
Competing first-passage 
percolation



The model

FPP1 starts from the origin
 Perform FPP at rate 1

FPP𝜆 starts from seeds of i.i.d. Bern(p), which
 Do not evolve from time 0
 get activated when FPP1 or FPP𝜆 try to occupy it
 After activation, evolve as FPP at rate 𝜆

Monotonicity?
Is increasing 𝑝 or 𝜆 beneficial to FPP𝜆?

Main questions

 Which type survives (produces an infinite 
cluster)?

(FPP𝜆 is always an infinite set)

 Is there coexistence?

Focus on case 𝑝 < 1 − 𝑝𝑐
site (i.e., 1 − 𝑝 > 𝑝𝑐

site)

Local delay of FPP1

Postpone activation 
of other seeds

Fix location of seeds 
and passage times. 
Then add new seed

Theorem [Candellero, S. 21]
There exist graphs for which ℙ(FPP1 survives) is not 
a monotone function of 𝑝 and 𝜆
 multiple phase transitions
 Quasi-transitive graphs

Can be beneficial to FPP1

𝜆 = rate of FPP𝜆
𝑝 = density of FPP𝜆 seeds



Simulation: 𝑝 = 0.03 and 𝜆 = 0.7
𝜆 = rate of FPP𝜆
𝑝 = density of FPP𝜆 seeds



Simulation: 𝑝 = 0.4 and 𝜆 = 0.008
𝜆 = rate of FPP𝜆
𝑝 = density of FPP𝜆 seeds



First Result
Theorem 1 [Sidoravicius, S. 2019] 

For any 𝜆 < 1, there exists 𝑝0 ∈ (0,1) such that ∀𝑝 < 𝑝0

1. ℙ FPP1 survives > 0

2. ℙ FPP1 survives and FPP𝜆 dies out > 0

3. ℙ ∀𝑡 ≥ 0, FPP1(𝑡) ⊃ Ball(𝑐𝑡) > 0,

where FPP1 = FPP1 ∪ finite components of FPP1
𝑐

𝜆 = rate of FPP𝜆
𝑝 = density of FPP𝜆 seeds

Known behavior: Expected behavior:

unknown

FPP𝜆 is faster and a seed 
eventually encapsulates FPP1

Only FPPλ survives:
origin surrounded 
by seeds almost 
surely

Only 𝐹𝑃𝑃1 survives 1 − 𝑝c
site1 − 𝑝c

site



New Result

Theorem 2 [Finn, S.]

For any 𝑝 < 1 − 𝑝c
site, there exists 𝜆0 > 0 such that ∀𝜆 < 𝜆0

ℙ FPP1 survives > 0

𝜆 = rate of FPP𝜆
𝑝 = density of FPP𝜆 seeds

Known behavior: Expected behavior:

unknown

FPP𝜆 is faster and a seed 
eventually encapsulates FPP1

Only FPPλ survives:
origin surrounded 
by seeds almost 
surely

Only 𝐹𝑃𝑃1 survives 1 − 𝑝c
site1 − 𝑝c

site



Theorem 2 [Finn, S.]

∀𝑝 < 1 − 𝑝c
site, ∃𝜆0 > 0 s.t. ∀𝜆 < 𝜆0

ℙ FPP1 survives > 0

𝑑 = 2

Theorem 1 [Sidoravicius, S. 2019] 

∀𝜆 < 1, ∃𝑝0 s.t. ∀𝑝 < 𝑝0

ℙ FPP1 survives > 0

Remark:

𝑝𝑐
site <

1

2
< 1 − 𝑝𝑐

site when 𝑑 ≥ 3

𝑑 ≥ 3

1 − 𝑝c
site1 − 𝑝c

site

Theorem 2 gives coexistence when 

𝑑 ≥ 3 and 𝑝 ∈ (𝑝𝑐
site, 1 − 𝑝𝑐

site)

𝑝c
site

Strong coexistence: Both types 
produce a positive density

Compare with two type Richardson model:
(𝐹𝑃𝑃1 starts from origin, 𝐹𝑃𝑃𝜆 starts from neighbor of origin, no seed)

1) Coexistence is known for 𝜆 = 1 (Conjecture: coexistence occurs iff 𝜆 = 1)

2) Non coexistence known for all but countably many 𝜆

3) Coexistence with positive density for both types is impossible



The proof:
multi-scale analysis with non-
equilibrium feedback [Finn, S.]

Tessellate ℤ𝑑 into cubes of side length 𝐿1/3
Boxes are cubes of side length 𝐿1

𝐿1/3

Box

A box is called good if:

i. Non-seeds form a cluster of order  𝐿1
𝑑

ii. 2nd largest cluster of non-seeds is 𝑂(log2 𝐿1)
iii. Chemical distance (distance after removing 

seeds) has same order as ℓ1-distance
iv. FPP1-distance (distance weighed by passage 

times) between non-seeds has same order as ℓ1-
distance

v. Passage time of FPPλ through each edge ≥
1

𝜆

For 𝜆 small, a good box implies that
 If FPP1 enters the box first, FPP1 spreads through 

the entire box while FPPλ does not occupy any 
non-seed

FPP1 spreads throughout 
the box and to 
neighboring boxesIf FPP1 enters 

the box first

Non-local event although definition 
of good is a local event

Theorem 2 [Finn, S.]

∀𝑝 < 1 − 𝑝c
site, ∃𝜆0 > 0 s.t. ∀𝜆 < 𝜆0

ℙ FPP1 survives > 0



Entrance 
site

The proof:
multi-scale analysis with non-
equilibrium feedback [Finn, S.]

Further classify good boxes into positive or negative 
feedback
Bad boxes are not further classified

Defn: a box of scale 1 is of positive feedback if 𝐹𝑃𝑃1
occupies a site far from the boundary in time ≤ 𝑟𝐿1 from 
the entrance time of the box

Note that positive feedback is not a local event

× We will not estimate ℙ(box has positive feedback)

 We will just assess the consequence of finding a box 
of negative feedback

This is why we call it a feedback:
 we regard it as an information that is given to us.

Main property: a negative feedback box has a parent box 
that is bad or of negative feedback

If parent has 
negative feedback, 
then iterate through 
its parent

Negative feedback

Entrance 
site

Parent cannot be of positive feedback.
It is either of negative feedback or a 
bad box

Find a path of 
negative feedback 
boxes to bad box

Property 1: positive feedback box spread FPP1 quickly to 
neighboring boxes

Property 3: negative feedback box with negative feedback 
parent has delayed entrance time

Negative feedback

Negative feedback parent

If their entrance time 
is close, above box is 
entered via a long path 
of FPP1

FPP𝜆 (or 𝐹𝑃𝑃1)
enters box at 
time 𝜏

FPP1 enters 
within time 
𝜏 + 𝑟𝐿1

Positive feedback Box

Theorem 2 [Finn, S.]

∀𝑝 < 1 − 𝑝c
site, ∃𝜆0 > 0 s.t. ∀𝜆 < 𝜆0

ℙ FPP1 survives > 0



The proof:
multi-scale analysis with non-
equilibrium feedback [Finn, S.]

Higher scale

Defn: a box of scale k is of positive feedback if it contains a (k-1)-box of positive feedback far 
from its boundary that is entered in time ≤ 𝑟𝐿𝑘 from the entrance time of the box

If k-box is good (i.e., has few bad (k-1)-boxes), same three properties from scale 1 hold in scale k:

• A positive feedback k-box is mostly occupied by positive feedback (k-1)-boxes

• A negative feedback k-box has a parent of negative feedback or bad

• Negative feedback k-box with negative feedback parent has delayed entrance time

Theorem 2 [Finn, S.]

∀𝑝 < 1 − 𝑝c
site, ∃𝜆0 > 0 s.t. ∀𝜆 < 𝜆0

ℙ FPP1 survives > 0

FPP𝜆 (or 𝐹𝑃𝑃1)
enters box at 
time 𝜏

A positive 
feedback box is 
entered within 
time 𝜏 + 𝑟𝐿𝑘

Positive feedback Box



The proof:
multi-scale analysis with non-
equilibrium feedback [Finn, S.]

How to apply this analysis to other models?

Positive/negative feedback have the following goals:

Proof is divided into two parts:
I. A standard multi-scale analysis controlling good/bad boxes (which are local events only)
II. Introduction of non-local events which we call positive/negative feedback

 Positive feedback spreads fast to neighbors
 Negative feedback has a delayed spread to another negative feedback box.
 Negative feedback box can be associated to a nearby bad box (controlled via standard multi-

scale).

 Positive feedback forms a strongly supercritical percolation

FPPHE used to analyse other models

1) MDLA [Sidoravicius, S.’19]

2) SI with different rates [Dauvergne Sly’22+]

3) SIR [Dauvergne Sly]

Theorem 2 [Finn, S.]

∀𝑝 < 1 − 𝑝c
site, ∃𝜆0 > 0 s.t. ∀𝜆 < 𝜆0

ℙ FPP1 survives > 0


