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Abstract. The set of equilibrium payoffs of any finite game with N players is a nonempty,
compact and semi-algebraic subset of RN . We establish the converse as long as N ≥ 3: for
any nonempty, compact and semialgebraic set E in RN , there exists a game with N players
such that E is the set of equilibrium payoffs of this game. In addition, if the semialgebraic set is
defined by polynomials with integer coefficients, the game can be constructed with integer payoffs.
Related results hold when one considers sets of equilibria instead of sets of equilibrium payoffs.
The proofs are constructive and hence have implications on the complexity and computability of
some decision problems on 3-player games.

1. Introduction

It is well known that the set of (mixed) Nash equilibria or of Nash equilibrium payoffs of any
finite game is nonempty, compact and semi-algebraic. In the particular case of two players, more
is known: the set of Nash equilibria is a finite union of convex polytopes [8], and a subset F of
R2 is the set of Nash equilibrium payoffs of a bimatrix game if and only if [9] it is of the form:
F = ∪1≤i≤K [ai, bi]× [ci, di], where K ∈ N.

For 3 players or more, Datta [5] showed that any real algebraic variety is isomorphic to the
set of completely mixed Nash equilibria of a 3-player game, and also to the set of completely
mixed equilibria of an N -player game in which each player has two strategies. Balkenborg and
Vermeulen [1] showed that any nonempty connected compact semi-algebraic set is homeomorphic
to a connected component of the set of Nash equilibria of a finite binary game. Independantly,
Levy [10], and Vigeral and Viossat [14] established that any nonempty compact semi-algebraic
set in RN is the projection on some coordinates of the set of equilibria, or of equilibrium payoffs,
of a game with n > N players.

These results show that all nonempty compact semi-algebraic sets may be encoded as sets
of Nash equilibria, up to some isomorphisms, homeomorphisms, or projections, In the case of
equilibrium payoffs we give a definitive answer to this line of research by proving that if N ≥ 3
any nonempty, compact and semialgebraic subset of RN is the set of equilibrium payoff of some
N player game. Thus there is no need for any isomorphism, homeomorphism, or projection. Our
proof is based on a related result on sets of equilibria: any nonempty compact and semialgebraic
subset of [0, 1[N is the projection of the set of equilibria of some N -player game on the first
component of each player. Moreover, if the polynomials involved in the definition of the set are
with coefficients in Z, the game has payoffs in Z as well.

All our proofs are constructive and elementary in the sense that we do not use any result from
real algebraic geometry. As a first consequence, while decision problems on sets of equilibria of 2-
player games are typically NP-complete [7], we prove that for three players or more the same type
of problems are exactly as hard as deciding whether or not a Z-semi algebraic set is nonempty.
As a second consequence, decision problems on equilibria involving integers might be undecidable,
because of the negative answer to Hilbert tenth problem on Diophantine equations [11].

Date: February 23, 2023.
1
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This article is organized as follows: we introduce some definitions and notations in Section 2,
which allows us to state precisely our main results in Section 3. Section 4 is devoted to the proof
of the main results in some particular cases which allow for a simpler construction ; in Section
5 the additional elements needed in the general case are given. In Section 6 we verify that our
constructions are polynomial in the size of the imput, which is important for later complexity
results. Section 7 is devoted to important generalizations of our results in two directions: to
games with integer payoffs, and to projections on several actions per player. In sections 8 and 9
we apply our constructions to investigate, respectively, the complexity and computability of some
decison problems on 3-player games.

2. Definitions and notations

2.1. Finite games. A finite game with N players will typically be denoted as Γ, its sets of pure
actions as Ai and its payoff functions as gi (we will write gi both for the function defined on pure
strategies and its multilinear extension). An action of Player i will be denoted with uppercase
letters, most often in {A,B,W,X, Y }. A superscript will identify the player: for example A2

3

is a particular pure action of Player 2. For any subset S of the players, we denote AS the set∏
i∈S Ai. If A is in AN (the set of all pure strategy profiles), then for any S we denote as AS

the corresponding profile in AS ; and we write simply A−i for AN\{i}. A mixed action profile will
typically be denoted as σ, σi(Ai) (or simply σ(Ai)) being the probability that player i plays its
pure action Ai. The set of (mixed) Nash equilibria (resp. of Nash equilibrium payoffs) of Γ is
denoted NE(Γ) (resp. NEP(Γ)).

Recall that two N -player games Γ and Γ′ are strategically equivalent if they share the same
action sets Ai and if their payoff functions g and g′ satisfy

g′
i
(ai, a−i) = αigi(ai, a−i) + hi(a−i), ∀i ∈ N, ∀a ∈ AN ,

for some positive αi and some functions hi : A−i → R. It is immediate that

Lemma 1. If Γ and Γ′ are strategically equivalent , then NE(Γ) = NE(Γ′).

It turns out that writing games in normal form is not convenient in our framework and we thus
use another way of defining games. We say that a map f from Πj 6=i∆(Ai) to R is multiaffine if it
can be written as

f(σ−i) =
∑

S⊂N\{i}

∑
AS∈AS

λAS
∏
j∈S

σj(AjS)

where the λAS are reals. We then apply (most often implicitely) the following easy lemma

Lemma 2. For every game Γ, each player i and each pure action Ai, the multilinear extension
of gi(Ai, ·) is multiaffine from Πj 6=i∆(Ai) to R. Conversely, if we are given a collection of maps
f i
Ai

such that each f i
Ai

is multiaffine from Πj 6=i∆(Ai) to R, there exists a unique game Γ whose
multilinear extensions of the payoff functions satisfy gi(Ai, σ−i) = f i

Ai
(σ−i). If in addition all

coefficients λ involved in the definition of all f i
Ai

are integers, then all pure payoffs in Γ are
integers as well.

Proof. The first part is clear. For the second part, if

f iAi(σ
−i) =

∑
S⊂N\{i}

∑
AS∈AS

λAi,AS

∏
j∈S

σj(AjS)

then the only possible candidate Γ is the one with gi(A) = f i
Ai

(A−i) =
∑

S⊂N\{i} λAi,AS and by
multilinearity we then also have gi(Ai, σ−i) = f i

Ai
(σ−i) for every σ−i. �

Hence to define a game it is enough to stipulate all functions gi(Ai, σ−i), as long as they are
multiaffine.

To ease the reading we will use the corresponding lowercase letter to represent the probability
that some pure action is played: for example we will write a2

3(σ) instead of σ(A2
3). Also, we will
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most often drop all references to σ, for example we will just write a2
3 instead of a2

3(σ), and gi(Ai)
instead of gi(Ai, σ−i). As an example, the three player game written in normal form as

A2
1 A2

2 A2
1 A2

2

A1
1

A1
2

(
(0, 0, 0) (0, 0, 0)
(0, 0, 0) (0, 0, 0)

) (
(0, 0, 0) (0, 1, 1)
(0, 0, 1) (1, 1, 1)

)
A3

1 A3
2

may be defined as

g1(A1
1) = g2(A2

1) = g3(A3
1) = 0

g1(A1
2) = a2

2a
3
2

g2(A2
2) = a3

2

g3(A3
2) = 1− a1

1a
2
1

2.2. Polynomials. A (multivariate) polynomial will be denoted with an uppercase letter, usually
P or Q ; for the (multidimensional) unknown we will use the letter z. The i-th coordinate of z is
denoted zi. For any integers N and D define NN

D := NN ∩ [0, D]N \{0} the set of nonzero N -uples
of integers between 0 and D . For any d = (d1, · · · , dN ) ∈ NN

D one writes zd for
∏
k(zk)

dk . Hence
any polynomial in N variables and maximum degree D in each variable can be written as

P (z) = c+
∑
d∈NND

cdz
d.

We will denote ei ∈ NN
D the N -uple with ith coordinate equal to 1 and all others to 0, hence

ze
i

= zi. Finally, when we need to write some power of the probability that a player plays some
action, we will reserve the superscript for the numbering of the player. For example (a2

3)5 is the
probability that Player 2 plays his action A2

3, to the power 5.

2.3. Semi algebraic sets. In this section we recall some facts about semi algebraic sets that will
be used in the paper. The reader interested in proofs of these results is refered to the literature
on the subject, for example [4]. Let us first recall the definition of a semi algebraic set.

Definition 3. A set F ⊂ Rn is a semi algebraic set (resp. a basic semi algebraic set) if it can
be written as a finite union and interection (resp. as a finite intersection) of sets of the form
{x ∈ Rn, Pk(x) ≤ 0} and {x ∈ Rn, Pk(x) < 0}, where the Pk are polynomials.

A fundamental result, due to Tarski and Seidenberg is the following:

Theorem 4. Let F ⊂ Rn be a semi algebraic set, and π : Rn → Rn−1 be the projection on the
first n− 1 coordinates. Then π(F ) is a semi algebraic set.

An easy corollary, that we will also call Tarski-Seidenberg theorem for conveniance, is

Corollary 5. Let F ⊂ Rn be a semi algebraic set, and f : Rn → Rm a polynomial mapping.
Then f(F ) is semi algebraic.

We also recall the following nontrivial consequence of Tarski-Seidenberg theorem, known in the
literature as the finiteness theorem:

Proposition 6. Any closed semi algebraic set in Rn can be written as a finite union and inter-
section of sets of the form {x ∈ Rn, Pk(x) ≤ 0}.

For a fixed N -player finite game in which player i action set is Ai, and for any B ⊂ ∪Ni=1Ai,
denote as ProjB the map that send a mixed strategy σ = (σ(a))a∈∪Ni=1Ai

to ProjB(σ) := (σ(b))b∈B.
The function ProjB is a projection hence a polynomial mapping.

We can now state the following proposition, relating games and semi algebraic sets.
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Proposition 7. Let Γ be an N -player finite game in which player i action set is Ai. Then all
these sets are nonempty, compact and semi algebraic:

- The set NE(Γ) of Nash equilibria of Γ.
- The set NEP(Γ) of Nash equilibrium payoffs of Γ.
- For any B ⊂ ∪Ni=1Ai, the set ProjB(NE(Γ)).

This proposition is well known but let us give a short proof for completness:

Proof. σ ∈ NE(Γ) if and only if it satisfies the following polynomial inequalities:
- σi(ai) ≥ 0, for all i and ai ∈ Ai
-
∑

ai∈Ai σ
i(ai)− 1 ≤ 0 and −

∑
ai∈Ai σ

i(ai) + 1 ≤ 0 for all i.
- σi(ai)[gi(bi, σ−i)− gi(ai, σ−i)] ≤ 0 for all i and ai, bi in Ai, where gi is the payoff function
of player i.

Hence NE(Γ) is a closed (basic) semi algebraic set. It is also clearly bounded, and nonempty
by Nash’s theorem. To conclude, one remarks that the image of a nonempty, compact and semi
algebraic set by a polynomial mapping is nonempty, compact and, by Tarski-Seidenberg theorem,
semi algebraic. �

3. Statement of the first main results

Our main result is

Theorem 8. Let N ≥ 3 be an integer. A set F ⊂ RN is the set of equilibrium payoffs of some
finite N -player game if and only if F is nonempty, compact, and semi algebraic.

It turns out that the following proposition is the key ingredient in the proof of the previous
Theorem. Moreover, it will have implications in itself on the complexity on some decision problems
on 3-player games, see Section 8.

Proposition 9. Let N ≥ 3, and F ⊂ [0, 1[N be a nonempty closed semi algebraic set. Then there
exists an N -player finite game Γ, and a particular pure action profile X∗ = (X1

∗ , · · · , XN
∗ ) such

that
a) ProjX∗(NE(Γ)) = F
b) NEP(Γ) = {0}.
Proposition 9 tells us that one can transform a semialgebraic set to the set of equilibria of a

game, up to the addition of some actions for each player. In [?, ?] the fact that one can do so
by instead adding some players was shown. While this may seems similar, there a two important
differences between those two types of results. First, adding actions does not change the dimension
of the vector payoffs, which allows to deduce Theorem 8 from Proposition 9. In fact, Theorem 8
might also be viewed as a universal result involving a projection where one uses the "canonical"
projection given by the payoff function of the game. Second, and unfortunately, adding actions
turns out to be more burdensome than adding players for reasons that will become clear in the
constructions below.

We claim that Theorem 8 follows easily from Proposition 9 :

Proof of Theorem 8. Let F be a nonempty, compact, and semi algebraic subset of RN , and first
assume that F ⊂ [0, 1[N . Let Γ be a finite game given by the conclusion of Proposition 9. Let Γ′

be defined from Γ by adding 1 to the payoff of each player i iff player1 i− 1 plays Xi−1
∗ . Hence Γ

and Γ′ are strategically equivalent thus have the same set of equilibria. Because of properties a)
and b), the set of equilibrium payoffs of Γ is {(eN , e1, · · · , eN−1)|(e1, · · · , eN ) ∈ F}. By relabeling
the players one get a game Γ′′, in which Player i plays the role of Player i+ 1 in Γ′, whose set of
equilibrium payoffs is F .

If F is not a subset of [0, 1[N , F being bounded one can choose α ∈ R and β > 0 such that
F ′ := α + βF is in [0, 1[N . By the previous argument, there is a finite game Γ′′ whose set of

1every labelling of the players in the paper has to be understood modulo N
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equilibrium payoffs is F ′. Then Γ′′′ := 1
βΓ′′ − α

β is strategically equivalent to Γ′′, and thus its set
of equilibrium payoffs is F .

�

For the ease of reading we will first, in the next section, prove Proposition 9 with stronger
assumptions on F .

Proposition 10. Let F = ∩Kk=1{z ∈ R3, Pk(z) ≤ 0} for K polynomials P1, · · · , PK in three
variables. Assume that F ⊂]0, 1/10[3 and is nonempty. Then there exists a 3-player finite game
Γ, and a particular pure action profile X∗ = (X1

∗ , X
2
∗ , X

3
∗ ) such that

a) ProjX∗(NE(Γ)) = F
b) NEP(Γ) = {0}.

Hence N is assumed to be exactly 3, [0, 1[ has been replaced by ]0, 1/10[, and F is a basic semi
algebraic set. We will prove in Section 5 the more general Proposition 9.

4. Proof of Proposition 10

The basic idea is that if some action Xi is played in some equilibrium while another action Y i

is not, then gi(Xi) ≥ gi(Y i), which gives an inequality satisfied by the probabilities of actions of
other players in this equilibrium. If we could decide that all equilibria have the same fixed support,
we would have a family of inequalities (and thus also equalities) involving the probabilities of all
actions. Since there are three players, there is enough space to ensure inequalities such as x1

1 = x2
1

or x1
2 = x1

1x
2
1 (by defining adequatly the payoff of some strategies of Player 3 not played at

equilibrium). Remark that combining those two equalities yield x1
2 = (x1

1)2. Hence we could
ensure that some probabilities are polynomials in other ones, and, again using inequalities, that
these polynomials take nonpositive values and hence that the desired tuple of probabilities is in
a prescribed basic semi algebraic set F . These techniques are quite similar to the one used in [5]
to link equilibria with full support and algebraic sets.

The problem is that one cannot hope that this works so easily. It won’t for empty semi
algebraic sets (since any finite game has a Nash equilibrium), and empty semi algebraic sets look
like2 nonempty ones. So there will be other equilibria to deal with. Since the number of actions
used in the previous paragraph to construct various inequalities may be large (depending of the
degrees of the polynomials in the definition of F ), there could be a large number of other equilibria,
and ensuring that each of them has the desired property may be cumbersome. To avoid this we
construct the game such that, in addition to the previous “nice” equilibria with fixed support,
there is only one other “bad” equilibrium. Basically, we do this by giving large payoffs, outside
of nice equilibria, only to two specific actions of each player. We also define the payoffs of these
two specific actions for each player so that each player wants to play the first one only if the next
player plays the second one with large probability. By a circular argument (N = 3 is odd) there
will then be only one bad equilibrium. By constructing the payoffs according to the coordinates
of some given element ẑ of the nonempty F , one ensures that in this bad equilibrium the desired
tuple of probabilities equals ẑ ∈ F . Some small adjustments are then needed to ensure part b) of
the proposition.

Let us now define more precisely the general architecture of the construction and its three
different steps. The set Ai of actions of each Player i consists of two families of actions: Ai =
X i∪Y i. The elements of X i are called unknowns and denoted with the letter X (with subscripts)
; the elements of Y i are called constraints and denoted with the letter Y (with subscripts).
Typically, the unknowns will have a payoff of 0 (irrespective of what other players play) and
will be played at equilibrium, whereas the constraints will not be played at equilibrium (except
the unique bad one), and will have a payoff depending on which unknowns the other players are

2meaning that it is computationaly hard [2] to decide if a semi algebraic set is empty or not just looking at the
polynomials involved in its definition
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playing. Equilibria with support contained in X := Π3
i=1X i are called nice equilibria3, the set of

such equilibria (resp. equilibrium payoffs) for a game Γ is denoted by NNE(Γ) (resp. NNEP(Γ)).
Other equilibria are called bad equilibria. The construction is done in three steps.

- Step 1 : we construct a Game Γ1 for which
a) ProjX∗(NNE(Γ1)) = F
b) NNEP(Γ1) = {0}.

That is, Proposition 10 is satisfied when one only considers nice equilibria.
- Step 2 : The game Γ1 will have many bad equilibria. In this step, one modifies the game
into another one called Γ2, so that the set of nice equilibrium is the same, and with only
one bad equilibrium Z, such that ProjX∗(Z) ∈ F . Hence ProjX∗(NE(Γ2)) = F

- Step 3 : In this step we make another modification to ensure that Part b) of Proposition
10 is satisfied also for the unique bad equilibrium.

Step 1: dealing with nice equilibria.
Denote by D a bound on the maximal degree in each variable of each polynomial Pk. Each

polynomial Pk is given as Pk(z) = ck +
∑

d∈N3
D
ck,dz

d, and c is a bound on all ck and ck,d.
We now define the action set of each player in Γ1. We start by the unknows, which have each

a payoff function being identically equal to 0. The set X i of each action of Player i consists of
- A special action Xi

∗, called the base unknown, which is the one on which the projection is
made.

- ((D + 1)3 − 1) monomial unknowns denoted as Xi
d for each d = (d1, d2, d3) ∈ N3

D. Their
role is to represent monomials in the xi∗. More precisely, the game is constructed such that
in any nice equilibrium, one has xid = (x∗)

d := (x1
∗)
d1(x2

∗)
d2(x3

∗)
d3 .

- An additional action Xi
0 called the dump unknown. For any nice equilibrium the probability

that Player i plays in X i has to be 1, the role of Xi
0 is thus to ensure this by giving to each

player some action in which to dump the remaining probability.
We now define the constraints. The set Y i of each Player i consists of
- 8 Initialization constraints. For each j 6= i, j′ 6= i, and s ∈ {+,−}, let Y i

j,j′,s be an action
with payoff

gi
(
Y i
j,j′,s

)
= s

(
xj∗ − x

j′

ej

)
.

- 6((D + 1)3 − 1) induction constraints. For each j ∈ 1, 2, 3 and each d ∈ N3
D, define d + ej

by (d+ ej)j = dj + 1 and (d+ ej)m = dm for m 6= j. Then for s ∈ {+,−}, let Y i
j,d,s be an

action with payoff

gi
(
Y i
j,d,s

)
= s

(
xi+1
d+ej
− xi+1

d xi+2
ej

)
.

- K semi algebraic constraints. For every k, let Y i
k be an action with payoff

gi
(
Y i
k

)
= ck +

∑
d∈N3

D

ck,dx
i+1
d .

Clearly, any nice equilibrium gives a payoff of 0 to each player : NNEP(Γ) = {0}. We claim
that ProjX∗(NNE(Γ)) = F .

Let us first prove that ProjX∗(NNE(Γ)) ⊂ F by considering a nice equilibrium. Recall that,
by definition, all constraints are played with probability 0 in this equilibrium. Since the payoff
of any nice equilibrium is zero, we get that for any Player i and any constraint Y i, gi(Y i) ≤ 0.
Using this we prove that in any nice equilibrium, one has

xid = (x∗)
d (1)

3Note that we only require that no constraints are played for an equilibria to be nice, and not that every unknown
is played with positive probability. It turns out that this stronger property will in fact be satisfied by every nice
equilibrium in this section, but this is no longer the case in the more general framework of Section 5.
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for each Player i and d ∈ N3
D. This is done by induction on δ = d1 +d2 +d3. The case δ = 1 (that

is, d = ej for some j) is settled using the initialization constraints. For any j and j′ ∈ {1, 2, 3},
there exists at least an i ∈ {1, 2, 3} such that i 6= j, j′. Since gi

(
Y i
j,j′,s

)
≤ 0 one gets

±
(
xj∗ − x

j′

ej

)
≤ 0

hence xj
′

dj
= xj∗ as claimed. Assume next that the induction hypothesis is true for δ. Fix any

player i, any d ∈ N3
D with δ = d1 + d2 + d3, and let j ∈ {1, 2, 3}. Since gi

(
Y i
j,d,s

)
≤ 0 one gets

±
(
xi+1
d+ej
− xi+1

d xi+2
ej

)
≤ 0

hence

xi+1
d+ej

= xi+1
d xi+2

ej

= (x∗)
dxj∗ by the induction hypothesis and the case δ = 1

= (x∗)
d+ej .

Since this is true for every choice of i, d and j, the induction hypothesis is proven for δ + 1 and
(1) is established. Using now the semialgebraic constraints, one has for any k and i

0 ≥ gi
(
Y i
k

)
= ck +

∑
d∈N3

D

ck,dx
i+1
d

= ck +
∑
d∈N3

D

ck,dx
d
∗ by (1)

= Pk(x∗)

and x∗ ∈ F . Thus ProjX∗(NNE(Γ)) ⊂ F .
Conversely, let z ∈ F . Define a strategy profile by xi∗ = zi, xid = zd, xi0 = 1−zi−

∑
d∈N3

D
zd, and

yi = 0 for every constraint. Then it is clear by construction that all initialization and induction
constraints give a payoff of zero, while all semi algebraic constraints give a nonpositive payoff
since z ∈ F . Hence there is no profitable deviation and to show that z ∈ ProjX∗(NNE(Γ)) we
only need to verify that xi0 ≥ 0 for all i. Indeed,

xi0 = 1− zi −
∑
d∈N3

D

zd

≥ 1− zi −
∑

d∈N3\{(0,0,0)}

zd

≥ 1− 1

10
−

((
1

1− 1/10

)3

− 1

)

>
1

2
(2)

and we have proved that F ⊂ ProjX∗(NNE(Γ1)). This concludes Step 1 of the contruction.

Remark 11. In fact we established that ProjX∗ is a bijection between F and NNE(Γ1).

Step 2 : dealing with bad equilibria.
Let C > max{1, 2c} and ẑ ∈ F (by nonemptiness). The assumptions on F imply that ẑi > 0

for every i. We define Γ2 by modifying the game Γ1 constructed in the last step in two ways :
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- The payoff of the unknown Xi
∗ of each player is no longer 0 but

gi(Xi
∗) =

C

1− ẑi+1

1−
∑

xi+1∈X i+1

xi+1

 (3)

- Each player has an additional constraint Y i
∗ with payoff

gi(Y i
∗ ) = C(1− 2xi+1

0 ) (4)

We now establish a sequence of claims.
Claim 1 : Γ2 satisfies the same properties as Γ1,
a) ProjX∗(NNE(Γ2)) = F
b) NNEP(Γ2) = {0}.

Abusing notations, we identify any profile in Γ1 to the corresponding profile in Γ2 with each
Y i
∗ played with probability 0. Observe first that in any nice equilibrium of Γ2, gi(Xi

∗) equals 0
for each player. Because of this and since we only added potential deviations for each player,
NNE(Γ2) ⊂ NNE(Γ1). Moreover, in any nice equilibrium of NNE(Γ1), (2) implies that the
corresponding profile in Γ2 satisfies gi(Y i

∗ ) ≤ 0 for all i, thus NNE(Γ1) ⊂ NNE(Γ2). Hence Γ2 still
satisfies the two properties of Γ1.

Claim 2 : in any bad equilibrium, at least one player has a positive payoff.
If not, this would imply that gi(Xi

∗) ≤ 0 for all i and the equilibrium would be nice.
Claim 3 : in any bad equilibrium, xi0 = 0 for all player i.

By the previous claim, there is i such that xi0 = 0, and thus gi−1(Y i−1
∗ ) = C > 0 = gi−1(Xi−1

0 ).
Hence xi−1

0 = 0 and iterating this yields the claim.
Claim 4 : no other unknown that the Xi

∗ may be in the support of any bad equilibrium.
This is an immediate consequence of the previous claim, which implies that the payoff of each
player is at least C, and is thus positive, in any bad equilibrium.

Claim 5 : no other constraints that the Y i
∗ may be in the support of any bad equilibrium.

Claim 3 implies that the payoff of each player is at least C in any bad equilibrium. The initial-
ization and induction constraints give a payoff less than 1, and Claim 4 implies that the payoff of
the semi algebraic constraint Y i

k is ck < C.
Claim 6 : there is a unique bad equilibrium, for which xi∗ = ẑi for each player.

We have just proved that only Xi
∗ and Y i

∗ might be played with positive probability in a bad
equilibrium. Their respective payoff is thus, in any bad equilibrium, gi(Xi

∗) = C 1−xi+1
∗

1−ẑi+1
and

gi(Y i
∗ ) = C. Now, xi+1

∗ = 1 would imply gi(Xi
∗) < gi(Y i

∗ ) and hence xi∗ = 0, while xi+1
∗ = 0 would

imply that gi(Xi
∗) > gi(Y i

∗ ) (recall that ẑi > 0) and hence xi∗ = 1. Hence a circular argument
establishes that there is no bad equilibrium in which some player plays a pure action. Thus
gi(Xi

∗) = gi(Y i
∗ ) = C for every i, implying the claim.

Claim 7 ProjX∗(NE(Γ2)) = F .
This is an immediate consequence of Claim 1 and 6 since ẑ ∈ F .
Step 3 : translating the payoff in the bad equilibrium.
Note that in Γ2 the payoff of the bad equilibrium is C for each player and not the desired 0.

We fix this by constructing a game Γ3, adding to every payoff of each player i in Γ2 the quantity
−C yi+1

∗
1−ẑi+1

. Γ2 and Γ3 are strategically equivalent hence ProjX∗(NE(Γ3)) = F . Since yi+1
∗ = 0

in any nice equilibrium, the payoff of every player in any nice equilibrium of Γ3 is still 0. Since
yi+1
∗ = 1−xi+1

∗ = 1− ẑi+1 in the bad equilibrium, the payoff of every player in the bad equilibrium
of Γ3 is C − C = 0. Hence NEP(Γ3) = {0} and Γ3 satisfies both properties of Proposition 10.

5. Proof of Proposition 9

We now explain how to adapt the proof of Proposition 10 to the more general framework of
Proposition 9. There are 4 issues : N may be larger than 3, F may contain elements with
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coordinates close to 1, F may contain elements with zero coordinates, and F may be a general
semi algebraic set.

5.1. More than 3 players. For a general N , choose εN > 0 small enough such that

1− εN −

((
1

1− εN

)N
− 1

)
>

1

2
. (5)

Step 1 is easily adapted for any basic semi algebraic set F ⊂]0, εN [N . The unknows are Xi
∗, Xi

0,
and Xi

d for d ∈ NN
D := NN ∩ [0, D]N \ {0}. The constraints are defined in a similar way than for

N = 3.
- Initialization constraints. For each j 6= i, j′ 6= i, and s ∈ {+,−}, let Y i

j,j′,s be an action
with payoff

gi
(
Y i
j,j′,s

)
= s

(
xj∗ − x

j′

ej

)
.

- Induction constraints. For each j ∈ N and each d ∈ NN
D , define d+ ej by (d+ ej)j = dj + 1

and (d+ ej)m = dm for m 6= j. Then for s ∈ {+,−}, let Y i
j,d,s be an action with payoff

gi
(
Y i
j,d,s

)
= s

(
xi+1
d+ej
− xi+1

d xi+2
ej

)
.

- K semi algebraic constraints. For every k, let Y i
k be an action with payoff

gi
(
Y i
k

)
= ck +

∑
d∈NND

ck,dx
i+1
d .

Equation (5) ensures that xi0 ≥ 1/2 in any nice equilibrium, as in the case N = 3.
In Step 2 one choose similarly ẑ ∈ F . For odd N the construction is then the same that for

N = 3, and the same arguments apply. Unfortunately for an even N the circular argument in
Claim 6 to prove that there is no pure bad equilibrium does not work as is, and we need to adapt
a bit the construction. For N ≥ 6 there is an easy fix: cut the set of players in two parts of odd
cardinality. For example let us call type 1 players those in the set {1, 2, 3} and type 2 players
those in {4, · · · , N}. The payoff of Xi

∗ is then defined as in (3), except that i+ 1 is replaced by
the number of the next player of the same type (so the payoff of X3

∗ depends on the x1, and the
payoff of XN

∗ depends on the x4). The payoff of Y i
∗ is defined exactly as4 in (3) (so the payoff of

X3
∗ depends on the x4, and the payoff of XN

∗ depends on the x1). Then Claim 1 to 5 follow as in
Section 4. For Claim 6 we treat separately players of type 1 and 2, and since both 3 and N − 3
are odd the same circular argument implies that there is a unique bad equilibrium with x∗ = ẑ.

For N = 4 we need to modify more deeply the construction in Step 2. Fix C > max{1, 2c} and
let gi(Y i

∗ ) = C(1− 2xi+1
0 ) as in Section 4. For i ≥ 3 the payoff of Xi

∗ is still defined as

gi(Xi
∗) =

C

1− ẑi+1

1−
∑

xi+1∈X i+1

xi+1


but for X1

∗ we now define

g1(X1
∗ ) = α

C

1− ẑ2

1−
∑
x2∈X 2

x2

+ (1− α)
C

1− ẑ3

1−
∑
x3∈X 3

x3


where α is any positive real less than min(1− ẑ2, ẑ3). For X2

∗ we define

g2(X2
∗ ) = 2

C

1− ẑ1

1−
∑
x1∈X 1

x1

− C

1− ẑ3

1−
∑
x3∈X 3

x3

 .

4It is important that these payoffs do not depend only on the players of the same type, to avoid situations where
one type of players would play a bad equilibria and the others a nice one between themselves.
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Claim 1 of Step 2 is then the same as in any nice equilibrium gi(Xi
∗) is equal to 0 and gi(Y i

∗ ) ≤ 0.
Claim 2 is similar: if gi(Xi

∗) ≤ 0 for all i then for i = 1 it yields∑
x2∈X 2

x2 =
∑
x3∈X 3

x3 = 1,

and for i = 3 and 4 we get ∑
x4∈X 4

x4 =
∑
x1∈X 1

x1 = 1,

hence the equilibrium is nice, a contradiction. Claim 3 and 4 and 5 works in the exact same way
as in Section 4. So only Xi

∗ and Y i
∗ may be played with positive probability in a bad equilibrium.

To prove claim 6, remark that for any i 6= 1, 2 we have that xi+1
∗ = 0 implies xi∗ = 1 while xi+1

∗ = 1
implies xi∗ = 0. Considering now the payoff of X1

∗ , and since α has been chosen small enough,
one sees that x3

∗ = 0 implies that x1
∗ = 1, while x3

∗ = 1 implies that x1
∗ = 0. Since N − 1 = 3

is odd a circular argument establishes that there is no bad equilibrium in which some player in
{1, 3, 4} plays a pure action. Thus gi(Xi

∗) = gi(Y i
∗ ) = C for all i ∈ {1, 3, 4} . This immediately

yields xi∗ = ẑi for i = 1 and 4. Since x1
∗ = ẑ1, the payoff of Player 2 if he plays X2

∗ is

g2(X2
∗ ) = C

(
2− 1− x3

∗
1− ẑ3

)
. (6)

while g1(X1
∗ ) = C yields

α
1− x2

∗
1− ẑ2

+ (1− α)
1− x3

∗
1− ẑ3

= 1. (7)

We now see that if x2
∗ = 1 then equation (7) implies x3

∗ < ẑ3 and then (6) gives g2(X2
∗ ) < C, a

contradiction. Similarly if x2
∗ = 0 then equation (7) implies x3

∗ > ẑ3 and then (6) gives g2(X2
∗ ) >

C, a contradiction. Hence Player 2 also plays both X2
∗ and Y 2

∗ with positive probability, thus
g2(X2

∗ ) = C and (6) gives x3
∗ = ẑ3. Then equation (7) implies x2

∗ = ẑ2 and there is a unique bad
equilibrium, for which x∗ = ẑ. Claim 7 follows immediately.

Step 3 works in the same exact way for a general N than for N = 3.

5.2. F ⊂]0, 1[N . The only reason why we assumed that F ⊂]0, 1/10[3 in Section 4 (or F ⊂
]0, εN [N for general N) instead of F ⊂]0, 1[N is to ensure that all profiles stay in the simplex.
Indeed, it is not possible for unknows to represent many monomials in x∗ if F has elements with
coordinates close to 1. The idea is then to modify the construction so that unknow Xi

d is, in any
nice equilibrium, played with probability η(x∗)

d instead of (x∗)
d, where η is a very small positive

number.
Precisely, if F ⊂]0, 1[N then F ⊂]0, 1 − 2ε[N for some ε > 0 since F is closed. Fix η > 0 such

that

1− (1− 2ε)− η

((
1

1− (1− 2ε)

)N
− 1

)
> ε. (8)

Step 1 of the construction is then adapted so that in any nice equilibrium,

xid = η(x∗)
d (9)

for every player i and d ∈ NN
D . To do this we just modify the payoff of the initialization constraints

to be
±
(
ηxj∗ − x

j′

ej

)
,

and the payoff of the induction constraints to be

±
(
ηxi+1

d+ej
− xi+1

d xi+2
ej

)
.

The same induction argument as in Section 4 establishes (9). To ensure that x∗ ∈ F in any nice
equilibrium, one then only need to slightly modify the payoff of the semi algebraic constraints :
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gi
(
Y i
k

)
= ηck +

∑
d∈NND

ck,dx
i+1
d .

The definition of η ensures that all actions are played with nonnegative probabilities. In fact
(8) implies that in any nice equilibrium xi0 > ε > 0. The only thing left to modify is the payoff of
Y i
∗ in Step 2 to

gi(Y i
∗ ) = C

(
1− xi+1

0

ε

)
so that gi(Y i

∗ ) ≤ 0 in any nice equilibrium. The rest of the construction and proof is unchanged.

5.3. F ⊂ [0, 1[N . We assumed F ⊂]0, 1[N in the previous sections only to ensure that there
exists ẑ ∈ F with positive coordinates, which is essential in the end of Step 2. If this is not the
case, let ẑ ∈ F with some zero coordinates and define a fictitious ẑ′ by ẑ′i = ẑi when ẑi > 0 and
ẑ′i = 1

2 when ẑi = 0. We now do Step 2 with ẑ′ (which has positive coordinates) replacing ẑ. Also,
for every i such that ẑi = 0, we fix

gi(Xi
∗) = 0.

For the construction to still work we choose, for all such i, an arbitrary unknown Xi other than
Xi
∗ and Xi

0 and let it play the role of Xi
∗ in Step 2 of Section 4. That is, denoting this arbitrary

unknown by X ′∗
i, we define

gi(X ′∗
i
) =

C

1− ẑ′i+1

1−
∑

xi+1∈X i+1

xi+1


For any player i such that ẑi 6= 0 the construction is unchanged : denote X ′∗

i = Xi
∗ and let

gi(X ′∗
i
) =

C

1− ẑ′i+1

1−
∑

xi+1∈X i+1

xi+1


Now the same argument5 as in Section 4 shows that no unknown other than X ′∗

i may be played
in any bad equilibrium. X ′∗

i may be either X∗i or a monomial unknown, but in any case the
payoff of each other constraint than Y i

∗ is less than max(1, 2c) < C. Hence Y i
∗ , with a payoff of C

(recall that X ′i∗ 6= Xi
0 for all i), is the only constraint that may be played in any bad equilibrium.

The arguments at the end of Step 2 of Section 4 or Section 7.1 then ensures that there is a unique
bad equilibrium in which x′∗

i = ẑ′i for all i. Hence xi∗ = ẑi for all i such that ẑi > 0, and for the
other players we have xi∗ = 0 = ẑi. Thus x∗ = ẑ in the only bad equilibrium as required.

Step 3 is as in Section 4, replacing ẑ by ẑ′.

5.4. General semi algebraic sets. Assume now that F is a general semi algebraic set. Without
loss of generality (repeating several times a polynomial if needed) we write

F =
K⋂
k=1

L⋃
l=1

{z ∈ Rn, Pk,l(z) ≤ 0}, (10)

with Pk,l(z) = ckl +
∑

d∈NND

ck,l,dz
d. The idea is now to write “P1(z) ≤ 0 or P2(z) ≤ 0′” as the

equivalent formula

∃u1, u2 ≥ 0, u1, u2 ≥ 0, u1 + u2 = 1, u1P1(z) + u2P2(z) ≤ 0.

and to use unknowns and constraints to ensure that these equalities and inequalities are satisfied
in any nice equilibrium.

5Of course if N is even one needs additionaly to change the payoff of some X ′i∗ as in Section 7.1
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We thus modify Step 1 of the construction in the following way. As in Section 5.2 let ε and
η > 0 be such that F ⊂]0, 1− 2ε[N and

1− (1− 2ε)− η

((
1

1− (1− 2ε)

)N
− 1

)
> ε,

and fix τ > 0 small enough such that

1− (1− 2ε)− η

((
1

1− (1− 2ε)

)N
− 1

)
−KLτ > ε. (11)

We now add KL addtional actions, called boolean unknowns, for each player i. They are
denoted by Xi

k,l and with payoff 0. We also add additional constraints with payoff depending only
of the boolean unknowns : for each player i and each k a constraint with payoff τ −

∑L
l=1 x

i+1
k,l .

These constraints imply that, in any nice equilibrium, for any i and k, there is at least one l such
that xik,l > 0. Recall that in any nice equilibrium the monomial unknowns satisfy xid = η(x∗)

d for
all i.

Finally, we modify the payoff of the semi algebraic contraints:

gi(Y i
k ) =

L∑
l=1

xi+1
kl

ηck,l +
∑
d∈NND

ck,l,dx
i+2
d

 .

In any nice equilibrium all xi+1
kl are nonnegative and at least one is positive for any fixed k, so

gi(Y i
k ) ≤ 0 implies that there exists at least an l such that Pkl(x∗) ≤ 0. Since this is true for all k,

x∗ ∈ F in any nice equilibrium and NNE(Γ1) ⊂ F . To prove the reverse inclusion, let z ∈ F and
fix, for each i, xi∗ = zi, xid = η(x∗)

d, xik,l = τ if Pk,l(z) ≤ 0, and xik,l = 0 if Pk,l(z) > 0. Then, since
z ∈ F , all constraints give a nonpositive payoff and we only need to check that xi0 ≥ ε , which is
true by inequality (11). Steps 2 and 3 are unchanged.

Remark 12. Any closed semialgebraic set can be written as in (10) but it might be computionally
costly to do so. One can however adapt the construction above to any set given by unions and
intersections in any order. As an example, if F is given as a union of intersections

F =
L⋃
l=1

K⋂
k=1

{z ∈ Rn, Pk,l(z) ≤ 0},

then for any τ > 0, z ∈ F if and only if there exists nonnegative real numbers x1, · · · , xL such
that

τ −
L∑
l=1

xl ≤ 0,

xlxl′ ≤ 0 ∀l < l′,
L∑
l=1

xlPk,l(z) ≤ 0 ∀k.

Hence we add L boolean unknowns Xi
1, · · · , Xi

L for each player, and constraints ensuring that the
inequalities above hold in any nice equilibrium.

6. Comments

6.1. Tightness of the result. Proposition 9 cannot be generalized to F ⊂ [0, 1]N instead of
F ⊂ [0, 1[N , even for N = 3 and a basic semi algebraic set. Consider the basic semi algebraic set
F = {(z1, z2, z3), z1 ≥ 0, z1 ≤ 1, z2 = z3 = (2z1 − 1)2} ⊂ [0, 1]3 and assume by contradiction
that ProjX∗(NE(Γ)) = F for some finite game Γ. Since (1, 1, 1) ∈ F , the pure profile X∗ is a
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Nash equilibrium of Γ. Since (0, 1, 1) ∈ F there exists a mixed action σ1 of Player 1 such that
σ1(X1

∗ ) = 0 and (σ1, X2
∗ , X

3
∗ ) is another Nash equilibrium. Define σ̃1 = 1

2σ
1 + 1

2X
1
∗ . Then σ̃1 is a

best reply to (X2
∗ , X

3
∗ ), since both σ1 and X1

∗ are. Also, since X2
∗ is a best reply to both (X1

∗ , X
3
∗ )

and (σ1, X3
∗ ) it has to be a best reply to (σ̃1, X3

∗ ) by linearity. Similarly X3
∗ is a best reply to

(σ̃1, X2
∗ ). Hence (σ̃1, X2

∗ , X
3
∗ ) is a Nash equilibrium of Γ but ProjX∗(σ̃

1, X2
∗ , X

3
∗ ) =

(
1
2 , 1, 1

)
/∈ F ,

a contradiction.

6.2. Number of actions. In Section 4 one checks that the construction use 2 + (D + 1)3 − 1
unknowns and 9 + 6((D + 1)3 − 1) + K contraints for each player. Hence the number of actions
needed is O(D3 +K) for each player. For the more general Proposition 9, when N = 3 one only
needs to take into account Section 5.4 in which KL constraints and 2KL + K(L − 1) + 2K are
added. Hence the number of actions needed is O(D3 +KL) for each player.

For N players, the approach in Section 7.1 gives O(NDN +KL) actions per player and is thus
exponential in N . However the construction was very inefficient and one can improve it in two
ways. First, many constraints are redondant. For example the fact that x1

d1 = x1
∗ is ensured by

constraints of the other N −1 players with the same payoff ±(x1
d1 −x

1
∗). Similarly there are many

redundant induction constraints. Second, and more importantly, we should use the fact that the
semi algebraic constraints of one player may depend on the unknowns of all the other players.

In fact, assuming N ≥ 4, it turns out it is enough for each player i to have (D + 1)2 − 1
monomial unknowns of the form xi

aei−1+bei
, for 0 ≤ a, b ≤ D and a+ b > 0, such that in any nice

equilibrium
xiaei−1+bei = η(x∗)

aei−1+bei . (12)

To ensure this, we only need for each Player i:
- 4 initialization constraints with payoff ±(xi+2

ei+2 − ηxi+2
∗ ) and ±(xi+2

ei+1 − ηxi+1
∗ ). This gives

(12) for i+ 2 and a+ b = 1.
- 2(D− 1) constraints with payoff ±(ηxi+2

(a+1)ei+1 − xi+2
aei+1x

i+1
∗ ) for 1 ≤ a ≤ D− 1. This gives

(12) for i+ 2, b = 0 and 2 ≤ a ≤ D.
- 2(D − 1) constraints with payoff ±(ηxi+2

(b+1)ei+2 − xi+2
bei+2x

i+3
ei+2) (possible since i + 3 6= i as

N ≥ 4) for 1 ≤ b ≤ D − 1. This gives (12) for i+ 2, a = 0 and 2 ≤ b ≤ D.
- 2D2 constraints with payoff ±(ηxi+2

aei+1+bei+2 − xi+2
bei+2x

i+1
aei+1) for 1 ≤ a, b ≤ D. This gives

(12) for i+ 2 and 1 ≤ a, b ≤ D.
As in Section 5.4, write

F =
K⋂
k=1

L⋃
l=1

{z ∈ Rn, Pk,l(z) ≤ 0},

with Pk,l(z) = ckl +
∑

d∈NND

ck,l,dz
d, and define boolean constraints xik,l. For any d = (d1, · · · , dn) ∈

NN
D , to ease the reading we denote di,j = die

i + dje
j and, abusing notations, we write dj for djej .

The semi algebraic constraints are now with payoff

gi(Y i
k ) =

L∑
l=1

xi+2
kl

ηck,l ∑
d∈NND

ck,l,dx
i+1
di,i+1

xi+3
di+2,i+3

∏
j 6=i,i+1,i+2,i+3

xjdj

 .

They are well defined since N ≥ 4 and thus i+ 3 6= i. In any nice equilibrium, (12) implies that

gi(Y i
k ) = η

L∑
l=1

xi+2
kl Pk,l(x∗)

as in Section 5.4. Hence this construction shows that, for N ≥ 4, one can construct a game
satisfying Proposition 9 with O(D2 + KL) actions for each player. In particular the number of
actions per player does not depend on N and is polynomial in D.
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For specific semialgebraic sets the dependance may even be logarithmic in D. The monomial

x2f may be represented using only O(f) inequalities, iterating x2f =
(
x2f−1

)2
. Then, using the

binary representation of any integer q =
∑f

p=0 λp2
p, one can write

xq =
∏

0≤p≤f, λp=1

x2λp .

So a fixed monomial in one variable can be represented using O(log(D)) constraints. Hence if all
polynomials in the definition of F are S−sparse, meaning that at most S monomials in N variables
are with nonzero coefficient, then the number of actions of each player is O(S log(D) +KL).

7. Generalizations

7.1. A useful lemma. The aim of this section is to generalize the “circular argument” of Claim
6 of Step 2 of the construction, to more complex frameworks in which more than two actions
per player are played with positive probabilities. This will be important to generalize our results
further.

Denote ∆T the T dimensional simplex {(a0, · · · , aT ), at ≥ 0,
∑
at = 1}.

Definition 13. Let N = 3 or N ≥ 5 and T ≥ 2 be two integers and for every 1 ≤ i ≤ N and
1 ≤ t ≤ T let f it be a function from (∆T )N to R. Denote the coordinates of an element of (∆T )N

as (a1
0, · · · , a1

T , a
2
0, · · · aN0 , · · · , aNT ). For 0 < δ < 1 we say that the family of functions {f it} is

δ-circular if
1) For all i and t, f it does not depend on the ais, s = 0 to T , and is multiaffine in the other

coordinates. Moreover, for every i and every t 6= 0, f it is bounded by 1.
2) There exists some āit > 0 for all i = 1 to N and t = 0 to T − 1, and a family κt of

permutations of {1, · · · , N} for t = 0 to T − 1 such that
i)
∑T−1

t=0 āit < 1 for every i.
ii) All the cycles of κt have odd length, for every t.
iii) For every i and every t0 = 0 to T − 1, if a ∈ ∆N

T satisfies
- ait0 ≥ ā

i
t0

- f jt (a) = 0 for every j and every 1 ≤ t < t0

then fκt0 (i)
t0+1 (a) > δ.

iv) For every i and every t0 = 0 to T − 1, if a ∈ ∆N
T satisfies

- ait0 = 0

- f jt (a) = 0 for every j and every 1 ≤ t < t0

then fκt0 (i)
t0+1 (a) < −δ.

Lemma 14. Let N ≥ 3 and T ≥ 2 be two integers, and {f it} a δ-circular family of functions.
Consider a game Γ with sets of actions Ai = {Ai0, · · · , AiT }, with arbitrary payoffs for the actions
Ai0, and such that

gi(Ait, σ
−i) := gi(Ait−1, σ

−i) +

(
δ

2

)t−1

f it (σ
−i)

for every i , every 1 ≤ t ≤ T and every pure profile σ−i. Then NE(Γδ) = {a ∈ (∆T )N , f it (a) =
0 ∀i ∈ N, ∀1 ≤ t ≤ T}.

Proof. Since each f it does not depend on the ais, s = 0 to T , and is multiaffine in the other
coordinates, the game Γ is well defined. Clearly {a ∈ (∆T )N , f it (a) = 0 ∀i ∈ N, ∀1 ≤ t ≤ T} ⊂
NE(Γδ) since each player is then indifferent between all his actions, and conversely the set of
completely mixed equilibria of Γ is a subset of {a ∈ (∆T )N , f it (a) = 0 ∀i ∈ N, ∀1 ≤ t ≤ T}.
Hence we just have to prove that any equilibrium is completely mixed.

Fix an equilibrium a of Γ, we first prove on induction on 0 ≤ t0 ≤ T − 1, that for every i we
have 0 < ait0 < āit0 . Let us start with t0 = 0. By iii) , if ai0 ≥ āi0 for some i, then fκ0(i)

1 (a) > δ > 0
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hence gκ0(i)
(
A
κ0(i)
1

)
> gκ0(i)

(
A
κ0(i)
0

)
and a

κ0(i)
0 = 0. On the other hand, if ai0 = 0 for some i

then by iv) fκ0(i)
1 (a) < −δ. Hence for every t ≥ 1,

gκ0(i)(A
κ0(i)
t ) ≤ gκ0(i)(A

κ0(i)
1 ) +

t∑
t′=2

(
δ

2

)t′−1

|fκ0(i)
t (a)|

< gκ0(i)(A
κ0(i)
0 )− δ +

t∑
t′=2

(
δ

2

)t′−1

< gκ0(i)(A
κ0(i)
0 )− δ +

δ/2

1− δ/2

< gκ0(i)(A
κ0(i)
0 ) since δ < 1.

Thus aκ0(i)
t = 0 for all t ≥ 1 and aκ0(i)

0 = 1 ≥ āi0.
Repeating these arguments, and since by ii) there is an odd k such that (κ0)k(i) = i, one sees

that ai0 ≥ āi0 iff ai0 = 0. Hence 0 < ai0 < āi0 as claimed.
Assume now that 1 ≤ t0 ≤ T − 1 and that the induction hypothesis holds for every t < t0.

Then in particular 0 < ait for all t < t0 hence by the indifference principle f jt (a) = 0 for every
j and every 1 ≤ t < t0. Using iii) exactly as for t0 = 0, one then proves that ait0 ≥ āit0 implies

a
κt0 (i)
t0

= 0. On the other hand, using iv) exactly as for t0 = 0, one proves that ait0 = 0 implies

a
κt0 (i)

t′ = 0 for all t′ > t0 and thus that aκt0 (i)
t0

= 1−
∑t0−1

t=0 a
κt0 (i)
t > 1−

∑t0−1
t=0 ā

κt0 (i)
t > ā

κt0 (i)
t0

by
property i). Then , using assumption ii), ait0 ≥ ā

i
t0 iff ait0 = 0. Hence 0 < ait0 < āit0 as claimed.

We proved that 0 < ait for every i and for all t ≤ T−1. Since aiT = 1−
∑T−1

t=0 ait > 1−
∑T−1

t=0 āit >
0, once again by property i), the proposition is established. �

One may remark that for any circular family of functions, the permutations κt cannot have any
fixed point: if this was the case then properties 2)iii and 2)iv would imply that f it+1(a) depends
on ait, which would contradict property 1). In the particular case of N = 4, observe that there
does not exist any permutation of a set with four elements with no fixed points and no cycles of
even length, so Definition would be void and one needs to adapt it. The natural idea is to take κt
as a circular permutation of {1, 2, 3, 4} (say κ(t) = t− 1), and to change the sign in the definition
in the payoff

gi(Ait, σ
−i) = gi(Ait−1, σ

−i)−
(
δ

2

)t−1

f it (σ
−i)

for some particular player i (say i = 2), so that the circular argument becomes

a4 = 0 =⇒ a3 ≥ ā3 =⇒ a2 ≥ ā2 =⇒ a1 = 0 =⇒ a4 ≥ ā4

and the desired contradiction. This direct adaptation would however cause issues with Claim 2
of Step 2 of our construction so we need to make additional adjustments.

Definition 15. Let N = 4 and T ≥ 2, and for every 1 ≤ i ≤ N and 1 ≤ t ≤ T let f it be a function
from (∆T )N toR. Denote the coordinates of an element of (∆T )N as (a1

0, · · · , a1
T , a

2
0, · · · aN0 , · · · , aNT ).

For 0 < δ < 1 we say that the family of functions {f it} is δ-circular if
1) For all i and t, f it does not depend on the ais, s = 0 to T , and is multiaffine in the other

coordinates. Also, f2
0 does not depend on the a1

s, s = 0 to T , and f4
0 does not depend on

the a2
s, s = 0 to T . Moreover, for every i and every t 6= 0, f it is bounded by 1.

2) There exists some āit > 0 for all i = 1 to N and t = 0 to T − 1, and a family κt of
permutations of {1, · · · , 4} for t = 0 to T − 1 such that
i)
∑T−1

t=0 āit < 1 for every i.
ii) κ0(i) = i− 1 for all i, and for each t ≥ 1, either κt(i) = i+ 1 for all i or κt(i) = i− 1

for all i.
iii) For every i and every t0 = 0 to T − 1, if a ∈ ∆N

T satisfies
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- ait0 ≥ ā
i
t0

- f jt (a) = 0 for every j and every 1 ≤ t < t0

then fκt0 (i)
t0+1 (a) > δ.

iv) For every i and every t0 = 0 to T − 1, if a ∈ ∆N
T satisfies

- ait0 = 0

- f jt (a) = 0 for every j and every 1 ≤ t < t0

then fκt0 (i)
t0+1 (a) < −δ.

Lemma 16. Let N = 4 and T ≥ 2, and {f it} a δ-circular family of functions. Let M :=

sup
a∈(∆T )N

|f1
1 (a)| and α be any positive real number less than max

(
1, δ

2(1+M)

)
. Consider a game Γ

with sets of actions Ai = {Ai0, · · · , AiT }, with arbitrary payoffs for the actions Ai0, and such that

g1(A1
1, σ
−1) := g1(A1

0, σ
−1) + αf1

1 (σ−i) + (1− α)f2
1 (σ−i) (13)

g2(A2
1, σ
−1) := g2(A2

0, σ
−1) + 2f4

1 (σ−i)− f2
1 (σ−i) (14)

g3(A3
1, σ
−1) := g3(A3

0, σ
−1) + f3

1 (σ−i) (15)
g4(A4

1, σ
−1) := g4(A4

0, σ
−1) + f4

1 (σ−i) (16)

gi(Ait, σ
−i) := gi(Ait−1, σ

−i) +

(
αδ

4

)t−1

f it (σ
−i) for every i 6= 2 and 2 ≤ t ≤ T (17)

g2(Ait, σ
−i) := g2(Ait−1, σ

−i)−
(
αδ

4

)t−1

f it (σ
−i) for every 2 ≤ t ≤ T. (18)

Then NE(Γδ) = {a ∈ (∆T )N , f it (a) = 0 ∀i ∈ N, ∀1 ≤ t ≤ T}.

Proof. Since each f it does not depend on the ais, s = 0 to T , is multiaffine in the other coordinates,
and because of the additional assumptions on f2

0 and f4
0 , the game Γ is well defined. Clearly the

set {a ∈ (∆T )N , f it (a) = 0 ∀i ∈ N, ∀1 ≤ t ≤ T} ⊂ NE(Γδ) since each player is then indifferent
between all his actions. Conversely, since α > 0, the set of completely mixed equilibria of Γ is a
subset of {a ∈ (∆T )N , f it (a) = 0 ∀i ∈ N, ∀1 ≤ t ≤ T}. Hence we just have to prove that any
equilibrium is completely mixed.

Fix an equilibrium a of Γ, we first prove on induction on 0 ≤ t0 ≤ T − 1, that for every i we
have 0 < ait0 < āit0 . Let us start with t0 = 0. If a3

0 ≥ ā3
0, then

g1(A1
1) = g1(A1

0) + αf1
1 (a) + (1− α)f2

1 (a)

> g1(A1
0) + αf1

1 (a) + (1− α)δ

> g1(A1
0) by definition of α

and a1
0 = 0. On the other hand, if a3

0 = 0, then

g1(A1
1) = g1(A1

0) + αf1
1 (a) + (1− α)f2

1 (a)

< g1(A1
0) + αf1

1 (a)− (1− α)δ

< g1(A1
0)− δ

2
by definition of α.

Hence for t ≥ 1,

g1(A1
t ) ≤ g1(A1

1) +
t∑

t′=2

(
αδ

4

)t′−1

|f1
t (a)|

< g1(A1
0)− δ

2
+

t∑
t′=2

(
δ

4

)t′−1

< g1(A1
0)



A CHARACTERIZATION OF SETS OF EQUILIBRIUM PAYOFFS OF FINITE GAMES 17

and a1
0 = 1 ≥ ā1

0. Hence we have the sequence of implications

a3
0 ≥ ā3

0 =⇒ a1
0 = 0 =⇒ a4

0 ≥ ā4
0 =⇒ a3

0 = 0 =⇒ a1
0 ≥ ā1

0 =⇒ a4
0 = 0 =⇒ a3

0

and thus 0 < ai0 < āi0 for every i 6= 2. In particular this implies that the payoff of player 1 and 4 in
this equilibrium is g1(A1

0) and g1(A4
0) respectively, that A1

1 and A4
1 are not profitable deviations,

and that at least one A1
t and A4

t′ are played with positive probability, with t, t′ ≥ 1. Hence

−αδ
2
< − αδ/4

1− αδ/4
≤ αf1

1 (a)+(1− α)f2
1 (a) ≤ 0 (19)

−αδ
2
< − αδ/4

1− αδ/4
≤ f1

4 (a) ≤ 0 (20)

Assume first that a2
0 = 0. Then f1

1 (a) < −δ and inequality (19) implies (1− α)f2
1 (a) > αδ

2 . Then

g2(A2
1) = g2(A2

0) + 2f4
1 (a)− f2

1 (a)

< g2(A2
0)− αδ

2
by (20)

< g2(A2
0)− αδ/4

1− αδ/4
which implies that g2(A2

1) < g2(A2
0) for every t ≥ 1, a contradiction. Assume on the other hand

that a2
0 ≥ ā2

0. Then f1
1 (a) > δ and inequality (19) implies (1− α)f2

1 (a) < −αδ. Hence
g2(A2

1) = g2(A2
0) + 2f4

1 (a)− f2
1 (a)

> g2(A2
0)− 2

αδ

2
+ αδ by (20)

= g2(A2
0)

and a2
0 = 0, a contradiction. We have thus established that 0 < ai0 < āi0 for i = 2 as well.

The rest of the proof is exactly as in the proof of Lemma 14, except that the cycles of κ have
an even length of 4, and the contradiction arise since now a

κ−1(2)
t0

≥ āκ
−1(2)
t0

implies a2
t0 ≥ ā

2
t0 and

a
κ−1(2)
t0

= 0 implies a2
t0 = 0. �

7.2. Games with pure payoffs in Z. A natural question is to characterize the sets of equilibrium
payoffs, or the sets of equilibria up to projection of the first action of each player, of all N -player
games with pure payoffs in Z. We say that a set F is Z-semi algebraic is it is the finite union and
intersection of sets of the form {z ∈ Rn, P (z) ≤ 0} or {z ∈ Rn, P (z) < 0} with P ∈ Z[X]. The
necessary conditions are then the same:

Proposition 17. Let Γ be a finite game with pure payoffs in Z, and denote by Xi
∗ the first action

of each player. Then the three sets NE(Γ), NEP(Γ) and ProjX∗(NE(Γ)) are non empty, compact,
and Z-semi algebraic.

Using the technical lemmas in the previous section we can establish the result in the opposite
direction.

Proof. NE(Γ) is clearly compact, non empty by Nash’s theorem, and Z-semi algebraic since all
pure payoffs are integers. ProjX∗(NE(Γ)) is thus also compact and non empty, and it is Z-semi
algebraic by, for example, Theorem 2.92 in [2]. The set NEP(Γ) is clearly compact and nonempty.
Remark that it is a projection of the set {(x, y1, · · · , yn), x ∈ NE(Γ), yi = gi(x)}. This last set
is Z-semi algebraic since NE(Γ) is and the gi are polynomials in Z[X] ; so once again Theorem
2.92 in [2] gives the result. �

Proposition 18. Let N ≥ 3, and F ⊂ [0, 1[N be a nonempty closed Z-semi algebraic set. Then
there exists an N -player finite game Γ with pure payoffs in Z, and a particular pure action profile
X∗ = (X1

∗ , · · · , XN
∗ ) such that

a) ProjX∗(NE(Γ)) = F
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b) NEP(Γ) = {0}.
Moreover, if F ⊂ [0, 1 − 1

M [ for some integer M , F =
⋂K
k=1

⋃L
l=1{z ∈ Rn, Pk,l(z) ≤ 0}, c is a

bound on the coefficients of the polynomials, D is a bound on the degree of the polynomials, and
ẑ ∈ F is a tuple of algebraic numbers, each of which is given as the unique solution of a polynomial
of degree less than some D′ in an interval whose endpoints are two rational numbers, and S is a
bound for the denominators of all these rational numbers, then
- the number of actions of each player in Γ is bounded by a polynomial in D, D′, K and L.
- the bitsizes of the pure payoffs of Γ are bounded by a polynomial in logM , log c, logS, K, L and
D′.

Proof. First of all remark that it is enough to construct a game Γ with rational pure payoffs, as
one can then multiply all payoffs by a suitable integer without changing properties a) and b).

In our constructions in sections 4 and 5, the payoffs depends on the coefficients of the polyno-
mials, on some parameters chosen small or large enough (hence rationals if one wishes so), and of
the coordinates of a particular ẑ ∈ F . The proposition is thus established as soon as F ∩ QN is
nonempty. In general unfortunately there is no reason for F to contain a point with rational co-
ordinates ; however Tarski-Seidenberg theorem guarantees that F contains a point with algebraic
coordinates. Let ẑ be such a point. The idea is to adapt Step 2 of the proof so that there is a
unique bad equilibrium, which projects to ẑ, with using payoffs with rational coefficients. Step 1
and 3 are not modified. Recall that there were already adjustments made to Step 2 in the case
of an even number of players (in Section 7.1) and of a ẑ with some zero coordinates (in Section
5.3). For the sake of simplicity we first assume here that N is odd and that all coordinates of ẑ
are positive ; we will deal with the general case at the end of the proof.

For every i let Pi ∈ Z[X] be a polynomial with only single roots and such that Pi(ẑi) = 0 (take
for example the minimal polynomial of ẑi). Changing the sign of Pi if necessary, one may assume
that Pi(z) > 0 for small positive z − ẑi, while Pi(z) < 0 for small negative z − ẑi. Let D′ be
strictly larger than the degree of all Pi.

The construction will now use in Step 2, in addition to Y i
∗ , D′ + 2 new constraints for each

player denoted by the letter W ; denote by W i the set of these constraints. The basic idea is
to ensure that in all bad equilibria Pi(xi∗) = 0. Let us first briefly explain the role of each new
constraints:

- a new constraint is denotedW i
v, v meaning variable. As there is no reason for the Pi to have

a single zero in [0, 1], proving Pi(xi∗) = 0 does not imply that xi∗ = ẑi. The role ofW i
v is thus

to "translate" xi∗: we will prove that in any bad equilibrium one has xi∗ = βi+(γi−βi)wi−2
v

(for constants βi and γi to be determined), ensuring that xi∗ lies in some interval [βi, γi] in
which the only zero of Pi is ẑi.

- D′ new constraints W i
t , 1 ≤ t ≤ D′ will represent powers of wi−2

v . For technical reasons we
will use "translated" powers: we will prove that in any bad equilibria

wit − θt = θ(wi−2
v )t.

for some θ to be determined.
- The last constraint is denoted W i

P (P meaning polynomial). Its payoff will depend on
the wi+1

t , and hence, by the previous relations, on powers of xi+1
∗ , in such a way that

Pi+1(xi+1
∗ ) = 0 in any bad equilibrium.

Before giving the precise payoffs we first define some new constants. For each i, let 0 < βi and
γi < 1 be two rationals such that ẑi is the only zero of Pi in ]βi, γi[. Increasing βi if needed, we
assume that ẑi is in the very left of the interval in the following sense:

ẑi − βi
γi − βi

< 1− γi.

Because of our assumptions on Pi, Pi(z) is negative on [βi, ẑi[ and positive on ]ẑi, γi]. Denote
by Qi the polynomial Qi(z) = Pi(βi + (γi − βi)z). By definition of D′ one can write Qi(z) =∑D′−1

t=0 bi,tz
t, and the bi,t are rationals, with bi,0 < 0. Let b be a rational majorant of all the |bi,t|.
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Fix also two positive rationals θ and ŷ such that

ŷ + (D′ + 2)2θ + γi +
ẑi − βi
γi − βi

< 1 (21)

for all i. Finally chose a positive rational δ < 1
2 such that

δ

1− δ
<

θ

4
(22)

δ

1− δ
< βi for all i. (23)

δ

1− δ
< − θbi,0

2D′b
for all i. (24)

We are now ready to give the definitions of the payoffs. Step 1 is exactly as in the previous
sections, with the constants ε, η, τ chosen in Q. At the end of this step all pure payoffs are thus
rationals and properties a) and b) are satisfied for nice equilibria. In Step 2 one choses a rational
C > max(1, 2c) and define, as in Section 5.2,

gi(Y i
∗ ) = C

(
1− xi+1

0

ε

)
. (25)

One modifies the payoff of Xi
∗ in the following way:

gi(Xi
∗) =

C

ŷ

1−
∑

xi+1∈X i+1

xi+1 −
∑

wi+1∈Wi+1

wi+1

 . (26)

One now defines the payoff of the constraints in W i:

gi(W i
1) = gi(Xi

∗) + δ(xi+1
∗ − βi+1 − (γi+1 − βi+1)wi−1

v )− 2xi+1
0

ε
(27)

gi(W i
2) = gi(W i

1) + δ2(wi+1
1 − θ − θwi−1

v ) (28)

gi(W i
t ) = gi(W i

t−1) +
δt

4

(
wi+1
t−1 − (t− 1)θ − wi−1

v (wi+1
t−2 − (t− 2)θ)

)
for 3 ≤ t ≤ D′ (29)

gi(W i
v) = gi(W i

D′) +
δD
′+1

4

(
wi+1
D′ −D

′θ − wi−1
v (wi+1

D′−1 − (D′ − 1)θ)
)

(30)

gi(W i
P ) = gi(W i

v) + δD
′+2 θbi+1,0 +

∑D′−1
t=1 bi+1,t(w

i+1
t − tθ)

2D′b
. (31)

Note that all of these payoffs are rational when players choose pure strategies. We now prove
the same seven claims that in Section 4.

Claim 1 : adding these actions does not change the set of nice equilibria. Indeed, in any nice
equilibria gi(Xi

∗) is still 0, and gi(Y i
∗ ) is nonpositive since xi+1

0 ≥ ε.
One checks easily that in any profile,

|gi(W i
t+1)− gi(W i

t )| ≤ δt+1 for all 1 ≤ t < D′

|gi(W i
v)− gi(W i

D′)| ≤ δD
′+1

|gi(W i
P )− gi(W i

v)| ≤ δD
′+2

Hence one has for any W i ∈ W in any nice equilibrium:
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gi(W i) ≤ gi(Xi
∗) + δ − δ2xi+1

0

ε
+
D′+2∑
t=2

δt (32)

≤ δ

1− δ
− 2δ

< 0 since δ <
1

2

and the claim is verified.
Claim 2 : if the payoff in a bad equilibrium was 0 for each player, it would imply that gi(Y i

∗ ) ≤ 0
and xi+1

0 ≥ ε. As in (32) this immediately implies that gi(W i) < gi(Xi
∗) for all W i ∈ W and these

constraints are not played. Hence for all i,

0 ≥ gi(Xi
∗) =

C

ŷ

1−
∑

xi+1∈X i+1

xi+1


and the equilibrium is nice, a contradiction. �

Claim 3, 4 and 5 follow exactly as in Section 4. Hence, in any bad equilibrium, the only
strategies that may be played by player i with positive probability are Xi

∗, Y i
∗ , and the W i

t . This
implies that, in bad equilibria, the following actions have simplified payoffs:

gi(Y i
∗ ) = C

gi(Xi
∗) = C

yi∗
ŷ

gi(W i
1) = gi(Xi

∗) + δ(xi+1
∗ − βi+1 − (γi+1 − βi+1)wi−1

v )

We now come to the bulk of the proof, Claim 6, that is the fact that there is a unique bad equi-
librium which projects to ẑ. For this we use Lemma 14 with T = D′+ 3 and Ai0, · · · , AiD′+3 being
named Y i

∗ , X
i
∗,W

i
1, · · · ,W i

D′ ,W
i
v,W

i
P in that order. For a ∈ ∆ := Πi∆(Y i

∗ , X
i
∗,W

i
1, · · · ,W i

D′ ,W
i
v,W

i
P )

define

f i∗(a) =
C

ŷ
(yi+1
∗ − ŷ)

f i1(a) = xi+1
∗ − βi+1 − (γi+1 − βi+1)wi−1

v

f i2(a) = wi+1
1 − θ − θwi−1

v

f it (a) =
1

4

[
wi+1
t−1 − (t− 1)θ − wi−1

v (wi+1
t−2 − (t− 2)θ)

]
for 3 ≤ t ≤ D′

f iv(a) =
1

4

[
wi+1
D′ −D

′θ − wi−1
v (wi+1

D′−1 − (D′ − 1)θ)
]

f iP (a) =
θbi+1,0 +

∑D′−1
t=1 bi+1,t(w

i+1
t − tθ)

2D′b
.

Assume for a moment that the family of functions f is δ-circular, then by Lemma 14 in any
bad equilibrium all functions are equal to 0, which implies that for every i and t,

xi∗ = βi + (γi − βi)wi−2
v (33)

wit = θ(t+ (wi−2
v )t). (34)

Now looking at f iP this implies 0 = Qi+1(wi−1
v ) = Pi+1(xi+1

∗ ), and since xi+1
∗ ∈ [βi+1, γi+1] by

(33) one gets x∗ = ẑ. Hence one has just to verify that the family of functions f is δ-circular.
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Assumption 1) of Definition 7.1 clearly holds. Define for each player i

ȳi∗ = ŷ + θ

x̄i∗ = γi + θ

w̄it = (t+ 2)θ for all 1 ≤ t ≤ D′

w̄iv =
ẑi − βi
γi − βi

+ θ

Then by (21), assumption 2)i) of Definition 7.1 holds as well. Also define κt(i) = i− 1 for every t
except κv(i) = i+ 1. Since N is odd assumption 2)ii) of Definition 7.1 is satisfied. It remains to
check assumptions 2)iii and 2)iv)

- If yi∗ ≥ ȳi∗, then f i−1
∗ (a) ≥ Cθ

ŷ > 0.
- If yi∗ = 0 then f i−1

∗ (a) = −C ≤ −1 < − δ
1−δ .

- If xi∗ ≥ x̄i∗, then f i−1
1 (a) ≥ θ > 0.

- If xi∗ = 0 then f i−1
1 (a) ≤ −βi+1 < − δ

1−δ by (23).
- If wi1 ≥ w̄i1 then f i−1

2 (a) ≥ θ > 0.
- If wi1 = 0 then f i−1

2 (a) ≤ −θ < − δ
1−δ .

- Let 2 ≤ t0 ≤ D′, and assume that f jt (a) = 0 for every j and every 1 ≤ t < t0, and f
j
t0

(a) ≤ 0

for every j. Then one proves easily by induction that wjt = θ(t + (wj−2
v )t) for all j and

1 ≤ t ≤ t0 − 2, and that wjt0−1 ≤ θ(t0 − 1 + (wj−2
v )t0−1) for all j. Hence wit0 ≥ w̄

i
t0 implies6

f i−1
t0+1(a) ≥ 1

4

[
2θ − (wit0−1 − (t0 − 1)θ)

]
≥ 1

4

[
2θ − θ(wi−2

v )t0−1
]

> 0.

- Let 2 ≤ t0 ≤ D′, and assume that wit0 = 0. Then7 f i−1
t0+1(a) ≤ − θ

4 < −
δ

1−δ .
- Assume finally that f j∗ (a) = 0 for every j and that f jt (a) = 0 for every j and every

1 ≤ t ≤ D′. This implies on one hand that xj∗ = βj + (γj − βj)wj−2
v for all j, and on the

other hand that wjt = θ(t+ (wj−2
v )t) for all j and 1 ≤ t ≤ D′ − 1. Hence

f i+1
P (a) =

Qi+2(wiv)

2D′b

=
Pi+2(xi+2

∗ )

2D′b
.

Now if wiv ≥ w̄iv then xi+2
∗ > ẑi+2 and, since xi+2

∗ ≤ γi+2, f i+1
P (a) = Pi+2(xi+2

∗ )
2D′b ≥ 0. If

wiv = 0, f i+1
P (a) = Qi+2(0)

2D′b =
θbi,0
2b < − δ

1−δ .
We have thus verified that f is δ-circular which ends the proof of Step 2. Step 3 is the same as

in Section 4.
It remains to explain the adjustments to the case of a ẑ with some zero coordinates, and of an

even number of players. If ẑ has some zero coordinates, we just have to use a fictitious ẑ′ as in
Section 5.3, the details being left to the reader. If N is even and greater than 6, as in Section 7.1
we cut N in two sets of odd cardinality and with at least three elements each. Call type 1 and
type 2 elements of these respective sets. The payoff of the Y i

∗ is defined as in (25) ; the payoffs
of the Xi

∗ and the W i is defined as in equation (26) to (31) where i + 1 and i − 1 are replaced
by "the next player of the same type" and "the previous player of the same type" respectively.
Claim 1 to 5 follows similarly. For Claim 6 we use Lemma 14 in which κt(i) is the previous (or

6 When t0 = D′ we write t0 + 1 for v
7See previous footnote
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next if t = v) player of the same type as i. Since there are an odd number of players of each type
assumption 2)ii) is satisfied and the rest of the proof is the same.

When N = 4 one needs to adapt the construction, using Lemma 16 instead of Lemma 14

Proposition 19. Let N ≥ 3, and F be a nonempty compact Z-semi algebraic set. Then F is the
set of equilibrium payoffs of some finite N -player game with pure payoffs in Z.

Proof. Let B be an integer such that F ⊂]− B,B[N . Define F ′ = B+F
4B , thus F ′ ⊂]0, 1

2 [ and one
may apply the previous proposition to F ′ to get a game Γ, with integer pure payoffs, such that

a) ProjX∗(NE(Γ)) = F ′

b) NEP(Γ) = {0}.
As in the proof of Theorem 8, by adding 1 to the payoff of each player i iff player i − 1 plays
Xi−1
∗ , and then relabelling the players, we get a game Γ′ with integer pure payoffs and whose set

of equilibrium payoffs is F ′. Then 4BΓ−B is a game with integer pure payoffs and whose set of
equilibrium payoffs is F . �

7.3. Projection on more than one action per player.

Definition 20. Let N ∈ N∗ and (T1, · · · , TN ) ∈ (N∗)N . Let F ⊂ RT1+···+TN and denote the
coordinates of any element z ∈ F as zi,t for i = 1 to N and t = 1 to Ti. F is (T1, · · · , TN )-
admissible if the following properties are satisfied for all z ∈ F :

- zi,t ≥ 0 for all i and t
- for all i,

∑Ti
t=1 zi,t ≤ 1.

F is strongly (T1, · · · , TN )-admissible if the second property is replaced for all z ∈ F by
- for all i,

∑Ti
t=1 zi,t < 1.

We now generalize Proposition 9 to projection of the set of Nash equilibria on the Ti first
actions of each player i. Clearly such a projection is always nonempty, closed, semialgebraic and
(T1, · · · , TN )-admissible. We now prove a reciprocal:

Proposition 21. Let N ≥ 3 and (T1, · · · , TN ) ∈ (N∗)N . Let F ⊂ RT1+···+TN be a nonempty
closed semi algebraic set and assume it is strongly (T1, · · · , TN )-admissible. Then there exists an
N -player game Γ, and Ti special actions Xi

∗,1, · · · , Xi
∗,Ti for each player i, such that

a) Proj{Xi
∗,t}(NE(Γ)) = F

b) NEP(Γ) = {0}.
Proof. The general architecture of the construction follows the one for Proposition 9. We do not
detail Step 1 as it is very similar : one define unknows and constraints so that every monomial in
the xi∗,t is represented in nice equilibria, and semi algebraic constraints such that x∗ ∈ F in any
nice equilibrum. The assumption N ≥ 3 ensures that one can make products in the definition of
the payoff functions, and thus that this construction is possible. As in the original construction
define for each player a dump unknown Xi

0 such that xi0 ≥ ε in every nice equilibrium, for some
positive ε.

The difficulty lies in generalizing Step 2. First of all we remark that without loss of generality
we may assume that Ti = T for all i. Indeed if this is not the case, let T be the largest Ti and
define F ′ ∈ RNT as any nonempty closed semi algebraic and strongly (T, · · · , T )-admissible set,
such that Proj{Xi

∗,t}(F
′) = F (one may for example take F ′ = F × {0}NT−T1−···−TN ). Now apply

the result to F ′ and then project on {Xi
∗,j}.

Let now ẑ = (ẑ1,1, · · · , ẑN,TN ) ∈ F . We assume for the moment that ẑi,t > 0 for all i and t,
the other case being explained briefly in the end of the proof. As usual the contruction will be
different for odd and even N .

Asume first that N is odd. Let C be large enough, and define for all player i the constraint Y i
∗

by

gi(Y i
∗ ) := C

(
1− xi+1

0

ε

)
.
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One now need to define the payoffs of all Xi
∗,t. For this let δ > 0 be such that δ

1−δ < ẑi,t for all i
and t, and denote ŷi := 1−

∑T
t=1 ẑi,t which is positive for all i by strong admissibility. Now

gi(Xi
∗,t) :=

C

ŷi+1

1−
∑

xi+1∈X i+1

xi+1

(1 +
t−1∑
t′=1

δt
′
(xi−1
∗,t′ − ẑi−1,t′)

)
. (35)

We remark that for all i and t, gi(Xi
∗,t) = 0 if and only if Player i+ 1 only plays unknowns with

positive probability. Claim 1 to 5 follows as in the original contruction, and ensure that all nice
equilibria have a payoff of zero, that the projection of the set of nice equilibria is F , and that the
only actions that may be played in any bad equilibrium are the Xi

∗,t and Y i
∗ . We now prove that

there is a unique bad equilibrium, which projects on ẑ. Fix a bad equilibrium, and remark that,
since unknowns other than the Xi

∗,t are not played, payoff of action Xi
∗,t can be written as

gi(Xi
∗,t) :=

Cyi+1
∗

ŷi+1

(
1 +

t−1∑
t′=1

δt
′
(xi−1
∗,t′ − ẑi−1,t′)

)
while gi(Y i

∗ ) = C. We first claim that yi∗ ∈]0, 1[ for all i. Indeed, yi+1
∗ = 0 would imply gi(Xi

∗,t) =

0 < C = gi(Y i
∗ ) for all t so yi∗ = 1 ; while yi+1

∗ = 1 would imply that gi(Xi
∗,1) > C = gi(Y i

∗ )

so yi∗ = 0. Since N is odd the usual circular argument apply. Hence Y i
∗ is played with positive

probability and the payoff of each player is C. Hence gi(Xi
∗,t) ≤ C and

yi∗ ≤ ŷi (36)

for all i.
We now prove by induction on t that for every t from 1 to T − 1, xi∗,t′ > 0 for all i. Start with

t = 1 and assume by contradiction that xi∗,1 = 0 for some player i. Looking now at the payoff of
Player i+ 1 for any action Xi+1

∗,t with t > 1 we see that

gi(Xi+1
∗,t ) =

Cyi+2
∗

ŷi+2

(
1 +

t−1∑
t′=1

δt
′
(xi∗,t′ − ẑi,t′)

)

≤ Cyi+2
∗

ŷi+2

(
1− δẑi,1 +

t−1∑
t′=2

δt
′

)

<
Cyi+2
∗

ŷi+2
by definition of δ

= gi(Xi+1
∗,1 ).

Hence xi+1
∗,t = 0 for all t > 1 and (36) implies xi+1

∗,1 = 1 − yi+1
∗ > zi+1,1. Now looking at player

i+ 2 one gets

gi(Xi+2
∗,2 ) =

Cyi+3
∗

ŷi+3

(
1 + δ(xi+1

∗,1 − ẑi+1,1)
)

>
Cyi+3
∗

ŷi+3

= gi(Xi+2
∗,1 )

and xi+2
∗,1 = 0. Since N is odd a circular argument implies that all xi∗,1 are both equal to 0 and

larger than zi,1, a contradiction which establishes the induction hypothesis for t = 1.
Let now 1 < t ≤ T − 1 and assume that the induction hypothesis is true for every t′ < t. In

particular xi∗,1 > 0 for every i hence gi(Xi
∗,1) = C and

yi∗ = ŷi (37)
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for every i. Since xi∗,t′ > 0 for every 2 ≤ t′ < t, one gets gi(Xi
∗,t′) = C and

xi∗,t′ = ẑi,t′ (38)

for every i and t′ ≤ t− 2. Also, gi(Xi
∗,t) ≤ C implies

xi∗,t−1 ≤ ẑi,t−1 (39)

for every i. Assume now by contradiction that xi∗,t = 0 for some player i. Looking at Player i+ 1

payoff for Xi+1
∗,t′′ for t

′′ > t one gets

gi(Xi+1
∗,t′′) = C

(
1 +

t′′−1∑
t′=t

δt
′
(xi∗,t′ − ẑi,t′)

)

≤ C

(
1− δẑi,t +

t′′∑
t′=t+1

δt
′

)
< C by definition of δ.

Hence xi+1
∗,t′′ = 0 for all t′′ > t. Equations (37) to (39) then imply that

xi+1
∗,t ≥ 1− ŷi −

t−1∑
t′=1

ẑi,t′ =

T∑
t′′=t

ẑi,t′′

and xi+1
∗,t > ẑi,t. Now looking at player i+ 2 one gets

gi(Xi+2
∗,t+1) = C

(
1 + δt−1(xi+1

∗,t−1 − ̂zi+1,t−1) + δt(xi+1
∗,t − ẑi+1,t)

)
> C

(
1 + δt−1(xi+1

∗,t−1 − ̂zi+1,t−1)
)

= gi(Xi+2
∗,t )

and xi+2
∗,t = 0. Once again a circular argument yields the desired contradiction.

We have thus proved that xi∗,t′ > 0 for all i and 1 ≤ t < T . Hence (38) applies for all i and
1 ≤ t < T − 1, while (39) reads as

xi∗,T−1 ≤ ẑi,T−1 (40)

for all i. Combining all this with (37) we get

xi∗,T ≥ 1− ŷi −
T−1∑
t′=1

ẑi,t′ = ẑi,T (41)

hence xi∗,T > 0 as well. This imply that (40), and then (41), are equalities for all i. Finally
xi∗,t = ẑi,t for all i and t, hence there is a unique bad equilibrium and its projection is ẑ ∈ F . This
concludes Step 2, and Step 3 is the same as in the proof of Proposition 9.

If N is even and N ≥ 6, we do as in Section 7.1: we separate the players in two types
depending of whether they belong to {1, 2, 3} or {4, · · · , N}, and in (35) we replace i+1 and i−1
by, respectively, “the next player of the same type” and “the previous player of the same type”.
Everything follows then exactly as in the odd case since both 3 and N − 3 are odd.

Once again the more problematic case is N = 4. In that case we define, as in the odd case,

gi(Y i
∗ ) := C

(
1− xi+1

0

ε

)
.



A CHARACTERIZATION OF SETS OF EQUILIBRIUM PAYOFFS OF FINITE GAMES 25

The payoffs of the Xi
∗,t are more complex. Denote ŷi := 1 −

∑T
t=1 ẑi,t, which is positive for all i

by strong admissibility. Also fix 0 < α < 1
2 such that

α <
ŷ2

2
(42)

α <
1− ŷ2

2
(43)

α <
ẑi,t
2

for all i and t (44)
α

1− α
< ẑi,t for all i and t (45)

and then 0 < δ such that

1 + 2δ

(1− δ)2
<

1

1− α
(46)

δ

(1− δ)
<

ẑi,t
2
− α for all i and t (47)

δ

(1− δ)
<

αẑi,t
2

for all i and t. (48)

Then

g1(X1
∗,t) :=

αC
ŷ2

1−
∑
x2∈X 2

x2

+ (1− α)
C

ŷ3

1−
∑
x3∈X 3

x3

(1 +
t−1∑
t′=1

δt
′
(x4
∗,t′ − ẑ4,t′)

)

g2(X2
∗,t) :=

2C

ŷ1

1−
∑
x1∈X 1

x1

− C

ŷ3

1−
∑
x3∈X 3

x3


+
C

ŷ4

1−
∑
x4∈X 4

x4

(2
t−1∑
t′=1

δt
′
(x3
∗,t′ − ẑ3,t′)−

t−1∑
t′=1

δt
′
(x1
∗,t′ − ẑ1,t′)

)

g3(X3
∗,t) :=

C

ŷ4

1−
∑
x4∈X 4

x4

(1 +

t−1∑
t′=1

δt
′ (
α(x2

∗,t′ − ẑ2,t′) + (1− α)(x1
∗,t′ − ẑ1,t′)

))

g4(X4
∗,t) :=

C

ŷ1

1−
∑
x1∈X 1

x1

(1 +
t−1∑
t′=1

δt
′
(x3
∗,t′ − ẑ3,t′)

)
.

It is immediate that all gi(Xi
∗,t) equal 0 in any nice equilibrium. In any bad equilibrium, either

g1(X1
∗,1) > 0 (if

∑
x2∈X 2

x2 < 1 or
∑

x3∈X 3

x3 < 1), g3(X3
∗,1) > 0 (if

∑
x4∈X 4

x4 < 1) or g4(X4
∗,1) > 0

(if
∑

x1∈X 1

x1 < 1). Claim 1 to 5 of the original proof then follow easily: all nice equilibria have

a payoff of zero, the projection of the set of nice equilibria is F , and the only actions that may
be played in any bad equilibrium are the Xi

∗,t and Y i
∗ . We now prove that there is a unique bad

equilibrium, which projects on ẑ. Fix a bad equilibrium, and remark that, since unknowns other
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than the Xi
∗,t are not played, payoffs of actions Xi

∗,t can be written as

g1(X1
∗,t) :=

(
α
Cy2
∗

ŷ2
+ (1− α)

Cy3
∗

ŷ3

)(
1 +

t−1∑
t′=1

δt
′
(x4
∗,t′ − ẑ4,t′)

)

g2(X2
∗,t) :=

2Cy1
∗

ŷ1
− Cy3

∗
ŷ3

+
Cy4
∗

ŷ4

(
2
t−1∑
t′=1

δt
′
(x3
∗,t′ − ẑ3,t′)−

t−1∑
t′=1

δt
′
(x1
∗,t′ − ẑ1,t′)

)

g3(X3
∗,t) :=

Cy4
∗

ŷ4

(
1 +

t−1∑
t′=1

δt
′ (
α(x2

∗,t′ − ẑ2,t′) + (1− α)(x1
∗,t′ − ẑ1,t′)

))

g4(X4
∗,t) :=

Cy1
∗

ŷ1

(
1 +

t−1∑
t′=1

δt
′
(x3
∗,t′ − ẑ3,t′)

)
.

while gi(Y i
∗ ) = C.

We first claim that yi∗ > 0 for all i. As in the construction for odd N , y4
∗ = 0 would imply

g3(Xi
∗,t) = 0 < C = g3(Y i

∗ ) for all t so y3
∗ = 1 ; while y4

∗ = 1 would imply that g3(X3
∗,1) > C =

g3(Y 3
∗ ) so y3

∗ = 0. Similarly y1
∗ = 0 would imply y4

∗ = 1 while y1
∗ = 1 would imply y4

∗ = 0. Finally,
y3
∗ = 0 would imply g1(X1

∗,t) ≤ 2αC
ŷ2

< C = g1(Y i
∗ ) for all t so y1

∗ = 1, while y3
∗ = 1 would imply

that g1(X1
∗,1) ≥ (1−α)C

ŷ2
> C = g1(Y 3

∗ ) so y1
∗ = 0. Hence yi∗ ∈]0, 1[ for all i ∈ {1, 3, 4}. In particular

the payoff at equilibrium of these players is C. Thus g4(X4
∗,t) ≤ C and g3(X3

∗,t) ≤ C so y1
∗ ≤ ŷ1

and y4
∗ ≤ ŷ4. Assume now by contradiction that y2

∗ = 0. Recall that y1
∗ < 1 (or else y4

∗ = 0), so
there must exists t such that

C = g1(X1
∗,t)

= (1− α)
Cy3
∗

ŷ3

(
1 +

t−1∑
t′=1

δt
′
(x4
∗,t′ − ẑ4,t′)

)

≤ (1− α)
Cy3
∗

(1− δ)ŷ3

hence y3∗
ŷ3
≥ 1−δ

1−α . Plugging all this in the definition of g2(X2
∗,t) yields

g2(X2
∗,t) ≤ C

(
2− 1− δ

1− α
+ 2

t−1∑
t′=1

δt
′
(x3
∗,t′ − ẑ3,t′)−

t−1∑
t′=1

δt
′
(x1
∗,t′ − ẑ1,t′)

)

≤ C

(
2− 1− δ

1− α
+ 3

δ

1− δ

)
< C

(
2− 1 + 2δ

1− δ
+ 3

δ

1− δ

)
by (46)

= C

for all t, hence y2
∗ = 1 a contradiction. We have thus proved that yi∗ > 0 for all i.

We now prove by induction on t that for every t from 1 to T − 1, xi∗,t′ > 0 for all i. Start with
t = 1. Since gi(Xi

∗,t) ≤ C for i = 1, 3 and 4 repectively we have

y3
∗,1 ≤ ŷ3

1− α
(49)

y4
∗,1 ≤ ŷ4 (50)

y1
∗,1 ≤ ŷ1 (51)
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We then establish the following chain of implications:

x3
∗,1 = 0 =⇒ x4

∗,1 = 1− y4
∗ exactly as in the proof for odd N

=⇒ x4
∗,1 ≥ 1− ŷ4 > ẑ4,1 by (50)

=⇒ x1
∗,1 = 0 exactly as in the proof for odd N

=⇒ g3(X3
∗,t)− g3(X3

∗,1) < α
δ

1− δ
− (1− α)δẑ1,1 + (1− α)

δ2

1− δ
for all t > 1

=⇒ g3(X3
∗,t)− g3(X3

∗,1) < δ

(
δ + α− αδ

1− δ
− ẑ1,1

2

)
< 0 for all t, by (47)

=⇒ x3
∗,1 = 1− y3

∗ ≥ 1− ŷ3

1− α
by (49)

=⇒ x3
∗,1 > 1− ŷ3

1− ẑ3,2
by (44)

=⇒ x3
∗,1 > 1− 1− ẑ3,1 − ẑ3,2

1− ẑ3,2
=

ẑ3,1

1− ẑ3,2
> ẑ3,1

=⇒ x4
∗,1 = 0 exactly as in the proof for odd N

=⇒ x1
∗,1 = 1− y1

∗ exactly as in the proof for odd N

=⇒ x1
∗,1 ≥ 1− ŷ1 by (51)

=⇒ x1
∗,1 ≥ ẑ1,1 + ẑ1,2 > ẑ1,1 +

α

1− α
ẑ1,2

=⇒ g3(X3
∗,2)− g3(X3

∗,1) > δ(−α+ (1− α)
α

1− α
ẑ1,2) = 0

=⇒ x3
∗,1 = 0.

Since there are contradictions in this chain (for example both x3
∗,1 = 0 and x3

∗,1 > ẑ3,1), all the
propositions have to be false and in particular xi∗,1 > 0 for i ∈ {1, 3, 4}. Hence gi(Xi

∗,t) = C for
those i and

α
y2
∗
ŷ2

+ (1− α)
y3
∗
ŷ3

= 1 (52)

y4
∗ = ŷ4 (53)
y1
∗ = ŷ1. (54)

Also x3
∗,1 ≤ ẑ3,1, hence

T∑
t=2

x3
∗,t = 1− x3

∗,1 − y3
∗

≥ 1− ẑ3,1 −
ŷ3

1− α
by (49)

> 1− ẑ3,1 −
ŷ3

1− ẑ3,2
by (44)

≥ 1− ẑ3,1 −
1− ẑ3,1 − ẑ3,2

1− ẑ3,2

> 0

and at least one X3
∗,t is played with positive probability for t ≥ 2. It implies that there exists

t0 ≥ 2 such that g3(X3
∗,t0) = C and thus
t0−1∑
t′=1

δt
′ (
α(x2

∗,t′ − ẑ2,t′) + (1− α)(x1
∗,t′ − ẑ1,t′)

)
= 0 (55)
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Also, g3(X3
∗,t) ≤ C for this particular t0 implies

t0−1∑
t′=1

δt
′
(x3
∗,t′ − ẑ3,t′) ≤ 0 (56)

Assume now by contradiction that x2
∗,1 = 0. Then (55) implies

0 = −αδẑ2,t′ +

t0−1∑
t′=2

δt
′ (
α(x2

∗,t′ − ẑ2,t′) + (1− α)(x1
∗,t′ − ẑ1,t′)

)
≤ −αδẑ2,t′ + (1− α)δ(x1

∗,1 − ẑ1,1) +
δ2

1− δ

< δ

(
(1− α)(x1

∗,1 − ẑ1,1)− δ

1− δ

)
by (48)

hence

x1
∗,1 − ẑ1,1 >

δ

(1− δ)(1− α)
>

δ

(1− δ)
. (57)

Now using (57), (56) and (53) one gets for all t ≥ 2

g2(X2
∗,t)− g2(X2

∗,1) ≤ C
(
−δ(x1

∗,1 − ẑ1,1) +
δ2

1− δ

)
< 0

and x2
∗,t = 0 for all t ≥ 2. Since, by assumption, x2

∗,1 = 0 as well, we have y2
∗ = 1, hence y3

∗ < ŷ3

by (52). And finally, using (54), we get

g2(X2
∗,1) = 2C − C y

3
∗
ŷ3

> C,

a contradiction. Hence x2
∗,1 > 0 as well, and the induction hypothesis is proved for t = 1.

Now g2(X2
∗,1) = C, hence y3

∗ = ŷ3, and then y2
∗ = ŷ2 by (52). Hence, in any bad equilibrium,

the payoffs can now be written in the simpler form:

g1(X1
∗,t) := C

(
1 +

t−1∑
t′=1

δt
′
(x4
∗,t′ − ẑ4,t′)

)

g2(X2
∗,t) := C

(
1 + 2

t−1∑
t′=1

δt
′
(x3
∗,t′ − ẑ3,t′)−

t−1∑
t′=1

δt
′
(x1
∗,t′ − ẑ1,t′)

)

g3(X3
∗,t) := C

(
1 +

t−1∑
t′=1

δt
′ (
α(x2

∗,t′ − ẑ2,t′) + (1− α)(x1
∗,t′ − ẑ1,t′)

))

g4(X4
∗,t) := C

(
1 +

t−1∑
t′=1

δt
′
(x3
∗,t′ − ẑ3,t′)

)
.

Let now 1 < t ≤ T − 1 ; we assume that the induction hypothesis is true for every t′ < t and
establish it for t. The proof is largely similar to the case t = 1 so we omit most computations
and just explain the general scheme. First of all, the induction hypothesis up to t−1 implies that
xii,t′ = ẑi,t′ for all i and t ≤ t− 2 (use first that g1(X1

∗,t′) = g4(X4
∗,t′) = C, then g2(X2

∗,t′) = C and
finally g3(X3

∗,t′) = C). Also gi(Xi
∗,t) ≤ C hence

x1
∗,t−1 ≤ ẑ1,t−1 +

α

1− α
(58)

x3
∗,t−1 ≤ ẑ3,t−1 (59)

x4
∗,t−1 ≤ ẑ4,t−1 (60)



A CHARACTERIZATION OF SETS OF EQUILIBRIUM PAYOFFS OF FINITE GAMES 29

Using these three inequalities along with inequalities (42) to (48) establishes that

x3
∗,t = 0 =⇒ x4

∗,t > ẑ4,t =⇒ x1
∗,t = 0 =⇒ x3

∗,t > ẑ3,t =⇒ x4
∗,t = 0 =⇒ x1

∗,t ≥ ẑ1,t+
αẑ1,t+1

1− α
=⇒ x3

∗,t = 0,

the only significant difference with the case t = 1 being the implication x4
∗,t = 0 =⇒ x1

∗,t ≥
ẑ1,t +

αẑ1,t+1

1−α for which one has to use (48), since (51) is replaced by the weaker inequality (58).
Hence xi∗,t > 0 for i ∈ {1, 3, 4}, gi(Xi

∗,t) = C for those i and

α(x2
∗,t−1 − ẑ2,t−1) + (1− α)(x1

∗,t−1 − ẑ1,t−1) = 0

x3
∗,t−1 = ẑ3,t−1

x4
∗,t−1 = ẑ4,t−1

Using these three equalities, as well as x3
∗,t ≤ ẑ3,t and inequalities (42) to (48) we see that (once

again it is very similar to the case t = 1 so we leave the computations to the reader)

x2
∗,t = 0 =⇒ x1

∗,t−ẑ1,t >
δ

(1− δ)
=⇒ x2

∗,t′′ = 0 ∀t′′ > t =⇒ x2
∗,t−1 > z2,t−1 =⇒ x1

∗,t−1 < z1,t−1

which implies g2(Xi
∗,t) > C, a contradiction and thus x2

∗,t > 0, and the induction hypothesis is
proved for t.

Hence xi∗,t > 0 for all i and t ≤ T − 1. As we already remarked it immediately impies
that xi∗,t = ẑi,t for all i and t ≤ T − 2. Now g1(X1

∗,T ) ≤ C hence x4
∗,T−1 ≤ ẑ4,T−1 and thus

x4
∗,T ≥ 1− ŷ4 −

∑T−1
t=1 ẑ4,t = ẑ4,T > 0. Hence g4(X1

∗,T ) = C which immediately implies

x3
∗,T−1 = ẑ3,T−1

x3
∗,T = 1− ŷ3 −

T−1∑
t=1

ẑ3,t

= ẑ3,T .

Now g2(X2
∗,T ) ≤ C and x3

∗,T−1 = ẑ3,T−1 implies x1
∗,T−1 ≥ ẑ1,T−1 ; and x3

∗,T > 0 yields

0 = α(x2
∗,T−1 − ẑ2,T−1) + (1− α)(x1

∗,T−1 − ẑ1,T−1) (61)

≥ α(x2
∗,T−1 − ẑ2,T−1)

hence x2
∗,T−1 ≤ ẑ2,T−1 and x2

∗,T ≥ 1− ŷ2 −
∑T−1

t=1 ẑ2,t = ẑ2,T > 0. So g2(X2
∗,T ) = C hence

x1
∗,T−1 = ẑ1,T−1

x1
∗,T = 1− ŷ1 −

T−1∑
t=1

ẑ1,t

= ẑ1,T .

In particular x1
∗,T > 0 so g1(X1

∗,T ) = C hence

x4
∗,T−1 = ẑ4,T−1

x4
∗,T = 1− ŷ4 −

T−1∑
t=1

ẑ4,t

= ẑ4,T .
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Finally, putting x1
∗,T−1 = ẑ1,T−1 in (61) we get

x2
∗,T−1 = ẑ2,T−1

x2
∗,T = 1− ŷ2 −

T−1∑
t=1

ẑ2,t

= ẑ2,T

and we have proven that there is a unique bad equilibrium for which xi∗,t = ẑi,t for all i and t.
This concludes Step 2, and Step 3 is the same as in the proof of Proposition 9.

Finally we have to settle the case when some ẑi,t = 0. In that case, either for an odd or an even
N , we do the same trick that in Section 5.3: we replace ẑ by a fictitious ẑ′, with ẑ′i,t = ẑi,t when

ẑi,t > 0 and ẑ′i,t > 0 arbitrary (but sufficiently small so that
∑T

t=1 ẑ
′
i,t < 1) when ẑi,t = 0. Also,

when ẑi,t = 0 the payoff of Xi
∗t is instead given to an arbitrary monomial unknown of player i.

Then the previous proofs imply that there is a unique bad equilibrium in which xi∗t = ẑi,t when
ẑi,t > 0, while when ẑi,t = 0 the action Xi

∗,t has a payoff identically equal to 0 and is not played
in the bad equilibrium, giving xi∗t = 0 as required. �

Proposition 22. Let N ≥ 3 and (T1, · · · , TN ) ∈ (N∗)N . Let F ⊂ RT1+···+TN be a nonempty
closed Z-semi algebraic set and assume it is strongly (T1, · · · , TN )-admissible. Then there exists
an N -player game Γ with integer pure payoffs, and Ti special actions Xi

∗,1, · · · , Xi
∗,Ti for each

player i, such that
a) Proj{Xi

∗,t}(NE(Γ)) = F

b) NEP(Γ) = {0}.

Proof. Combine ideas in the proof of Prop 18 and Prop 22. �

8. Applications to the complexity of some problems

8.1. Links with the existential theory of the reals. We now apply the constructions of the
previous sections. First, it implies that certain problems on equilibrium are computationally hard,
since they are at least as hard as some problems on semi-algebraic sets. Recall that for 2 player
games many problems involving equilibrium sets are already known to be NP -Hard [7]. We prove
that for three players the same type of problems are exactly as hard as deciding whether or not
a Z-semi algebraic set is nonempty (we say that the problems are ∃R-complete) ; this complexity
class being known to lie somewhere between NP and PSPACE [12].

Since sets arising in our settings are naturally compact, we will need the following lemma.
While it is very close from results in [13] we could not find it explicitely in the literature so we
give a short proof.

Lemma 23. Deciding whether a compact Z-semi algebraic set is nonempty is ∃R-complete.

Proof. Let E be a (non necessarily compact) Z-semi algebraic set. In its definition replace any
strict inequality Pi(·) < 0 by a2

iPi(·) + 1 = 0 for an additional variable ai. This gives an (higher
dimensional) set E′ that is closed, which is nonempty if and only if E is, and which size is
polynomial in the size of E. Let L be the size of E′ and n its dimension. By Corollary 3.4 in [13],
E′ is nonempty if only the compact set E′′ := E′ ∩ [−B,B]n is, where B = 2L

8n ≤ 228nL ≤ 228L
2

.
We thus just have to prove that the size of E′′ is polynomial in L. To define E′′, to the definition
of E′ we add 8L2 + 1 variables bj and equalities b0 = 2, bj+1 = (bj)

2 for all j so that b8L2 = 228L
2

.
We then just add to add inequalies −b8L2 ≤ xk ≤ b8L2 for every variable of E′.

Hence for any given Z-semi algebraic set E we constructed a compact Z-semi algebraic set
E′′ which is nonempty iff E is, and is of a size polynomial in the size of E. The result follows
immediately. �

The following proposition generalizes some results from [3,13]
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Proposition 24. The following problems are ∃R-complete:
a) For any fixed positive integer k, given a 3-player game with integer pure payoffs, to determine

if there is more than k equilibria.
b) For any fixed nonempty Z-semi algebraic set E strictly included in R3 , and given a 3-player

game with integer pure payoffs, to determine whether there is one equilibrium payoff in E.
c) In particular, given a 3-player game with integer pure payoffs, to determine whether there is

one equilibrium with positive (or negative, or 0, or greater than any fixed algebraic number)
payoff for one (or several) players.

Proof. Let us first prove b) : let E be such a set and assume we have an algorithm to determine
whether a 3-player game has at least an equilibrium payoff in E. Let e ∈ E and e′ /∈ E two tuples
of algebraic numbers. These can be found using for example Tarski Seidenberg theorem, in a
time that depends only on the size of E. Let now F ∈ RN be a compact (see Lemma 23) Z-semi
algebraic set and consider the set ({e}×F )∪({e′}×{0}N ) ⊂ RN+3. It is compact, nonempty and
semi algebraic, hence up to some rescalling one can write it as a strongly admissible (T1, T2, T3)
subset for some T1 + T2 + T3 = N + 3. By Proposition8 22 one can construct in polynomial time
(in the size9 of F ) a game Γ such that this set is the projection on some actions of the 3 players of
the set of equilibria of Γ, and such that all equilibria give a payoff of 0 to all players. In particular
the projection of the set of equilibria of Γ on some action of each player is, up to some rescaling,
{e, e′} if F is nonempty and {e′} if F is empty. Reasoning as in the proof of Theorem 9 one gets
a game Γ′ such that it has an equilibrium payoff in E if and only if F is nonempty. Hence one can
decide whether or not F is nonempty by running the algorithm to decide if there is an equilibrium
payoff of Γ′ in E.

The other direction is straightforward: assume we have an algorithm to determine whether a
semi-algebraic set is nonempty, let E be a fixed Z-semi algebraic set in R3, and Γ a 3-player
game with integer pure payoffs and m actions in total. Consider the subset of Rm+3 defined by
F := {(x, z)|x ∈ NE(Γ) and e = g(x)}

⋂
(Rm × E). F is semialgebraic, and one verifies that its

size is polynomial in the size of Γ. Clearly F is nonempty if and only there is an equilibrium
payoff of Γ in E. Hence one can decide whether or not there is an equilibrium payoff of Γ′ in E
by running the algorithm to decide if F is nonempty.

Let us now prove a) : first assume we have an algorithm to determine whether a 3-player game
has more than k equilibria and let F be a compact Z-semi algebraic set of dimension n. The
set F ′ = ({1, 2, · · · , k} × F )

⋃
0n+1 is clearly compact and Z-semi algebraic. Moreover, it has a

unique element if F is empty, and at least k+1 if F is not. As in the proof of point b) we can then
use Proposition 21 to conclude. In the other direction, if Γ is a three-player game, it is enough to
consider the Z-semi algebraic set {(x1, · · · , xk+1|xj 6= xl for j 6= l, xj ∈ NE(Γ) for all j} which
is nonempty if and only if Γ has more than k equilibria. �

8.2. NP -hardness of some problems. We can also prove that for 3 players the results of NP -
hardness cited above in the two player case hold even if the pure payoff are restricted to be in
some fixed finite set, for example

Proposition 25. All the following problems are NP-Hard:
- Given a 3-player game with pure payoffs in {−1, 0, 1}, to determine if there is more than
one equilibrium.

- Given a 3-player game with pure payoffs in {−1, 0, 1}, to determine if there is an infinite
number of equilibria.

- Given a 3-player game with pure payoffs in {−1, 0, 1}, to determine if the number of mixed
equilibria is not odd (meaning either even of infinite).

- Given a 3-player game with pure payoffs in {−1, 0, 1}, to determine if there is an equilibrium
in which the payoff of the first player is 0.

8In fact if one can find a e′ with rational coordinates (for example if E is closed) then Proposition 21 is enough
9Recall that e and e′ are independent of F
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- Given a 3-player game with pure payoffs in {−1, 0, 1}, to determine if there is an equilibrium
in which the first player plays is first action with positive probability.

- Given a 3-player game with pure payoffs in {−1, 0, 1}, to determine if there is an equilibrium
in which the first player plays is first action with probability 1

2 .
- Given a 3-player game with pure payoffs in {−1, 0, 1}, to determine if there is an equilibrium
in which the first player plays is first action with probability less than 1.

Proof. We show 3-SAT can be reduced in polynomial time to any of these problems ; this will
imply the result since 3-SAT is NP-complete.

Consider a 3-SAT instance
K∧
k=1

(a1,k ∨ a2,k ∨ a3,k)

where each aj,k is in {b1, · · · bT ,¬b1, · · · ¬bT }. Without loss of generality all disjonctive clauses are
distinct hence K ≤

(
2T
3

)
= O(T 3).

We first construct a semialgebraic set F in R2T such that F is empty if and only if the 3-SAT
instance is not satisfiable. To each of the K disjonctive clause one associate the monomial

Pk(z1, · · · , z2T ) = z1,kz2,kz3,k,

where zj,k = zt if aj,k = bt, and zj,k = zT+t if ai,k = ¬bt. For example the polynomial associated
to (b1 ∨ ¬b2 ∨ b4) is z1zT+2z4.

Let 0 < φ1 < φ2 be an arbitrary real, and define

F =

(
K⋂
k=1

{Pk(z) ≤ 0}

)⋂(
T⋂
t=1

{ztzT+t ≤ 0})

)⋂(
2T⋂
t=1

{−zt ≤ 0})

)
⋂(

2T⋂
t=1

{zt ≤ φ2})

)⋂(
T⋂
t=1

{φ1 − zt − zT+t ≤ 0})

)
We claim that if the 3-SAT instance is not satisfiable, then F is empty, while if the 3-SAT instance
is satisfiable then F is infinite. Assume first that z ∈ F . Then for all 1 ≤ t ≤ T exactly one of
zt and zt+T equals 0. Define bt as TRUE if zt equals 0 and bt as FALSE if zt+T equals 0. Since
all zt are nonnegative, Pk(z) ≤ 0 if and only if it is zero, and then the associated disjonctive
clause is true. Since this is true for all k the 3-SAT instance is satisfiable. Assuming now that the
3-SAT instance is satisfiable, let (b1, · · · , bT ) satisfying it. Fix φ1 < φ < φ2i and define, for every
1 ≤ t ≤ T , zt = 0 if bt is TRUE, zt = φ if bt is FALSE, and zT+t = φ − zt. Then z ∈ F for all
such φ, so F is infinite.

Define F ′ = {(z, z, z), z ∈ F} ⊂ R6T . We will now use the idea of the previous sections
to construct a 3-player game wich has one bad equilibrium, and a set of nice equilibria whose
projection on the first 2T actions of each player is F ′ (for a good choice of φ1 and φ2). Since
we want the pure payoffs of this game to be in {−1, 0, 1} we unfortunately cannot apply directly
Proposition 21. On the bright side, we do not care about the precise coordinates of the bad
equilibrium so we do not need such a precise machinery than in the proof of Proposition 21 (in
fact there will essentialy be no Step 2 and 3).

As always each of the three players has a set of actions Ai = X i ∪ Y i where the actions in X i
are unknowns with a payoff of 0 and actions in X i are constraints. We change a little bit the
terminology : an equilibrium is nice iff every player has a payoff of 0, even if some contraints are
played with positive probability. This will ease the construction a bit, and won’t be an issue since
we do not care about the projection of nice equilibria but only their cardinality.

Unknowns of player i will consist of
- 2T unknowns Xi

∗,t that corresponds to the variable zt
- Monomial unknowns to represent every monomial in the xi∗,t of total degree between 1 and

3 in , and degree 0 or 1 in each variable.
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- U positive unknowns Xi
+,u, u = 1 to U , for a U to be fixed later on. Their role will

be to represent small positive numbers while only unsing contraints with pure payoffs in
{−1, 0, 1}.

There is no need for a dump variable as we allow players to put positive probabilities on constraints
in nice equilibria.

The constraints of player i will consist in
- For each 1 ≤ t ≤ 2T , constraints with payoff ±(xi+1

∗,t − x
i+2
∗,t ), ensuring that xi∗,t is indepen-

dant of i for each t in any nice equilibrium. Denote by x∗,t the common value.
- Initialization and induction constraints such that each monomial unknown represent the
correct monomial in the x∗,t.

- K semi algebraic contraints such that in any nice equilibrium Pk(x
∗) ≤ 0 for each k.

- Two constraints Y i
∗,− and Y i

∗,+ with payoff respectively 2xi+1
+,1 − 1 and 1− 2xi+1

+,1 .
- For each 1 ≤ u ≤ U − 1, two constraints with payoff ±(xi+1

+,u+1 − x
i+1
+,ux

i+2
+,u).

- For each 1 ≤ t ≤ 2T , a constraint with payoff xi+1
+,U−1 − x

i+1
∗,t .

- For each 1 ≤ t ≤ T , two constraints with payoff xi+1
∗,t x

i+2
∗,T+t and x

i+1
+,U − x

i+1
∗,t − x

i+1
∗,T+t.

One verifies that each of these constraints have pure payoffs in {−1, 0, 1}. In any nice equilib-
rium each constraint gives a nonpositive payoff. It implies that xi+,1 = 1

2 , and then by induction
that xi+1

+,u = 1

22u−1 > 0 for each i and u. Hence (x∗, x∗, x∗) ∈ F ′ for φ1 = 1

22U−1 and φ2 = 1

22U−2 .
One the other hand, let (z, z, z) ∈ F ′ for this choice of φ1 and φ2, fix xi∗,t = zt, xi+1

+,u = 1

22u−1 > 0.
Also fix the probability of all monomial unknowns to be the correct monomial in the x∗,t, and
dump the remaining probability on Y i

∗,−, which has a payoff of 0. Then as usual the only thing
to verify is that we stay in the simplex. For each player,

U∑
u=1

xi+,u =

U∑
u=1

1

22u−1 <

+∞∑
u=1

1

22u−1 <
7

8
.

Each player has 2T ≤ 2T 3 original unknows, and
(

2T
3

)
+
(

2T
3

)
+
(

2T
3

)
≤ 6T 3 monomial unknows.

Each of these has a probability less than φ2 = 1

22U−2 . Hence it is enough that 8T 3

22U−2 ≤ 1
8 , that is

22U−2 ≥ 64T 3. This is clearly the case if one takes, for example U = 2 + 64T 3 = O(T 3). Remark
that this U being fixed, the number of actions of each player is clearly a O(T 3 +K +U) = O(T 3)
and is thus polynomial in T .

We have thus proved that the projection of the set of nice equilibria on the first 2T actions of
each player is F ′. Consider now the bad equilibria. There is no action to add as Y i

∗,+ essentially
plays the role of Y i

∗ in the usual contruction. In a bad equilibrium, there is a player i with a
positive payoff. This implies that all of his unknowns are played with zero probability, and hence
that the payoff of i− 1 is at least gi−1(Y i

∗,+) = 1 > 0. Hence in any bad equilibrium the payoff of
each player is positive, and all unknowns are played with 0 probability. Then one checks that all
contraints give a payoff of 0, except Y i

∗,+ with a payoff of 1 and Y i
∗,− with a payoff of −1. Hence

the only bad equilibria is the pure profile Y∗,+. To conclude one only needs to check that, by
construction:

- The game has a unique equilibrium if the instance is not satisfiable, and infinitely many if
the instance is satisfiable

- The game has a nice equilibrium (with payoff 0) iff the instance is satisfiable
- The game has an equilibrium with yi∗,+ < 1 iff the instance is satisfiable
- The game has an equilibrium with xi+,1 = 1

2 iff the instance is satisfiable
- The game has an equilibrium with xi+,1 > 0 iff the instance is satisfiable.

�

Remark 26. It would be interesting to know if the answers are the same if the set of pure payoffs
is restricted to {0, 1} instead of {−1, 0, 1}.
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9. Applications to the computability of some problems

9.1. Undecidability of problems involving integers. Denote by 1
N∗\{1} the set

{
1
n , n ∈ N

∗ \ {1}
}
.

Proposition 27. There exists no algorithm which solve the following decision problems, given a
finite game with integer payoffs:

a) Is there an equilibrium in which all players play there first action with a probability in
1

N∗\{1} .
b) Is there an equilibrium in which the payoff of all players is in 1

N∗\{1} .

This is true even for a fixed number of players and actions, provided they are larger than some
explicit constants.

Proof. Let P ∈ Z[z1, · · · , zN ] be a polynomial in N variables with integer coefficients and degree
at most d in each variable. The function

(z1, · · · , zN ) −→ zd1 · · · zdNP
(

1− z1

z1
, · · · , 1− zN

zN

)
can be continuously extended to a polynomial Q in Z[z1, · · · , zN ] with degree at most d in each

variable. Since z → 1−z
z is a bijection mapping 1

N∗\{1} onto N
∗, Q has a zero in

(
1

N∗\{1}

)N
if and

only if P has a zero in (N∗)N .
Let ẑ =

(
2
5 , · · · ,

2
5

)
and

F = ({z, P (z) = 0} ∪ {ẑ}) ∩
[
0,

1

2

]N
.

F ⊂ [0, 1[N is nonempty, closed and Z-semi algebraic, and ẑ ∈ QN
⋂
F . Also, F ∩

(
1

N∗\{1}

)N
= ∅

if and only if P has no zero in (N∗)N . By Proposition 18 and 19, one can explicitely construct
two games Γ1 and Γ2 with integer coefficients such that ProjX∗(NE(Γ1)) = F , and NEP(Γ2) = F .
Hence if an algorithm existed to answer a) or b), then one would be able to solve Hilbert’s tenth
problem, which is impossible [6, 11]. Since Hilbert’s tenth problem is undecidable even for fixed
N and d, provided they are larger than some explicit constant, it is impossible to answer to a)
and b) even for a fixed number of players and actions, provided they are large enough. �

9.2. Undecidability of problems involving rational numbers.

Proposition 28. The following problems are either all decidable or all undecidable:
a) Hilbert’s tenth problem on Q: deciding, for every N and every polynomial with integer

coefficients and N variables, whether P has a zero in QN .
b) Deciding if a finite game with integer pure payoffs has an equilibrium in which for each

player, his first action is played with probability in Q∗.
c) Deciding if a finite game with integer pure payoffs has an equilibrium in which all players

get a payoff in Q∗.

Proof. Assume first that Hilbert’s tenth problem is undecidable on Q, that is that there is no
algorithm which decides if a polynomial P with integer coefficients has a zero with rational co-
ordinates. Let P ∈ Z[z1, · · · , zN ] be any polynomial in N variables with integer coefficients and
degree at most d in each variable. Define the intervals I1 =] − ∞, 0] and I2 = [0,+∞[. Then
f1(x) := 2x−1

x is a bijection mapping ]0, 1/2] ∩ Q onto I1 ∩ Q ; and f1(x) := 1−2x
x is a bijection

mapping ]0, 1/2] ∩Q onto I2 ∩Q. Hence for any e = (e1, · · · , eN ) ∈ {1, 2}N , the function

z ∈ RN −→ zd1 · · · zdNP (fe1(z1), · · · , fen(zn))

can be continuously extended to a polynomial Pe in Z[z1, · · · , zN ] with degree at most d in each
variable, and Pe has a zero in ([0, 1/2] ∩Q∗)N iff P has a zero in

∏N
n=1(Ien ∩Q).
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Define ẑ = (0, · · · , 0) and

F =

{ẑ} ∪ ⋃
e∈{1,2}N

{z ∈ RN , Pe(z) = 0}

 ∩ [0, 1

2

]N
Then F ⊂ [0, 1[N is nonempty, closed and Z-semi algebraic, and ẑ ∈ QN

⋂
F . Also, F ∩(Q∗)N = ∅

iff and only if P has no zero in QN . By Proposition 18 and 19, one can explicitely construct two
games Γ1 and Γ2 with integer coefficients such that ProjX∗(NE(Γ1)) = F , and NEP(Γ2) = F .
Hence if an algorithm existed to answer b) or c), then one would be able to solve Hilbert’s tenth
problem on Q, a contradiction.

Assume now that Hilbert’s tenth problem is decidable on Q. We first prove that this implies
that there exists an algorithm that decides if any Z-semi algebraic set contains a point with
rationals coordinates. Let F be such a semi algebraic set in RN , written as union and intersection
of sets of the form {z ∈ RN , P (z) < 0} or {z ∈ RN , P (z) ≤ 0} (all polynomials having
coefficients in Z). Recall that by Lagrange four squares theorem, any positive integer is the
sum of the squares of four integers. It implies that any rational p

q = pq
q2

can be written as
p21+p22+p23+p24

q2
, and thus that a rational is nonnegative iff it is the sum of the squares of four

rationals. Hence, any set QN ∩ {z ∈ RN , P (z) ≤ 0} is the projection on the first N coordinates
of the set QN+4 ∩ {z ∈ RN+4, P (z1, · · · , zN ) − z2

T+1 − z2
T+2 − z2

T+3 − z2
T+4 = 0}. Similarly,

any set QN ∩ {z ∈ RN , P (z) < 0} is the projection on the first N coordinates of the set
QN+4 ∩ {z ∈ RN+4, P (z1, · · · , zN )(z2

T+1 + z2
T+2 + z2

T+3 + z2
T+4) + 1 = 0}. Hence, adding 4 new

variables for each polynomial, one can construct a semi algebraic set F ′ ⊂ RN ′ for some N ′ > N ,
such that F ′ is defined by union and intersection of sets of the form {z ∈ RN ′ , P (z) = 0}, and
such that F ∩QN is the projection of F ′∩QN ′ on its first N coordinates. In particular, F contains
a a point with rationals coordinates iff F ′ does. Now, using that

P1(z) = 0 and P2(z) = 0 ⇔ P 2
1 (z) + P 2

2 (z) = 0

P1(z) = 0 or P2(z) = 0 ⇔ P1(z)P2(z) = 0

one can rewrite F ′ as the set of zeroes of a single polynomial with integer coefficients. Since we
assumed Hilbert’s tenth problem is decidable on Q, there is an algorithm to decide if F ′ contains a
point with rational coordinates and thus to decide if F contains a point with rationals coordinates.

Now for any finite game Γ, NE(Γ) can be explicitely written as union and intersection of sets
of the form {z, P (z) ≤ 0} for polynomials with integer coefficients. Since there are constructive
proofs of Tarki-Seidenberg theorem, one can also write ProjX∗(NE(Γ)) as union and intersection
of sets of this form. Hence F := (R∗)N ∩ ProjX∗(NE(Γ)) can be explicitely written as union and
intersection of sets of the form {z ∈ RN , P (z) < 0} or {z ∈ RN , P (z) ≤ 0}, and by the previous
paragraph we conclude that there is an algorithm that decide if F contains a point with rational
coordinates. Hence there is an algorithm that decides if Γ has an equilibrium in which all players
play their first action with a probability in Q∗.

Similarly, NEP(Γ) is a projection of the semi algebraic set {(z, g1(z), · · · , gN (z))} ∩ (NE(Γ)×
RN ) hence there is an algorithm that decides if Γ has an equilibrium in which all players get a
payoff in Q∗.

Remark 29. It is straightforward to adapt the proof if one replace in b) Q∗ by Q \ {r} for any
fixed rational r ∈ [0, 1[ ; or in c) Q∗ by Q \ {r} for any fixed rational r. The situation seems
different for Q however: one proves along the same line that if Hilbert tenth problem is decidable
on Q then one can solve b) and c) for Q, but proving the reverse implication seems more difficult.

�
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