How far do activated random walkers spread from a single source?

Vittoria Silvestri

University of Rome La Sapienza

Banff, 5 July 2022

Self-Organized Criticality (SOC)

Bak, P. (2013). How nature works: the science of self-organized criticality. Springer Science \& Business Media.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

- Particle configuration $\eta_{t}: \mathbb{Z}^{d} \rightarrow \mathbb{N} \cup\{s\}$
- Initial configuration η_{0} made of i.i.d. Bernoulli (μ) active particles
- Exponential(1) clocks
- When a clock rings:
- Move to a random neighbor with probability $1 /(1+\lambda)$
- Fall asleep with probability $\lambda /(1+\lambda)$
- Instantaneous re-activation upon meeting an active particle.

Activated Random Walks

Simulation by Leonardo Rolla (University of Warwick).

Activated Random Walks

Q: Does activity persist forever?

Activated Random Walks

Q: Does activity persist forever?

Fixation

Explosion

Activated Random Walks

Q: Does activity persist forever?

Fixation

Explosion

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

Activated Random Walks

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

Activated Random Walks

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

L. Rolla
V. Sidoravicius
O. Zindy

Universality

Activated Random Walks

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

L. Rolla
V. Sidoravicius
O. Zindy

Universality

Activated Random Walks

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

L. Rolla
V. Sidoravicius
O. Zindy

C. Hoffman
R. Basu
S. Ganguly
J. Richey
L. Rolla

Activated Random Walks

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

L. Rolla
V. Sidoravicius
O. Zindy
A. Asselah
L. Rolla
B. Schapira

C. Hoffman
R. Basu
S. Ganguly
J. Richey
L. Rolla

Activated Random Walks

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

L. Rolla
V. Sidoravicius
O. Zindy
A. Asselah
L. Rolla
B. Schapira

C. Hoffman
R. Basu
S. Ganguly
J. Richey
L. Rolla

Activated Random Walks

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

L. Rolla
V. Sidoravicius
O. Zindy
A. Asselah
L. Rolla
B. Schapira

C. Hoffman
R. Basu
S. Ganguly
J. Richey
L. Rolla

Activated Random Walks

Theorem (Rolla, Sidoravicius, Invent. Math. (2012))
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{c}(\lambda)$ such that

$$
\mathbb{P}_{\lambda}^{\mu}(\text { Fixation })= \begin{cases}1, & \text { if } \mu<\mu_{c}(\lambda) \\ 0, & \text { if } \mu>\mu_{c}(\lambda) .\end{cases}
$$

L. Rolla
V. Sidoravicius
O. Zindy
A. Asselah
L. Rolla
B. Schapira

C. Hoffman
R. Basu
S. Ganguly
J. Richey
L. Rolla
L. Taggi
A. Stauffer
A. Texeira
L. Tournier

ARWs as a growth model

Q: Start with n walkers at the origin and let the system stabilize. At which density do the particles spread?

\mathbb{Z}

ARWs as a growth model

Q: Start with n walkers at the origin and let the system stabilize. At which density do the particles spread?

\mathbb{Z}

ARWs as a growth model

Q: Start with n walkers at the origin and let the system stabilize. At which density do the particles spread?

Video

ARWs as a growth model

Q: Start with n walkers at the origin and let the system stabilize. At which density do the particles spread?

Conjecture
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{a}(\lambda)$ such that for any $\varepsilon>0$

$$
\mathbb{P}_{\lambda}\left(B_{\frac{n}{\mu_{a}(\lambda)}(1-\varepsilon)} \subseteq A_{n} \subseteq B_{\frac{n}{\mu_{a}(\lambda)}(1+\varepsilon)} \text { eventually in } n\right)=1
$$

ARWs in finite volume

- Start with $1_{I_{N}}$, for $I_{N} \subseteq \mathbb{Z}^{d}$
- Stabilize with killing on ∂I_{N}
- Denote by $\mathcal{S}_{\lambda}\left(\mathbf{1}_{I_{N}}\right)$ the final configuration.

ARWs in finite volume

- Start with $\mathbf{1}_{I_{N}}$, for $I_{N} \subseteq \mathbb{Z}^{d}$
- Stabilize with killing on ∂I_{N}
- Denote by $\mathcal{S}_{\lambda}\left(\mathbf{1}_{I_{N}}\right)$ the final configuration.

ARWs in finite volume

- Start with $\mathbf{1}_{I_{N}}$, for $I_{N} \subseteq \mathbb{Z}^{d}$
- Stabilize with killing on ∂I_{N}
- Denote by $\mathcal{S}_{\lambda}\left(\mathbf{1}_{I_{N}}\right)$ the final configuration.

ARWs in finite volume

- Start with $\mathbf{1}_{I_{N}}$, for $I_{N} \subseteq \mathbb{Z}^{d}$
- Stabilize with killing on ∂I_{N}
- Denote by $\mathcal{S}_{\lambda}\left(\mathbf{1}_{I_{N}}\right)$ the final configuration.

ARWs in finite volume

- Start with $\mathbf{1}_{I_{N}}$, for $I_{N} \subseteq \mathbb{Z}^{d}$
- Stabilize with killing on ∂I_{N}
- Denote by $\mathcal{S}_{\lambda}\left(\mathbf{1}_{I_{N}}\right)$ the final configuration.

Conjecture
For any sleep rate $\lambda \in(0, \infty]$ there exists a critical density $\mu_{s}(\lambda)$ such that

$$
\lim _{I_{N} \nearrow \mathbb{Z}^{d}} \frac{\left|\mathcal{S}_{\lambda}\left(\mathbf{1}_{I_{N}}\right)\right|}{\left\|I_{N}\right\|}=\mu_{s}(\lambda) .
$$

Density conjecture

Conjecture (Universality)
$\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$.

Density conjecture

Conjecture (Universality)
$\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$.

Theorem (Levine, S., JSP (2021))
$A R W s$ on \mathbb{Z}. Let A_{n} denote the set of visited sites until stabilization when starting with n particles at the origin. Then for any sleep rate λ there exist critical densities $\mu_{\text {in }}(\lambda)$ and $\mu_{\text {out }}(\lambda)$ such that, assuming they are both positive, for any $\varepsilon>0$ it holds
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\overline{\mu_{\text {out }}(\lambda)}}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.

Density conjecture

Conjecture (Universality)
$\mu_{\text {out }}(\lambda) \leq \mu_{a}(\lambda) \leq \mu_{\text {in }}(\lambda)$.

Theorem (Levine, S., JSP (2021))
$A R W s$ on \mathbb{Z}. Let A_{n} denote the set of visited sites until stabilization when starting with n particles at the origin. Then for any sleep rate λ there exist critical densities $\mu_{\text {in }}(\lambda)$ and $\mu_{\text {out }}(\lambda)$ such that, assuming they are both positive, for any $\varepsilon>0$ it holds
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\overline{\mu_{\text {out }}(\lambda)}}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.

Density conjecture

Conjecture (Universality)

$\underbrace{\mu_{\text {out }}(\lambda)}_{\mu_{c}(\lambda)} \leq \mu_{a}(\lambda) \leq \underbrace{\mu_{\text {in }}(\lambda)}_{\mu_{s}(\lambda)}$.

Theorem (Levine, S., JSP (2021))
$A R W s$ on \mathbb{Z}. Let A_{n} denote the set of visited sites until stabilization when starting with n particles at the origin. Then for any sleep rate λ there exist critical densities $\mu_{\text {in }}(\lambda)$ and $\mu_{\text {out }}(\lambda)$ such that, assuming they are both positive, for any $\varepsilon>0$ it holds
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\overline{\mu_{\text {out }}(\lambda)}}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.

LS (2021):
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\bar{n}}^{\mu_{\text {out }}(\lambda)}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.

LS (2021):
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\overline{\mu_{\text {out }}(\lambda)}}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.
Here:
Definition $\left(\mu_{\text {out }}(\lambda)\right)$
Start with an i.i.d. Bernoulli configuration on \mathbb{Z}. Let $w: \mathbb{Z} \rightarrow \mathbb{N}$ denote the number of clock rings at each site of \mathbb{Z} until stabilization. Then

$$
\mu_{o u t}(\lambda):=\sup \left\{\mu: \mathbb{E}_{\lambda}^{\mu}\left(w(0)^{3}\right)<\infty\right\}
$$

LS (2021):
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\overline{\mu_{\text {out }}(\lambda)}}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.
Here:
Definition $\left(\mu_{\text {out }}(\lambda)\right)$
Start with an i.i.d. Bernoulli configuration on \mathbb{Z}. Let $w: \mathbb{Z} \rightarrow \mathbb{N}$ denote the number of clock rings at each site of \mathbb{Z} until stabilization. Then

$$
\mu_{o u t}(\lambda):=\sup \left\{\mu: \mathbb{E}_{\lambda}^{\mu}\left(w(0)^{3}\right)<\infty\right\}
$$

Conjecture
$\mu_{o u t}(\lambda)=\mu_{c}(\lambda)$.

LS (2021):
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\overline{\mu_{\text {out }}(\lambda)}}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.

LS (2021):
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\overline{\mu_{\text {out }}(\lambda)}}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.
Here:
Definition $\left(\mu_{\text {in }}(\lambda)\right)$
For $I \subseteq \mathbb{Z}$ define

$$
\mu_{i n, I}(\lambda):=\inf \left\{\mu: \mathbb{P}_{\lambda}\left(\frac{\left|\mathcal{S}\left(\mathbf{1}_{I}\right)\right|}{\|I\|}>\mu\right) \leq\|I\|^{-20}\right\}
$$

and set

$$
\mu_{i n}(\lambda):=\limsup _{I \nearrow \mathbb{Z}} \mu_{i n, I}(\lambda)
$$

LS (2021):
$\mathbb{P}_{\lambda}\left(A_{n} \subseteq B_{\overline{\mu_{\text {out }}(\lambda)}}(1+\varepsilon),\left\|A_{n}\right\| \geq \frac{n}{\mu_{\text {in }}(\lambda)}(1-\varepsilon)\right.$ eventually in $\left.n\right)=1$.
Here:
Definition $\left(\mu_{\text {in }}(\lambda)\right)$
For $I \subseteq \mathbb{Z}$ define

$$
\mu_{i n, I}(\lambda):=\inf \left\{\mu: \mathbb{P}_{\lambda}\left(\frac{\left|\mathcal{S}\left(\mathbf{1}_{I}\right)\right|}{\|I\|}>\mu\right) \leq\|I\|^{-20}\right\}
$$

and set

$$
\mu_{i n}(\lambda):=\limsup _{I \nearrow \mathbb{Z}} \mu_{i n, I}(\lambda)
$$

Conjecture
$\mu_{i n}(\lambda)=\mu_{s}(\lambda)$.

Ideas of proof

- Outer bound: Abelian property + coupling with Internal Diffusion Limited Aggregation on Bernoulli vertex percolation.
- Inner bound: Build the stable configuration on progressively larger intervals, using that it only depends on the values of the odometer function on the boundary.

The Abelian Property

Theorem (P. Diaconis, W. Fulton (1991))

- The final configuration does not depend on the order of topplings.
- The number of instructions used per site does not depend on the order of topplings.

The Abelian Property

Definition (Odometer function)
For each $x \in \mathbb{Z}$ the odometer function $w: \mathbb{Z} \rightarrow \mathbb{Z}_{+}$is given by $w(x)=$ number of instruction used at x until stabilization.

The Abelian Property

Definition (Odometer function)
For each $x \in \mathbb{Z}$ the odometer function $w: \mathbb{Z} \rightarrow \mathbb{Z}_{+}$is given by $w(x)=$ number of instruction used at x until stabilization.

- The odometer function does not depend on the order of topplings [Abelian Property].
- Ignoring sleep instructions can only increase the odometer [Least Action Principle].

The Abelian Property

Video

The Abelian Property

The Abelian Property

Ideas of proof: the outer bound

Ideas of proof: the outer bound

Ideas of proof: the outer bound

Ideas of proof: the outer bound

Ideas of proof: the outer bound

Ideas of proof: the outer bound

Ideas of proof: the outer bound

What next?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state
- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state
- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

$$
\begin{aligned}
& N=300 \\
& t=N / 4
\end{aligned}
$$

What next?

$300 \quad$| N | $N 00$ |
| :--- | :--- |
| \square Motion of the leftmost and rightmost sleepers | $t=N / 2$ |

What next?

What next?

$$
N=300
$$

$$
t=10 \mathrm{~N}
$$

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state

- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state

- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state

- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state

- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state

- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state

- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state

- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state
- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

What next?

- Density conjecture: $\mu_{c}(\lambda)=\mu_{a}(\lambda)=\mu_{s}(\lambda)$
- Mixing of ARWs in finite volume
- Description of the critical state
- Stabilization time of ARWs at fixed density
- Sleepers in the initial state on \mathbb{Z}^{d} ?

References

- Asselah, A., Rolla, L.T. and Schapira, B., 2019. Diffusive bounds for the critical density of activated random walks. arXiv:1907.12694.
- Forien, N. and Gaudillière, A., 2022. Active Phase for Activated Random Walks on the Lattice in all Dimensions. arXiv:2203.02476.
- Levine, L. and Silvestri, V., 2021. How far do Activated Random Walkers spread from a single source?. Journal of Statistical Physics, 185(3), pp.1-27.
- Rolla, L.T. and Sidoravicius, V., 2021. Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z. Invent. Math. 188:127-150.
- Rolla, L.T., 2020. Activated Random Walks on \mathbb{Z}^{d}. Probability Surveys, 17, pp.478-544.

References

- Asselah, A., Rolla, L.T. and Schapira, B., 2019. Diffusive bounds for the critical density of activated random walks. arXiv:1907.12694.
- Forien, N. and Gaudillière, A., 2022. Active Phase for Activated Random Walks on the Lattice in all Dimensions. arXiv:2203.02476.
- Levine, L. and Silvestri, V., 2021. How far do Activated Random Walkers spread from a single source?. Journal of Statistical Physics, 185(3), pp.1-27.
- Rolla, L.T. and Sidoravicius, V., 2021. Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z. Invent. Math. 188:127-150.
- Rolla, L.T., 2020. Activated Random Walks on \mathbb{Z}^{d}. Probability Surveys, 17, pp.478-544.

Thank you!

