Critical Bootstrap Percolation and Kinetically Constrained Models: Universality Results

Laure Marêché

Institut de Recherche Mathématique Avancée Université de Strasbourg

July 4, 2022

We work on \mathbb{Z}^2 .

Stable directions: If $u \in S^1$, let $\mathbb{H}_u = \{x \in \mathbb{Z}^2 : \langle x, u \rangle < 0\}$. $u \in S^1$ is a stable direction if, starting with a configuration infected in \mathbb{H}_u and healthy in $\mathbb{Z}^2 \setminus \mathbb{H}_u$, no other site can be infected by bootstrap percolation. Otherwise, u is an unstable direction.

Definition

A constraint is critical if both:

- there exists no open semicircle of unstable directions,
- there exists an open semicircle with only a finite number of stable directions.

Initial configuration with law $\mu:$ sites are independently infected with probability q.

We define τ^{BP} the first time at which the origin is infected in bootstrap percolation. We denote T^{BP} the median of τ^{BP} .

Theorem (Bollobás, Smith, Uzzell, 2015)

For any critical constraint, $T^{BP} = \exp(1/q^{\Theta(1)})$ when q tends to 0.

 \Rightarrow More results on critical models?

The Difficulty of a Direction

For $u \in S^1$, the difficulty $\alpha(u)$ of u is

- 0 if *u* is unstable,
- ∞ if *u* belongs to an interval of stable directions,
- the smallest cardinal of K such that starting with a configuration infected in $\mathbb{H}_u \cup K$, the bootstrap percolation dynamics infects infinitely many sites, if u is an isolated stable direction.

The Difficulty of a Direction

For $u \in S^1$, the difficulty $\alpha(u)$ of u is

- 0 if *u* is unstable,
- ∞ if *u* belongs to an interval of stable directions,
- the smallest cardinal of K such that starting with a configuration infected in $\mathbb{H}_u \cup K$, the bootstrap percolation dynamics infects infinitely many sites, if u is an isolated stable direction.

The Difficulty of a Direction

For $u \in S^1$, the difficulty $\alpha(u)$ of u is

- 0 if *u* is unstable,
- ∞ if *u* belongs to an interval of stable directions,
- the smallest cardinal of K such that starting with a configuration infected in $\mathbb{H}_u \cup K$, the bootstrap percolation dynamics infects infinitely many sites, if u is an isolated stable direction.

The Difficulty of a Constraint

For C an open semicircle, we set $\alpha(C) = \max_{u \in C} \alpha(u)$. The difficulty α of a constraint is

$$\alpha = \min_{C \text{ open semicircle}} \alpha(C).$$

Example: the Duarte model

red=stable directions white=unstable directions

$$lpha(eta) = 1$$

 $lpha(\mathcal{C}) = \infty \text{ if } \mathcal{C} \neq \Theta$

 \Rightarrow We get $\alpha = 1$.

There is an open semicircle in which all directions have difficulty $\leq \alpha$.

A Refinement for Critical Bootstrap Percolation

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

For any critical constraint, $T^{BP} = \exp((\frac{1}{a})^{\alpha+o(1)})$ when q tends to 0.

$$\alpha = \min_{C \text{ open semicircle}} \alpha(C)$$

 \Rightarrow In each open semicircle there is a direction of difficulty $\geq \alpha$.

 $\Rightarrow \exists$ set of directions of difficulty $\geq \alpha$ whose convex envelope contains the origin.

$$\alpha = \min_{C \text{ open semicircle}} \alpha(C)$$

$$\alpha = \min_{C \text{ open semicircle}} \alpha(C)$$

$$\alpha = \min_{C \text{ open semicircle}} \alpha(C)$$

$$\alpha = \min_{C \text{ open semicircle}} \alpha(C)$$

To get significant new infection, one needs to find a group of α infected sites near the triangle.

 \Rightarrow of size $\Theta(1/q^{\alpha})$.

 $\times 0$

$$\Rightarrow \mathbb{P}\left(\bigsqcup_{\alpha} \right) = q^{\Theta(1/q^{\alpha})} = \exp(-1/q^{\alpha+o(1)})$$

$$\Rightarrow T^{BP} = 1/\mathbb{P}\left(\bigsqcup_{\alpha} \right) = \exp(1/q^{\alpha+o(1)}).$$

We define τ^{KCM} the first time at which the origin is infected in the KCM. We have $\mathbb{E}(\tau^{KCM}) = \Omega(T^{BP})$ when $q \to 0$. $\Rightarrow \mathbb{E}_{\mu}(\tau^{KCM}) \ge \exp((\frac{1}{q})^{\alpha+o(1)})$ when $q \to 0$. \Rightarrow Do we have $\mathbb{E}_{\mu}(\tau^{KCM}) = \exp((\frac{1}{q})^{\alpha+o(1)})$ when $q \to 0$?

$$\mathcal{T}^{BP} = \exp((rac{1}{q})^{lpha + o(1)})$$
 when $q
ightarrow 0.$

Theorem (Hartarsky, M., Toninelli, 2020 + Martinelli, Morris, Toninelli, 2019 + Hartarsky, Martinelli, Toninelli, 2021)

If the constraint has:

- a finite number of stable directions, $\mathbb{E}_{\mu}(\tau^{\mathcal{KCM}}) = \exp((\frac{1}{q})^{\alpha+o(1)})$ when $q \to 0$,
- an infinite number of stable directions, $\mathbb{E}_{\mu}(\tau^{\mathcal{KCM}}) = \exp((\frac{1}{q})^{2\alpha+o(1)})$ when $q \to 0$.

$$\Theta(1/q^{lpha})$$

$$\Theta(1/q^{lpha})$$

$$\Theta(1/q^{lpha})$$

Models with a finite number of stable directions: $\longrightarrow \lfloor 1 \rfloor$ possible.

FA-1f mechanism.

 $\times 0$

Models with a finite number of stable directions: $\longrightarrow \lfloor 1 \rfloor$ possible.

FA-1f mechanism.

imes 0

Models with a finite number of stable directions: $\longrightarrow \lfloor 2 \rfloor$ possible.

Models with a finite number of stable directions: $\longrightarrow \lfloor 1 \rfloor$ possible.

FA-1f mechanism.

imes 0

Models with a finite number of stable directions: $\longrightarrow \lfloor 1 \rfloor$ possible.

Models with a finite number of stable directions: $\longrightarrow \lfloor 1 \rfloor$ possible.

Models with a finite number of stable directions: $\longrightarrow \lfloor 1 \rfloor$ possible.

Models with a finite number of stable directions: $\longrightarrow \lfloor 1 \rfloor$ possible.

FA-1f mechanism.

×0
Models with a finite number of stable directions: $\longrightarrow \lfloor 1 \rfloor$ possible.

FA-1f mechanism.

Models with a finite number of stable directions: $\rightarrow 1^{-1}$ possible.

FA-1f mechanism.

$$\Rightarrow \text{ Energy barrier } \mu \left(\bigsqcup \right)^2. \\ \Rightarrow \mathbb{E}_{\mu}(\tau^{\text{KCM}}) = 1/\mu \left(\bigsqcup \right)^2 = 1/\exp(-1/q^{\alpha+o(1)}) = \exp(1/q^{\alpha+o(1)}).$$

Only moves: \square $] \rightarrow \square$ and $\square \rightarrow \square$] :

East mechanism.

The dynamics has to go through a configuration with at least n = 0, where $n = \Theta(\ln(\text{distance between the origin and the closest initial }))$. $\Rightarrow n = \Theta(\ln(1/\mu(\square)))$.

$$\Rightarrow \text{ Energy barrier } \mu\left(\square\right)^{n}. \\ \Rightarrow \mathbb{E}_{\mu}(\tau^{\text{KCM}}) = 1/\mu\left(\square\right)^{n} = 1/\mu\left(\square\right)^{\ln(1/\mu(\square))} = \exp(1/q^{2\alpha + o(1)}).$$

One can do better than $T^{BP} = \exp((\frac{1}{a})^{\alpha+o(1)})!$

Universality for Critical Bootstrap Percolation: Logarithms

One can do better than $T^{BP} = \exp((\frac{1}{q})^{\alpha+o(1)})!$

Definition

- A critical constraint is called
 - *balanced* if there exists a closed semicircle in which directions have difficulty $\leq \alpha$,
 - unbalanced otherwise.

Examples: red=stable directions, white=unstable directions

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

If the constraint is:

- balanced, then $T^{BP} = \exp(\Theta((\frac{1}{q})^{\alpha}))$ when $q \to 0$,
- unbalanced, then $T^{BP} = \exp(\Theta((\frac{1}{q})^{\alpha} \ln(\frac{1}{q})^2))$ when $q \to 0$.

Universality for Critical KCMs with an Infinite Number of Stable Directions

$$\mathbb{E}_{\mu}(\tau^{\mathsf{KCM}}) = \exp((\frac{1}{q})^{2\alpha+o(1)})$$
 when $q \to 0$.

Universality for Critical KCMs with an Infinite Number of Stable Directions

$$\mathbb{E}_{\mu}(au^{\mathsf{KCM}}) = \exp((rac{1}{q})^{2lpha + o(1)})$$
 when $q o 0$.

Theorem (Hartarsky, M., 2022 + Martinelli, Morris, Toninelli, 2019 + Hartarsky, 2021)

Critical constraints with an infinite number of stable directions satisfy:

- if they are balanced, $\mathbb{E}_{\mu}(\tau^{\text{KCM}}) = \exp(\Theta((\frac{1}{q})^{2\alpha}))$ when $q \to 0$;
- if they are unbalanced, $\mathbb{E}_{\mu}(\tau^{\mathcal{KCM}}) = \exp(\Theta((\frac{1}{q})^{2\alpha} \ln(\frac{1}{q})^4))$ when $q \to 0$.

Heuristics for Critical Bootstrap Percolation

Heuristics for Critical Bootstrap Percolation

Heuristics for Critical Bootstrap Percolation

Heuristics for Critical KCMs with an Infinite Number of Stable Directions

East dynamics with instead of .

$$\mathbb{E}_{\mu}(\tau^{\text{KCM}}) = 1/\mu \left(\square \right)^{\ln(1/\mu(\square))} \text{ becomes } 1/\mu \left(\blacksquare \right)^{\ln(1/\mu(\square))}.$$

Heuristics for Critical KCMs with an Infinite Number of Stable Directions

East dynamics with instead of . $\mathbb{E}_{\mu}(\tau^{\text{KCM}}) = 1/\mu \left(\square \right)^{\ln(1/\mu(\square))} \text{ becomes } 1/\mu \left(\blacksquare \right)^{\ln(1/\mu(\square))}.$

- Balanced families: $\mu(\textcircled{\mbox{\footnotesize \mbox{\footnotesize \mbox{\footnotesize math$ math$ \mbox{\footnotesize math$ \mbox{\footnotesize math$ \mbox{\footnotesize math$ \mbox{\footnotesize math$ \mbox{\footnotesize math$ math$ \mbox{\footnotesize math$ math$ \mbox{\footnotesize math$ \mbox{\footnotesize math$ \mbox{\footnotesize math$ mat$
- Unbalanced families: $\mu\left(\boxed{m}\right) = \exp(-\Theta((\frac{1}{q})^{\alpha}\ln(\frac{1}{q})^2)).$ $\Rightarrow \mathbb{E}_{\mu}(\tau^{KCM}) = \exp(\Theta((\frac{1}{q})^{2\alpha}\ln(\frac{1}{q})^4)).$

Definition

A critical constraint is called:

- rooted if there exist two non-opposite directions of difficulty $> \alpha$,
- unrooted otherwise.

Theorem (Hartarsky, M., 2022 + Hartarsky, Martinelli, Toninelli, 2019 + Hartarsky, 2021)

Critical constraints with a finite number of stable directions and unbalanced satisfy:

- if they are unrooted, $\mathbb{E}_{\mu}(\tau^{\mathcal{KCM}}) = \exp(\Theta((\frac{1}{q})^{\alpha} \ln(\frac{1}{q})^2))$ when $q \to 0$,
- if they are rooted, $\mathbb{E}_{\mu}(\tau^{\mathcal{KCM}}) = \exp(\Theta((\frac{1}{q})^{\alpha} \ln(\frac{1}{q})^{3}))$ when $q \to 0$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

gray=unknown green=difficulty $\leq \alpha$ black=difficulty $> \alpha$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

gray=unknown green=difficulty $\leq \alpha$ black=difficulty $> \alpha$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

gray=unknown green=difficulty $\leq \alpha$ black=difficulty $> \alpha$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

gray=unknown green=difficulty $\leq \alpha$ black=difficulty $> \alpha$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Unrooted = no non-opposite directions of difficulty $> \alpha$.

 \Rightarrow Infection can propagate on the left as well as on the right.

 \Rightarrow FA-1f mechanism with \bigotimes_{2}

 $\Rightarrow \mathbb{E}_{\mu}(\tau^{\mathsf{KCM}}) = 1/\mu \left(\bigotimes \right)^{2}.$

 $\mu\left(\fbox{}\right) = \exp(-\Theta((\tfrac{1}{q})^{\alpha}\ln(\tfrac{1}{q})^2)) \Rightarrow \mathbb{E}_{\mu}(\tau^{\mathcal{KCM}}) = \exp(\Theta((\tfrac{1}{q})^{\alpha}\ln(\tfrac{1}{q})^2)).$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\sf gray}{=}{\sf unknown}\\ {\sf green}{=}{\sf difficulty} \leq \alpha\\ {\sf black}{=}{\sf difficulty} > \alpha \end{array}$

Mechanism to propagate the infection on the left:

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\rm gray}{=}{\rm unknown}\\ {\rm green}{=}{\rm difficulty} \leq \alpha\\ {\rm black}{=}{\rm difficulty} > \alpha \end{array}$

Mechanism to propagate the infection on the left:

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\rm gray}{=}{\rm unknown}\\ {\rm green}{=}{\rm difficulty} \leq \alpha\\ {\rm black}{=}{\rm difficulty} > \alpha \end{array}$

Mechanism to propagate the infection on the left:

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\rm gray=unknown}\\ {\rm green=difficulty} \leq \alpha\\ {\rm black=difficulty} > \alpha \end{array}$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\rm gray=unknown}\\ {\rm green=difficulty} \leq \alpha\\ {\rm black=difficulty} > \alpha \end{array}$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\sf gray}{=}{\sf unknown}\\ {\sf green}{=}{\sf difficulty} \leq \alpha\\ {\sf black}{=}{\sf difficulty} > \alpha \end{array}$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\sf gray}{=}{\sf unknown}\\ {\sf green}{=}{\sf difficulty} \leq \alpha\\ {\sf black}{=}{\sf difficulty} > \alpha \end{array}$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\rm gray}{=}{\rm unknown}\\ {\rm green}{=}{\rm difficulty} \leq \alpha\\ {\rm black}{=}{\rm difficulty} > \alpha \end{array}$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\rm gray}{=}{\rm unknown}\\ {\rm green}{=}{\rm difficulty} \leq \alpha\\ {\rm black}{=}{\rm difficulty} > \alpha \end{array}$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\sf gray}{=}{\sf unknown}\\ {\sf green}{=}{\sf difficulty} \leq \alpha\\ {\sf black}{=}{\sf difficulty} > \alpha \end{array}$

Unbalanced = no closed semicircle in which directions have difficulty $\leq \alpha$. Rooted = \exists non-opposite directions of difficulty $> \alpha$.

 $\begin{array}{l} {\sf gray}{=}{\sf unknown}\\ {\sf green}{=}{\sf difficulty} \leq \alpha\\ {\sf black}{=}{\sf difficulty} > \alpha \end{array}$

Mechanism to propagate the infection on the left:

Propagation to the right \Rightarrow propagation to the top. Propagation to the top \Rightarrow propagation to the left.

Mechanism to propagate the infection on the left:

Propagation to the right \Rightarrow propagation to the top. Propagation to the top \Rightarrow propagation to the left.

⇒ East dynamics to reach the β infected sites. Distance to cross = $\Theta(1/q^{\beta})$. ⇒ The dynamics has to go through a configuration with at least n , where $n = \Theta(\ln(1/q^{\beta})) = \Theta(\ln(1/q))$. ⇒ Energy barrier $\mu(\Box)^{\Theta(\ln(1/q))}$

$$\mu(\square) = \exp(-\Theta((\frac{1}{q})^{\alpha}\ln(\frac{1}{q})^2)) \Rightarrow \mathbb{E}_{\mu}(\tau^{KCM}) = \exp(\Theta((\frac{1}{q})^{\alpha}\ln(\frac{1}{q})^3)).$$

Universality for Critical KCMs with a Finite Number of Stable Directions, Balanced

Theorem (Hartarsky, M., 2022 + Hartarsky, 2021)

Critical constraints with a finite number of stable directions and balanced can have:

- no direction of difficulty $> \alpha$, then they are called *isotropic* and $\mathbb{E}_{\mu}(\tau^{KCM}) = \exp(\Theta((\frac{1}{q})^{\alpha}))$ when $q \to 0$;
- exactly one direction of difficulty > α , then they are called semi-directed and $\mathbb{E}_{\mu}(\tau^{KCM}) = \exp(\Theta((\frac{1}{a})^{\alpha}\ln(\ln(\frac{1}{a}))))$ when $q \to 0$;
- at least two directions of difficulty $> \alpha$, then they are rooted and $\mathbb{E}_{\mu}(\tau^{KCM}) = \exp(\Theta((\frac{1}{q})^{\alpha} \ln(\frac{1}{q})))$ when $q \to 0$;

Isotropic = no direction of difficulty $> \alpha$.

 $\begin{array}{l} {\rm gray}{=}{\rm unknown}\\ {\rm green}{=}{\rm difficulty} \leq \alpha\\ {\rm black}{=}{\rm difficulty} > \alpha \end{array}$

 \Rightarrow Semicircles on the right AND the left: directions with difficulty $\leq \alpha$.

 \Rightarrow Infection can propagate on the left as well as on the right.

 \Rightarrow \longrightarrow - - - - - straightforward.

 \Rightarrow FA-1f mechanism with $\bigotimes_{k=1}^{\infty}$.

 $\Rightarrow \mathbb{E}_{\mu}(\tau^{\mathsf{KCM}}) = 1/\mu \left(\bigotimes \right)^{2}.$

$$\mu\left(\bigotimes\right) = \exp(-\Theta(1/q^{\alpha})) \Rightarrow \mathbb{E}_{\mu}(\tau^{\mathsf{KCM}}) = \exp(\Theta(1/q^{\alpha})).$$

Universality for Critical KCMs with a Finite Number of Stable Directions, Balanced, at Least 2 Directions with Difficulty $> \alpha$

Balanced = \exists a closed semicircle in which directions have difficulty $\leq \alpha$. At least 2 directions of difficulty $> \alpha$.

 $\begin{array}{l} {\sf gray} = {\sf unknown} \\ {\sf green} = {\sf difficulty} \leq \alpha \\ {\sf black} = {\sf difficulty} > \alpha \end{array}$

2 non-opposite directions with difficulty $> \alpha$ \Rightarrow The model is rooted.

As in unbalanced rooted models, East dynamics on a scale $1/q^{\Theta(1)}$.

$$\Rightarrow \text{ Energy barrier } \mu\left(\bigotimes^{\Theta(\ln(1/q))}\right)^{\Theta(\ln(1/q))}. \\ \mu\left(\bigotimes^{\Theta}\right) = \exp(-\Theta(1/q^{\alpha})) \Rightarrow \mathbb{E}_{\mu}(\tau^{KCM}) = \exp(\Theta((\frac{1}{q})^{\alpha}\ln(\frac{1}{q}))).$$

Universality for Critical KCMs with a Finite Number of Stable Directions, Balanced, at Least 2 Directions with Difficulty $> \alpha$

Balanced = \exists a closed semicircle in which directions have difficulty $\leq \alpha$. At least 2 directions of difficulty $> \alpha$.

> gray=unknown green=difficulty $\leq \alpha$ black=difficulty $> \alpha$

2 non-opposite directions with difficulty $> \alpha$ \Rightarrow The model is rooted.

As in unbalanced rooted models, East dynamics on a scale $1/q^{\Theta(1)}$.

$$\Rightarrow \text{ Energy barrier } \mu\left(\bigotimes^{\Theta(\ln(1/q))}\right). \\ \mu\left(\bigotimes^{\Theta}\right) = \exp(-\Theta(1/q^{\alpha})) \Rightarrow \mathbb{E}_{\mu}(\tau^{\mathcal{KCM}}) = \exp(\Theta((\frac{1}{q})^{\alpha}\ln(\frac{1}{q}))).$$

Universality for Critical KCMs with a Finite Number of Stable Directions, Balanced, at Least 2 Directions with Difficulty $> \alpha$

Balanced = \exists a closed semicircle in which directions have difficulty $\leq \alpha$. At least 2 directions of difficulty $> \alpha$.

 $\mathbf{\mathbf{b}}$

gray=unknown green=difficulty $\leq \alpha$ black=difficulty $> \alpha$

2 non-opposite directions with difficulty $> \alpha$ \Rightarrow The model is rooted.

As in unbalanced rooted models, East dynamics on a scale $1/q^{\Theta(1)}$.

 $\Rightarrow \text{ Energy barrier } \mu\left(\bigotimes\right)^{\Theta(\ln(1/q))}. \\ \mu\left(\bigotimes\right) = \exp(-\Theta(1/q^{\alpha})) \Rightarrow \mathbb{E}_{\mu}(\tau^{\mathcal{KCM}}) = \exp(\Theta((\frac{1}{q})^{\alpha}\ln(\frac{1}{q}))).$

Semi-directed = exactly 1 direction with difficulty $> \alpha$.

gray=unknown green=difficulty $\leq \alpha$ black=difficulty $> \alpha$

 $= \frac{1}{2} \rightarrow \lfloor \overline{\frac{1}{q}} \rceil$ requires to go through which has probability $\exp(-\Theta(\lfloor \frac{1}{q} \rfloor^{\alpha} \ln(\ln(\frac{1}{q})))).$

 $\Rightarrow \mathbb{E}_{\mu}(\tau^{\mathsf{KCM}}) = \exp(\Theta((\tfrac{1}{q})^{\alpha} \ln(\ln(\tfrac{1}{q})))).$

Energy barriers at different scales:

- Rooted constraints: → [] requires the creation of auxiliary
 - \Rightarrow Around a \bigotimes .
- \Rightarrow Much more complex behavior than in bootstrap percolation.

Universality in higher dimension?

Done for bootstrap percolation, open for KCMs...

Thanks for your attention.