbour in V3 (the

constraint ¢, ) and x — e; € V5 is also infected, then x has two infected neighbours in
A1) Thus, putting (4.27) and (4.28) together, we obtain

C 2
e Varoam (f 1894 = —y(a®) x

S puan (27O Vary (1)1 SGA™)). 429)

yelxjua®m

Combining (4.24-4.26) and (4.29), yields

aven (T Var(f 1 As, m, ) [MUN) <700 37 4,

xeV3

)
q(;‘m ) > X “A<"+>< T Nary () | SGAM), & = )

xeV3 yeA®.+)
(4.30)

Moveover, SG(A™) and &, = 1 imply SG*(A™ 1)) and

Mg+ (SG?)
,U«A(n)(Sg)/LW(Ex) PLV3(CX) o

2/q,

since there are only two possible positions for the core of type A™ of SG®(A™ 1)),
Thus, (4.30) is at most

LA™ vs) »
y —on e (e Vary () 18247 ).
yeA®+)

Moreover, |V3| = £, < €y = q‘o(” by (4.4), so, recalling (4.5), we are done with
the case wy, e, = 1.

Assume wy,1e, 7 1. In this case 79(V3) = $2v,, so that Vary, (f | 72(V3)) =
Vary, (f). The proof is then identical to the previous one except for inequality (4.24)
which now follows from Proposition 3.2(2) with the unconstrained site z € V3 chosen
arbitrarily so that w; e, = 0. O
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5 Proof of Theorem 1.3: upper bound

As already announced we will only discuss the two dimensional case. The starting
point is as in [25, Section 5]. Let « be a large enough constant, let

ty = exp (—2 (1 + /(flO 3(1/ ))) 6.1
* 96] q 108 q :
andlet T = Lexp(log4(l/q)/q)J. Then

+00
E. (%) = / dsP,(t9 > s)
0
1y T +0o0
= / ds]P’M(ro>s)+/ dsPu(ro>s)+/ dsP,(to > s)
0 1y T
+00
<ty + TP, (70 > ty) +/ ds P, (to > s).
T

The term t, has exactly the form required in (1.5). In order to bound the last term
in the r.h.s. above, we use that P, (19 > s) < e5/Tel for all s > 0 (see e.g. [13,

proof of Theorem 4.7]) together with Ty < ¢©(1108@I*/0) (see [32, Theorem 2 (b)])
to get that
oo Trel T/T,
lim ds ]P)#('L'O > S) < lim —e ¢ /Trel =0.
q—>0JT1 g—0 ¢q

In conclusion, the proof of (1.5) for I, (7p) boils down to proving

lim TP (29 > 1.) = 0. (5.2)
q—)

Similarly, (1.5) for r w.h.p. follows, since (5.2) gives
Pu(ro > t) < 0o(1/T) < o(1).

The key ingredients to prove (5.2) are Propositions 4.6 and 4.7 and Proposition 5.2
below. The latter is a Poincaré inequality for an auxiliary process, the generalised coa-
lescing and branching symmetric exclusion process (g-CBSEP), preliminarily studied
in [26]. Once we have these key ingredients, the strategy to prove (5.2) is similar to
the one in [25, Section 5]. In particular, for the first part of the proof (Sect. 5.2) we will
omit most of the details and refer to [25, Section 5] for a more detailed explanation.

5.1 The g-CBSEP process

Given a finite connected graph G = (V, E) and a finite probability space (S, ),
assign a variable o, € S to each vertex x € V and write 0 = (0y) ey and 7g (o) =
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[ 1, 7 (o). Fix also a bipartition S; U Sy = S such that 7(S;) > 0 and define the
projection ¢ : SY — {0, 1}V by ¢(0) = (Lo, e81))xev- We will say that a vertex x
is occupied by a particle if o, € S1 and we will write .Q(J;r C 26 = SV for the set of
configurations o with at least one particle. Finally, for any edge ¢ = {x, y} € E let &,
be the event that there exists a particle at x or at y.

The g-CBSEP continuous time Markov chain on .Qg with parameters (S, Sy, )
runs as follows. The state {0y, o)} of every edge e = {x, y} for which &, holds is
resampled with rate one (independently of all the other edges) w.r.t. my ® 7, (- | &).
Thus, an edge containing exactly one particle can swap the position of the particle
between its endpoints or can create a new particle at the empty endpoint (a branching
transition). An edge with two particles can kill one of them (a coalescing transition)
with equal probability or keep them untouched. Notice also that the state of an edge
can change completely even when the particles are untouched.

Remark 5.1 When the parameters (S, Sy, ) are the two point space {0, 1}, the set
{1} and the Bernoulli(p) measure on S respectively, the g-CBSEP chain is called the
CBSEP chain on G with parameter p. It is easy to verify that the projection of the
g-CBSEP chain under the mapping ¢ defined above coincides with the CBSEP chain
with parameter p = 7(S1). This observation will be used in the proof of Proposition
5.2 below. We will use g-CBSEP rather than plain CBSEP, because the space S will
correspond to the state of the chain in a mesoscopic box. The event S| will correspond
to the presence of a mobile droplet in this box.

It is immediate to check that g-CBSEP is ergodic on .Qg with reversible stationary

measure rrg =mg(-| .QE;") and that its Dirichlet form D8~CBSEP( ) for £ : .Qg —
R, takes the form

DECBSEP( £y = 3"t (g, Vare(f | £),

ecE

where Var.(f | £) is the variance w.r.t. o, oy conditioned on &, if e = {x, y}. Let
no Tril_ CBSEP e the relaxation time of g-CBSEP on .Qg defined as the best constant
C in the Poincaré inequality

Var, 1 (f) < CDS"PSER (),

In the above setting the main result needed to prove (5.2) is as follows. For any positive
integers d and L setn = L% andletZ; = {0, 1, ..., L — 1} be the set of remainders
modulo L. The d-dimensional discrete torus with n vertices, ’Ifz in the sequel, is the
set Z‘i endowed with the graph structure inherited from Z¢. In what follows we will
allow S, 81 and 7 to depend on 7.

Proposition5.2 Letd > 2, G = ’]I‘Z and assume that lim,,_, 5o n(S1) = +00. Then,
as n — oo, for any function f : .Qg — R

Var,+(f) < O (n(S1) " max (1,log (m(S)7Y))) - DEBSEP ().
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In particular,

LE P < 0(w(S) ™! max (1, log (7(S) 7))

rel
This is proved in “Appendix B”.

5.2 Transforming (5.2) into a Poincaré inequality

Using standard “finite speed of propagation” bounds (see [25, Section 5.2.1] (5.2)

fOHOWS lf we prOve
h‘]“ ]—‘]PJ [( ) t* - 0 5:;

where ro(") is the infection time of the origin 7o for FA-2f on the discrete torus T2
with linear size 4/n = 2T. For this purpose we fix a small positive constant § < 1/2
and choose N5 = N — [log(1/8)/./q]| where N = mejL;/WT is the final scale in
the droplet construction (see (4.3)). With this choice €y, >~ §fy = 6 /q”/ 2+o() (cf,
(4.1)) and w.l.o.g. we assume that £y, divides 27". We then partition the torus ’]I% into
M=n /E%\,B equal mesoscopic disjoint boxes (Q j)§’1: |» where each Q; is a suitable

lattice translation by a vector in T2 of the box Q = [€y,]> = A®M) (see (4.2)). The
labels of the boxes can be thought of as belonging to the new torus T%W and we assume
that Q;, Q; are neighbouring boxes in T2 iff i, j are neighbouring sites in T%,. In
212 we consider the event

e=JsgnNa (54)

jeT?, ieT?,

where SG; is the event that Q ; is super-good (see Definition 4.5) and G; is the event
that any row and any column (of lattice sites) of Q; contains an infected site.

In order to apply the same strategy as [25, Section 5] it is crucial to have that the
“environment” characterised by £ is so likely that (cf. [25, (28)])

lim w(E)T3, = 0. (5.5)
q—0

x2
Using 1, = e % ") T = |exp(log*(1/9)/q)]. M = 4T /83, tn, = O(1/4%),
together with Proposition 4.6, it follows that

2
. 3 . 3 — 5 (1+0(Jqlog (/M _
(}%T tepe( ﬂ Sg;)fqhg})T (1l —e % NG )" =o0.

: =2
JeTy
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Similarly, using (GS) < 20n,(1 — @)™ < 2€y,e 9N together with £y, =
2(1/4%), we get

11m T | 67) < TPrM2ey,e 1 =0,

te'ﬂ'z

and (5.5) follows.
An easy consequence of (5.5) (cf. [25, Eq. (29)]) is thatas g — O

TP, (1" = 1) < TP, (¢ = 1) + o(D), (5.6)

where r(") denotes the hitting time of the set F = {w : wg = 0} U £¢ for the FA-2f

chain on Tz In order to bound from above the term P, ('C](_tl) > t*) we follow the

standard Vanatlonal” approach (see [25, Eq. (30)] and [3 Theorem 2]).
Let DT% (f) = er’]l'z M2 (cx Var, (f)) where CECT" is the FA-2f constraint at x

for the torus ']I‘% (see (3.3)), be the Dirichlet form of the FA-2f chain on the torus ']I‘%.
Then

W . Dr2 (f)
TP, () = 1) < Te ¥, 30 = 1nf{m : f|f=o}. (5.7)

It remains to prove a precise lower bound on the coefficient k(}'f).

5.3 Bounding lg',f.) from below

The last and most important step is to prove that

2
/\(]’_3) > e—O(log3(1/q)/ﬁ)pD > e—g—q<1+0(ﬁlog3(1/q))), (5.8)

where pp > exp(—g—;(l + O(ﬁlogz(l/q)))) is the probability that a box [tn]? is
super-good (cf. Proposition 4.6). Once (5.8) is established, recalling (5.6) and (5.7),
the proof of (5.3) is complete because t*)»g_f) diverges rapidly enough as ¢ — 0 if the

constant « in the definition (5.1) of #, is chosen large enough.

I din [25. Eq. 31)] that A% > g inf ; <2 where the infimum i
t was proved in [25, Eq. (31)] that F _quW’w ere the infimum is

over f : .Qrﬂ-% — Rsuchthat f|gc = 0and f|g is not constant. In what follows f will
denote an arbitrary such function and the various constants involved in the estimates
will be uniform in f. Hence, (5.8) follows, once we prove that

DTz(f) 712 3
Varr (f | g — P ( - g(l + O(log (l/q)ﬂ))). (5.9)
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Bounding Varr ( £ 1£), using Proposition 5.2. Write G for the graph T2 . S for the

state space G; C §2¢, withi € ’11’%,[, m for ng,(-1G;) and S; C S for the event SG;.
Since both G; and §G; are increasing in the set of infections,

2
7(S1) = u(SG) = exp ( — — (1 + 0(Vglog2(1/9))).  (5.10)
9q

where we used the Harris inequality [20] for the first inequality and Proposition 4.6
for the second one. Recalling that M = n/E%,a with n = 472, Ins = 0(1/¢°) and

T = Lexp(log4(l/q)/q)J, the above bound implies lim,_.o M7 (S1) = +00 so that
the requirement of Proposition 5.2 is fulfilled.

With this notation we consider the g-CBSEP on .Qg with parameters (S, Sy, 7).
Recalling (5.4), we identify f with a function fg : .Qg — R via the natural bijection
between £ and .Qg: f(w) = fe(wg,, ..., wg,,). Under this bijection

Var, 1 (fg) = Varp (f 1 €),
DB (f6) = um (Lsg, , Varg,ug, (f 18Gij) | €).

i~j

where SG; ; is a shorthand notation for the event (SG; U SG;) N G; N G; and Zi~j
denotes the sum over pairs, each counted once, of adjacent boxes. Using Proposition
5.2 and (5.10) we conclude that

Varp (f |€) = Var,+(f) < 0(x(SD) ™" log(1/m(851) D4~ P (f5)

A

2
< exp (g, (1 + 0V 108’ (1/q))

x Y ur2(Lsg, ; Vargug; (f 18Gi) | €). (5.11)

i~j

Bounding DT’% (f), using Proposition 4.7. We next compare the sum appearing in the
r.h.s. of (5.11) to the Dirichlet form DT% (f) and prove that the “comparison cost” is at

3 . . 2.
most exp (0 ( log (l/q)/ﬁ)), so sub-leading w.r.t. the main term exp(g—q) in (5.11).

Lemma 5.3

3
> um(Lsg,; Vargug, (f 18Gi.j) | €) < W W/DND D (1),

i~j

Remark 5.4 As it will be clear from the proof, we actually prove a stronger statement,
2

namely the constraint clr" in the expression of DT% (f) will appear multiplied by the
indicator that x belongs to a droplet. While for many choices of f the presence of
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2
this additional constraint may completely change the average M2 (cl-r” Var, (f )), itis
possible to exhibit choices of f, for which

T2 T2
1 {x belongs to a “droplet”}Cx " Vary (f) = cx" Vary(f).

Before proving Lemma 5.3, let us observe that, together with (5.11), it implies the
desired (5.9). Lemma 5.3 itself follows by summing the bound from Claim 5.5 below.

Claim 5.5 Fix two adjacent boxes Q;, Qj and let A; j O Q; U Q; be a translate of
the box A®N). Then

1z (Lsg, ; Varg,ug, (f 18Gi ) |€)

<60(10g /q)/ o) Z g2 HSQ(A )Cx Varx(f))

XEA; j

Proofof Claim 5.5 Let G = ﬂkelew Gr D €& and recall that u(£) = 1 — o(1). Let

pi.j = 1(SGi,j1G) and observe that the term Varg,ug, (-) does not depend on the
variables wg,, wQ;. Thus,

M2 (]lsgi,j VarQiUQj (f1 Sgi,j) |5)
< (I +o(M)pup(Lsg, ; Vargug, (f18Gi,))19)
= (L+o()pi,jurz (Vargug, (f 18Gi ;) 1G). (5.12)

Let G(A;, ;) be the event that any £ y; lattice sites contained in A; ; forming either arow
or a column of some Qy contain an infection. With reference to Fig. 5, we emphasise
that the event G(A; ;) does not require anything about columns/rows which go out of
A;,j. We define the event G (Al?’ j) similarly with A; ; replaced by T% \ A; . Clearly
G CG(Aij)NG(A] ;) and

2 (Varg,ug; (f18Gi ;) 16)
= (1+ o)ur (Varguug, (f 18Gi. ) 1G(Aij) NG (A7 )

= (1 + oDz (14, (Varg,ug, (f 1861, | G4 ) 1G(A ) (5.13)
In turn, the law of total variance implies that
ma;; (Varg,uo; (f 18Gi ) 1G(Aij)) < Vara, ; (f 18Gij NG(Ai ). (5.14)

Next comes a simple but key observation illustrated in Fig. 5, whose formal proof is
left to the reader.

Observation 5.6 The event SG; ; N G(A; ;) implies the event SG(A; ;).
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Fig.5 Illustration of \ \ | [
Observation 5.6. The shaded I I I I
square of shape AZNs) is SG ‘ ‘ : T :
and the arrows indicate the L | *Ai‘*'* . J I L R
I I I I
I I I I
I I I I
I I I I
I
I

presence of an infection in each
row/column, as guaranteed by
g(A,-,j) with Aiﬁj being the
larger square of shape AN, [ M
Observation 5.6 asserts that !
these events combined imply :
S8G(4A;,j) (see Fig. 2). The |
dashed lines delimit the boxes N I N 7* [
| | |
Qk | T T
| |

Taking Observation 5.6 into account together with the inequality Var(X | A) <

% Var(X | B), valid for any random variable X and events A C B with P(A) > 0,

we conclude that
wa; (SG(A; )
wa; ;(SGij NG(A; )

Vara, ; (£18Gi,j NG(Ai ) < Varg, ; (f18G(4Ai ).

(5.15)
From (5.12-5.15) we finally get

I‘L']I"zl (1Sgi,j VarQiUQj (f |Sgl,]) | g)
A+ oM)pijra, ;(SG(Ai ;)
wa; ;(8Gij NG(A; ;)

< (L+oM)pa; (SGA; D ( Vara, ; (18G4 ) 1G(A] ), (5.16)
n ]

“T%(Var/‘i,_/ (f18G(A;i )] Q(Af,j))

where we used

pij = n(SGij1G) < (I +oM)pa, ;(SGi j1G(A; )
< (I +o()pa, ,;(8Gi; NG(A; ;)

to get the last inequality.
By applying Proposition 4.7 to the term Vary, ;(f|SG(4A; ;) and using that

Aij T2
¢y’ <", we conclude that
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M2 (]lsgi,j VaerUQj (f | Sgi,j) | 5)
< 60(10g3(1/q)/@llA,-j(Sg(Ai,j))

x>z (pa,, (0 Vare () | 8G(Ar ) 1 G(AS )

xXeAN; j
3 TZ
< eO(log /9)/Ja) Z /’L']T% (lsg(Ai‘j)an Varx(f)),
XEA,'_j
where we used M2 (Q(Af,j)) = 1 — o(1) in the last inequality. O
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A Probability of super-good events

In this appendix we prove Proposition 4.6 and we gather several more technical and
relatively standard bootstrap percolation estimates on the probability of super-good
events used in Sect. 4.

For z > 0 we define

g(@) = —log (B(1 —e™)),

where B(u) = (u + Ju(@ —3u))/2. It is known [28, Proposition 5(ii)] that
fooo g(z) dz = % /18. We next recall some straightforward properties of g.

Fact A.1 The function g is positive, decreasing, differentiable and convex on (0, 00).
Moreover, the following asymptotic behaviour holds:

1 —1
g(z) ~ ~log(1/2), g ~—, asz — 0,
2 2z
z -2z

g(2) ~ e 7, g@) ~ =27, as z — 0o,

where x ~ y stands for x = (1 + o(1))y.

The relevance of this function comes from its link to the probability of traversability.
Recalling Definition 4.1, for any positive integers a and b we set

TV(a, b) = (T2 (R(a, b)), 7%a, b) = (T (R(a, b)),
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where 0 stands for the fully infected configuration. Note that these probabilities are the
same for left-traversability, while for up or down-traversability a and b are inverted in
the r.h.s. The next lemma follows easily from [28, Lemma 8]. Let¢’ = —log(1—¢) =
q+ 0(q?).

Lemma A.2 For any positive integers a and b and w € {0, 1} we have
T%(a, b) = q0(l)efag(bq')‘
Corollary A.3 For any positive integers a and b we have

0 0
T (s,b)T"(a — s, b) Y

Al
0ss e TUs )T a —5', b) — ¢ (A1)

Furthermore, for any boundary conditions w, o' and rectangle R of class 1 < n < 2N
(recall Definitions 4.2 and 4.3), we have

HR(SGL(R)|SG” (R)) = ¢ (A2)
uniformly over all possible values of s and boundary conditions w, '.

Proof Equation (A.1) follows immediately from Lemma A.2. To obtain (A.2) with n
odd (the even case is treated identically), recall that

SG”(R) = _J 894 (R):

N

there are g~ 21 possible values of s”; by (A.1), for all s, s', @ and &/,
RR(SG)/nr(SGY) = q°0. o

We are now ready for the main result of this appendix.

Proof of Proposition 4.6 We will prove the same bound for the super-good event occur-
ring with all s = 0 in Definition 4.3 on all scales, i.e. the initial infection A being
in the bottom-left corner of A®™. Once the offsets are fixed, it suffices to prove the
bound on this probability for n = 2N, in which case it reads

N
g [] 7" Cn =t )T o = 1. 1)

m=1

N
=g M exp (= 3 (ln — tu - DG@ ) + 8@ 1)), (A3)
m=1
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by Lemma A.2 and symmetry. Since g is decreasing, the last sum is at most

2 = tn-1)8(q tn ).

m=1

The term for m = 1is O(log(1/q)/./q) by Fact A.1. For the other terms we use that
by convexity forany 0 <a < b

b
(b — a)g(a) < / ¢(2)dz — O((b — a)¢ (@),
Using Fact A.1, we get

1/a ifa=0()

— —_ 24/ - g
(b —a)*g'(a) < O((b — a)) X{e—a ifa = Q).

Finally, for m > 2 we have £, — ;1 < 2,/q€;n—1 by (4.1), so

mo

Em_gm— 2 / S
3 % < 0"V Y (tn = ) = 0™ ly) = O(J/)

m=2 m=2

o0 o0
@7 Y Un—lp?e < 0(gY) D e = 0.
m=mo+1 m=mo+1

setting mo = max{m, ¢£,, < 1/q}. Putting these bounds together and recalling (4.3),
we obtain that the r.h.s. of (A.3) is at least

—2 O(log*(1/9))
dz+ O log(1 R T
exP( q (/0 g(2)dz (V) log( /Q))) Nz )
7 0(log’(1/9))
=ee(-5 -7 )
This concludes the proof of Proposition 4.6. O

We next turn to the event SG(V5) from Definition 4.11 required in the proof of
Lemma 4.10, so we fix n = 2m € [2, 2N).

Lemma A.4 Recalling (4.17), we have
1am Cr218G) = gD,

Proof Recall that V; U Vs = A®™ and assume SQ(A(”)) occurs. For any 0 < s1, 52 <
L — L—1 We write

ST, .5,(A™) = 8G, (A™) N SG;, (A"V + 52e2).
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Then by Corollary A.3 for any such s, s we have
A (SGsy 52 (A™)) = 14 (SGAM))g D,
so it suffices to show that
1> (8G0.0(V2) = 14w (SG1.o(A™)g D,

since ;1 (T (11(nv,))) > g for any ny, € SG(V2).
However, by Definitions 4.3 and 4.11 and symmetry we have

v, (8Go,0(V2)) T Ul — -1 — 1, Ly )T oy — =1, by — 1)

M A (Sgl,O(A(n))) B Tl(zm - emfl -1, mel)Tl(em - mela em)Tl(la emfl)

1
> Tl m bt bn =D o) j=tn—tn-)(n—a)=5(tna)
a Tl(zm - em—l s Zm)

the last equality following from Lemma A.2.
By convexity of g we get

§((m — 1Dg") — gUlmq") = —q'8' (L — D). (A4

By Fact A.1 we have that the r.h.s. of (A.4) is O(1/¢,,). Putting this together we obtain

w2(8G00VD))  0(),~0tu—tn-1)/tn 5 40 ,=0WD — OO (a5)
o pim (SG1,o(AM))

as desired, the second inequality coming from (4.1) as in the proof of Proposition 4.6.
O

B Proof of Proposition 5.2

Let (S, 81, 7) be the parameters of g-CBSEP on TZ andletf = [7(S; )‘Vd] > 2. For
simplicity we assume that n'/¢ /¢ € N and we partition the torus ’]TZ into M = (n/£)?
equal boxes (B)) ;"’: |» Where each B; is a suitable lattice translation by a vector in T¢
of the box B = [£]¢. The labels of the boxes can be thought of as belonging to Tﬁ{,,
and we say that B;, B; are neighbouring boxes in ']I‘Z iff i, j are nearest neighbours in
d

TS, R R

We then set S = SB, 7 ((0y)rep) = R e (0x), S1 = U eplor € S1} and we
consider the auxiliary renormalised g-CBSEP (in the sequel 8-CBSEP) on the graph
G = T‘,{,I with parameters (S, S1, 7). Using the assumption lim,_, o, 7(S1) = 0, we
have that

lim A S) = lim 1— (1 —7(S) =1—¢L,
n—0oo n—0o0o
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LemmaB.1 Let T PP be the relaxation time of §-CBSEP on G. Then there exists

rel
a constant C = C(d) > 0 such that Tg CBSEP <C.

Proof We closely follow [32, Appendix A]. Write (}+ for the space of g-CBSEP
configurations with at least one particle and consider the projection ¢ : S}+ — 24
given by ¢(@) = {1 (6 31}}]‘ <G+ As discussed in Remark 5.1, the projection of the
8-CBSEP chain is the CBSEP cllain on G reversible w.r.t. 7T, the product Bernoulli
measure with parameter p = 77 (S;) conditioned on §2.;.. For the latter, using p = © (1)
asn — 00, it was proved in [26, Theorem 1] that its relaxation time TCBSEP o).

. 6—CBSEP
Hence, it is enough to prove that Tril <’ TrSIBSEP for some constant C’.

Let I@’@(J, IAE(;J(-) be the law and associated expectation of the g-CBSEP chain with
initial condition @ € f)+ and let P, (-), E,(-) be the same objects for the projected
chain (the CBSEP chain) with initial condition n € £2..

In order to prove the lemma, it 1s sufficient to prove that for any function f :
.Q+ = R with zero mean w.r.t. A1 and for any & € .Q+ the rate of exponential
decay as t — 400 of IEw(f(a)(t)))| is at least c/TrSlBSEP for some ¢ = ¢(p) > 0
independent of f and @.

More formally,

T TR
liminf —— log (|E4 (f (@0)]) = ¢/ T,

For any such f write

B, (f (@) < |]l:](;)(f(c?)(t))11{vjeé’ f,-<t})| + 11 flleM max Py(z; > 1), (B.1)

where 7; is the first time such that ¢(@(7)); # ¢(®(0)), which is measurable w.r.t.
the projected chain.

It follows from standard tools for finite reversible Markov chains (seee.g. [3, Section
5] that there exists K = K(®) < +o00 such that HAD(;)(rj >1) < Ke U1 with

2 @) =T @@ # 9@);)/ TS > (p A (1= p)) /TS

In particular, the rate of exponential decay as t — +oo of the second term of the r.h.s.
of (B.1) satisfies our requirement.

In order to prove a similar result for the first term in the r.h.s. of (B.1), we
observe that, conditionally on the event | j{tj < t} and on @(&(t)), the vari-
ables (&; (t))jeé become independent with @;(¢) ~ 7 (-|¢(&(1));). Hence, if we

set g(n) = 7 (f (@)p(@) = n), we get

Ed)(f(&)(t))]l{‘v’jeé,rj<t}) Eg@) (8((®)) = w(w)(g(”(t))ﬂ{a/eG 7 >z})
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so that
max [ (£ @)y e, ¢, )| = max By (80| + 11 fllooM max P (z; = 1)
w )

The rate of exponential decay as ¢t — +o0 of both terms in the r.h.s. above is again at

least ¢/ T.SBSEP for some ¢ > 0, since 77 (g) = 21 (f) = 0. O

Proof of Proposition 5.2 For any pair of neighbouring boxes B; and B; we write & i
for the event | .. BiUB, {ox € S1}. Using Lemma B.1 and the definition of Trg —CBSEP
we get that
Var + (f) < CZT[T(, Jlgw_ VarBiUBj(f|5iyj)),
i~j

where the sum in the r.h.s. is an equivalent way to express the Dirichlet form of
g-CBSEP. Now fix a pair of adjacent boxes B;, B; and let Tril CBSEP( , j) be the
relaxation time of our original g-CBSEP with parameters (S, S1, ) on B; U B;. By

g—CBSEP
Trel

symmetry (i, j) does not depend on 7, j and the common value will be

denoted by Trel. If we plug the Poincaré inequality for g-CBSEP on B; U B;

Vargus, (f 1&) Tt Y wgup (e, Varey(f 1€xy)-
x~y€B;UB;

into the r.h.s. above, we get

Var +(f)<CTrelz > 711'1,2,(19 s, (Le,, Varey (f 1€x,)))

i~j x~yeB;UB;

= 2dCTr«:l Z ”Tg (lng}, Varx,y(f|5x,y))

x~yeTd

= 2dCT, DS~ BSEP (1),

where the second inequality uses 1 é, Le,,

= lg, , and

+ A +
Tpa (]lé,-,_/ )= Toqd (& )T\ B,0B)) ® 7BuB;-

g—CBSEP
Trel

Thus, <0 (f}el). It remains to bound 7 from above.
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Let Tn(fiESEP denote the mixing time of g-CBSEP on B; U B; with parameters
S = 10,1}, = {1} and 7'(1) = 7(S1) = 1 — 7/(0). Let TSy, be the cover

cov
time of the continuous-time random walk on B; U B;. Theorem 2 of [26] implies

Trel < O(TCiESEP + TXV). Moreover, it is well known (see e.g. [29]) that TV is

cov cov

at most 0(6 log(@)) = 0(71(81)_1 max(1, log(l/n(Sl)))) and [26, Corollary 3.1]
proves® the same bound for 7SESEP. Tn conclusion,

Tral < O(n(SD) ™" max(1, log(1/7(SD))). =
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