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Activated Random Walks

• Particle configuration ⌘t : Zd ! N [ {s}
• Initial configuration ⌘0 made of i.i.d. Bernoulli(µ) active
particles

• Exponential(1) clocks
• When a clock rings:

• Move to a random neighbor with probability 1/(1 + �)
• Fall asleep with probability �/(1 + �)

• Instantaneous re–activation upon meeting an active
particle.
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Activated Random Walks

Simulation by Leonardo Rolla (University of Warwick).






























































Activated Random Walks

Q: Does activity persist forever?

Fixation Explosion

Theorem (Rolla, Sidoravicius, Zindy (2019))

For any sleep rate � 2 (0,1] there exists a critical density µc(�)
such that

Pµ
�(Fixation) =

(
1, if µ < µc(�)

0, if µ > µc(�).
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ARWs as a growth model

Q: Start with n walkers at the origin and let the system
stabilize. At which density do the particles spread?

Conjecture

For any sleep rate � 2 (0,1] there exists a critical density
µa(�) such that for any " > 0

P�

⇣
B n

µa(�) (1�") ✓ An ✓ B n
µa(�) (1+") eventually in n

⌘
= 1.
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ARWs in finite volume

• Start with 1IN , for IN ✓ Zd

• Stabilize with killing on @IN
• Denote by S�(1IN ) the final configuration.

Conjecture

For any sleep rate � 2 (0,1] there exists a critical density
µs(�) such that for any " > 0

lim
IN%Zd

|S�(1IN )|
kINk = µs(�).
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Density conjecture

Conjecture (Universality)

µc(�) = µa(�) = µs(�).

Theorem (Levine, S. (2021))

ARWs on Z. Let An denote the set of visited sites until
stabilization when starting with n particles at the origin. Then
for any sleep rate � there exist critical densities µin(�) and
µout(�) such that, assuming they are both positive, for any " > 0
it holds

P�

⇣
An ✓ B n

µout(�)
(1+"), kAnk � n

µin(�)
(1�") eventually in n

⌘
= 1.
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LS (2021):

P�

⇣
An ✓ B n

µout(�)
(1+"), kAnk � n

µin(�)
(1�") eventually in n

⌘
= 1.

Here:

Definition (µout(�))

Start with an i.i.d. Bernoulli configuration on Z. Let w : Z ! N
denote the number of clock rings at each site of Z until
stabilization. Then

µout(�) := sup{µ : Eµ
�(w(0)

3) < 1}.

Conjecture

µout(�) = µc(�).
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Ideas of proof
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The Abelian Property

Theorem (P. Diaconis, W. Fulton (1991))

- The final configuration does not depend on the order of
topplings.

- The number of instructions used per site does not depend
on the order of topplings.
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The Abelian Property

Definition (Odometer function)

For each x 2 Z the odometer function w : Z ! Z+ is given by
w(x) = number of instruction used at x until stabilization.

• The odometer function does not depend on the order of
topplings [Abelian Property].

• Ignoring sleep instructions can only increase the odometer
[Least Action Principle].
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• Density conjecture: µc(�) = µa(�) = µs(�)

• Mixing of ARWs in finite volume

• Description of the critical state

• Stabilization time of ARWs at fixed density

• Sleepers in the initial state on Zd?
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