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1 Introduction

For centuries people have tried to aggregate individual preferences into a collective decision. Many
methods arose, and many were used throughout History by different societies and civilizations on scales
varying from small groups of people to entire nations. Yet, no one ever agreed on an optimal system.
In recent centuries social choice theory started being formalized, and powerful results were proved,
impossibility theorems, which proved that paradoxes were inevitable in voting systems.

The objective of this paper is to get into the basics of social choice theory, prove and understand
Arrow’s impossibility theorem, and to explore a recently developed voting system: majority judgment.

2 Social Choice Theory

2.1 Definitions

Social choice theory analyses the extent to which individual preferences can be aggregated into social
preferences in the most satisfactory manner.

Let X be a finite set of alternatives and let there be I agents indexed by i = 1, . . . , I. Every
agent i has a rational preference relation �i defined on X. Strict preference is denoted by �i and
the indifference relation is denoted by ∼i. We denote by R the set of all possible rational preference
relations on X and P the set of all possible strict rational preference relations on X. We define an
agent’s rational preference relation as a ranking of the elements of X corresponding to his preferences.

Definition 1. A social welfare functional defined on a given subset A ⊂ RI is a function F : A → R
that assigns a rational preference relation F (�1, . . . ,�I) ∈ R interpreted as the social preference re-
lation, to any profile of individual preference relations (�1, . . . ,�I) ∈ A .

For any profile (�1, . . . ,�I), we denote by Fp(�1, . . . ,�I) the strict preference relation derived
from F (�1, . . . ,�I).

Definition 2. A social welfare functional F : A → R is Paretian if for any pair of alternatives
{x, y} ⊂ X and any preference profile (�1, . . . ,�I) ∈ A , we have that x is socially preferred to y, that
is xFp(�1, . . . ,�I)y, whenever x �i y for every i.

Definition 3. The social welfare functional F : A → R satisfies the pairwise independence condition
(or the independence of irrelevant alternatives condition ) if the preference between two alternatives
{x, y} ⊂ X depends only on the profile of individual preferences over the same alternatives.

Formally, for any pair of alternatives {x, y} ⊂ X and for any pair of preference profiles (�1, . . . ,�I) ∈
A and (�′1, . . . ,�

′

I) ∈ A with the property that for every i,

x �i y ⇔ x �
′

i y and y �i x⇔ y �
′

i x

we have that,
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xF (�1, . . . ,�I)y ⇔ xF (�
′

1, . . . ,�
′

I)y

and
yF (�1, . . . ,�I)x⇔ yF (�

′

1, . . . ,�
′

I)x

Example 1 (The specific case of two alternatives). We place ourselves in the situation where there
are only two alternatives x and y. The data of our problem is the relative preference of each agent
i ∈ [[1, I]] over x and y. We can describe this data by a profile

(α1, . . . , αI) ∈ RI ,

where αi takes the value 1, 0, −1 which correspond respectively to x ≺i y, x ∼i y, y ≺i x.
Let (β1, . . . , βI) a vector of non negative numbers, we can define the following social welfare func-

tional:

F (α1, . . . , αI) = sign
∑

βiαi

where sign(a) = 1 if a > 0, sign(a) = 0 if a = 0, sign(a) = −1 if a < 0.
If all βi are equal to 1, we are in the case of majority voting, indeed F (α1, . . . , αI) = 1 if and only

if the number of agents preferring x to y is strictly superior to the number of agents preferring y to x.
Similarly F (α1, . . . , αI) = −1 if and only if the number of agents preferring y to x is strictly superior
to the number of agents preferring x to y.

If there is a j in [[1, I]] such that βj > 0 and ∀i 6= j βi = 0, j is what we call a dictator. More gener-
ally, in the case where there are two alternatives, we say that a social welfare functional is dictatorial
if there exists an agent h called a dictator such that for any profile (α1, . . . , αI), αh = 1 implies
F (α1, . . . , αI) = 1 and αh = −1 implies F (α1, . . . , αI) = −1.

Example 2 (Borda count). Let �i∈ R. First of all we suppose that there are no indifference relations
on in �i. ∀x ∈ X we define ci(x) which is equal to the ranking of x in the preference relation �i. If
indifference is possible then ci(x) is the average of rank of the alternatives indifferent to x.

For any profile (�1, . . . ,�I) ∈ R, we define F (�1, . . . ,�I) such that xF (�1, . . . ,�I)y if and only
if Σici(x) 6 Σici(y).

We can easily see that the Borda count is Paretian, indeed if x �i y for all i, ci(x) < ci(y) for all i,
therefore Σici(x) < Σici(y). On the other hand it doesn’t satisfy the pairwise independence condition,
which we can see with this example. Suppose there are two agents and three alternatives {x, y, z}. For
the preferences

x �1 y �1 z

y �2 z �2 x

we have that Σici(x) = 4 and Σici(z) = 5, x is thus socially preferred to z. For the preferences

y �1 x �1 z

z �2 y �2 x

we have that Σici(x) = 5 and Σici(z) = 4, z is thus socially preferred to x. But the relative rank-
ing of z and x has not changed, the pairwise independence condition is not satisfied. Other similar
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examples with more alternatives and more agents can be found.

Example 3 (Condorcet paradox). We suppose there are three agents and three alternatives {x, y, z},
we try to use a majority voting social welfare functional. If we have the following preferences:

x �1 y �1 z

y �2 z �2 x

z �3 x �3 y

By majority, we have x preferred to y, but also y preferred to z and z preferred to x. We have a
cyclical preference which contradicts transitivity. The definition of a social welfare functional implies
transitivity, indeed the function’s output is a ranking of alternatives, thus if a is preferred to b and b
is preferred to c, we must have that a is preferred to c.

This is closely linked to the fact that in this theory, individuals are only defined by a ranking that
they make of alternatives. In fact we could imagine other ways of defining individuals, like by a grade
they would give to an alternative, but we will go into further details later.

This situations shows us that we have a paradox when using majority voting in this specific case.
This brings us to the central theorem in social choice theory which tells us that the Condorcet paradox
is not linked to specific characteristics of majority voting but actually with the pairwise independence
condition.

2.2 Arrow’s impossibility theorem

Theorem 1 (Arrow’s impossibility theorem). Suppose that the number of alternatives is at least three
and that we have either A = RI or A = PI . Then every social welfare functional F : A → R that is
Paretian and satisfies the pairwise independence condition is dictatorial in the following sense: there
is an agent h such that any pair of alternatives {x, y} ⊂ X and for any profile (�1, . . . ,�I) ∈ A , we
have that x is strictly socially preferred to y whenever x �h y.

Many proofs of Arrow’s impossibility theorem exist, there are many approaches to the problem and
different concepts to reach the final solution. In this paper I have decided to follow a proof published
by John Geanakoplos, which bases itself on the following Lemma. For better understanding, we will
place ourselves in the case A = PI so that all preferences are strict. The general case proves itself
similarly.

Proposition 1 (Extremal Lemma). Let alternative b be chosen arbitrarily. At any profile where b is
either first or last of each agent’s ranking, society must as well.
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A1 A2 A3 A4 A5 . . . An

b . b b b c
. . . . . .
. c c . . .
c a . . . .
. . . . . a
a . . c . .
. . a a . .
. . . . c .
. b . . a b

Table 1: Preference scheme such that b is in extreme positions, and c is always preferred to a

Proof. Let � be the social preference F (�1, . . . ,�I). Suppose to the contrary that for such a profile
we have a and c such that a � b and b � c. By the pairwise independence condition, this remains true
if each agent i changes his preferences such that c �i a. Indeed b is always in an extreme position
therefore its relation to a and c cannot be altered by such a change. By unanimity (Pareto condition)
c � a and by transitivity a � c. This is a contradiction.

Proof of the theorem. We first prove that for an alternative b, there exists an agent who can be called
extremely pivotal in the sense that by changing his vote at some profile he can move b from the bottom
of the ranking to the very top.

Indeed, let each voter put b at the very bottom of their ranking, by unanimity the social welfare
functional must as well. If each agent successively puts b on the top of their ranking, we call n∗ the
first agent whose change will put b from the bottom to the top of the social ranking (indeed we know
b will be at the top by the previous Lemma, and that this agent exists since when all agents put b at
the top, the social functional must as well). We call profile I the profile just before the agent n∗ has
put b to the top of his ranking and profile II the profile just after.

A1 A2 . . . An∗−1 An∗ . . . An

b b b . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . b b

Table 2: Profile I
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A1 A2 . . . An∗−1 An∗ . . . An

b b b b .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . b

Table 3: Profile II

A1 A2 . . . An∗−1 An∗ . . . An

b b b . .
. . . . .
. . . a .
. . . . .
. . . b .
. . . . .
. . . c .
. . . . .
. . . . b

Table 4: Profile III

We now show that n∗ is a dictator over any pair a c not involving b. We choose two alternatives a
and c. We construct profile III by letting agent n∗ put a above b and b above c so that a �n∗ b �n∗ c
and we let all other agents place arbitrarily place a and c while leaving b in its extreme position. By
independence of irrelevant alternatives we have a � b since the relative positions of a and b are the same
as in profile I, where b is socially ranked at the bottom. We also have b � c since the relative positions
of b and c are the same as in profile II, where b is socially ranked at the top. By transitivity, the social
welfare functional must give a � c. By independence of irrelevant alternatives we can conclude that
the social preference over a and c must always agree with n∗. Indeed we first reach the conclusion for
any situation where a �n∗ b �n∗ c. We can then place b anywhere in the ranking while keeping a � c,
by the independence of irrelevant alternatives.

We can conclude by showing that n∗ is also dictator for any pair a b. We take a third alternative
c that takes the role of b in the previous paragraphs. There must be an agent n(c) who is a dictator
over every pair αβ not involving c, like for instance a and b. But agent n∗ can change the a b relative
ranking (we have an example with profiles I and II). We conclude that n(c) is n∗.
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2.3 Interpretations and limits of Arrow’s theorem

At first sight Arrow’s theorem seems to mean that there are no good voting systems, in the sense
that they must respect certain hypotheses which can be seen as ”reasonable”. It is therefore useful to
explore these different hypotheses and to see if they are necessarily essential for a voting system.

To begin with, Arrow’s impossibility theorem treats the case of ranked voting electoral systems. An
agent’s opinion is represented only by his relative preference over given alternatives. We will explore
later in this paper other voting systems which do not use ranks of alternatives. Indeed if the agent is
asked to give a judgment between: excellent, very good, good, fair, poor, to reject. The social welfare
functional input will gather more information than in a ranking. The reason why is that from a list of
judgments over alternatives we can sometimes deduce a preference ranking, but the opposite is never
possible.

We can also find a way out of this paradox through restricting the domain of definition of the
function. The main example of such a restriction is Black’s condition. We make the hypothesis
that we can represent the alternatives on the horizontal axis such that the preference curves become
single-peaked. We can see an example in Figure 1.

Utility

Alternatives

•
•

•

•
•

•

•

•
•

• •
•

•

•

•
•

•
• •

•

•

Peak of voter 3

Peak of voter 2

Peak of voter 1

xA1 xA2 xA3 xA4 xA5 xA6
xA7

Figure 1: Single-peaked preferences

”Utility” which is represented on the vertical axis corresponds the position of an alternative in an
agent’s ranking. As an example we can think of the political spectrum as it is usually represented:
from far-left to far-right. In this case the peak corresponds to the voter’s political position and the
decrease on each side of the peak correspond to the fact that the further away a candidate is from you
on the political spectrum, the less you agree with him on various issues, therefore the less you wish to
see him elected.

We call a Condorcet-winner an alternative which wins every head to head confrontation ( i.e. it is
preferred individually to any other alternative). It is a very strong position, which is why the concept
of Condorcet-winner has been central throughout the development of Social Choice Theory.
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The main issue of Social Choice Theory is that there is not always a Condorcet-winner. However,
under Black’s condition (i.e. with single-peaked preferences) there is always a Condorcet winner. In-
deed, let agent A be the voter whose preferred candidate C∗ is the median of the preferred candidates
on the spectrum, we call A the median voter. Then the Condorcet-winner is C∗. If C is on the left of
C∗, all voters whose peak was on the right of C∗ vote for C to which we can add the median voter,
C has therefore a majority. The result is identical if C is on the right of C∗. In the end C∗ wins each
head to head confrontation.

Nevertheless, empirical works have shown that the hypothesis of having single-peaked preferences
is rarely satisfied in one dimension. In higher dimensions, which gives a bigger degree of freedom, the
hypothesis can sometimes be satisfied.

3 Majority judgment

3.1 Social Grading Functions

Definition 4. A Social Grading Function is a function F that assigns to any profile Φ − any set of
grades in the language Λ − one single grade in the same language for every alternative:

F : Λm×n → Λn

The following axioms sum up the minimal requirements that are needed by a social grading function
(SGF).

Axiom 1 (Neutrality). The SGF judges all alternatives equally.

Axiom 2 (Anonymity). The judges have the same influence on the grades.

Axiom 3 (Unanimity). F is unanimous: if a competitor is given an identical grade α by every judge,
then F assigns him the grade α.

Axiom 4 (Monotonicity). F is monotonic: if two inputs Φ and Φ′ are the same except that one or
more judges give higher grades to a competitor I in Φ than in Φ′, then F (Φ)(I) � F (Φ′)(I).

Axiom 5 (Independance of irrelevant alternatives in grading). If the lists of grades assigned by the
judges to a competitor I in two profiles Φ and Φ′ are the same, then F (Φ)(I) = F (Φ′)(I).

Definition 5 (Aggregation function). These axioms enable us to define a function f : Λn → Λ that
transforms the grades given to one alternative into a final grade. For that, f needs to satisfy the
following properties:

• anonymity: f(. . . , α, . . . , β, . . . ) = f(. . . , β, . . . , α, . . . ).

• unanimity: f(α, α, . . . , α) = α

• monotonicity:

αj � βj ∀j =⇒ f(α1, . . . , αj , . . . , αn) � f(α1, . . . , βj , . . . , αn)

and
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αj � βj ∀j =⇒ f(α1, . . . , αn) � f(β1, . . . , βn)

Axiom 6. F and its aggregation function are continuous.

3.2 General principle

Majority judgment is a single-winner voting system proposed by Michel Balinski and Rida Laraki. It
is based on a social grading function defined on a given language of grades Λ (e.g. in the Danish school
system the grades belong to the set {0, 3, 5, 6, 7, 8, 9, 10, 11, 13}). This vote leads to a grade for each
alternative, the majority-grade, and a ranking of alternatives: the majority-ranking.

If the number of agents is odd, the majority-grade α of an alternative is the median of the grades
of the candidate. If the number of agents is even, the majority-grade α is the lowest of the two grades
in the middle interval. For example in a sports competition if there are 10 judges who give the grades
{3, 3, 5, 6, 6, 8, 9, 9, 9, 11} to an alternative, the middle interval is {6, 7, 8}, thus the majority-grade is
6. We can understand the majority-grade as the highest grade approved at least by a majority of the
agents.

This first step enables us to distinguish the alternatives by giving a majority-grade, now we will
see how to rank alternatives which have the same majority-grade. To compare two alternatives, we
firstly drop the majority-grade in the set of grades and find the new one out of the new set. If A’s
grades are {7, 9, 9, 11, 11} and B’s grades are {8, 9, 9, 10, 11}. They both have α = 9. We drop α, the
new grades are respectively {7, 9, 11, 11} {8, 9, 10, 11}, they both have 9 as what we call their second
majority-grade. We repeat the process to find 10 for B and 11 for A. An alternative’s majority-value
is the sequence of his first majority-grade, second majority-grade, up to the nth majority-grade, where
n is the number of agents. The majority-values summarize the results of an election.

In the case where there is a great number of agents the system works a little bit differently. Due
to the great number of agents we can safely assume that the majority-grade of each alternative will
be the median of his grades. This median is both the highest grade approved by a majority and the
lowest grade approved by a majority. To obtain the majority-ranking we only need three pieces of
information:

• p, the percentage of grades better than the majority-grade.

• α, the alternative’s majority-grade.

• q, the percentage of grades worse than the alternative’s majority-grade.

We call majority-gauge the triple (p, α, q). If p > q then the alternative’s majority-grade can be
completed by a (+). If to the opposite we have p < q the the majority-grade can be completed by
a (−). A majority-grade + is ahead by a majority-grade −. We can see that this is equivalent
to the precedent situation in which when two alternatives had the same majority-grade, we dropped
them until we found two different majority-grades. Between two majority-grade+’s, the one having
the higher percentage of grades better than the majority-grade is ahead of the other. Out of two
majority-grade−’s, the one having the higher percentage of grades worse than the majority-grade is
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behind the other.

An example of this voting system is presented in Majority-Judgment, published by Rida Laraki
and Michel Balinski. During the 2007 french presidential elections they asked a group of citizens to
vote with this voting system. They asked each voter to attribute to each candidate one of the follow-
ing grades: ”Très bien”, ”Bien”, ”Assez Bien”, ”Passable”, ”Insuffisant”, ”A rejeter”. Attributing no
grade is interpreted as ”A rejeter”. The following table gives the results of the vote.

Candidate Excellent V ery Good Good Acceptable Poor To Reject No Grade

Bayrou 13.6 % 30.7 % 25.1 % 14.8 % 8.4% 4.5% 2.9%
Royal 16.7 % 22.7 % 19.1 % 16.8 % 12.2 % 10.8 % 1.8%
Sarkozy 19.1 % 19.8 % 14.3 % 11.5 % 7.1% 26.5 % 1.7%
Voynet 2.9% 9.3% 17.5 % 23.7 % 26.1 % 16.2 % 4.3%
Besancenot 4.1% 9.9% 16.3 % 16.0 % 22.6 % 27.9 % 3.2%
Buffet 2.5% 7.6% 12.5 % 20.6 % 26.4 % 26.1 % 4.3%
Bové 1.5% 6.0% 11.4 % 16.0 % 25.7 % 35.3 % 4.1%
Laguiller 2.1% 5.3% 10.2 % 16.6 % 25.9 % 34.8 % 5.3%
Nihous 0.3% 1.8% 5.3% 11.0 % 26.7 % 47.8 % 7.2%
de Villiers 2.4% 6.4% 8.7% 11.3 % 15.8 % 51.2 % 4.3%
Schivardi 0.5% 1.0% 3.9% 9.5% 24.9 % 54.6 % 5.8%
Le Pen 3.0% 4.6% 6.2% 6.5% 5.4% 71.7 % 2.7%

Table 5: Majority judgment results in three precincts of Orsay, April 22 2007

We can then determine the majority-gauge of each candidate and find the final ranking which is
presented in Table 3.

Candidate p α q Official vote of participants National vote

1st Bayrou 44.3 % Good + 30.6 % 25.5 % 18.6 %
2nd Royal 39.4 % Good − 41.5 % 29.9 % 25.9 %
3rd Sarkozy 38.9 % Good − 46.9 % 29.0 % 31.2 %
4th Voynet 29.7 % Acceptable − 46.6 % 1.7% 1.6%
5th Besancenot 46.3 % Poor + 31.2 % 2.5% 4.1%
6th Buffet 43.2 % Poor + 30.5 % 1.4% 1.9%
7th Bové 34.9 % Poor − 39.4 % 0.9% 1.3%
8th Laguiller 34.2 % Poor − 40.0 % 0.8% 1.3%
9th Nihous 45.0 % To Reject − 0.3% 1.1%
10th de Villiers 44.5 % To Reject − 1.9% 2.2%
11th Schivardi 39.7 % To Reject − 0.2% 0.3%
12th Le Pen 25.7 % To Reject − 5.9% 10.4 %

Table 6: Majority judgment results

We can see that in this example the winner of majority judgment voting is not the winner in the
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two-round system. This is linked to the fact that majority judgment measures how much voters agree
with a candidate, and will therefore privilege the candidate who is the most consensual. This is why
François Bayrou, a centrist, wins the election in the case of Majority Judgment voting.

3.3 Advantages and shortcomings

This system is firstly interesting because the input is not a ranking but a grading system. In many
situations we can think of reasons why the term ”preference-ranking” is inappropriate. One can prefer
an alternative A but still would rather vote for B because he is best suited for the job. A judge does
not judge regarding his personal preferences but according to the Law. This is why even if a ranking
is a necessary output of a social welfare functional it is not a necessary input.

Majority judgment escapes Arrow’s impossibility theorem under a certain assumption. If we con-
sider that every agent will give his grades on an absolute scale we can claim that the majority-gauge
of each candidate is completely independent of the others, so that the system respects all the hypoth-
esis of Arrow’s theorem but is not a dictatorship. However some empirical studies suggest that this
assumption is often false.

Another problem arises depending on the situation of the social choice. Let there be one thousand
alternatives and ten voters. Having the choice between six possible grades will most probably not
provide enough information to distinguish all alternatives. Asking each voter a ranking of alternatives
would provide much more information. Majority Judgment thus wouldn’t work well in situations in
which there are too many alternatives.

Finally, a pathological example was found to illustrate the following problem: if a voter gives two
alternatives grades on the same side of their majority-grade, he will have an equal impact on their
grades, and thus will not have an impact on their relative ranking.

Voter category Alternative Excellent Very Good Good Acceptable Poor To Reject

1000 voters
A 1000
B 1000

1 voters
A 1
B 1

1000 voters
A 1000
B 1000

Total
A 1000 1 1000
B 1000 1 1000

Here 2000 voters prefer A to B, one voter prefers B to A, and B is socially preferred to A.

4 Majority judgment and tactical voting

A voting system is said to be strategy-proof if honesty is the best policy for every voter, i.e. for each
voter the best strategy is to express his true preference. In the contrary the system is manipulable.
We next give a formal definition of manipulability. If Φ is a profile and φi is the preference order of
voter i, the profile of all other voters is Φ−i, so Φ = (Φ−i, φi). A choice function (function which will
choose one alternative) f is manipulable is there exist Φ and φ′i such that
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f(φ′i,Φ−i) �φi f(φi,Φ−i)

which means that if voter i lies about his preference, he will be more satisfied by the chosen
alternative. This brings us to the following central theorem.

Theorem 2 (Gibbard-Satterwaithe’s Impossibility Theorem). There is no choice function that is
unanimous, non-dictatorial and strategy-proof for all preference profiles when there are at least three
candidates.

Here unanimous means that if every voter ranks A first, then society must choose A.

Even though this theorem tells us that no choice function is strategy-proof, we can try to decrease
as much as possible the possibility of manipulation. We will now see that in the case of social grading
functions there are functions with interesting strategy-related properties.

Definition 6 (Strategy-proof-in-grading). Suppose that r is a jury’s final grade. A social grading
function is strategy-proof-in-grading if when a judge’s input grade is r+ > r, any change in his input
can only lead to a lower grade; and if, when a judge’s input grade is r− > r, any change in his input
can only lead to a higher grade.

If a function is strategy-proof-in-grading, judges have no reason to lie about their true preferences.

Definition 7 (Order functions). An order social grading function assigns to each alternative the kth
highest grade that it received from the jury.

If an alternative obtained the grades Good,Very Good, To reject, Acceptable, Poor, Very Good,
the 3rd order function gives Good as a final grade.

Theorem 3. The unique strategy-proof-in-grading social grading functions are the order functions.

Proof. It is easy to see that order functions are strategy-proof-in-grading. Indeed if the final grade of
alternative is r, anyone who gave a higher grade and who wishes to change the result can either:

• give a higher grade, in which case the kth highest grade remains r.

• give a lower grade, which will either not change the kth highest grade or will give a new grade
r∗ < r.

The reasoning is exactly the same for a judge who gave a lower grade than the final grade. In any case
a judge cannot alter the vote in his favor.

Let f be the aggregation function. Let f(r1, . . . , rn) = r. Unanimity and monotonicity implies
that r must fall between the best and the worst grades: max rj > r > min rj .

Suppose the judges gave the grade r1 > · · · > rn. We will first prove that f(r1, . . . , rn) = rk for
some k.

Suppose f(r1, . . . , rn) = r. If rj > r then we have:

∀r∗j > r, f(r1, . . . , rj−1, r
∗
j , rj+1, . . . , rn) = r

Indeed:
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• if r∗j > rj then it is true because f is strategy-proof-in-grading.

• if r∗j < rj , then by monotonicity the value of f can either decrease or remain r. If it decreases, it
would mean that by going back from r∗j to rj the function would increase, which is not possible
since the f is strategy-proof-in-grading.

In the same way, if rj < r then we have:

∀r∗j 6 r, f(r1, . . . , rj−1, r
∗
j , rj+1, . . . , rn) = r

If we suppose r 6= rj for all j. We must have rj > r > rj+1 for some j. By the previous statement,
we can claim that for any grades r+ and r− such that r+ > r > r−,

f(

j︷ ︸︸ ︷
r+, . . . , r+,

n−j︷ ︸︸ ︷
r, . . . , r) = r and f(

j︷ ︸︸ ︷
r, . . . , r,

n−j︷ ︸︸ ︷
r−, . . . , r−) = r

By monotonicity, the value of f on the left should be strictly greater than the value on the right.
We have a contradiction. Thus r = rk for some k.

We know that when s1 > · · · > sk−1 > sk = rk > sk+1 > sn we have f(s1, . . . , sn) = rk. We now
show that k is independant of (r1, . . . , rn). Let g(r1, . . . , rn) = k if f(r1, . . . , rn) = rk on the open set
R > r1 > · · · > rn > 0 (where R is the highest grade in the language Λ). Since f is continuous, g is
continuous on this set as well. Since g takes integer values, it is a constant on this set. Therefore f
takes the value rk for the same k on the entire set.

We observe this exact property in majority judgment since majority-grade is an order function.
This shows us that this voting system is robust regarding manipulation.

Other voting systems can be very sensitive to strategy-voting, for example the two-round system
which is used in France. An example of manipulability is the 2002 Presidential election. Even if
many voters voted for a left-wing candidate, the two candidates who reached the second round were
right-wing. This is due to the fact that the main candidate of the left Lionel Jospin saw many small
candidates close to him ideologically which lead to a scattering of the left-wing votes. To obtain
satisfaction, left-wing voters would better have concentrated their votes on Lionel Jospin in the first
round.

5 Conclusion

We can therefore see that Majority Judgment has very interesting properties regarding both Arrow’s
theorem and strategy-voting. On the other hand different issues arose through he paper which explain
the difficulty to implement this system in our voting practises. A question that comes up at this point
is: How much information can we ask the voter? Indeed depending on the issue we can ask more or
less effort to the voter. The French two-round system couldn’t be more simple since it requires only
one name. Ranking or grading ten to fifteen candidates can reveal itself to be a complicated matter
for many voters and thus disturb the election process. Solving this question (which belongs to the field
of psychology rather than social choice theory) could push Majority Judgment to be used in political
decision-making.
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