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1 introduction

Game theory is the study of mathematical models of strategic interaction between rational decision-
makers. Formally, a game is given by a set of strategies for each player, and a pay-off function, also
called the utilitarian function, which represents some value the players wish to maximize, such as profit,
or minimize, such as latency experienced due to congestion. If all players have chosen a strategy in their
set of strategies/action, then each player receives a pay-off dependent on the choices of himself and his
competitors or allies. The hypothesis of rationality means that the players don’t choose there strategies
arbitrarily, but choose their strategies in order to maximize their profit or minimize their pay-off.

Our goal will be to compare the solution found by selfish players to the socially optimal solution. In
game theory there is a widely used best response for what course of action the players should take. It is
called the Nash equilibrium, and was first suggested by the mathematician John Forbes Nash in 1950.
Suppose all players have chosen their strategy. If some player could profit by unilaterally changing his
strategy and thereby getting a better pay-off, then obviously the player has the incentive to just do that.
We are, therefore, not in a stable situation. If, on the other hand, no player can profit by unilaterally
changing his strategy, the players are said to be in a Nash equilibrium.

A central problem arising in the management of a large network is that of routing traffic to achieve
the best possible network performance. In many networks, it is difficult or even impossible to impose
optimal routing strategies on network traffic, leaving network users free to act according to their own
interests. Hence, we will study the degradation in network performance due to selfish, uncoordinated
behavior by network users in a variety of traffic models. The two major type of games we will focus on
are : atomic and non atomic selfish routing games. Two basic but interesting examples we will study
are Pigou’s Example (1920) and the famous “paradox” discovered by Braess in 1968.

2 pigou’s example (1920)

The Pigou’s example is a basic network composed by two parallel routes, each a single edge, that
connects a source vertex s to a destination (or "sink") vertex t. Each edge has a cost that is a function of
the amount of traffic, i.e the flow that uses the edge, and which corresponds to the travel time.
-The upper edge has a constant cost function c1(x) = 1 (it can be 1 hour for example). Note that it is
immune to congestion !
-The lower edge has a variable cost c2(x) = x, which increases as the edge gets more congested.

Figure 1: Pigou’s example (1920)

We also assume that each selfish player wants to minimize its travel time (i.e its cost), so the lower
edge, which cost is c2(x) = x, is a dominant strategy, and in an equilibrium outcome, all of the players
will follow this strategy, all of them will then have a cost of 1.

The cost functions c(x) are assumed to be non-decreasing, continuous and with the property that
xc(x) is convex. For example, we might have a constant cost function, a linear cost function, a quadratic
cost function, etc..
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3 non atomic selfish routing games

In this section, we modelize the generalization of the basic Pigou’s Example.
Model : We consider that a certain unit of flow of drivers are at the vertex S, and they are assumed to

be infinitely divisible. Adding to this the fact that each player controls an infinitesimally small fraction
of flow such that changing the edge (i.e deviating unilaterally) will only change his proper cost function
depending on the cost of the edge he takes, hence it will not change the global cost function of the entire
flow. This kind of games which such properties are called non-atomic selfish routing games.

More formally, a selfish routing game occurs in a network that is given by a directed graph G=(V,E),
with vertex set V and directed edge E, together with a set (s1, t1), ..., (sk, tk) of source-sink vertex pairs.
Such pairs will be called commodities. We use Pi to denote the (si, ti) paths of a network. We only
consider networks in which Pi 6= ∅ for all i, and define the set P of source-sink paths :

P = ∪k
i=1Pi

.

Definition 3.1. (Flow / feasible flows) A flow is a nonnegative vector indexed by the set P of source-sink
paths. For a flow f and a path P ∈ Pi, fP is the amount of traffic of commodity i that chooses the path P
to travel from si to ti. A flow f is feasible for a vector r if it routes all of the traffic i.e for each i ∈ 1, ..., k

∑
P∈Pi

fP = ri

The total amount of traffic of commodity i is indicated by ri.

Each edge e of a network has a cost function ce : R+ → R+ and we always assume that cost functions
are nonnegative, continuous, and non decreasing. We define a non atomic instance by a triple of the
form (G,r,c).

Definition 3.2. (Cost of a path P) The cost of a path P with respect to a flow f is the sum of the costs of
the constituent edges :

cP( f ) = ∑
e∈P

ce( fe)

where fe = ∑P∈P :e∈P fP denotes the amount of traffic using paths that contain the edge e.

Definition 3.3. (Non atomic equilibrium flow) Let f be a feasible flow for the nonatomic instance (G,r,c).
The flow f is an equilibrium flow if, for every commodity i ∈ 1, ..., k and every pair P, P̃ ∈ Pi of si → ti
paths with fP > 0, cP( f ) 6 cP̃( f ).

In other words, all paths in use by an equilibrium flow f have a minimum-possible cost(given their
source, sink and the congestion incurred by the flow f). In particular, all paths of a given commodity
used by an equilibrium flow have equal cost.

Remark 3.4. The cost incurred by a player depends only on its path and the amount of flow on the
edges of its path, rather than on the identities of any of the players. Game of this type are often called
congestion games.

Important hypothesis : In this section, note that the cost functions c(x) are assumed to be non-
decreasing, differentiable, and with the property that xc(x) is convex. For example, we might have a
constant cost function, a linear cost function, a quadratic cost function, etc..

Proposition 3.5. We define the cost of a flow f as :

C( f ) = ∑
P∈P

cP( f ) fP = ∑
P∈P

∑
e∈P

ce( fe) fP = ∑
e∈P

∑
P∈P

ce( fe) fP = ∑
e∈E

ce( fe) fe

.

Definition 3.6. (Optimal flow)
For an instance (G,r,c), we call a feasible flow f* optimal if it minimizes the cost over all feasible flows i.e
C( f ∗) = min f C( f ) = min f ∑e∈E ce( fe) fe
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Figure 2: Pigou’s example with split traffic

Let’s compute the optimal flow in Pigou’s example. Set c1(x) the cost of the upper edge and c2(x)
the cost of the lower edge. In the case where they split between the upper and the lower edge with
f1 = α being the proportion of the flow that take the upper edge, f2 = (1− α) is the proportion of flow
that take the lower edge :

In this case, the cost function is : C(α) = c1( f1). f1 + c2( f2). f2 = 1.α + (1− α)2 = α2 − α + 1
Optimal flow f* minimizes the cost function C(f).

C′(α) = 2α− 1
C′(α) = 0 =⇒ 2α = 1 =⇒ α = 1

2 =⇒ x∗ = ( 1
2 ; 1

2 )

So splitting the traffic equally between the two edges is the optimal outcome.

4 braess’s paradox (1968)

Consider the four node network shown in this figure.

Figure 3: Braess’s Paradox (1968)

There are two disjoint routes from s to t, each with combined cost 1+x, where x is the amount of
traffic that uses the route. Assume that there is one unit of traffic. In the equilibrium flow, the traffic
is split evenly between two routes, and all of the traffic experiences 3/2 units of cost. Now suppose
than in order to decrease the cost encountered by the traffic, we build a zero-cost edge connecting the
midpoints of the two existing routes. Now, what is the new equilibrium flow ? The cost of the new
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route s → v → w → t is never worse than that along the two original paths. As a consequence, the
unique equilibrium flow routes all of the traffic on the new route. Now there is a heavy congestion on
the edges (s,v) and (w,t), and all of the traffic now experiences two units of cost.

Braess’s paradox thus shows that the intuitively helpful action of adding a zero-cost edge can
increase the cost experienced by all of the traffic. Note that putting a cost c(x) such that 0 < c(x) < x + 1
on the added edge will not change the paradox, since the equilibrium flow will still route all of the
traffic on the new route.

Remark 4.1. Note that we also have the paradox in the symmetric case where we bar an edge of the
network. Indeed, by preventing the flow to use an edge, the traffic will experience an inferior cost than
if we don’t bar the edge, which is contradictory with what we can expect. In other words, by blocking
an edge, we can reduce the traffic congestion, and this was observed in April 1990 in New York. Indeed,
the 42nd Street was shut down, and while disastrous traffic conditions were predicted, traffic flowed
better on that day.1

Braess’s Paradox has also remarkable analogues in several physical systems, such as mechanical
systems (called the “Strings and Springs Braess Paradox”) or even in the control of frequency in Electrical
power grids networks.2

5 existence , uniqueness and potential functions

In this section, we will show existence and uniqueness results about equilibrium flows in nonatomic
and atomic selfish routing games. We will also introduce the potential function method, which is a
fundamental proof technique.

Our goal will be to show that in nonatomic selfish routing games, equilibrium flows always exist
and are essentially unique, which means that all equilibrium flows of a non atomic instance have the
same cost. In particular, the POS and the POA coincide in every nonatomic instance.

Theorem 5.1. (Existence and uniqueness of equilibrium flows)

Let (G,r,c) be a nonatomic instance.

(a) The instance (G,r,c) admits at least one equilibrium flow.

(b) If f and f̃ are equilibrium flows for (G,r,c), then ce( fe) = ce( f̃e) for every edge e.
In order to prove this theorem, we use the potential function method, which idea is to exhibit a real

valued "potential function", defined on the outcomes of a game, such that the equilibria of the game are
precisely the outcomes that optimize the potential function. This method has emerged as a technique
in understanding the quality of equilibria, and it provides results only regarding the POS. Potential
functions are also useful because they enable the application of optimization techniques to the study of
equilibria.

A game is said to be a potential game if the incentive of all players to change their strategy can be
expressed using a function called the potential function. The concept was introduced by Monderer
and Shapley in 1996. (What make potential games attractive are their useful properties concerning the
existence, uniqueness and inefficiency of their Nash equilibria).

More formally :

Definition 5.2. (Ordinal potential game)
A game is an ordinal potential game if there exists : Φ : S1x...xSn → R such that ∀i, si, s−i and s′i,

ci(si, s−i) > ci(s′i, s−i) ⇐⇒ Φ(si, s−i) > Φ(s′i, s−i)

1 More informations here :https://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.
html

2 More informations here : https://physicsworld.com/a/beating-braess-paradox-to-prevent-instability-in-electrical-power-grids/

https://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html
https://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html
https://physicsworld.com/a/beating-braess-paradox-to-prevent-instability-in-electrical-power-grids/
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where Si is the set of strategies of the player i and s−i is the strategy ofall other players.

Definition 5.3. (Exact potential game)
A game is an exact potential game if

ci(si, s−i)− ci(s′i, s−i) = Φ(si, s−i)−Φ(s′i, s−i)

Theorem 5.4. (Rosenthal’s theorem) Every congestion game is an exact potential game.
Proof : Consider the potential function :

Φa( f ) = ∑
e∈E

fe

∑
i=1

ce(i)

We assume that there is a flow f̃ where one player chooses an alternative path P̃ with lower cost. This
means cP̃( f̃ ) < cP( f ) ⇔ 0 > cP̃( f̃ ) − cP( f ). The edges of P̃ are either in P or they are not. P and
P̃ might have some edges in common, the cost of those edges does not change as player i changes
to path P̃ . This means that only the edges that they have not in common should be considered.
Note that if player i deviates, he transfers his one unit of flow (R=1) from path P to path P̃. This
means that edges that are now used now has an extra flow of one unit, so they now have a total flow
fe + 1. Hence, edges that are not anymore used have a total flow of fe − 1, and we then have that
0 > cP̃( f̃ )− cP( f ) = ∑e∈P̃\P ce( fe + 1)−∑e∈P\P̃ ce( fe).

Now, let’s consider Φa. The new edges in P̃ (i.e e ∈ P̃ \ P) add to Φa( f ) one extra term ce( fe + 1)
(+1 because R = 1). The edges that are not anymore in P̃ , i.e e ∈ P \ P̃ subtracts the term ce( fe)

of Φa.The sum for common edges in P ∩ P̃ remains the same, i.e. : ∑
f̃e
i=1 ce(i) = ∑

fe
i=1 ce(i). Hence,

Φa( f̃ )−Φa( f ) = ∑e∈P̃\P ce( fe + 1)−∑e∈P\P̃ ce( fe), which means that the difference in the cost function
is exactly equal to the difference in the potential function, which is the definition of an exact potential
game. Hence a congestion game is also an exact potential game.

Now, assume that for every edge e of a nonatomic instance, the function x.ce(x) is continuously
differentiable and convex. Let c∗e (x) = (x.ce(x))′ = ce(x) + x.c′e(x) denote the marginal cost function
for the edge e. For example in Pigou’s example, the cost functions of the two edges are 1 and x, so the
marginal cost function are c∗(x) = 1 and c∗(x) = 2x.

Proposition 5.5. (Equivalence of equilibrium and optimal flows)
Let (G,r,c) be a nonatomic instance such that, for every edge e, the function x.ce(x) is convex and continuously
differentiable. Let c∗e (x) denote the marginal cost function of the edge e. Then f* is an optimal flow for (G,r,c) if
and only if it is an equilibrium flow for (G,r,c*).

Proof : Recall that a flow f* is optimal if it is feasible and minimizes : C( f ) = ∑e∈E ce( fe) fe.
We are looking for a function he(x) for each edge e - playing the previous role of x.ce(x) such that
h′e(x) = ce(x). In order to construct a potential function for equilibrium flows, we need to "invert" the
Proposition 5.5 : of what function are equilibrium flows the global minima ? Considering that ce(0) = 0,
we set he(x) =

∫ x
0 ce(y)dy for each edge e, which thus yields the desired potential function. Moreover,

since ce is continuous and nondecreasing for each edge e, every function he is both continuously
differentiable and convex. Precisely, call :

Φ( f ) = ∑e∈E
∫ fe

0 ce(x)dx (1)

the potential function of a nonatomic instance (G,r,c). In this section, optimal flows are characterized
the same way as in 3.6 with the following characterization : c∗P( f ∗) 6 c∗P̃( f ∗).

Hence, each function x.ce(x) which is convex is now replaced by the convex function he(x) =∫ x
0 ce(y)dy, and we have therefore equilibrium flows are the global minimizers of the potential function

Φ.
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Proposition 5.6. (Potential function for equilibrium flows) Let (G,r,c) be a nonatomic instance. A flow feasible
for (G,r,c) is an equilibrium flow if and only if it is a global minimum of the corresponding potential function Φ
given as before.

Proof of Theorem (5.1) : Note that the set of feasible flows of (G,r,c) can be identified with a compact
subset of |P|-dimensional Euclidean space (because it is closed and bounded in a finite dimensional
space). Since edge cost function ce is continuous, he(x) =

∫ x
0 ce(y)dy is C1 and continuous in particular,

so Φ( f ) = ∑e∈E
∫ fe

0 ce(x)dx is continuous on the set of feasible flows as the sum of continuous functions
on this set. By Weierstrass’s Theorem (i.e Theorem of continuity in compact subsets), it achieves a
minimum value on this set, and by proposition (3.5), this point corresponds to an equilibrium flow of
(G,r,c). Hence, (a) is prooved.

For part (b), recall that each cost function ce is increasing, and since h′e(x) = ce(x), hence h′e is
increasing, so h′′e > 0 and then we have that each he is convex. Hence the potential function is convex as
a sum of convex functions.

Now, suppose that f and f̃ are equilibrium flows for (G,r,c). By (3.5), they are optimal flows and by
(6.5), they both minimize the potential function. Now consider all convex combinations of f and f̃ -that is,
all vectors of the form λ f +(1−λ) f̃ for λ ∈ [0, 1]. All of these vectors are feasible flows as a combination
of feasible flows. Since Φ is a convex function, a chord between two points on its graph lies on or above
the graph of the function, but cannot pass below its graph i.e : Φ(λ f + (1− λ) f̃ ) 6 λΦ( f ) + (1− λ)Φ( f̃ )
for every λ ∈ [0, 1]. But, since both f and f̃ are global minima of Φ, the above inequality should be an
equality for all convex combinations of f and f̃ . Since for each e ∈ E, he is convex, this can occur only if

every
∫ fe

0 ce(x)dx is linear between the values fe and f̃e i.e if
∫ fe+ f̃e

0 ce(x)dx =
∫ fe

0 ce(x)dx +
∫ f̃e

0 ce(x)dx
which implies that every cost function ce is constant between fe and f̃e. Hence, considering ce = C

constant, we have
∫ fe+ f̃e

0 Cdx = C( fe(x) + f̃e(x)) =
∫ fe

0 Cdx +
∫ f̃e

0 Cdx so x →
∫ x

0 ce(y)dy is linear.
Finally we have that ce( fe) = ce( f̃e) which ends the proof of (b).

6 the price of anarchy (poa) and the price of stability

(pos)

Definition 6.1. - Utilitarian function : sum of the players cost.
- Egalitarian function : maximum player cost.
They are called objective functions.

Given an objective function (also called an utilitarian function) and an equilibrium concept, a game
may have different equilibria and objective function values, so we will study to what extent it is different.
In this case, the optimization goal is to minimize the cost of a flow.

We will consider 2 important measure of the inefficiency of an equilibria that are used in routing
games, and in order to introduce them, we study Pigou’s example. In Pigou’s example, there are many
outcomes : -If all of the traffic takes the upper edge, then the cost function c1(x) = 1× 1 + x× 0 = 1
-If all of the traffic takes the lower edge, then c2(x) = 1× 0 + x× 1 = x

In the case where they split between the upper and the lower edge, we’ve already seen that the
optimal flow f* that minimizes the cost function c(f) is f*=(1/2;1/2) i.e splitting the traffic equally
between the two edges is the optimal outcome. Hence in this case, half of the traffic has a cost of 1,
and the other has a cost of 1/2, the average cost of the traffic in this optimal flow is 3/4 hence the
C( fWorstEqu)

C( fopt)
= 1

( 3
4 )

= 4
3 where C( fWorstEqu) is the cost of the worst Nash equilibrium flow (i.e with the

highest cost) and C( fopt) the cost of an optimal flow.

Definition 6.2. The Price of Anarchy (POA) : We defined the POA as: POA =
C( fWorstEqu)

C( fopt)
where

C( fWorstEqu) is the cost of the worst Nash equilibrium flow (i.e with the highest cost) and C( fopt) the
cost of an optimal flow. In other words, it is the proportion between the worst possible social utility
from a Nash equilibrium and the optimal social utility.

It’s the most popular measure of the inefficiency of equilibria, which adopts a worst-case approach.
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Remark 6.3. We will be looking for games for which the POA is close to 1. Hence, in those games, selfish
behavior will not have consequences over the cost function, so optimality will remain.

Definition 6.4. (The Price of Stability (POS)) POS =
C( fBestEqu)

C( fopt)
where C( fBestEqu) is the cost of the best

Nash equilibrium flow (i.e with the lowest cost) and C( fopt) the cost of an optimal flow. In other words,
it’s the proportion between the best possible social utility of a Nash equilibrium and the optimal social
utility.

Proposition 6.5. Link between POS and the POA :

1) Consider a game with multiple equilibria that has at least one highly inefficient equilibrium. This game
will have a large POA. The POS measures the inefficiency of games, but differentiate between games in which all
equilibria are inefficient and those in which some equilibrium is inefficient.

2) In a game with an unique equilibrium, POA=POS, but in a general case for a game with multiple equilibria,
1 6 POS 6 POA.

Remark 6.6. What’s interesting is to bound the POA depending on the game’s characteristics. Hence, for
such classes of games, the equilibria are guaranteed to be optimal.

Proposition 6.7. In Pigou’s example, the POA is equal to the POS. In other words, the average cost incurred by
the traffic is the same in all equilibria of the game. We will show later on using the potential function method that
in a nonatomic instance, any equilibrium flow f has the same cost, C(f). Therefore, in a nonatomic instance, such
as Pigou’s example, any equilibrium flow can be used to calculate the price of anarchy.

Remark 6.8. In an atomic instance, however, there might exist multiple equilibria with different total cost.
Then, the price of anarchy is calculated using the worst outcome value.

Let’s see another kind of Pigou’s example in a non affine case.

Example 6.9. Consider a network with two disjoint edges connecting a source vertex S to a destination vertex T.
-The upper edge has a constant cost function c(x)=1 .
-The lower edge has a highly non linear variable cost c(x) = xp for a large p.

Figure 4: Non-affine Pigou’s example (1920)

As seen in the Example 1.8, the lower edge remains a dominant strategy for selfish drivers and the unique
equilibrium travel time remains 1. If we again split the traffic equally between the two links, then the average cost
tends to 1/2 as p +∞.
If there was a dictator that could force a small fraction x of the traffic to travel along the lower edge, then the
average cost would be C(x) = 1.(1− x) + xp.x = 1− x + xp+1, hence C′(x) = −1 + (p + 1)xp = 0 ⇐⇒

1
p+1 = xp ⇐⇒ x = p

√
1

p+1 . For p=1, we have indeed x = 1
2 which is the previous result. If p tends to +∞,

then lim
p→+∞

p
√

1
p+1 = lim

p→+∞
(p + 1)−

1
p = lim

p→+∞
exp (− 1

p ln(p + 1)). We have that lim
p→+∞

ln(p+1)
p = 0, hence

lim
p→+∞

p
√

1
p+1 = 1. This implies that as p tends to +∞, the optimal flow will have an increasing percentage of traffic

over the lower edge. Thus, the cost of the network with an optimal flow is C( p
√

1
p+1 ) = 1− p

√
1

p+1 + ( p
√

1
p+1 )

p+1.
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Since the cost of the network with the equilibrium flow is 1, we have that the POA = 1
1− p

√
1

p+1+( p
√

1
p+1 )

p+1
. and

lim
p→+∞

1
1− p

√
1

p+1+( p
√

1
p+1 )

p+1
= 1

1−1+ 1
∞

= 1
0 = +∞.

In conclusion, the price of anarchy tends to infinity as p tends to +∞, so the equilibrium can be arbitrarily
inefficient.

Remark 6.10. We can compute the POA in order types of games that are not routing games, such as the
Prisoner’s Dilemma, for which self-interest behavior is not Pareto optimal, so there is a conflict between
the self-interest and the collective interest or "social good". Hence, in such games, the unique Nash
equilibrium is inefficient, which means there is another outcome in which both players achieve a smaller
cost. Hence, the outcome of rational behavior by selfish players can be inferior to a cooperative outcome.

7 bounding the price of anarchy

In the previous sections, we defined formally selfish routing networks, equilibria and the price of
anarchy. Now, we introduce a simple lower bound on the price of anarchy that is based on Pigou-like
networks (i.e. a network with two vertices and two edges, one commodity with r units of traffic and
cost functions c1(x) = c(r) and c2(x) = c(x)). Then we will establish an upper bound on the price
of anarchy in general multicommodity flow networks, depending on the set of a certain type of cost
functions. Common examples of sets of cost functions include linear functions, polynomials etc..

Recall that the cost functions are differentiable and non-decreasing.

Definition 7.1. (Pigou’s bound) Let C be a nonempty set of cost functions that contains in particular the
constant cost functions.

The Pigou bound α(C) for C is

α(C) = supc∈C supx,r≥0
r.c(r)

x.c(x)+(r−x).c(r) (2)

with 0
0 = 1.

Definition 7.2. POA(C) = maxPOA for all networks with cost function in (C).

α(C) is the price of anarchy for Pigou-like networks: the numerator is the cost of the equilibrium
flow in a Pigou-like network, where all the traffic is routed over the lower edge. The denominator is the
cost of the optimal flow: x units are routed over the lower edge and rx units are routed over the upper
edge. We will prove that α(C) = POA(C) for all networks. The next proposition shows that this Pigou
bound is a lower bound on the price of anarchy.

Proposition 7.3. (Lower bound on the price of anarchy) Let C be a set of cost functions that contains all the
constant cost functions. Then the POA in nonatomic instances with cost functions in C is at least α(C) i.e
POA(C) ≥ α(C).

Proof : Fix a choice of c ∈ C and x, r ≥ 0. Recall that the cost function c is nondecreasing:
If x=r, r.c(r)

x.c(x)+(r−x).c(r) = r.c(r)
r.c(r) = 1 and if x>r, r.c(r)

x.c(x)+(r−x).c(r) = r.c(r)
x.(c(x)−c(r))+r.c(r) . Since x>r and c

is nondecreasing, we have that c(x) ≥ c(r), hence (c(x) − c(r)) ≥ 0 and x.(c(x) − c(r)) ≥ 0 so
r.c(r)

x.(c(x)−c(r))+r.c(r) ≤ 1. Thus, we have that α(C) = supc∈C supx,r≥0
r.c(r)

x.c(x)+(r−x).c(r) = 1 if x ≥ r.
Therefore, we assume that x < r. Let G be a Pigou-like network. The lower edge has cost function

c2(x) = c(x) and the upper edge has the constant cost function c1(x) = c(r), c ∈ C. Set the traffic
rate to r. The equilibrium flow routes all the traffic over the lower edge, yielding cost r.c(r). Any
feasible flow routes x units of traffic on the lower edge and rx units on the upper edge. This yields
cost x.c(x)+(r-x).c(r). By varying x, one can find the x for which x.c(x)+(r-x).c(r) is approximately
minimal. Doing this for any c ∈ C, one ends up with the POA being at least α(C), which means that
POA ≥ supc∈C supx,r≥0

r.c(r)
x.c(x)+(r−x).c(r) = α(C).

Now let’s proove that the Pigou bound is also an upper bound on the price of anarchy, but in order
to do so, we need an alternative characterization of the equilibrium flow.
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Proposition 7.4. (Variational inequality characterization) Let f be a feasible flow for the nonatomic instance (G, r,
c). If flow f is an equilibrium flow, then

∑
e∈E

ce( fe) fe ≤ ∑
e∈E

ce( fe) f ∗e

holds for every flow f* feasible for (G,r,c).

Proof: f is an equilibrium flow if and only if cP( f ) ≤ cP̃( f ) for any P,P̃ ∈ Pi, for any i and for fP > 0.
cP( f ) = cP̃( f ) if in addition fP̃ > 0. If any traffic deviates, creating flow f*, then that part costs an equal
or higher amount since the price of the newly chosen path is equal or higher. Therefore,

∑
P∈Pi

cP( f ) fP ≤ ∑
P∈Pi

cP( f ) f ∗P , ∀i

Summing over i, it follows :
∑

P∈P
cP( f ) fP ≤ ∑

P∈P
cP( f ) f ∗P

∑
P∈P

cP( f ) fP ≤ ∑
P∈P

cP( f ) f ∗P ⇐⇒ ∑
P∈P

(∑
e∈P

ce( fe)) fP ≤ ∑
P∈P

(∑
e∈P

ce( fe)) f ∗P

By reversing the order of summation, we obtain

∑
e∈E

ce( fe) fe ≤ ∑
e∈E

ce( fe) f ∗e

We can now show that the Pigou bound is also an upper bound on the price of anarchy.

Theorem 7.5. (Tightness of the Pigou bound) Let C be a set of cost functions and α(C) the Pigou bound for
C. If (G,r,c) is a nonatomic instance with cost functions in C, then the POA of (G,r,c) is at most α(C) i.e
POA(C) 6 α(C).

Proof : Let f* and f be optimal and equilibrium flows, respectively. Then

C( f ∗) = ∑
e∈E

f ∗e ce( f ∗e ) = ∑
e∈E

(
f ∗e ce( f ∗e ) + ( fe − f ∗e )ce( fe)

ce( fe) fe
.ce( fe) fe + ( f ∗e − fe)ce( fe))

The fraction looks like the calculation of the total cost for a Pigou-like network with x = f ∗e and r = fe.
(here we take the inverse of the fraction). The Pigou bound is the supremum of the fraction over all cost
functions in C and all x, r ≥ 0, therefore

f ∗e ce( f ∗e ) + ( fe − f ∗e )ce( fe)

ce( fe) fe
≥ 1

α(C)
for each edge e.

C( f ∗) ≥ 1
α(C) ∑

e∈E
ce( fe) fe + ∑

e∈E
( f ∗e − fe)ce( fe)) ≥

1
α(C) ∑

e∈E
ce( fe) fe =

C( f )
α(C)

The last inequality follows from Proposition 6.5 that basically says:

∑
e∈E

ce( fe) fe ≤ ∑
e∈E

ce( fe) f ∗e

i.e
∑
e∈E

( f ∗e − fe)ce( fe)) ≥ 0

Hence :

C( f ∗) ≥ C( f )
α(C) =⇒ POA =

C( f )
C( f ∗) ≤ α(C)

Therefore, α(C) is an upper bound on the price of anarchy of (G,r,c) with c ∈ C.
Hence Theorem 8.9 implies that the price of anarchy on any nonatomic instance is maximized by

Pigou’s bound , no matter what network is considered, thus : α(C) = POA(C). The only restrictions
are on the cost functions, and not on the network size, the network structure, nor the number of
commodities. It is also remarkable that "the worst possible ratio" for a certain instance with cost
functions in C can always be achieved with a network with only two parallel links.

As a last example, we will show that the price of anarchy is at most 4
3 for nonatomic instances with

affine cost functions.
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Theorem 7.6. (The price of anarchy in affine nonatomic instances) If (G,r,c) is a nonatomic instance with affine
cost functions, then the price of anarchy of (G,r,c) is at most 4

3 .
Proof: Theorem 8.9 says that the price of anarchy of a nonatomic instance is at most α(C). So for

linear cost functions, we need to find α(C) with C the set of all possible affine cost functions.

α(C) = sup
c∈C

sup
x,r≥0

r.c(r)
x.c(x) + (r− x).c(r)

with c(r)=a(r)+b, c(x)=a(x)+b, with a, b ≥ 0 for any edge cost function. To maximize r.c(r)
x.c(x)+(r−x).c(r) over

x, we need to minimize the following expression :

x.c(x) + (r− x).c(r) = ax2 + bx + ar2 + br− arx− bx = ax2 + ar2 + br− arx

Differentiating with respect to x and equalizing to 0 yields

2ax− ar = 0 ⇐⇒ x =
1
2

r

α(C) = sup
c∈C

r.c(r)
1
2 r.c( 1

2 r) + ( 1
2 r).c(r)

= sup
c∈C

ar2 + br
1
4 ar2 + 1

2 br + 1
2 ar2 + 1

2 br
= sup

c∈C

ar + b
3
4 ar + b

If b is increasing, the ratio is decreasing. Therefore, we choose b as low as possible, i.e. b = 0. Then
supc∈C

ar
3
4 ar

= 1
3
4
= 4

3 .

8 atomic selfish routing

8.1 The model

As for the nonatomic one, an atomic selfish routing game is defined by a directed graph G=(V,E), k
source-sink pairs (si, ti), and a nonnegative, continuous nondecreasing cost function ce : R+ → R+ for
each edge e. We also denote an atomic instance by a triple (G,r,c).

The difference between a nonatomic and an atomic instance, is that for a nonatomic one, each
commodity represents a larger population of individuals, each of whom controls a negligible amount of
traffic, while in an atomic instance, each commodity represents a single player (hence atomic) who must
route a significant amount of traffic on a single path.

In atomic unsplittable instances, there are k players. The hypothesis of being unsplittable means that
players cannot route flow on several different paths, but must instead select a single path for routing.
Different players can have identical source-sink pairs. The strategy set of player i is the set Pi of si → ti
paths, and if player i chooses the path P, then it routes its ri units of traffic on P. A flow is a nonnegative
vector indexed by players and paths, with f (i)P denoting the amount of traffic that player i routes on the
si → ti path P. A flow is feasible for an atomic instance if it corresponds to a strategy profile:for each
player i, f (i)P equals ri for exactly one si → ti path and equals 0 for all other paths. The cost cP( f ) of a
path P with respect to a flow f and the cost C(f) of a flow f are defined as for nonatomic instances. An
equilibrium flow of an atomic selfish routing game is a feasible flow such that no player can strictly
decrease its cost by choosing a different path for its traffic.

Definition 8.1. (Atomic equilibrium flow) Let f be a feasible flow for the atomic instance (G,r,c). The
flow f is an equilibrium flow if for every player i ∈ 1, ..., k and every pair P, P̃ ∈ Pi of si → ti paths with
f (i)P > 0, cP( f ) 6 cP̃( f̃ ), where f̃ is the flow identical to f except that f̃ (i)P = 0 and f̃ (i)P̃ = ri.

This kind of equilibria are called "social Wardrop equilibria" in opposition to "selfish Wardrop
equilibrium" for which no player can lower his cost by unilaterally changing routes (i.e deviating).
Wardrop equilibria are used in complex networks with n players (n can be arbitrary large), and are
considered as Nash equilibrium in the limite case for which each player represents an infinitesimal part
of the traffic.
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Remark 8.2. Different equilibrium flows of an atomic instance can have different costs, while all
equilibrium flows of a nonatomic instance have equal cost. Secondly, the POA in atomic instances can
be larger than in nonatomic ones.

The following example is an atomic instance that has affine cost functions -of the form ax+b- and its
POA is 5/2.

Example 8.3. (The AAE example : Awerbuch-Azar-Epstein (2005))

Consider the bidirected oriented triangle network shown in this figure :

Figure 5: The AAE example (2005)

with affine costs (either null or equal to x). Assume that there are four players each of whom needs to route
one unit of traffic. The first two have source u and sinks v and w, respectively, the third has source v and sink w,
and the fourth has source w and sink v. Each player has two strategies : whether he can choose a one-hop path,
which means he can pass through one and only one vertex, or he can choose a two hoop path, for which he can pass
through two vertices. In the optimal flow, all players route on their one-hop paths, and the total cost of this flow is
4 because each one will have a cost of one unit. This is an equilibrium flow because a flow can’t have a cost strictly
inferior to 4. On the other hand, if all players route on their two-hop paths, then we obtain a second equilibrium
flow. Since the first two players each incur three units of cost and the last two players each incur two units of cost,
this equilibrium flow has a cost of 10. The POA of this instance is therefore 10/4=2.5.

Proposition 8.4. In atomic instances with affine cost functions, different equilibrium flows can have different
costs, and the POA can be as large as 5/2.

Recall that equilibrium flows for atomic instances correspond to pure-strategy Nash equilibria, which
do not always exist in arbitrary finite games. They don’t always exist either in atomic selfish routing
games.

Remark 8.5. Instances in which all players route the same amount of traffic are called unweighted. They
admit at least one equilibrium flow (see next section for the proof).

8.2 Existence of equilibrium flow

We now consider equilibrium flows in atomic instances, note that an atomic instance doesn’t necessarily
admit an equilibrium flow, so in order to avoid this problem, we can add restrictions on the atomic
instances model so that equilibrium flows are guaranteed to exist. We can also define an other equilib-
rium concept so that an equilibrium exists in every atomic instance.

The following theorem establishes the existence of equilibrium flows in atomic instances in which all
players control the same amount of traffic.

Theorem 8.6. (Existence of equilibrium flow)
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Let (G,r,c) be an atomic instance in which every traffic amount ri is equal to a common positive value R. (This
will be used in the proof to show that if every player i deviates, he will transfer his one unit of flow R from path P
to path P̃).Then (G,r,c) admits at least one equilibrium flow.

Proof : To prove the existence of an equilibrium flow, we prove that any global minimum of Φa is an
equilibrium flow. We can obtain the proof of this theorem by discretizing the potential function (1) for
non atomic instances and the proof of theorem (5.1)(a). Assume for simplicity that R=1. Set

Φa( f ) = ∑e∈E ∑
fe
i=1 ce(i) (3)

for every feasible flow f. Note that Φa is the same as the previous potential function Φ for nonatomic
instances, except that the integral

∫ fe
0 ce(x)dx has been replaced by the sum ∑

fe
i=1 ce(i). Since that the

atomic instance (G,r,c) has a finite number of players, and each of these has a finite number of strategies,
there are only a finite number of possible flows. Hence, since, we are in finite euclidean space, a global
minimum of the potential function Φa exists, call it f. Now, we prove that f is an equilibrium flow
in (G,r,c). Assume by contradiction that f is not an equilibrium flow, then the player i could strictly
decrease its cost by deviating from the path P to the path P̃, yielding the new flow f̃ (strictly because
according to the definition, it is an equilibrium flow if all other paths have higher or equal cost. For
a flow to be a nonequilibrium flow, at least one alternative path must have strictly lower cost). In
other words, we assume that there is a flow f̃ where one player chooses an alternative path P̃ with
lower cost. This means cP̃( f̃ ) < cP( f ) ⇔ 0 > cP̃( f̃ )− cP( f ) The edges of P̃ are either in P or they are
not. P and P̃ might have some edges in common, the cost of those edges does not change as player i
changes to path P̃ . This means that only the edges that they have not in common should be considered.
Note that if player i deviates, he transfers his one unit of flow (R=1) from path P to path P̃. This
means that edges that are now used now has an extra flow of one unit, so they now have a total flow
fe + 1. Hence, edges that are not anymore used have a total flow of fe − 1, and we then have that
0 > cP̃( f̃ )− cP( f ) = ∑e∈P̃\P ce( fe + 1)−∑e∈P\P̃ ce( fe).

Now, let’s consider Φa. The new edges in P̃ (i.e e ∈ P̃ \ P) add to Φa( f ) one extra term ce( fe + 1)
(+1 because R = 1). The edges that are not anymore in P̃ , i.e e ∈ P \ P̃ subtracts the term ce( fe)

of Φa.The sum for common edges in P ∩ P̃ remains the same, i.e. : ∑
f̃e
i=1 ce(i) = ∑

fe
i=1 ce(i). Hence,

Φa( f̃ )− Φa( f ) = ∑e∈P̃\P ce( fe + 1)− ∑e∈P\P̃ ce( fe). So, Φa( f̃ )− Φa( f ) < 0. Since this expression is
negative, the potential function value of f̃ is strictly less than that of f, which contradicts our choice of f
as the global minimum of the potential function Φa. Therefore, f is an equilibrium flow of (G,r,c).

8.3 Bounding the POA in atomic instances

Lemma 8.7. (Equilibrium condition)
Let (G,r,c) be an atomic instance in which each edge e has an affine cost function ce(x) = aex + be with

ae,be > 0. Let f and f ∗ be equilibrium and optimal flows, respectively, for (G,r,c). Let player i use the path Pi in f
and the path P∗i in f ∗. Then

∑e∈Pi
(ae fe + be) 6 ∑e∈P∗i

(ae( fe + ri) + be) where ri is the same amount of traffic that every player has to direct.

Proof : Follows from the definition of an equilibrium flow in an atomic instance. f ∗e = fe if e ∈ Pi ∩ P∗i
and f ∗e = fe + ri if e ∈ P∗i \Pi. This lemma is true not only for f being the optimal flow, but for any
feasible flow.

The inequality of Lemma 8.7 holds for each player. With these inequalities, we can derive Lemma
8.8:

Lemma 8.8. (Equilibrium inequality)
With the same assumptions and notations as in Lemma 8.7,
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C( f ) 6 C( f ∗) + ∑
e∈E

ae fe f ∗e

Proof : For each player i, multiply the inequality of Lemma 8.7 by ri :

ri ∑e∈Pi
(ae fe + be) 6 ri ∑e∈P∗i

(ae( fe + ri) + be) (4)

Summing the k inequality of (4) (one inequality for each player), we obtain :

k

∑
i=1

ri ∑
e∈Pi

(ae fe + be) = C( f ) 6
k

∑
i=1

ri ∑
e∈P∗i

(ae( fe + ri) + be)

On the right term of the inequality, ri 6 f ∗e for any edge e ∈ P∗i . If only player i routed his traffic over edge e,
then ri = f ∗e . If more players use this edge, then ri 6 f ∗e . Therefore:

k

∑
i=1

ri ∑
e∈P∗i

(ae( fe + ri) + be) 6
k

∑
i=1

ri ∑
e∈P∗i

(ae( fe + f ∗e ) + be) = ∑
e∈E

(ae( fe + f ∗e ) + be) f ∗e

The equality follows by reversing the order of summation (since we sum over all edges in P∗i , we multiply each
sum by f ∗e ).

C( f ) 6 ∑
e∈E

(ae( fe + f ∗e ) + be) f ∗e = ∑
e∈E

(ae f ∗e + be) f ∗e + ∑
e∈E

ae fe f ∗e = C( f ∗) + ∑
e∈E

ae fe f ∗e

The last equality finished the proof. Note that one can consider ∑e∈E ae fe f ∗e as a sort of error term: how much do
the costs of any equilibrium flow and the optimal flow differ? This error term can be rewritten in terms of C(f) and
C( f ∗) which helps us bounding the price of anarchy.

Theorem 8.9. (The Price of Anarchy in affine weighted atomic instances)
If (G,r,c) is an atomic instance with affine cost functions, then the price of anarchy of (G,r,c) is at most

3+
√

5
2 ≈ 2.618.

Proof : Let f and f* denote equilibrium and optimal flow, respectively, for the atomic instance (G,r,c).
Assume that edge e has cost function ce(x) = aex + be for ae, be > 0. Apply the Cauchy-Schwarz in-
equality to the vectors

√
ae fee∈ E and

√
ae f ∗e e ∈ E to obtain : ∑e∈E

√
ae fe.
√

ae f ∗e = ∑e∈E ae fe f ∗e 6√
∑e∈E(

√
ae fe)2.

√
∑e∈E(

√
ae f ∗e )2 =

√
∑e∈E ae f 2

e .
√

∑e∈E ae( f ∗e )2 6
√

∑e∈E(ae f 2
e + be fe).

√
∑e∈E(ae( f ∗e )2 + be f ∗e ) =√

C( f ).
√

C( f ∗).The first inequality is the Cauchy-Schwartz inequality; the second inequality is true because
be fe, be f ∗e > 0. Combining this inequality with the inequality of Lemma 8.8, dividing by C(f), and rearrang-

ing gives: C( f ) 6 C( f ∗) + ∑e∈E ae fe f ∗e 6 C( f ∗) +
√

C( f ).
√
(C( f ∗)) =⇒ C( f )

C( f ∗) 6 1 +

√
C( f ).C( f ∗)
(C( f ∗))2 =

1 +

√
C( f )

C( f ∗) =⇒ C( f )
C( f ∗) − 1 6

√
C( f )

C( f ∗) . Set C( f )
C( f ∗) = X > 0, hence, X − 1 6

√
X =⇒ (X − 1)2 6

X =⇒ X2 − 3X + 1 6 0. A simple study in R+ of the 2nd degree polynomial X2 − 3X + 1 gives us :
X2 − 3X + 1 6 0 =⇒ X 6 3+

√
5

2 ≈ 2.618. Since X = C( f )
C( f ∗) = POA, this ends the proof of the theorem.
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