

The model

Is increasing p or λ beneficial to FPP_{λ} ?

FPP₁ starts from the origin

Perform FPP at rate 1

FPP $_{\lambda}$ starts from seeds of i.i.d. Bern(*p*), which

- Do not evolve from time 0
- ↔ get *activated* when FPP_1 or FPP_λ try to occupy it

Main questions

Which type survives (produces an infinite <u>cluster</u>)?

 $(\text{FPP}_{\lambda} \text{ is always an infinite set})$

Is there coexistence?

Focus on case $p < 1 - p_c^{\text{site}}$ (i.e., $1 - p > p_c^{\text{site}}$)

Theorem [Candellero, S. 21]

There exist graphs for which $\mathbb{P}(\text{FPP}_1 \text{ survives})$ is not a monotone function of p and λ

- multiple phase transitions
- Quasi-transitive graphs

Simulation: p = 0.03 and $\lambda = 0.7$

 $\lambda = rate of FPP_{\lambda}$ $p = density of FPP_{\lambda}$ seeds

Simulation: p = 0.4 and $\lambda = 0.008$

 $\lambda = rate of FPP_{\lambda}$ $p = density of FPP_{\lambda}$ seeds

First Result

 $\lambda = rate of FPP_{\lambda}$ $p = density of FPP_{\lambda}$ seeds

Theorem 1 [Sidoravicius, S. 2019]

For any $\lambda < 1$, there exists $p_0 \in (0,1)$ such that $\forall p < p_0$

- *1.* $\mathbb{P}(\text{FPP}_1 \text{ survives}) > 0$
- *2.* $\mathbb{P}(\text{FPP}_1 \text{ survives and } \text{FPP}_{\lambda} \text{ dies out}) > 0$
- 3. $\mathbb{P}(\forall t \ge 0, \overline{\mathrm{FPP}_1}(t) \supset \mathrm{Ball}(ct)) > 0,$

where $\overline{\text{FPP}_1} = \text{FPP}_1 \cup \text{finite components of } \text{FPP}_1^c$

New Result

Theorem 2 [Finn, S.]

For any $p < 1 - p_{\rm c}^{\rm site}$, there exists $\lambda_0 > 0$ such that $\forall \lambda < \lambda_0$

 $\mathbb{P}(\text{FPP}_1 \text{ survives}) > 0$

Theorem 2 [Finn, S.] $\forall p < 1 - p_c^{\text{site}}, \exists \lambda_0 > 0 \text{ s.t. } \forall \lambda < \lambda_0$ $\mathbb{P}(\text{FPP}_1 \text{ survives}) > 0$ **Theorem 1 [Sidoravicius, S. 2019]** $\forall \lambda < 1, \exists p_0 \text{ s.t. } \forall p < p_0$ $\mathbb{P}(\text{FPP}_1 \text{ survives}) > 0$

Remark:

$$p_c^{\text{site}} < \frac{1}{2} < 1 - p_c^{\text{site}}$$
 when $d \ge 3$

Theorem 2 gives coexistence when $d \ge 3$ and $p \in (p_c^{\text{site}}, 1 - p_c^{\text{site}})$

Strong coexistence: Both types produce a positive density

Compare with two type Richardson model: (*FPP*₁ starts from origin, *FPP*_{λ} starts from neighbor of origin, no seed) 1) Coexistence is known for $\lambda = 1$ (Conjecture: coexistence occurs iff $\lambda = 1$) 2) Non coexistence known for all but countably many λ 3) Coexistence with positive density for both types is impossible $1 - p_s^{site}$


```
Theorem 2 [Finn, S.]

\forall p < 1 - p_c^{\text{site}}, \exists \lambda_0 > 0 \text{ s.t. } \forall \lambda < \lambda_0

\mathbb{P}(\text{FPP}_1 \text{ survives}) > 0
```

Tessellate \mathbb{Z}^d into cubes of side length $L_1/3$ Boxes are cubes of side length L_1

A box is called **good** if:

- i. Non-seeds form a cluster of order L_1^d
- ii. 2^{nd} largest cluster of non-seeds is $O(\log^2 L_1)$
- iii. Chemical distance (distance after removing seeds) has same order as ℓ_1 -distance
- iv. FPP₁-distance (distance weighed by passage times) between non-seeds has same order as ℓ_1 -distance
- v. Passage time of FPP_{λ} through each edge $\geq \sqrt{\frac{1}{\lambda}}$

For λ small, a good box implies that

If FPP₁ enters the box first, FPP₁ spreads through the entire box while FPP_{λ} does not occupy any non-seed

Non-local event although definition of good is a local event

Further classify good boxes into positive or negative feedback

Bad boxes are not further classified

<u>Defn</u>: a box of scale 1 is of positive feedback if FPP_1 occupies a site far from the boundary in time $\leq rL_1$ from the entrance time of the box

Note that positive feedback is not a local event

- × We will not estimate $\mathbb{P}(\text{box has positive feedback})$
- ✓ We will just assess the consequence of finding a box of negative feedback

This is why we call it a *feedback*:

we regard it as an information that is given to us.

Property 1: positive feedback box spread FPP₁ quickly to neighboring boxes

Main property: a negative feedback box has a parent box that is bad or of negative feedback

Property 3: negative feedback box with negative feedback parent has delayed entrance time

Theorem 2 [Finn, S.] $\forall p < 1 - p_c^{\text{site}}, \exists \lambda_0 > 0 \text{ s.t. } \forall \lambda < \lambda_0$ $\mathbb{P}(\text{FPP}_1 \text{ survives}) > 0$

Negative feedback parent

Theorem 2 [Finn, S.] $\forall p < 1 - p_c^{\text{site}}, \exists \lambda_0 > 0 \text{ s.t. } \forall \lambda < \lambda_0$ $\mathbb{P}(\text{FPP}_1 \text{ survives}) > 0$

Higher scale

<u>Defn</u>: a box of scale k is of positive feedback if it contains a (k-1)-box of positive feedback far from its boundary that is entered in time $\leq rL_k$ from the entrance time of the box

If k-box is good (i.e., has few bad (k-1)-boxes), same three properties from scale 1 hold in scale k:

- A positive feedback *k*-box is mostly occupied by positive feedback (k-1)-boxes
- A negative feedback k-box has a parent of negative feedback or bad
- Negative feedback k-box with negative feedback parent has delayed entrance time

Theorem 2 [Finn, S.] $\forall p < 1 - p_c^{\text{site}}, \exists \lambda_0 > 0 \text{ s.t. } \forall \lambda < \lambda_0$ $\mathbb{P}(\text{FPP}_1 \text{ survives}) > 0$

How to apply this analysis to other models?

Proof is divided into two parts:

- I. A standard multi-scale analysis controlling good/bad boxes (which are local events only)
- II. Introduction of non-local events which we call positive/negative feedback

Positive/negative feedback have the following goals:

- Positive feedback spreads fast to neighbors
- Negative feedback has a delayed spread to another negative feedback box.
- Negative feedback box can be associated to a nearby bad box (controlled via standard multiscale).
- Positive feedback forms a strongly supercritical percolation

FPPHE used to analyse other models

- 1) MDLA [Sidoravicius, S.'19]
- 2) SI with different rates [Dauvergne Sly'22+]
- 3) SIR [Dauvergne Sly]