
SYMMETRIC AND ASYMMETRIC HYDRODYNAMICS FOR
THE FACILITATED EXCLUSION PROCESS VIA MAPPING

BASED ON J.W. WITH O. BLONDEL, M. SASADA, M. SIMON AND L. ZHAO

Clément Erignoux, INRIA Lille

Markov Chains with Kinetic Constraints and Applications,
Banff, July 3-8 2022



SYMMETRIC SIMPLE EXCLUSION PROCESS (SSEP) ON ℤ

▷ Configuration 𝜂 ∈ Ω ∶= {0, 1}ℤ, with 𝜂𝑥 = 1 for an occupied site, 𝜂𝑥 = 0
for an empty site.

▷ Stirring dynamics: two neighboring sites are exchanged at rate 1.
▷ Initial profile 𝜌0 ∶ ℝ → [0, 1] fixed, initial configuration e.g. 𝜂𝑥(0) = 1

w.p. 𝜌0(𝑥/𝑁).

Then, the empirical measure on a diffusive timescale

𝜋𝑁
𝑡𝑁2 = 1

𝑁 ∑
𝑥∈ℤ

𝜂𝑥(𝑡𝑁2)𝛿𝑥/𝑁

converges in a weak sense to 𝜌(𝑡, 𝑢)𝑑𝑢, where 𝜌 is the solution to the heat
equation

{𝜕𝑡𝜌 = 𝜕𝑢𝑢𝜌
𝜌(0, ⋅) = 𝜌0

.



FACILITATED EXCLUSION PROCESS (FEP)

Similar to [Gonçalves, Landim, Toninelli ‘08], but with stronger kinetic
constraint

1 2 3 4 5 6 7 8−1 0

Markov generator ℒ𝑓(𝜂) = ∑𝑥∈ℤ 𝑐𝑥,𝑥+1(𝜂){𝑓(𝜂𝑥,𝑥+1) − 𝑓(𝜂)},

with
𝑐𝑥,𝑥+1(𝜂) = 𝑝𝜂𝑥−1𝜂𝑥(1 − 𝜂𝑥+1) + (1 − 𝑝)𝜂𝑥+2𝜂𝑥+1(1 − 𝜂𝑥).

The parameter 𝑝 ∈ [0, 1] tunes the asymmetry, and 𝜂𝑥,𝑥+1 is the configuration
where sites 𝑥 and 𝑥 + 1 have been exchanged.

▷ Bernoulli product measures are not stationary.
▷ Nomobile cluster to mix the configuration (cooperative model).
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HYDRODYNAMIC LIMIT FOR THE SYMMETRIC FEP

Theorem (Blondel, E’, Simon, Sasada 2018 & BES 2021)
Given 𝜌0, consider the symmetric (𝑝 = 1 − 𝑝 = 1/2) process 𝜂(𝑡) on
𝕋𝑁 ∶= {0, 1, … , 𝑁} started from

𝜇𝑁 = 𝜇𝑁
0 ∶= ⨂

𝑥∈𝕋𝑁

𝐵𝑒𝑟(𝜌0(𝑥/𝑁)).

For any smooth compactly supported 𝐻
1
𝑁 ∑

𝑥∈𝕋𝑁

𝐻(𝑥/𝑁)𝜂𝑥(𝑡𝑁2) ℙ⟶
𝑁→∞

∫
[0,1]

𝐻(𝑢)𝜌(𝑡, 𝑢)𝑑𝑢

where 𝜌 is solution to the parabolic Stefan problem 𝜌(0, 𝑢) = 𝜌0(𝑢) and

𝜌0 > 1/2 𝜌0 ∈ [0, 1]

𝜕𝑡𝜌 = 1
2𝜕𝑢𝑢 {2𝜌 − 1

𝜌 } 𝜕𝑡𝜌 = 1
2𝜕𝑢𝑢 {2𝜌 − 1

𝜌 1{𝜌≥1/2}} .
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STEFAN PROBLEM

𝜕𝑡𝜌 = 1
2𝜕𝑢𝑢 {2𝜌 − 1

𝜌 1{𝜌≥1/2}} .




TYPES OF CONFIGURATIONS

Four types of configurations, depending on the critical density 𝜌𝑐 = 1/2.

Low density : if 𝜌 < 1/2

Frozen configurations Transient Bad configurations

ℱ = {𝜂 ∈ Ω ∣ 𝜂𝑥𝜂𝑥+1 ≡ 0} 𝒯ℬ = {𝜂 ∈ Ω ∣ 𝜂𝑥𝜂𝑥+1 ≢ 0}.

Large density : if 𝜌 > 1/2,

Ergodic configurations Transient Good configurations

ℰ = {𝜂 ∈ Ω ∣ (1−𝜂𝑥)(1−𝜂𝑥+1) ≡ 0} 𝒯𝒢 = {𝜂 ∈ Ω ∣ (1−𝜂𝑥)(1−𝜂𝑥+1) ≢ 0}



GRAND CANONICAL MEASURES

Because of kinetic constraint, Bernoulli product measures are not stationary
for the dynamics. Canonical measures can be defined as uniformmeasures
on the ergodic components with fixed number of particles.

The symmetric FEP is actually reversible w.r.t. a family of explicit
supercritical distributions 𝜋𝜌, for 𝜌 ∈ (1/2, 1].

▷ 𝜋𝜌 is supported on the infinite ergodic component.

▷ 𝜋𝜌 is a Bernoulli product measure conditioned to having isolated empty
sites (ergodic component)

▷ 𝜋𝜌 exhibits long-range correlations as 𝜌 ↘ 1/2.



ENTROPY TOOLS AND EQUILIBRIUM DISTRIBUTIONS

The most classical techniques for hydrodynamic limits are based on entropy
bounds between the measure 𝜇𝑁

𝑡 of the process at time 𝑡 and its reference
measures 𝜋𝛼, namely

▷ Guo, Papanicolaou and Varadhan’s entropy method,

𝐻(𝜇𝑁
𝑡 ∣ 𝜋𝜌) ≤ 𝐶𝑁,

▷ Yau’s relative entropy method

𝐻(𝜇𝑁
𝑡 ∣ 𝜋𝜌𝑡

) = 𝑜(𝑁).

Supercritical case, in the transient regime, 𝜇𝑁
𝑡 is not supported on ergodic

configurations, whereas the grand canonical measures 𝜋𝜌 are ⇒ entropy
estimate fails. In particular, we need to prove that the ergodic component is
reached before the diffusive timescale 𝜏 = 𝑂(𝑁2).
General case, no real hope of using entropy methods : no reference
measures because the two phase’s stationary states have disjoint supports,
and no smooth solutions to the hydrodynamic limit.



STRATEGY OF PROOF

▷ Supercritical case, GPV’s entropy method can be adapted, by proving
that the ergodic component is reached in a subdiffusive time.

▷ General case:

▶ entropy methods cannot be used, so we adapt Funaki’s scheme for parabolic
Stephan problems.

▶ The one-block estimate is based on a De Finetti-type decomposition for
translation invariant stationary states.

▶ The two blocks estimate is bypassed by directly proving that the Young
measure is a dirac.



HYDRODYNAMIC LIMIT FOR THE ASYMMETRIC FEP

Theorem (E’, Simon, Zhao 2022)
Given 𝜌0, consider the asymmetric (𝑝 ∈ (1/2, 1]) process 𝜂(𝑡) started from

𝜇𝑁 = 𝜇𝑁
0 ∶= ⨂

𝑥∈ℤ
𝐵𝑒𝑟(𝜌0(𝑥/𝑁)).

For any smooth compactly supported 𝐻
1
𝑁 ∑

𝑥∈ℤ
𝐻(𝑥/𝑁)𝜂𝑥(𝑡𝑁) ℙ⟶

𝑁→∞
∫

ℝ
𝐻(𝑢)𝜌(𝑡, 𝑢)𝑑𝑢

where 𝜌 is the unique entropy solution to the hyperbolic Stefan problem

{𝜕𝑡𝜌 + (2𝑝 − 1)𝜕𝑢 {ℌ(𝜌)1{𝜌≥1/2}}
𝜌(0, 𝑢) = 𝜌0(𝑢) , where ℌ(𝜌) = (1 − 𝜌)(2𝜌 − 1)

𝜌 .
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Possible strategies of proof

▷ GPV’s entropy method for hyperbolic systems ? No two-blocks
estimate in the asymmetric case.

▷ Yau’s relative entropy method ? Only useful until the first shock, and
even so, not at all straightforward for two-phased systems, and no smooth
solution a priori even before the shock because of the Stefan problem.

▷ Fritz’s compensated compactness arguments ? Blackbox tools, very
technical, and requires adding up some lower-order stirring dynamics.

▷ Attractiveness ? A priori not available here.



MAPPING WITH A FACILITATED ZR PROCESS
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MAPPING WITH FZRP : DYNAMICS

x1 x2 x3 x4

1 2 3 4

x4

⇒ If the exclusion process is driven by the facilitated generator, the
corresponding zero-range process seen from the tagged empty site follows the
generator

ℒ𝑧𝑟𝑔(𝜔) = ∑
𝑦∈ℤ

1{𝜔𝑦≥2}{𝑔(𝜔𝑦,𝑦+1) − 𝑔(𝜔)}.
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MAPPING WITH FZRP : DYNAMICS

1 2 3 4

x1 x2 x3 x4x4

p 1− p

1− p

p

⇒ If the exclusion process is driven by the facilitated generator, the
corresponding facilitated zero-range process (FZRP) seen from the
tagged empty site is driven by the generator

ℒ𝑧𝑟𝑔(𝜔) = ∑
𝑦∈ℤ

1{𝜔𝑦≥2}{𝑝𝑔(𝜔𝑦,𝑦+1) + (1 − 𝑝)𝑔(𝜔𝑦,𝑦−1) − 𝑔(𝜔)}.



PROPERTIES OF THE FZRP

▷ Since the function 𝑘 ↦ 1{𝑘≥2} is non-decreasing, this ”facilitated”
zero-range process is attractive: the evolution of two such processes 𝜔
and 𝜁 can be coupled in such a way that

𝜔(0) ≤ 𝜁(0) ⇒ 𝜔(𝑡) ≤ 𝜁(𝑡) ∀𝑡.

▷ The equilibrium/stationary distributions for the FZRP are product
geometric measureswith no empty sites, and density 𝛼 > 1, i.e. with
marginals

𝜈𝛼(𝜔0 = 𝑘) = 1{𝑘≥1}
1
𝛼 (1 − 1

𝛼)
𝑘−1

▷ Even with attractiveness, coupling arguments are tricky, because the
process is not ergodic: filling an empty site with a particle is
irreversible for the FZRP, and equilibrium states only exist in the
supercritical phase 𝛼 > 1.



STRATEGY OF PROOF, HDL FOR THE FEP
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HYDRODYNAMICS FOR THE FZRP

Theorem (E’, Simon, Zhao 2022)
Given an initial profile 𝛼0, consider the asymmetric (𝑝 ∈ (1/2, 1]) FZRP
𝜔(𝑡). Assuming that for any smooth compactly supported 𝐻, under the initial
distribution,

1
𝑁 ∑

𝑦∈ℤ
𝐻(𝑦/𝑁)𝜔𝑦

ℙ⟶
𝑁→∞

∫
ℝ

𝐻(𝑣)𝛼0(𝑣)𝑑𝑣

then for any 𝑡 > 0
1
𝑁 ∑

𝑦∈ℤ
𝐻(𝑦/𝑁)𝜔𝑦(𝑡𝑁) ℙ⟶

𝑁→∞
∫

ℝ
𝐻(𝑣)𝛼(𝑡, 𝑣)𝑑𝑣

where 𝛼 is the unique entropy solution to the hyperbolic Stefan problem

𝜕𝑡𝛼 + (2𝑝 − 1)𝜕𝑣 {(𝛼 − 1)
𝛼 1{𝛼≥1}} 𝛼(0, 𝑢) = 𝛼0(𝑢).

↦ Hydrodynamic limit for attractive particle systems on ℤ𝑑, F. Rezakhanlou.



MACROSCOPIC MAPPING

▷ Denote 𝑋0 = 𝑋0(𝑡) the position of the tagged empty site in the FEP, and
𝜈𝑡[𝜌] = lim𝑁→∞ 𝑋0(𝑡)/𝑁 its macroscopic position at time 𝑡.

▷ The macroscopic position of the tagged empty site is formally written as

𝜈𝑡[𝛼] = 𝜈0 + ∫
∞

0
𝛼0(𝑣) − 𝛼(𝑡, 𝑣)𝑑𝑣.

▷ Space variable 𝑦 for 𝜔 corresponding to 𝑥 in 𝜂 ? Number of empty
sites between 𝑋0 and 𝑥. At themacroscopic scale 𝑢 = 𝑥/𝑁 , 𝑣 = 𝑦/𝑁 ,
we can write

𝑦 = 𝑦(𝑥) = ∑𝑥
𝑥′=𝑋0

(1 − 𝜂𝑥′) ⇒ 𝑣 = 𝑣(𝑢) = ∫𝑢
𝜈𝑡

(1 − 𝜌(𝑢′))𝑑𝑢′

▷
∼ α particles

Cluster size ∼ 1 + α

⇒ 𝜌(𝑢) = 𝛼
1 + 𝛼(𝑣)
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MAPPING HYDRODYNAMICS

Now, to prove the HDL for the FEP given that of the FZRP, one can use that

1
𝑁 ∑

𝑥∈ℤ
𝜂𝑥(𝑡𝑁2)𝐻(𝑥/𝑁) ≃ 1

𝑁 ∑
𝑦∈ℤ

𝜔𝑦(𝑡𝑁2)[𝐻 ∘ 𝑢𝑡](𝑦/𝑁) + 𝑂(1/𝑁),
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CURRENT WORK

▷ Phase transition(s) for the FEP/CLG in higher dimensions,

with A. Roget, A. Shapira and M. Simon.

▷ Effect of boundary interactions on the FEP,

with M. Simon.
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