Propriétés asymptotiques des jeux répétés à somme nulle

Guillaume Vigeral

Équipe Combinatoire et Optimisation Université Pierre et Marie Curie

19 novembre 2009

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- Perspectives

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- 5 Perspectives

Définition

Un jeu stochastique à somme nulle est un 5-uplet (Ω, A, B, g, ρ) où:

- Ω est l'ensemble d'états
- A (resp. B) est l'ensemble d'actions du joueur 1 (resp. du joueur 2).
- $g: A \times B \times \Omega \rightarrow \mathbb{R}$ est la fonction de paiement
- $\rho: A \times B \times \Omega \to \Delta(\Omega)$ est la fonction de transition.

Déroulement du jeu

Un état initial ω_1 est donné, connu des deux joueurs. À chaque étape i:

- les joueurs observent l'état courant ω_i .
- En fonction de l'histoire passée, J_1 (resp. J_2) choisit une action mixte x_i dans $\Delta(A)$ (resp. y_i dans $\Delta(B)$).
- Une action pure a_i du joueur 1 (resp. b_i du joueur 2) est tirée aléatoirement suivant x_i (resp. y_i).
- Cela donne le paiement à l'étape $i g_i = g(a_i, b_i, \omega_i)$.
- Un nouvel état ω_{i+1} est tiré selon $\rho(a_i, b_i, \omega_i)$.

Paiement du jeu répété

Il y a plusieurs manières d'évaluer un paiement à partir d'une histoire infinie :

- $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ est le paiement du jeu répété n fois.
- $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ est le paiement du jeu λ –escompté.

On note $v_n(\omega)$ et $v_{\lambda}(\omega)$ respectivement la valeur de ces jeux pour un état initial ω .

Ainsi v_n et v_λ sont des fonctions de Ω dans \mathbb{R} .

Paiement du jeu répété

Il y a plusieurs manières d'évaluer un paiement à partir d'une histoire infinie :

- $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ est le paiement du jeu répété n fois.
- $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ est le paiement du jeu λ escompté.

On note $v_n(\omega)$ et $v_{\lambda}(\omega)$ respectivement la valeur de ces jeux pour un état initial ω .

Ainsi v_n et v_λ sont des fonctions de Ω dans \mathbb{R} .

Paiement du jeu répété

Il y a plusieurs manières d'évaluer un paiement à partir d'une histoire infinie :

- $\frac{1}{n}\sum_{i=1}^{n}g_{i}$ est le paiement du jeu répété n fois.
- $\lambda \sum_{i=1}^{+\infty} (1-\lambda)^{i-1} g_i$ est le paiement du jeu λ escompté.

On note $v_n(\omega)$ et $v_{\lambda}(\omega)$ respectivement la valeur de ces jeux pour un état initial ω .

Ainsi v_n et v_λ sont des fonctions de Ω dans \mathbb{R} .

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- 2 L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- 6 Perspectives

Structure récursive

Les valeurs v_n (resp. v_λ) satisfont une relation de récurrence (resp. de point fixe) :

$$\begin{array}{lll} v_n(\boldsymbol{\omega}) & = & \displaystyle \sup_{\boldsymbol{x} \in \Delta(A)} \inf_{\boldsymbol{y} \in \Delta(B)} \left\{ \frac{1}{n} g(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}) + \frac{n-1}{n} E_{\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega})}(\boldsymbol{v}_{n-1}) \right\} \\ & = & \displaystyle \inf_{\boldsymbol{y} \in \Delta(B)} \sup_{\boldsymbol{x} \in \Delta(A)} \left\{ \frac{1}{n} g(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}) + \frac{n-1}{n} E_{\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega})}(\boldsymbol{v}_{n-1}) \right\} \\ v_{\boldsymbol{\lambda}}(\boldsymbol{\omega}) & = & \displaystyle \sup_{\boldsymbol{x} \in \Delta(A)} \inf_{\boldsymbol{y} \in \Delta(B)} \left\{ \lambda g(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}) + (1-\lambda) E_{\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega})}(\boldsymbol{v}_{\boldsymbol{\lambda}}) \right\} \\ & = & \displaystyle \inf_{\boldsymbol{y} \in \Delta(B)} \sup_{\boldsymbol{x} \in \Delta(A)} \left\{ \lambda g(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega}) + (1-\lambda) E_{\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\omega})}(\boldsymbol{v}_{\boldsymbol{\lambda}}) \right\} \end{array}$$

Soit ${\mathscr F}$ l'ensemble des fonctions bornées de Ω dans ${\mathbb R}$; on définit Ψ de ${\mathscr F}$ dans lui même par

$$\begin{split} \Psi(f)(\pmb{\omega}) &= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\} \\ &= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\}. \end{split}$$

On considère aussi la famille d'opérateurs $\Phi(\alpha, \cdot)$ définie pour $\alpha \in]0,1]$ par la formule $\Phi(\alpha,f) = \alpha \Psi\left(\frac{1-\alpha}{\alpha}f\right)$ et avec $\Phi(0,f) = \lim_{\alpha \to 0} \Phi(\alpha,f)$ l'opérateur de récession de Ψ .

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda})$$

Soit $\mathscr F$ l'ensemble des fonctions bornées de Ω dans $\mathbb R$; on définit Ψ de $\mathscr F$ dans lui même par

$$\begin{split} \Psi(f)(\pmb{\omega}) &= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\} \\ &= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\}. \end{split}$$

On considère aussi la famille d'opérateurs $\Phi(\alpha,\cdot)$ définie pour $\alpha\in]0,1]$ par la formule $\Phi(\alpha,f)=\alpha\Psi\left(\frac{1-\alpha}{\alpha}f\right)$ et avec $\Phi(0,f)=\lim_{\alpha\to 0}\Phi(\alpha,f)$ l'opérateur de récession de $\Psi.$

Les valeurs vérifient alors les équations

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

Soit $\mathscr F$ l'ensemble des fonctions bornées de Ω dans $\mathbb R$; on définit Ψ de $\mathscr F$ dans lui même par

$$\begin{split} \Psi(f)(\pmb{\omega}) &= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\} \\ &= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\}. \end{split}$$

On considère aussi la famille d'opérateurs $\Phi(\alpha,\cdot)$ définie pour $\alpha\in]0,1]$ par la formule $\Phi(\alpha,f)=\alpha\Psi\left(\frac{1-\alpha}{\alpha}f\right)$ et avec $\Phi(0,f)=\lim_{\alpha\to 0}\Phi(\alpha,f)$ l'opérateur de récession de $\Psi.$ Les valeurs vérifient alors les équations

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda})$$

Soit ${\mathscr F}$ l'ensemble des fonctions bornées de Ω dans ${\mathbb R}$; on définit Ψ de ${\mathscr F}$ dans lui même par

$$\begin{split} \Psi(f)(\pmb{\omega}) &= \sup_{x \in \Delta(A)} \inf_{y \in \Delta(B)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\} \\ &= \inf_{y \in \Delta(B)} \sup_{x \in \Delta(A)} \left\{ g(x,y,\pmb{\omega}) + E_{\rho(x,y,\pmb{\omega})}(f) \right\}. \end{split}$$

On considère aussi la famille d'opérateurs $\Phi(\alpha,\cdot)$ définie pour $\alpha\in]0,1]$ par la formule $\Phi(\alpha,f)=\alpha\Psi\left(\frac{1-\alpha}{\alpha}f\right)$ et avec $\Phi(0,f)=\lim_{\alpha\to 0}\Phi(\alpha,f)$ l'opérateur de récession de $\Psi.$ Les valeurs vérifient alors les équations

$$v_n = \Phi\left(\frac{1}{n}, v_{n-1}\right) = \frac{\Psi^n(0)}{n}$$

$$v_{\lambda} = \Phi(\lambda, v_{\lambda})$$

L'opérateur Ψ est topical : il satisfait ces deux propriétés :

Monotonie

$$f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$$

Homogénéité

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$$

Ces deux propriétés entraînent que Ψ est contractant pour la norme infinie

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

et donc que $\Phi(\alpha,\cdot)$ est $1-\alpha$ contractant pour la norme infinie

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

ce qui entraîne que $v_{\lambda} = \Phi^{\infty}(\lambda, f)$ pour tout f.

L'opérateur Ψ est topical : il satisfait ces deux propriétés :

Monotonie

$$f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$$

Homogénéité

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) +$$

Ces deux propriétés entraînent que Ψ est contractant pour la norme infinie

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

et donc que $\Phi(lpha,\cdot)$ est 1-lpha contractant pour la norme infinie

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

ce qui entraîne que $v_{\lambda} = \Phi^{\infty}(\lambda, f)$ pour tout f.

L'opérateur Ψ est topical : il satisfait ces deux propriétés :

Monotonie

$$f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$$

Homogénéité

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$$

Ces deux propriétés entraînent que Ψ est contractant pour la norme infinie

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\circ}$$

et donc que $\Phi(\alpha,\cdot)$ est $1-\alpha$ contractant pour la norme infinie

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

ce qui entraı̂ne que $v_{\lambda} = \Phi^{\infty}(\lambda, f)$ pour tout f.

L'opérateur Ψ est topical : il satisfait ces deux propriétés :

$$f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$$

Homogénéité

$$c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$$

Ces deux propriétés entraînent que Ψ est contractant pour la norme infinie

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

et donc que $\Phi(lpha,\cdot)$ est 1-lpha contractant pour la norme infinie

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

ce qui entraîne que $v_{\lambda} = \Phi^{\infty}(\lambda, f)$ pour tout f.

L'opérateur Ψ est topical : il satisfait ces deux propriétés :

• Monotonie
$$f_1 \leq f_2 \implies \Psi(f_1) \leq \Psi(f_2)$$

• Homogénéité $c \in \mathbb{R} \implies \Psi(f+c) = \Psi(f) + c$

Ces deux propriétés entraînent que Ψ est contractant pour la norme infinie

$$\|\Psi(f) - \Psi(g)\|_{\infty} \le \|f - g\|_{\infty}$$

et donc que $\Phi(\alpha,\cdot)$ est $1-\alpha$ contractant pour la norme infinie

$$\|\Phi(\alpha, f) - \Phi(\alpha, g)\|_{\infty} \le (1 - \alpha)\|f - g\|_{\infty}$$

ce qui entraı̂ne que $v_{\lambda} = \Phi^{\infty}(\lambda, f)$ pour tout f.

Structure récursive générale

Cette structure récursive est vérifiée dans un cadre très vaste :

- Jeux stochastiques
- Jeux à information incomplète
- Jeux stochastiques à information incomplète
- Cadre plus vaste encore : structure récursive générale (Mertens, Mertens Sorin Zamir)

Comportement asymptotique

On se pose le problème du comportement asymptotique de v_n quand $n \to +\infty$ et de celui de v_λ quand $\lambda \to 0$. Les limites existent elles, sont elles les mêmes ?

On sait que les réponses sont positives dans de nombreux cas :

- (Bewley-Kohlberg) Jeux stochastiques finis (Ω , A et B finis)
- (Kohlberg) Jeux absorbants
- (Everett) Jeux récursifs
- (Aumann-Maschler, Mertens-Zamir) Jeux répétés à information incomplète et signaux standards.
- (Renault) Jeux sur des chaînes de Markov avec information incomplète d'un coté.
- etc...

Comportement asymptotique

On se pose le problème du comportement asymptotique de v_n quand $n \to +\infty$ et de celui de v_λ quand $\lambda \to 0$. Les limites existent elles, sont elles les mêmes ?

On sait que les réponses sont positives dans de nombreux cas :

- (Bewley-Kohlberg) Jeux stochastiques finis (Ω , A et B finis)
- (Kohlberg) Jeux absorbants
- (Everett) Jeux récursifs
- (Aumann-Maschler, Mertens-Zamir) Jeux répétés à information incomplète et signaux standards.
- (Renault) Jeux sur des chaînes de Markov avec information incomplète d'un coté.
- etc...

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- 3 Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continue
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- 6 Perspectives

Proposition (Kohlberg Neyman)

Pour tout opérateur contractant $\Psi: X \to X$,

$$\lim_{n \to +\infty} ||v_n|| = \lim_{\lambda \to 0} ||v_\lambda|| = \inf_{x \in X} ||\psi(x) - x||$$

Ceci implique que v_n et v_λ convergent vers la même limite pour tout Ψ contractant de $\mathbb R$ dans lui-même.

Proposition (Gaubert Gunawardena ; V.

Pour tout opérateur de Shapley d'un jeu avec un nombre fini d'états, il existe au moins deux états ω_1 et ω_2 tels que les quantités $v_n(\omega_1)$, $v_n(\omega_2)$, $v_\lambda(\omega_1)$ and $v_\lambda(\omega_2)$ convergent.

Proposition (Kohlberg Neyman)

Pour tout opérateur contractant $\Psi: X \to X$,

$$\lim_{n \to +\infty} ||v_n|| = \lim_{\lambda \to 0} ||v_\lambda|| = \inf_{x \in X} ||\psi(x) - x||$$

Ceci implique que v_n et v_λ convergent vers la même limite pour tout Ψ contractant de $\mathbb R$ dans lui-même.

Proposition (Gaubert Gunawardena ; V.

Pour tout opérateur de Shapley d'un jeu avec un nombre fini d'états, il existe au moins deux états ω_1 et ω_2 tels que les quantités $v_n(\omega_1)$, $v_n(\omega_2)$, $v_\lambda(\omega_1)$ and $v_\lambda(\omega_2)$ convergent.

Proposition (Kohlberg Neyman)

Pour tout opérateur contractant $\Psi: X \to X$,

$$\lim_{n \to +\infty} ||v_n|| = \lim_{\lambda \to 0} ||v_\lambda|| = \inf_{x \in X} ||\psi(x) - x||$$

Ceci implique que v_n et v_λ convergent vers la même limite pour tout Ψ contractant de $\mathbb R$ dans lui-même.

Proposition (Gaubert Gunawardena; V.)

Pour tout opérateur de Shapley d'un jeu avec un nombre fini d'états, il existe au moins deux états ω_1 et ω_2 tels que les quantités $v_n(\omega_1)$, $v_n(\omega_2)$, $v_\lambda(\omega_1)$ and $v_\lambda(\omega_2)$ convergent.

Proposition (Kohlberg Neyman)

Pour tout opérateur contractant $\Psi: X \to X$,

$$\lim_{n \to +\infty} ||v_n|| = \lim_{\lambda \to 0} ||v_\lambda|| = \inf_{x \in X} ||\psi(x) - x||$$

Ceci implique que v_n et v_λ convergent vers la même limite pour tout Ψ contractant de $\mathbb R$ dans lui-même.

Proposition (Gaubert Gunawardena; V.)

Pour tout opérateur de Shapley d'un jeu avec un nombre fini d'états, il existe au moins deux états ω_1 et ω_2 tels que les quantités $v_n(\omega_1)$, $v_n(\omega_2)$, $v_\lambda(\omega_1)$ and $v_\lambda(\omega_2)$ convergent.

Résultats négatifs

- (Kohlberg Neyman) Il existe un opérateur contractant de \mathbb{R}^2 dans lui-même tel que ni ν_n ni ν_λ ne converge.
- (Gunawardena Keane) II existe un jeu stochastique à 3 états (mais à paiement non borné) tel que ni v_n ni v_λ ne converge.
- (Lehrer Sorin) Il existe un jeu à un joueur avec Ω infini et A fini tel que v_n et v_λ convergent simplement, mais vers des limites différentes.

Table des matières

- 1 Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- 3 Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- 5 Perspectives

Condition uniforme

Lemme (Rosenberg Sorin)

Soit Ψ monotone et homogène additivement (MHa). Supposons que $f \in \mathscr{F}$ vérifie

$$\Psi(Lf) \leq (L+1)f$$
 pour tout L assez grand

ou de manière équivalente

$$\Phi(\lambda, f) \le f$$
 pour tout λ assez petit

alors

$$\limsup_{n \to +\infty} v_n \leq f
\limsup_{\lambda \to 0} v_{\lambda} \leq f$$

Conséquence

On définit

$$\mathscr{L}^+ = \{ f \in \mathscr{F}, \ \Psi(Lf) \leq (L+1)f \text{ pour tout } L \text{ assez grand } \}$$

et de façon symétrique

$$\mathscr{L}^- = \{ f \in \mathscr{F}, \ \Psi(Lf) \ge (L+1)f \text{ pour tout } L \text{ assez grand } \}.$$

Le lemme précédent entraîne alors

Corollaire

Sif appartient à l'intersection
$$\mathscr{L}^+ \cap \mathscr{L}^-$$
, alors $f = \lim_{n \to +\infty} v_n = \lim_{\lambda \to 0} v_{\lambda}$.

Condition non-uniforme

On définit

et de façon symétrique

$$\mathscr{S}^- = \{ f \in \mathscr{F}, \forall \omega \in \Omega, \ \Psi(Lf)(\omega) \ge (L+1)f(\omega) \}$$

pour tout L assez grand $\}$

Proposition (Rosenberg Sorin)

Supposons Ω compact. Alors if y a au plus une fonction continue dans l'intersection $\overline{\mathscr{F}^+} \cap \overline{\mathscr{F}^-}$.

Condition non-uniforme

On définit

$$\mathscr{S}^{+} = \{ f \in \mathscr{F}, \forall \omega \in \Omega, \ \Psi(Lf)(\omega) \leq (L+1)f(\omega)$$
 pour tout L assez grand $\}$

et de façon symétrique

$$\mathscr{S}^- = \{ f \in \mathscr{F}, \forall \omega \in \Omega, \ \Psi(Lf)(\omega) \ge (L+1)f(\omega) \}$$

pour tout L assez grand $\}$

Proposition (Rosenberg Sorin)

Supposons Ω compact. Alors if y a au plus une fonction continue dans l'intersection $\overline{\mathscr{S}^+} \cap \overline{\mathscr{S}^-}$.

Opérateur dérivé

Ces ensembles s'expriment facilement à l'aide de l'opérateur dérivé défini par

$$\varphi(f)(\omega) = \lim_{\alpha \to 0} \frac{\Phi(\alpha, f)(\omega) - \Phi(0, f)(\omega)}{\alpha}$$

Alors

 $\overline{\mathscr{S}^+} = \{f, \Phi(0,f) \leq f \text{ et } \Phi(0,f)(\omega) = f(\omega) \implies \varphi(f)(\omega) \leq 0\}$. Tout point d'accumulation v de v_n ou v_λ vérifie nécessairement $v = \Phi(0,v)$ mais il peut y avoir beaucoup de tels points fixes. Mais si φ change de signe en v, v est nécessairement égal à $\lim v_n$ et $\lim v_\lambda$.

Opérateur dérivé

Ces ensembles s'expriment facilement à l'aide de l'opérateur dérivé défini par

$$\varphi(f)(\omega) = \lim_{\alpha \to 0} \frac{\Phi(\alpha, f)(\omega) - \Phi(0, f)(\omega)}{\alpha}$$

Alors

$$\overline{\mathscr{S}^+} = \left\{ f, \Phi(0,f) \leq f \text{ et } \Phi(0,f)(\pmb{\omega}) = f(\pmb{\omega}) \implies \varphi(f)(\pmb{\omega}) \leq 0 \right\}.$$

Tout point d'accumulation v de v_n ou v_λ vérifie nécessairement $v = \Phi(0, v)$ mais il peut y avoir beaucoup de tels points fixes. Mais si φ change de signe en v, v est nécessairement égal à $\lim v_n$ et $\lim v_\lambda$.

Opérateur dérivé

Ces ensembles s'expriment facilement à l'aide de l'opérateur dérivé défini par

$$\varphi(f)(\omega) = \lim_{\alpha \to 0} \frac{\Phi(\alpha, f)(\omega) - \Phi(0, f)(\omega)}{\alpha}$$

Alors

 $\overline{\mathscr{S}^+} = \{f, \Phi(0,f) \leq f \text{ et } \Phi(0,f)(\pmb{\omega}) = f(\pmb{\omega}) \implies \varphi(f)(\pmb{\omega}) \leq 0\}$. Tout point d'accumulation v de v_n ou v_λ vérifie nécessairement $v = \Phi(0,v)$ mais il peut y avoir beaucoup de tels points fixes. Mais si φ change de signe en v, v est nécessairement égal à $\lim v_n$ et $\lim v_\lambda$.

Applications

En utilisant ces propositions, la convergence de v_n et v_λ vers une limite commune a été démontrée dans les cas suivants :

- (Rosenberg Sorin) Jeux absorbants.
- (Rosenberg Sorin) Jeux à information incomplète et signaux standards.
- (Rosenberg) Jeux absorbants à observation incomplète d'un côté.

Applications (suite)

Proposition (V.)

Pour tout jeu à 3 états, avec des ensembles d'actions compacts et des fonctions de paiement et de de transition continues, v_n et v_{λ} convergent vers une limite commune.

On trouve également une démonstration via l'approche opératorielle pour les jeux récursifs :

Proposition (V.)

Pour tout jeu récursif à ensemble d'états finis, avec des ensembles d'actions compacts et des fonctions de paiement et de de transition continues, v_n et v_λ convergent vers une limite commune.

Applications (suite)

Proposition (V.)

Pour tout jeu à 3 états, avec des ensembles d'actions compacts et des fonctions de paiement et de de transition continues, v_n et v_{λ} convergent vers une limite commune.

On trouve également une démonstration via l'approche opératorielle pour les jeux récursifs :

Proposition (V.)

Pour tout jeu récursif à ensemble d'états finis, avec des ensembles d'actions compacts et des fonctions de paiement et de de transition continues, v_n et v_λ convergent vers une limite commune.

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- 6 Perspectives

Considérons le jeu stochastique à 0 joueurs et 2 états suivant : les états ont un paiement de 0 et 1 respectivement, et la transition est déterministe de l'un à l'autre. Les valeurs v_n et v_λ

convergent vers
$$\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$
, et

$$\Psi\begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_0 + 1 \end{pmatrix}$$

$$\mathcal{L}^+ = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \ge 1 \right\}$$

$$\mathcal{L}^- = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \le 0 \right\}$$

donc
$$\overline{\mathscr{L}^+} \cap \overline{\mathscr{L}^-} = \emptyset$$
!

Considérons le jeu stochastique à 0 joueurs et 2 états suivant : les états ont un paiement de 0 et 1 respectivement, et la transition est déterministe de l'un à l'autre. Les valeurs v_n et v_λ convergent vers $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$, et

$$\Psi\begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_0 + 1 \end{pmatrix}$$

$$\mathcal{L}^+ = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \ge 1 \right\}$$

$$\mathcal{L}^- = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \le 0 \right\}$$

donc $\overline{\mathcal{L}^+} \cap \overline{\mathcal{L}^-} = \emptyset$

Considérons le jeu stochastique à 0 joueurs et 2 états suivant : les états ont un paiement de 0 et 1 respectivement, et la transition est déterministe de l'un à l'autre. Les valeurs v_n et v_λ convergent vers $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$, et

$$\Psi\begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_0 + 1 \end{pmatrix}
\mathcal{L}^+ = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \ge 1 \right\}
\mathcal{L}^- = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \le 0 \right\}.$$

donc $\overline{\mathcal{L}^+} \cap \overline{\mathcal{L}^-} = \emptyset$!

Considérons le jeu stochastique à 0 joueurs et 2 états suivant : les états ont un paiement de 0 et 1 respectivement, et la transition est déterministe de l'un à l'autre. Les valeurs v_n et v_λ convergent vers $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$, et

$$\Psi\begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_0 + 1 \end{pmatrix}
\mathcal{L}^+ = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \ge 1 \right\}
\mathcal{L}^- = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \le 0 \right\}.$$

donc $\overline{\mathscr{L}^+} \cap \overline{\mathscr{L}^-} = \emptyset$!

Un premier exemple (suite)

Considérons maintenant le jeu joué par blocs de deux étapes. Son opérateur de Shapley est

$$\Psi^2 \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} c_0 + 1 \\ c_1 + 1 \end{pmatrix}$$

donc les ensembles correspondants sont

$$\mathcal{L}_2^+ = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, \ c \ge 1 \right\}$$

$$\mathcal{L}_2^- = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, \ c \le 1 \right\}.$$

L'"operator approach" implique donc que dans ce jeu les valeurs convergent vers $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, et donc que les valeurs du jeu initial convergent vers $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$.

Un premier exemple (suite)

Considérons maintenant le jeu joué par blocs de deux étapes. Son opérateur de Shapley est

$$\Psi^2 \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} c_0 + 1 \\ c_1 + 1 \end{pmatrix}$$

donc les ensembles correspondants sont

$$\mathcal{L}_2^+ = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, \ c \ge 1 \right\}$$

$$\mathscr{L}_{2}^{-} = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, \ c \le 1 \right\}.$$

L'"operator approach" implique donc que dans ce jeu les valeurs convergent vers $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, et donc que les valeurs du jeu initial convergent vers $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$.

Un premier exemple (suite)

Considérons maintenant le jeu joué par blocs de deux étapes. Son opérateur de Shapley est

$$\Psi^2 \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} c_0 + 1 \\ c_1 + 1 \end{pmatrix}$$

donc les ensembles correspondants sont

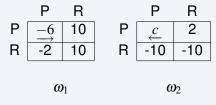
$$\mathcal{L}_2^+ = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, \ c \ge 1 \right\}$$

$$\mathscr{L}_{2}^{-} = \left\{ \begin{pmatrix} c \\ c \end{pmatrix}, c \leq 1 \right\}.$$

L'"operator approach" implique donc que dans ce jeu les valeurs convergent vers $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, et donc que les valeurs du jeu initial convergent vers $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$.

Un second exemple

On considère les jeux stochastiques à deux états suivants, où c est un paramètre dans [2,10]:



- Pour chaque $x \in \mathbb{R}^2$, $\Phi_c(0,x)$ et $\varphi_c(x)$ ne dépendent pas de c.
- En particulier les ensembles \mathscr{L}_c^+ et \mathscr{L}_c^- ne dépendent pas de c.
- Mais la limite de v_n et v_λ dépend de c!

La donnée de \mathcal{L}^+ et \mathcal{L}^- ne suffit donc pas à caractériser la valeur limite d'un jeu.

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- 5 Perspectives

Étude des itérés

Comme dans l'exemple précédent, en considérant non seulement les ensembles \mathscr{L}^+ et \mathscr{L}^- mais également les ensembles \mathscr{L}_m^+ et \mathscr{L}_m^- associés aux itérés Ψ^m , on prouve :

Proposition (V.)

Pour tout jeu stochastique avec un paiement borné, si un joueur contrôle les transitions, alors v_n et v_λ ont au plus un point d'accumulation.

Corollaire

En rajoutant des hypothèses (par exemple que l'espace d'état est précompact et que les valeurs sont équicontinues) on retrouve un résultat de Renault : convergence uniforme de v_n et v_λ vers une limite commune.

Idée de la démonstration

 Si le joueur 1 contrôle les transitions, alors l'opérateur de Shapley vérifie une inégalité de convexité

$$\forall t \in [0,1], \ \Psi(tx + (1-t)y) \le t\Psi(x) + (1-t)\Psi(y).$$

Ceci entraîne la croissance des pentes et donc que

$$\Psi(x+y) - \Psi(x) \le \frac{\Psi(x+Ly) - \Psi(x)}{L} \xrightarrow[L \to \infty]{} \Phi(0,y).$$

• On prend x = 0 et y = Lf avec $f = \Phi(0,f)$:

$$\Psi(Lf) \leq \Psi(0) + Lf$$

Idée de la démonstration (suite)

• En particulier, si $f \ge \Psi(0) = v_1$,

$$\Psi(Lf) \le v_1 + Lf \le (L+1)f$$

ce qui entraı̂ne $f \ge \limsup v_n$.

• Soit maintenant v point d'accumulation de v_n , $\varepsilon > 0$ et m tel que $v + \varepsilon \ge v_m$. En appliquant ce qui précède au jeu joué par blocs de m étapes on obtient $v + \varepsilon \ge \limsup v_{mn} = \limsup v_n$.

La démonstration pour v_{λ} est similaire.

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- 5 Perspectives

Lorsque λ est fixé

On rappelle que pour tout u_0 , $v_{\lambda} = \Phi^{\infty}(\lambda, u_0)$.

Proposition

Pour un λ fixé, la solution u de l'équation d'évolution

$$u(t) + u'(t) = \Phi(\lambda, u(t))$$
 ; $u(0) = u_0 \in X$ (1)

vérifie

$$\lim_{t\to+\infty}u(t)=v_{\lambda}$$

Cas non autonome

On s'intéresse maintenant aux équations du type

$$u(t) + u'(t) = \Phi(\lambda(t), u(t))$$
 ; $u(0) = u_0 \in X$ (2)

avec λ une fonction continue de \mathbb{R}^+ dans]0,1[.

Si la paramétrisation λ tend suffisamment lentement vers 0 on s'attend à ce que la solution u ait le même comportement asymptotique que la famille v_{λ} .

Cas non autonome

On s'intéresse maintenant aux équations du type

$$u(t) + u'(t) = \Phi(\lambda(t), u(t))$$
 ; $u(0) = u_0 \in X$ (2)

avec λ une fonction continue de \mathbb{R}^+ dans]0,1[. Si la paramétrisation λ tend suffisamment lentement vers 0 on s'attend à ce que la solution u ait le même comportement asymptotique que la famille v_{λ} .

Cas non autonome (suite)

Tout point d'accumulation ν de ν_n ou ν_λ est un point fixe de $\Phi(0,\cdot)$ mais il peut y avoir de nombreux points fixes. L'équation d'évolution (2) peut être vue comme une perturbation de

$$u(t) + u'(t) = \Phi(0, u(t))$$

et si la perturbation est suffisamment forte elle pourra selectionner un "bon" point fixe (voir Attouch Cominetti, Cominetti Peypouquet Sorin).

Proposition

Si $\lambda \notin \mathcal{L}^1$, le comportement asymptotique de (2) ne dépend pas de u_0 .

Hypothèse sur $\Phi(\cdot,x)$

On suppose à partir de maintenant :

Hypothèse

$$\exists C \in \mathbb{R}, \ \forall (\lambda, \mu) \in]0,1[^2, \ \forall x \in X,$$

$$\|\Phi(\lambda, x) - \Phi(\mu, x)\| \le C|\lambda - \mu|(1 + \|x\|) \tag{\mathscr{H}}$$

Remarque

Cette hypothèse est vérifiée dès que Ψ est l'opérateur de Shapley d'un jeu à paiement borné.

Hypothèse sur $\Phi(\cdot,x)$

On suppose à partir de maintenant :

Hypothèse

$$\exists C \in \mathbb{R}, \ \forall (\lambda, \mu) \in]0, 1[^2, \ \forall x \in X,$$
$$\|\Phi(\lambda, x) - \Phi(\mu, x)\| \le C|\lambda - \mu|(1 + \|x\|) \tag{\mathscr{H}}$$

Remarque

Cette hypothèse est vérifiée dès que Ψ est l'opérateur de Shapley d'un jeu à paiement borné.

Conséquences

Une première conséquence est que le comportement asymptotique de la solution de (2) ne dépend que du comportement asymptotique de la paramétrisation :

Proposition (V.)

Soient λ et $\widetilde{\lambda}$ deux paramétrisations, et soient u et \widetilde{u} les solutions correspondantes de (2). Si $\lambda \notin \mathcal{L}^1$, si u est bornée et si $\lambda(t) \sim \widetilde{\lambda}(t)$ alors $\lim_{t \to +\infty} \|u(t) - \widetilde{u}(t)\| = 0$

Corollaire

 $Si \lambda(t) \rightarrow \lambda_0 > 0 \ alors \ u(t) \rightarrow v_{\lambda_0}$

Conséquences

Une première conséquence est que le comportement asymptotique de la solution de (2) ne dépend que du comportement asymptotique de la paramétrisation :

Proposition (V.)

Soient λ et $\widetilde{\lambda}$ deux paramétrisations, et soient u et \widetilde{u} les solutions correspondantes de (2). Si $\lambda \notin \mathcal{L}^1$, si u est bornée et si $\lambda(t) \sim \widetilde{\lambda}(t)$ alors $\lim_{t \to +\infty} \|u(t) - \widetilde{u}(t)\| = 0$

Corollaire

Si
$$\lambda(t) \rightarrow \lambda_0 > 0$$
 alors $u(t) \rightarrow v_{\lambda_0}$.

Conséquences(II)

Proposition (V.)

$$\textit{Si}~\lambda \downarrow 0~\textit{est}~\mathscr{C}^1~\textit{et}~\textit{si}~\underset{t \to +\infty}{\lim} \frac{\lambda'(t)}{\lambda^2(t)} = 0,~\textit{alors}~\|u(t) - v_{\lambda(t)}\| \to 0$$

Si
$$\lim_{t \to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0$$
 alors le taux de convergence est en $O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right)$.

Corollaire

 $Si \ \lambda(t) \sim \frac{1}{t^{\alpha}} \ pour \ un \ \alpha \in]0,1[\ alors \ \left\| u(t) - v_{\lambda(t)} \right\| \to 0.$ En particulier v_{λ} converge lorque $\lambda \to 0$ si et seulement si u(t) converge quand $t \to +\infty$.

Conséquences(II)

Proposition (V.)

$$Si \lambda \downarrow 0 \ \textit{est} \ \mathscr{C}^1 \ \textit{et} \ \textit{si} \lim_{t \to +\infty} \frac{\lambda'(t)}{\lambda^2(t)} = 0, \ \textit{alors} \ \|u(t) - v_{\lambda(t)}\| \to 0$$

Si
$$\lim_{t \to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0$$
 alors le taux de convergence est en $O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right)$.

Corollaire

 $Si \ \lambda(t) \sim \frac{1}{t^{\alpha}} \ pour \ un \ \alpha \in]0,1[\ alors \ \left\| u(t) - v_{\lambda(t)} \right\| \to 0.$ En particulier v_{λ} converge lorque $\lambda \to 0$ si et seulement si u(t) converge quand $t \to +\infty$.

Conséquences(II)

Proposition (V.)

$$Si \ \lambda \downarrow 0 \ est \ \mathscr{C}^1 \ et \ si \lim_{t \to +\infty} \frac{\lambda'(t)}{\lambda^2(t)} = 0, \ alors \ \|u(t) - v_{\lambda(t)}\| \to 0$$
 $Si \lim_{t \to +\infty} \frac{\lambda''(t)}{\lambda(t)\lambda'(t)} = 0 \ alors \ le \ taux \ de \ convergence \ est \ en \ O\left(\frac{\lambda'(t)}{\lambda^2(t)}\right).$

Corollaire

Si $\lambda(t) \sim \frac{1}{t^{\alpha}}$ pour un $\alpha \in]0,1[$ alors $\left\|u(t)-v_{\lambda(t)}\right\| \to 0.$ En particulier v_{λ} converge lorque $\lambda \to 0$ si et seulement si u(t) converge quand $t \to +\infty$.

Retour au temps discret

Pour chaque suite λ_n dans]0,1[on définit la suite w_n dans X par

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition (V.)

Si
$$\lambda_n \to 0$$
 et si $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, alors $\|w_n - v_{\lambda_n}\| \to 0$

Corollaire

Si $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, et si w_n converge, alors v_λ converge vers la même limite.

Retour au temps discret

Pour chaque suite λ_n dans]0,1[on définit la suite w_n dans X par

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition (V.)

Si
$$\lambda_n \to 0$$
 et si $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, alors $\|w_n - v_{\lambda_n}\| \to 0$

Corollaire

Si $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, et si w_n converge, alors v_λ converge vers la même limite.

Retour au temps discret

Pour chaque suite λ_n dans]0,1[on définit la suite w_n dans X par

$$w_n = \Phi(\lambda_n, w_{n-1})$$

Proposition (V.)

Si
$$\lambda_n \to 0$$
 et si $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, alors $\|w_n - v_{\lambda_n}\| \to 0$

Corollaire

Si $\lambda_n \to 0$, $\frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \to 0$, et si w_n converge, alors v_{λ} converge vers la même limite.

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- 5 Perspectives

Notons
$$V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$$
.

On considère l'équation différentielle

$$U(t) + U'(t) = \Psi(U(t))$$
 ; $U(0) = 0$. (3)

autrement dit

$$U'(t) = -A(U(t))$$
 ; $U(0) = 0$

où l'on a noté A l'opérateur m-accrétif $Id - \Psi$.

Proposition (Miyadera Oharu

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||$$
$$\left|\left|\frac{U(n)}{n} - v_n\right|\right| \to 0.$$

Notons $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$.

On considère l'équation différentielle

$$U(t) + U'(t) = \Psi(U(t))$$
 ; $U(0) = 0$. (3)

autrement dit

$$U'(t) = -A(U(t))$$
 ; $U(0) = 0$.

où l'on a noté A l'opérateur m-accrétif $Id - \Psi$.

Proposition (Miyadera Oharu

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||$$

 $\left|\left|\frac{U(n)}{n} - v_n\right|\right| \to 0.$

Notons $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$.

On considère l'équation différentielle

$$U(t) + U'(t) = \Psi(U(t))$$
 ; $U(0) = 0$. (3)

autrement dit

$$U'(t) = -A(U(t))$$
 ; $U(0) = 0$.

où l'on a noté A l'opérateur m-accrétif $Id - \Psi$.

Proposition (Miyadera Oharu

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||.$$

$$||\frac{U(n)}{n} - v_n|| \to 0.$$

Notons $V_n = nv_n = \Psi^n(0) = \Psi(V_{n-1})$.

On considère l'équation différentielle

$$U(t) + U'(t) = \Psi(U(t))$$
 ; $U(0) = 0$. (3)

autrement dit

$$U'(t) = -A(U(t))$$
 ; $U(0) = 0$.

où l'on a noté A l'opérateur m-accrétif $Id - \Psi$.

Proposition (Miyadera Oharu)

$$||U(n) - V_n|| \le \sqrt{n} \cdot ||\Psi(0)||.$$

$$\left\|\frac{U(n)}{n}-v_n\right\|\to 0.$$

Par un changement de temps,

Proposition (V.)

Soit $\tau(t) = t + \ln(1+t)$, et soit u la solution de l'équation d'évolution

$$u(t) + u'(t) = \Phi\left(\frac{1}{2 + \tau^{-1}(t)}, u(t)\right).$$

Alors $||u(n)-v_n|| \rightarrow 0$.

Corollaire

Si l'hypothèse \mathcal{H} est vérifiée, alors la solution u de l'équation d'évolution

$$u(t) + u'(t) = \Phi\left(\frac{1}{t}, u(t)\right)$$

vérifie $||u(n) - v_n|| \to 0$.

Par un changement de temps,

Proposition (V.)

Soit $\tau(t) = t + \ln(1+t)$, et soit u la solution de l'équation d'évolution

$$u(t) + u'(t) = \Phi\left(\frac{1}{2 + \tau^{-1}(t)}, u(t)\right).$$

Alors $||u(n)-v_n|| \to 0$.

Corollaire

Si l'hypothèse \mathcal{H} est vérifiée, alors la solution u de l'équation d'évolution

$$u(t) + u'(t) = \Phi\left(\frac{1}{t}, u(t)\right)$$

vérifie $||u(n) - v_n|| \rightarrow 0$.

Table des matières

- Introduction
 - Jeux stochastiques à somme nulle
 - Structure récursive
- L'approche en terme d'opérateurs
 - Premiers résultats
 - Domination par des fonctions superharmoniques
- Itérés d'opérateurs MHA
 - Motivation
 - Résultats
- 4 Lien discret/continu
 - Équations d'évolution reliées à la famille v_{λ} .
 - Équations d'évolutions reliées à la famille v_n
- Perspectives

Jeux stochastiques avec ensembles d'action compacts

Problème de la convergence de v_n et v_λ dans le cas des jeux avec ensemble d'états fini, ensembles d'actions compacts, paiement et transition continues.

Idée : Étude des itérés de Ψ , mais aussi des translatés $f \to \Psi(f+k)-k$ (opérateur d'un jeu avec un paiement terminal).

Lien discret/continu

Idée : comme $\Phi(\alpha,f) = \Phi(0,f) + \alpha \varphi(f) + o(\alpha)$ (le o dépend de f), on pourrait transformer l'équation (2) en

$$u(t) + u'(t) = \Phi(0, u(t)) + \lambda(t)\varphi(u(t))$$
(4)

Mais φ n'est pas continue donc (4) n'a pas forcément de solutions. Et surtout on a vu que deux jeux peuvent avoir des valeurs limites différentes alors qu'ils ont même opérateur de récession et même opérateur dérivé!

Lien discret/continu

Idée : comme $\Phi(\alpha,f) = \Phi(0,f) + \alpha \varphi(f) + o(\alpha)$ (le o dépend de f), on pourrait transformer l'équation (2) en

$$u(t) + u'(t) = \Phi(0, u(t)) + \lambda(t)\varphi(u(t))$$
 (4)

Mais φ n'est pas continue donc (4) n'a pas forcément de solutions. Et surtout on a vu que deux jeux peuvent avoir des valeurs limites différentes alors qu'ils ont même opérateur de récession et même opérateur dérivé!

Jeu asymptote

L'idée est de voir les jeux finiment répétés ou escomptés comme des discrétisations d'un jeu joué en temps continu sur [0,1]. Cela a été fait explicitement par Sorin pour le "Big Match" et le "Big Match" avec information incomplète d'un côté. Est-ce possible dans un cadre plus général ?