Competing first-passage
percolation
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A = rate of FPP;

m O d e I p = density of FPP, seeds

FPP; starts from the origin
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** Perform FPP at rate 1
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FPP; starts from seeds of i.i.d. Bern(p), which
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* Do not evolve from time 0

% get activated when FPP; or FPP, try to occupy it
+»» After activation, evolve as FPP at rate 4
Main questions

=  Which type survives (produces an infinite

cluster)?

(FPP, is always an infinite set)
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Local delay of FPP;
17
*
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Postpone activation
of other seeds

\.

an be beneficial to FPP;

Fix location of seeds
and passage times.
Then add new seed

- = |s there coexistence?

Focusoncase p < 1 — pSt® (i.e., 1 — p > pgite)

Theorem [Candellero, S. 21]
There exist graphs for which P(FPP; survives) is not

Monotonicity?

Is increasing p or A beneficial to FPP;?

a monotone function of p and 4
» multiple phase transitions
» Quasi-transitive graphs




A = rate of FPP,

Simulation: p = 0.03 and A = 0.7 [p=ensiyorrer, seess




A = rate of FPP,

Simulation: p = 0.4 and A = 0.008 | p=censivorrer, sees




A = rate of FPP;

F i r‘st Re S u It p = density of FPP, seeds

Theorem 1 [Sidoravicius, S. 2019]
For any A < 1, there exists py € (0,1) such that Vp < p,
1. IP(FPP; survives) > 0
2. PP(FPP; survives and FPP, dies out) > 0
3. P(Vt =0, FPP,(t) o Ball(ct)) > 0,
where FPP, = FPP, U finite components of FPP{

Known behavior: Expected behavior:

A, A
FPP, is faster and a seed
eventually encapsulates FPP;

Only FPP, survives:
origin surrounded
by seeds almost
surely

unknown

Only FPP; survives 1—pgte 1-pgte




A = rate of FPP;

N eW Re S u It p = density of FPP, seeds

Theorem 2 [Finn, S.]
Forany p < 1 — pSit, there exists 1, > 0 such that V1 < 4,
P(FPP; survives) > 0

\ Known behavior: \ Expected behavior:

.
‘ FPP;, is faster and a seed
eventually encapsulates FPP;

. Only FPP, survives:
unknown . origin surrounded
by seeds almost
surely

Y

site

Only FPP, survives 1-p2 1-pc

site




Theorem 2 [Finn, S.] Theorem 1 [Sidoravicius, S. 2019]
Vp <1—pste 31, > 0s.t. VA < A, VA < 1,3p,y s.t. Vp < pg

P(FPP; survives) > 0 P(FPP; survives) > 0
Remark:

. 1 _ Theorem 2 gives coexistence when
pSite < ~<1- pSit® when d > 3 d>3 and p € (psite, 1 — psite)

Strong coexistence: Both types
produce a positive density

Compare with two type Richardson model:
(FPP; starts from origin, FP P, starts from neighbor of origin, no seed)

1) Coexistence is known for A = 1 (Conjecture: coexistence occurs iff A = 1)

2) Non coexistence known for all but countably many A

3) Coexistence with positive density for both types is impossible

site

|
1— pgite 1-— ps

site
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The proof:

multi-scale analysis with non-
equilibrium feedback [Finn, S.]
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FPP; spreads throughout

If FPP; enters
the box first

the box and to
neighboring boxes

L./3

v.  Passage time of FPP, through each edge > \/E

Theorem 2 [Finn, S.]
Vp<1 pclteﬂﬂ,o>08t‘v’/1</10
P(FPP; survives) > 0

Tessellate Z¢ into cubes of side length L;/3
Boxes are cubes of side length L,

A box is called good if:

i. Non-seeds form a cluster of order L%

ii. 2" largest cluster of non-seeds is 0(log2 Ly)

iii. Chemical distance (distance after removing
seeds) has same order as £, -distance

iv.  FPP;-distance (distance weighed by passage
times) between non-seeds has same order as #;-
distance

A

For A small, a good box implies that

» If FPP, enters the box first, FPP; spreads through
the entire box while FPP, does not occupy any
non-seed

Non-local event although definition
of good is a local event



The proof:

multi-scale analysis with non-
equilibrium feedback [Finn, S.]

Further classify good boxes into positive or negative
feedback
Bad boxes are not further classified

Defn: a box of scale 1 is of positive feedback if FPP;
occupies a site far from the boundary in time < rL; from
the entrance time of the box

Note that positive feedback is not a local event

x  We will not estimate IP(box has positive feedback)

v" We will just assess the consequence of finding a box
of negative feedback

This is why we call it a feedback:
= we regard it as an information that is given to us.

Property 1: positive feedback box spread FPP; quickly to
neighboring boxes

Main property: a negative feedback box has a parent box
that is bad or of negative feedback

Property 3: negative feedback box with negative feedback
parent has delayed entrance time

Theorem 2 [Finn, S.]
Vp <1- pgite, HAO >0sS.t.VA< AO
P(FPP; survives) > 0

Positive feedback Box

FPP; enters W

within time \/\/ FPP; (or FPP,)

T+7rl enters box at

W timert

Negative feedback
If parent has
negative feedback,
then iterate through
its parent

é Entrance l
site

Find a path of
negative feedback
boxes to bad box

Parent cannot be of positive feedback.
It is either of negative feedback or a
bad box

Negative feedback

If their entrance time
is close, above box is
entered via a long path
of FPP;

Entrance
site

Negative feedback parent




The proof' Theorem 2 [Finn, S.]
multi-scale analysis with non- Vp <1 —pfte,31, > 0s.t VA<
equilibrium feedback [Finn, S.] P(FPP; survives) > 0
Higher scale

Defn: a box of scale k is of positive feedback if it contains a (k-1)-box of positive feedback far
from its boundary that is entered in time < rLj from the entrance time of the box

Positive feedback Box

A positive W

feedback box is \/\/ FPP, (or FPP;)
entered within enters box at
time T + rig timet

L

If k-box is good (i.e., has few bad (k-1)-boxes), same three properties from scale 1 hold in scale k:
* A positive feedback k-box is mostly occupied by positive feedback (k-1)-boxes
* A negative feedback k-box has a parent of negative feedback or bad

* Negative feedback k-box with negative feedback parent has delayed entrance time



The proof: Theorem 2 [Finn, S.]

multi-scale analysis with non- Vp <1 —pfte,31, > 0s.t VA<
equilibrium feedback [Finn, S.] P(FPP; survives) > 0

How to apply this analysis to other models?

Proof is divided into two parts:
I. A standard multi-scale analysis controlling good/bad boxes (which are local events only)
Il.  Introduction of non-local events which we call positive/negative feedback

Positive/negative feedback have the following goals:

= Positive feedback spreads fast to neighbors

= Negative feedback has a delayed spread to another negative feedback box.

= Negative feedback box can be associated to a nearby bad box (controlled via standard multi-
scale).

» Positive feedback forms a strongly supercritical percolation

FPPHE used to analyse other models

1) MDLA [Sidoravicius, S.19]
2) Sl with different rates [Dauvergne Sly’22+]
3) SIR [Dauvergne Sly]




