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Abstract

We give new proofs of existence of the limit of the discounted values for two person zero-

sum games in the three following frameworks: absorbing, recursive, incomplete information.

The idea of these new proofs is to use some comparison criteria.
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1 Introduction

The purpose of this article is to present a unified approach to the existence of the limit value

for two person zero-sum discounted games. The main tools used in the proofs are

- the fact that the discounted value satisfies the Shapley equation [1],

- properties of accumulation points of the discounted values, and of the corresponding optimal

strategies,

- comparison of two accumulation points leading to uniqueness and characterization.
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We apply this program for three well known classes of games, each time covering the case where

action spaces are compact.

For absorbing games, the results are initially due to Kohlberg [2] for finitely many actions,

later extended in Rosenberg and Sorin [3] for the compact case. An explicit formula for the limit

was recently obtained in Laraki, [4] and we obtain a related one. The case of recursive games was

first handled in Everett [5], with a different notion of limit value involving asymptotic payoff on

plays. It was later shown by Sorin [6] that these results implied also the existence of the limit value

for two person zero-sum discounted games. The last class corresponds to games with incomplete

information, where the results were initially obtained in Aumann and Maschler [7] and Mertens

and Zamir [8] (including also the asymptotic study of the finitely repeated games). In that case,

we follow a quite similar approach to Laraki [9].

2 Model, Notations and Basic Lemmas

Let G be a two person zero-sum stochastic game defined by a finite state space Ω, compact

metric action spaces I and J for player 1 and 2 (with mixed extensions X = ∆(I) and Y = ∆(J),

respectively, where for a compact metric space C, ∆(C) denotes the set of Borel probabilities on

C, endowed with the weak-? topology ), a separately continuous real bounded payoff g on I×J×Ω

and a separately continuous transition ρ from I × J × Ω to ∆(Ω).

The game is played in discrete time. At stage t, given the state ωt, the payers choose moves

it ∈ I, jt ∈ J , the stage payoff is gt = g(it, jt, ωt) and the new state ωt+1 is selected according

to ρ(it, jt, ωt), and is announced to the players. Given λ ∈]0, 1], the total evaluation in the λ-

discounted game is
∑∞
t=1 λ(1− λ)t−1gt.

The Shapley operator Φ(λ, f) [1] is then defined, for λ ∈ [0, 1] and f in some closed subset F0

of the set of bounded functions from Ω to IR, by the formula

Φ(λ, f)(ω) = min
Y

max
X

{
λg(x, y, ω) + (1− λ)Eρ(x,y,ω)f(·)

}
= max

X
min
Y

{
λg(x, y, ω) + (1− λ)Eρ(x,y,ω)f(·)

}
,

where g and ρ are bilinearly extended to X × Y . For λ > 0, the only fixed point of Φ(λ, ·) is the

value vλ of the discounted game [1].

The sets of optimal actions of each player in the above formula are denoted by Xλ(f)(ω) and

Yλ(f)(ω). Let X = XΩ and, similarly, Y = Y Ω. For simplicity, for any (x,y) ∈ X × Y we
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denote ρ(x,y, ω) := ρ(x(ω),y(ω), ω). Moreover, define Xλ(f) :=
∏
ω∈ΩXλ(f)(ω) and Yλ(f) :=∏

ω∈Ω Yλ(f)(ω).

S denotes the set of fixed points of the projective operator Φ(0, .), and S0 is the set of accumulation

points of the family {vλ} as λ goes to 0.

The following lemmas are easy to establish in this finite state framework:

Lemma 2.1. S0 ⊂ S.

Lemma 2.2. Assume that vλn converges to v ∈ S0 and that some sequence of optimal actions

xλn ∈ Xλn(vλn) converges to x. Then x ∈ X0(v).

Lemma 2.3. Let v and v′ be in S and Ω1 = Argmax(v − v′). For any x ∈ X0(v), y ∈ Y0(v′),

and ω ∈ Ω1, the probability ρ(x,y, ω) is supported by Ω1.

Proof. Since v ∈ S and x ∈ X0(v):

v(ω) = Φ(0, v)(ω) ≤ Eρ(x,y,ω)v(·).

Using a dual inequality as well:

v(ω)− v′(ω) ≤ Eρ(x,y,ω)(v − v′)(·),

and the result follows.

3 Absorbing Games

We consider here a special class of stochastic games, as defined in Section 2. We are given two

separately continuous (payoff) functions g, g∗ from I × J to [−1, 1], and a separately continuous

(probability of absorption) function p from I × J to [0, 1] .

The repeated game with absorbing states is played in discrete time as follows. At stage t = 1, 2, ...

(if absorption has not yet occurred) player 1 chooses it ∈ I and, simultaneously, player 2 chooses

jt ∈ J :

(i) the payoff at stage t is g (it, jt);

(ii) with probability p∗ (it, jt) := 1 − p (it, jt), absorption is reached and the payoff in all future

stages s > t is g∗ (it, jt);

(iii) with probability p (it, jt), the situation is repeated at stage t+ 1.
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Recall that the asymptotic analysis for these games is due to Kohlberg [2] in the case where I

and J are finite.

As usual, denote X := ∆(I) and Y := ∆(J) ; g, p and p∗ are bilinearly extended to X×Y . Let

p∗(x, y)g∗(x, y) :=
∫
I×J p

∗(i, j)g∗(i, j)x(di)y(dj). g∗(x, y) is thus the expected absorbing payoff,

conditionally to absorption.

The Shapley operator of the game is then defined on IR by

Φ(λ, f) := min
y∈Y

max
x∈X
{λg(x, y) + (1− λ)(p(x, y)f + p∗(x, y)g∗(x, y)}

:= max
x∈X

min
y∈Y
{λg(x, y) + (1− λ)(p(x, y)f + p∗(x, y)g∗(x, y)} .

In this framework, we can prove a stronger version of Lemma 2.3:

Lemma 3.1.

i) Let f ∈ IR such that f ≥ Φ(0, f) and y ∈ Y0(f). Then, for any x ∈ X,

p∗(x, y) > 0 =⇒ f ≥ g∗(x, y).

ii) Let f ∈ IR such that f ≤ Φ(0, f) and x ∈ X0(f). Then, for any y ∈ Y ,

p∗(x, y) > 0 =⇒ f ≤ g∗(x, y).

Proof. We prove i). Given x ∈ X and y ∈ Y0(f),

f ≥ Φ(0, f) ≥ p(x, y)f + p∗(x, y)g∗(x, y)

and p(x, y) = 1− p∗(x, y), hence the result.

Given λ ∈]0, 1[, x ∈ X and y ∈ Y , let rλ(x, y) be the induced payoff in the discounted game

by the corresponding stationary strategies: rλ(x, y) := Ex,y
∑
λ(1− λ)t−1gt.

Lemma 3.2.

rλ(x, y) ≤


g(x, y), if p∗(x, y) = 0,

max(g(x, y), g∗(x, y)), if p∗(x, y) > 0.

Proof.

rλ(x, y) = λg(x, y) + (1− λ) [p(x, y)rλ(x, y) + p∗(x, y)g∗(x, y)] ;
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hence

rλ(x, y) =
λg(x, y) + (1− λ)p∗(x, y)g∗(x, y)

λ+ (1− λ)p∗(x, y)
.

The previous lemma implies:

Lemma 3.3. Let λ ∈]0, 1[, xλ ∈ Xλ(vλ) and y ∈ Y ; then

vλ ≤


g(xλ, y), if p∗(xλ, y) = 0,

max(g(xλ, y), g∗(xλ, y)), if p∗(xλ, y) > 0.

Proof. Since xλ is optimal in the discounted game, for any y ∈ Y ,

vλ ≤ rλ(xλ, y)

and the assertion follows from Lemma 3.2.

Combining the preceding lemmas yields:

Proposition 3.1. Assume that vλn → v and xλn → x with xλn ∈ Xλn(vλn). Let v′ such that

v′ ≥ Φ(0, v′) and y ∈ Y0(v′); then

v ≤ max(g(x, y), v′).

Proof. For any n and any y ∈ Y , Lemma 3.3 implies that either vλn ≤ g(xλn , y) or that

p∗(xλn , y) > 0, and vλn ≤ max(g(xλn , y), g∗(xλn , y)). In the second case, since y ∈ Y0(v′), the

first assertion in Lemma 3.1 ensures that g∗(xλn , y) ≤ v′, so in both cases we get the inequality

vλn ≤ max(g(xλn , y), v′). Passing to the limit yields the result.

Corollary 3.1. vλ converges as λ goes to 0.

Proof. Suppose, on the contrary, that there are two sequences vλn → v and vλ′n → v′ with v > v′.

Up to an extraction, one can assume that xλn ∈ Xλn(vλn) converges to x and, similarly, yλ′n ∈

Yλ′n(vλ′n) converges to y. By Lemma 2.2, v′ = Φ(0, v′) and y ∈ Y0(v′), so applying Proposition

3.1 we get v ≤ max(g(x, y), v′), hence v ≤ g(x, y). A dual reasoning yields v′ ≥ g(x, y), a

contradiction.

We now identify the limit v of the absorbing game.
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Definition 3.1. Define the function W : X × Y → IR by

W (x, y) := med

(
g(x, y), sup

x′;p∗(x′,y)>0

g∗(x′, y), inf
y′;p∗(x,y′)>0

g∗(x, y′)

)
,

where med(·, ·, ·) denotes the median of three numbers, with the usual convention that a supremum

(resp., an infimum) over an empty set equals −∞ (resp., +∞).

Corollary 3.2. The limit v is the value of the zero-sum game, denoted by Υ, with action spaces

X and Y and payoff W .

Proof. It is enough to show that v ≤ w := supx infyW (x, y) as a dual argument yields the

conclusion. Assume, by contradiction, that w < v.

Let ε > 0 with w+ 2ε < v. Consider x ∈ X0(v) an accumulation point of xλ ∈ Xλ(vλ) and let

y be an ε-best response to x in the game Υ. Lemma 3.1 ii) implies that

inf
y′;p∗(x,y′)>0

g∗(x, y′) ≥ v > w + ε ≥W (x, y),

so that

W (x, y) = max

(
g(x, y), sup

x′;p∗(x′,y)>0

g∗(x′, y)

)
.

Thus, sup
x′;p∗(x′,y)>0

g∗(x′, y) ≤ w + ε < v − ε and, similarly, g(x, y) < v − ε. The corresponding

inequalities hold with xλ, for λ small enough:

p∗(xλ, y)[g∗(xλ, y)− (v − ε)] ≤ 0, g(xλ, y) ≤ v − ε,

leading by Lemma 3.2 to vλ ≤ v − ε, a contradiction.

Remark 3.1. The proof of Corollary 3.2 establishes in itself the existence of the limit v (by doing

the same reasoning with any accumulation point of vλ).

Furthermore, notice that this proves that the game Υ has a value, which is not obvious a priori.

4 Recursive Games

Recursive games are another special class of stochastic games, as defined in Section 2. We are

given a finite set Ω = Ω0 ∪ Ω∗, two compact metric sets I and J , a payoff function g∗ from Ω∗ to

R, and a separately continuous function ρ from I × J × Ω0 to ∆(Ω). Ω∗ is the set of absorbing
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states, while Ω0 is the set of recursive states.

The repeated recursive game is played in discrete time as follows. At stage t = 1, 2, ..., if

absorbtion has not yet occurred and the current state is ωt ∈ Ω0, player 1 chooses it ∈ I and,

simultaneously, player 2 chooses jt ∈ J :

(i) the payoff at stage t is 0;

(ii) the state ωt+1 is chosen with probability distribution ρ (ωt+1|it, jt, ωt);

(iii) if ωt+1 ∈ Ω∗, absorbtion is reached and the payoff in all future stages s > t is g∗ (ωt+1);

(iv) if ωt+1 ∈ Ω0, absorbtion is not reached and the game continues.

The study of those recursive games was first done by Everett [5], who proved that the game

has a value when considering the asymptotic payoff on plays.

As before, denote X := ∆(I) and Y := ∆(J), X := XΩ and, similarly, Y = Y Ω ; ρ is bilinearly

extended to X×Y. Recall that in this framework, the Shapley operator is defined from F1 := RΩ0

to itself by

Φ(λ, f)(ω) := min
y∈Y

max
x∈X

{
(1− λ)

∑
ω′∈Ω

ρ(ω′|x, y, ω)f(ω′)

}

:= max
x∈X

min
y∈Y

{
(1− λ)

∑
ω′∈Ω

ρ(ω′|x, y, ω)f(ω′)

}
,

where, by convention, f(ω′) = g∗(ω′) whenever ω′ ∈ Ω∗.

Proposition 4.1. Let v ∈ S0, and v′ such that maxΩ v(ω)− v′(ω) > 0. Assume that the inequality

v′(ω) ≥ Φ(0, v′)(ω) holds for all ω ∈ Ω1 := ArgmaxΩ(v − v′). Then v(·) ≤ 0 on Ω1.

Proof. Denote by Ω2 the Argmax of v on the set Ω1; it is enough to prove that v(·) ≤ 0 on Ω2,

so we assume the contrary. Up to extraction, vλn → v, xλn ∈ Xλn(vλn) → x and there exists

ω0 ∈ Ω2, which realizes the maximum of vλn on Ω2 for every n. In particular, v(ω0) > 0. Since

xλn is optimal, we get, for any y ∈ Y:

vλn(ω0) ≤ (1− λn)

 ∑
ω′∈Ω2

ρ(ω′|xλn ,y, ω0)vλn(ω′) +
∑

ω′∈Ω\Ω2

ρ(ω′|xλn ,y, ω0)vλn(ω′)

 ,
so, by definition of ω0,

(1− (1− λn)ρ(Ω2|xλn ,y, ω0)) vλn(ω0) ≤ (1− λn)
∑

ω′∈Ω\Ω2

ρ(ω′|xλn ,y, ω0)vλn(ω′).
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For simplicity, denote ρn := ρ(Ω2|xλn ,y, ω0). If ρn = 1 for infinitely many n, we immediately get

v(ω0) ≤ 0 and the requested contradiction, hence we assume that it is not the case. Hence, up to

an extraction, µn defined by µn(w′) =
ρ(ω′|xλn ,y, ω0)

1− ρn
is a probability measure on Ω\Ω2. Then,

for n large enough, we get an analogue of Lemma 3.3:

vλn(ω0) ≤ 1− λn
1− (1− λn)ρn

∑
ω′∈Ω\Ω2

ρ(ω′|xλn ,y, ω0)vλn(ω′) (1)

=
(1− λn)(1− ρn)

λn + (1− λn)(1− ρn)

∑
ω′∈Ω\Ω2

ρ(ω′|xλn ,y, ω0)

1− ρn
vλn(ω′) (2)

≤ max

0,
∑

ω′∈Ω\Ω2

µn(ω′)vλn(ω′)

 . (3)

On the other hand, choose now y ∈ Y0(v′). Since ω0 ∈ Ω2,

v′(ω0) ≥ Φ(0, v′)(ω0)

≥

 ∑
ω′∈Ω2

ρ(ω′|xλn ,y, ω0)v′(ω′) +
∑

ω′∈Ω\Ω2

ρ(ω′|xλn ,y, ω0)v′(ω′)

 ,
so using the fact that v′ is constant on Ω2, we get an analogue to Lemma 3.1:

v′(ω0) ≥
∑

ω′∈Ω\Ω2

µn(ω′)v′(ω′). (4)

Letting n go to infinity in inequalities (3) and (4), and using v(ω0) > 0, we obtain by com-

pactness the existence of µ ∈ ∆(Ω\Ω2) such that

v(ω0) ≤
∑

ω′∈Ω\Ω2

µ(ω′)v(ω′), (5)

v′(ω0) ≥
∑

ω′∈Ω\Ω2

µ(ω′)v′(ω′). (6)

Substracting (6) from (5) yields

(v − v′)(ω0) ≤
∑

ω′∈Ω\Ω2

µ(ω′)(v − v′)(ω′),

and since ω0 ∈ Ω1 = ArgmaxΩ(v − v′), this implies that the support of µ is included in Ω1 and

that (5) is an equality. This, in turn, forces the support of µ to be included in Ω2 = ArgmaxΩ1
v,
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a contradiction to the construction of µ.

Corollary 4.1. vλ converges as λ goes to 0.

Proof. Assume that there are two accumulation points v and v′ with maxΩ{v−v′} > 0, and denote

Ω1 = ArgmaxΩ(v−v′). Then Proposition 4.1 implies that v(·) ≤ 0 on Ω1. A dual argument yields

that v′(·) ≥ 0 on Ω1, a contradiction.

We now recover a characterization of the limit due to Everett [5]:

Corollary 4.2. S0 ⊂ L + ∩L −, where A is the closure of A and

L + :=

f ∈ R
Ω,

Φ(0, f)(ω) ≤ f(ω) ∀ω ∈ Ω0

Φ(0, f)(ω) = f(ω) =⇒ f(ω) ≥ 0

f(ω) ≥ g∗(ω) ∀ω ∈ Ω∗

 , (7)

and symmetrically

L − :=

f ∈ R
Ω,

Φ(0, f)(ω) ≥ f(ω) ∀ω ∈ Ω0

Φ(0, f)(ω) = f(ω) =⇒ f(ω) ≤ 0

f(ω) ≤ g∗(ω) ∀ω ∈ Ω∗

 . (8)

We will need the following lemma:

Lemma 4.1. For any ε ≥ 0, there exist Ω′ ⊂ Ω0 and v′ ∈ F1 such that the couple (Ω′, v′) satisfies

a) v′(ω) = g∗(ω) for all ω ∈ Ω∗.

b) v′(ω) = v(ω)− ε on Ω′.

c) v(ω) ≥ v′(ω) > v(ω)− ε on Ω0\Ω′.

d) For any ω ∈ Ω0\Ω′, Φ(0, v′)(ω) > v′(ω).

e) For any ω ∈ Ω′, Φ(0, v′)(ω) = v′(ω).

Proof. This was proved in [10], but we recall the proof for the sake of completeness.

Let E be the set of couples (Ω′′, v′′) such that Ω′′ ⊂ Ω0, v′′ ∈ F1, and (Ω′′, v′′) satisfies

properties a) to d). This set is nonempty since (Ω0, v − ε1ω∈Ω0) ∈ E . Since Ω0 is finite, we can

choose a couple (Ω′, v′) in E such that there is no (Ω′′, v′′) in E with Ω′′ ( Ω′. Let Ω̃ be the set
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on which Φ(0, v′)(ω) = v′(ω); we now prove that Ω̃ = Ω′, hence that (Ω′, v′) also satisfies property

e).

By contradiction, assume that Ω̃ ( Ω′ and consider, for small α > 0, vα := v′+α1ω∈Ω′\Ω̃. The

couple (Ω̃, vα) clearly satisfies properties a) to c) for α < ε. It also satisfies property d) for α small

enough by continuity of Φ(0, ·). So, for α small enough, the couple (Ω̃, vα) is in E , contradicting

the minimality of Ω′.

We can now prove Corollary 4.2:

Proof of Corollary 4.2. Let v ∈ S0, let ε > 0 and define (v′,Ω′) as in Lemma 4.1. By properties a)

to c) , ‖v − v′‖∞ ≤ ε. If Ω′ = ∅, then property d) implies that v′ ∈ L −. If Ω′ is nonempty, then,

by properties b), c) and e), Ω′ = Argmax(v− v′) and Φ(0, v′)(·) = v′(·) on Ω′. Hence, Proposition

4.1 yields that v(·) ≤ 0 on Ω′. So v′(·) ≤ 0 on Ω′ and v′ ∈ L − as well. This implies that v ∈ L −.

By duality, v ∈ L +.

Remark 4.1. This corollary implies in itself that vλ converges, as there is at most one element in

the intersection, see [3] and Proposition 9 in [6].

5 Games with Incomplete Information

We consider here two person zero-sum games with incomplete information (independent case

and standard signalling). π is a product probability p ⊗ q on a finite product space K × L, with

p ∈ P = ∆(K), q ∈ Q = ∆(L). g is a payoff function from I × J ×K × L to IR where I and J

are finite action sets. Given the parameter (k, `) selected according to π, each player knows one

component (k for player 1, ` for player 2) and holds a prior on the other component. From stage

1 on, the parameter is fixed, the repeated game with payoff g(·, ·, k, `) is played. The moves of the

players at stage t are {it, jt}, the payoff is gt = g(it, jt, k, `) and the information of the players

after stage t is {it, jt}. X = ∆(I)K and Y = ∆(J)L are the type-dependent mixed action sets of

the players; g is extended on X × Y ×K × L by g(x, y, p, q) =
∑
k,` p

kq`g(xk, y`, k, `).

Given (x, y, p, q), let x(i) =
∑
kx

k
i p
k be the probability of action i and p(i) be the conditional

probability on K given the action i, explicitly pk(i) =
pkxki
x(i) (and, similarly, for y and q).

While this framework is not a particular case of section 2, since the set P × Q that will play

the role of the state space is not finite, it is still possible to introduce a Shapley operator for this
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game. This operator is defined on the set F2 of continuous concave-convex fonctions on P ×Q by:

Φ(λ, f)(p, q) := min
y∈Y

max
x∈X

λg(p, q, x, y) + (1− λ)
∑
i,j

x(i)y(j)f(p(i), q(j))

 (9)

:= max
x∈X

min
y∈Y

λg(p, q, x, y) + (1− λ)
∑
i,j

x(i)y(j)f(p(i), q(j))

 (10)

and the value vλ of the λ-discounted game is the unique fixed point of Φ(λ, .) on F2. These

relations are due to Aumann and Maschler (1966) [7] and Mertens and Zamir (1971) [8].

Xλ(f)(p, q) denotes the set of optimal strategies of player 1 in Φ(λ, f)(p, q).

In this framework, any f ∈ F2 is a fixed point of the projective operator Φ(0, .), that is F2 = S.

Note that, if C is a bound for the payoff function g, then any vλ is bounded by C as well, and

is moreover C-Lipschitz. The family {vλ} is thus relatively compact for the topology of uniform

convergence, hence S0, the set of accumulation points of the family {vλ}, is nonempty.

To ease the notations, we will denote the sum
∑
i,j x(i)y(j)f(p(i), q(j)) by Eρ(x,p)×ρ′(y,q)f(p̃, q̃).

Note that p̃ only depends on x and p, and that q̃ only depends on y and q.

For any f ∈ F2, Jensen’s inequality ensures that Eρ(x,p)f(p̃, q) ≤ f(p, q). The strategies of player

1 for which the equality holds for all f ∈ F2 are called non revealing. Their set is denoted

NR(p) := {x ∈ X; p̃ = p, ρ(x, p) a.s.}. The set NR(q) of non revealing strategies of player 2 is

defined similarly.

Finally, the non-revealing value u is

u(p, q) := min
y∈NR(q)

max
x∈NR(p)

g(x, y, p, q) = max
x∈NR(p)

min
y∈NR(q)

g(x, y, p, q).

The existence of lim vλ was first proved in [7] for games with incomplete information on one

side. It was then generalized in [8] for games with incomplete information on both sides, with a

characterization of the limit v being the only solution of the system

v = Cavp min(u, v), v = Vexq max(u, v),

where Cav(f) (resp. Vex(f)) denotes the smallest concave function in the first variable which is

larger than f (resp., the largest convex function in the second variable which is smaller than f).

A shorter proof of this result (including characterization) was established in [9]. The tools used

in the following proof are quite similar to the one used in [9], but the structure differs.
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Lemmas 2.1 and 2.2 still hold in this framework; we now prove a more precise version of Lemma

2.3 using the geometry of P ×Q. Let C (P ×Q) be the set of real continuous functions on P ×Q.

Lemma 5.1. Let v ∈ S and let f ∈ C (P × Q) be concave with respect to the first variable. If

(p, q) is an extreme point of Argmax(v − f), then X0(v)(p, q) ⊂ NR(p).

Proof. Let x ∈ X0(v)(p, q) and y ∈ NR(q); then

v(p, q) ≤ Eρ(x,p)×ρ′(y,q)v(p̃, q̃) = Eρ(x,p)v(p̃, q),

while, by Jensen’s inequality,

f(p, q) ≥ Eρ(x,p)f(p̃, q);

so

Eρ(x,p)(v − f)(p̃, q) ≥ (v − f)(p, q).

Since (p, q) ∈ Argmax(v − f),

Eρ(x,p)(v − f)(p̃, q) = (v − f)(p, q),

and (p̃, q) ∈ Argmax(v − f), ρ(x, p) a.s. Since (p, q) is an extreme point of Argmax(v − f), it

follows that p̃ = p, ρ(x, p) a.s. and x ∈ NR(p).

Remark that v ∈ F2 implies that NR(p) ⊂ X0(v)(p, q) since v is a saddle function; hence, in

fact, NR(p) = X0(v)(p, q) in the previous lemma.

Note the analogy between Lemma 5.1 and Lemma 3.1. Lemma 3.3 also has an analogue in this

setup:

Lemma 5.2. Let xλ ∈ Xλ(vλ)(p, q) and y ∈ NR(q), then

vλ(p, q) ≤ g(xλ, y, p, q).

Proof. By definition of vλ and xλ,

vλ(p, q) ≤ λg(xλ, y, p, q) + (1− λ)Eρ(xλ,p)×ρ′(y,q)vλ(p̃, q̃)

≤ λg(xλ, y, p, q) + (1− λ)vλ(p, q),

using Jensen’s inequality and the fact that y ∈ NR(q). Hence vλ(p, q) ≤ g(xλ, y, p, q).
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Recall that S0 ⊂ S is the set of accumulation points of {vλ} for the uniform norm.

Proposition 5.1. Let v ∈ S0.

i) Let f ∈ C (P ×Q) be concave with respect to the first variable. Then, at any extreme point (p, q)

of Argmax(v − f),

v(p, q) ≤ u(p, q).

ii) Let f ′ ∈ C (P × Q) be convex with respect to the second variable. Then, at any extreme point

(p, q) of Argmin(v − f ′),

v(p, q) ≥ u(p, q).

Proof. We prove i). Apply Lemma 5.2 to any sequence {vλn} converging to v. By Lemma 2, there

exists x ∈ X0(v)(p, q) such that

v(p, q) ≤ inf
y∈NR(q)

g(x, y, p, q).

Lemma 5.1 implies that x ∈ NR(p) (since v ∈ S), and the result follows by definition of u.

ii) is established in a dual way.

Proposition 5.1 implies the following corollaries of existence and caracterization of lim vλ:

Corollary 5.1. vλ converges uniformly as λ tend to 0.

Proof. Let v and v′ in S0 and let (p, q) be any extreme point of Argmax(v − v′). Since v′ is

concave in its first variable, Proposition 5.1 i) with f = v′ implies that v(p, q) ≤ u(p, q). Apply

now Proposition 5.1 ii) to f ′ = v to get v′(p, q) ≥ u(p, q). This yields v(p, q) ≤ v′(p, q), hence

v ≤ v′, thus uniqueness.

Corollary 5.2. Any accumulation point v of vλ satisfies the Mertens-Zamir system:

v = Cavp min(u, v), v = Vexq max(u, v).

Proof. Let v be an accumulation point of the family {vλ}. We only prove that v ≤ Cavp min(u, v).

Since v is concave in p, the other inequality is trivial, and a dual argument gives the dual equality.

Denote f = Cavp min(u, v), and let (p, q) be any extreme point of Argmax(v − f). Since f is

concave in p, Proposition 5.1 implies that v(p, q) ≤ u(p, q). Hence,

v(p, q) ≤ min(u, v)(p, q) ≤ f(p, q)
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and thus v ≤ f .

Remark 5.1.

i) The proof above also shows that v is the smallest among the functions satisfying

w = Cavp min(u,w).

ii) A similar approach applies word for word to the dependent case, as defined in Mertens and

Zamir [8].

iii) The case where the action sets I and J are compact metric can also be handled in the same

way, using the martingales (p̃, q̃) of regular conditional probabilities.

6 Conclusion

This paper proposes a unified proof of existence of the limit of the discounted value for three

families of zero sum repeated games. The proofs are based on the Shapley operator and the

associated fixed point.

Recall that a similar formula holds for the discounted value of general zero-sum repeated games

([11], Chapter 4). Hence we expect to extend the current approach to further classes of games.

It could also be used for other evaluations of the payoff beyond the discounted case, for example,

to prove the convergence of the value of the n-stage game when n tends to infinity.
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