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Introduction

Classical games

Evolutionary games often involve pairwise contests between individuals
randomly chosen from a well-mixed population.

This leads to payoff functions that are linear both in the strategy of the
focal individual, and in the mean population strategy.
There are a number of types of situation in which such linearity does not
occur, for example

playing the field games which are non-linear in the mean population
strategy,
spatial games where the population is not well-mixed.

One situation which has received little direct attention, although it has
often been implicitly built into models, is the case where there is
dependence between the strategy of an individual and which opponent it
must face (or whether it faces an opponent at all).
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Introduction

The owner-intruder game

Consider the classical owner intruder game introduced by
Maynard Smith, J. & Parker, G.A. (1976). The logic of asymmetric contests
Animal Behaviour 24 159-75.

In this game an intruding individual challenges an owning individual for
a resource of value V to the owner and v to the intruder, with two choices
of play (Hawk and Dove) in each of the owner and intruder positions.
this yielded four pure strategies;

Hawk: play Hawk as owner and intruder,
Dove: play Dove as owner and intruder,
Bourgeois: play Hawk as owner and Dove as intruder,
X: play Dove as owner and Hawk as intruder.

It was assumed that each individual was in the role of owner and intruder
with equal probabilities.
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Introduction

The owner-intruder game with strategy-dependent
interactions

One consequence of the assumption of the independence of roles and
strategy is that there can never be a mixed ESS in such asymmetric
games, due to the classical result from
Selten,R. (1980) A note on evolutionarily stable strategies in asymmetric animal
conflicts Journal of Theoretical Biology 84 93-101.

Suppose that the population follows a random process where they move
between owner and intruder states only after a contest.

In any mixture of Hawk and Bourgeois for instance, either all Hawks
would end up as owners (if the Bourgeois were in the majority), or all
Bourgeois would end up as intruders.

Thus Bourgeois could not be an ESS as in the classical game.
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A model of kleptoparasitism

What is kleptoparasitism?

Kleptoparasitism is the stealing by one animal of food that has been
caught by another.

Interspecific and intraspecific kleptoparasitism are widespread among
vertebrates, and commonly observed amongst birds, especially seabirds.

Frigate birds and skuas obtain much of their food by stealing from other
species e.g. puffins.

Gulls,terns and even sparrows are documented to steal off their own
species.

The model described below is based upon
Broom,M., Luther,R.M., Ruxton,G.D. & Rychtar,J. (2008) A game-theoretic
model of kleptoparasitic behavior in polymorphic populations Journal of
Theoretical Biology 255 81-91,
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A model of kleptoparasitism

The Broom-Ruxton model

Broom,M. & Ruxton,G.D. (1998) Evolutionarily Stable Stealing: Game Theory
applied to Kleptoparasitism Behavioral Ecology 9 397-403.
modelled a population such that;

all individuals search for food and birds which are handling food
(handlers),

the time for a bird to successfully handle a food item follows an
exponential distribution,

if a bird spots another bird handling a food item then it may or may not
initiate a contest, but the handler always resists,

the length of a contest follows an exponential distribution, the winner
obtains the food item (becomes a handler), the loser resumes searching,

searching for handlers does not affect a bird’s ability to search for food
and vice versa.
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A model of kleptoparasitism

The strategies

In the 2008 paper individuals either challenge always or never, and resist
challenges always or never. There are thus four pure strategies in the
game, with all individuals pure strategists. The strategies are:

Hawk: always attack, always resist when attacked,
Dove: never attack, never resist when attacked,
Retaliator: never attack, always resist when attacked,
Marauder: always attack, never resist when attacked.

These strategies are associated with different searching behaviours.
Doves and Retaliators find food at rate νf f .
Hawks and Marauders find food at rate νgf .
Hawks and Marauders search for handlers as well, at rate νh.
Hawks and Marauders may thus have to divide their attention between the
two searches and it is possible that because of this that νg < νf .
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A model of kleptoparasitism

The behavioural states

Parameter meaning
P density of the population
Ps, Ph, Pa, Pr density of searchers, handlers, attackers and resisters
De, Re, He, Me density of Doves, Retaliators, Hawks and Marauders
Ds, Rs, Hs, Ms density of searching Doves, Retaliators, Hawks and Marauders
Dh, Rh, Hh, Mh density of handling Doves, Retaliators, Hawks and Marauders
Ha, Ma density of attacking Hawks and Marauders
Rr, Hr density of resisting Retaliators and Hawks
hr handling ratio Hh/P in a population of Hawks only
νf f rate that Doves and Retaliators find food
νgf rate that Hawks and Marauders find food
νh area Hawks and Marauders can search for handlers per unit time
th expected time to consume a food item (if undisturbed)
ta/2 expected duration of a contest over food
α probability that the attacker wins the contest

.
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A model of kleptoparasitism

State transitions
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A model of kleptoparasitism

The payoff to Dove

Doves can go through searching and handling stages only.

dDs

dt
= t−1

h Dh + νh(Hs + Ms)Dh − νf Ds (1)

dDh

dt
= −t−1

h Dh − νh(Hs + Ms)Dh + νf Ds (2)

De = Ds + Dh (3)

In the equilibrium, the right hand terms of the equations (1) and (2) equal 0
which together with (3) provides

De

Dh
= 1 +

1
thνf f

+
νh(Hs + Ms)

νf f
(4)
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A model of kleptoparasitism

The payoff to Retaliator

Retaliators can go through searching, handling and resisting stages.

0 =
dRs

dt
= −νf fRs + t−1

h Rh + 2αt−1
a Rr (5)

0 =
dRh

dt
= −t−1

h Rh − νh(Hs + Ms)Rh + νf fRs + 2(1− α)t−1
a Rr (6)

0 =
dRr

dt
= −2t−1

a Rr + νh(Hs + Ms)Rh (7)

Re = Rs + Rh + Rr (8)

By (5), (6), (7) and (8)

Re

Rh
= 1 +

1
νf f

(
t−1
h + ανh(Hs + Ms)

)
+ νh(Hs + Ms)

ta
2

(9)
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A model of kleptoparasitism

The payoff to Marauder

Marauders can go through searching, handling and attacking stages.

0 =
dMs

dt
= −νhPhMs−νgfMs+

(
t−1
h + νh(Hs + Ms)

)
Mh2(1−α)t−1

a Ma (10)

0 =
dMh

dt
= −(t−1

h +νh(Hs+Ms))Mh+(νgf + νh(Dh + Mh)) Ms+2αt−1
a Ma (11)

0 =
dMa

dt
= −2t−1

a Ma+νh(Hh+Rh)Ms (12)

Me = Ms+Mh+Ma (13)

By (10), (11), (12) and (13) we obtain

Me

Mh
= 1+

t−1
h + νh(Hs + Ms)

νhPh + νgf − (1− α)νh(Hh + Rh)

(
1 + νh(Hh + Rh)

ta
2

)
(14)
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A model of kleptoparasitism

The payoff to Hawk I

Hawks can go through four different stages - searching, handling, attacking,
and resisting.

0 =
dHs

dt
= −νhPhHs − νgfHs + t−1

h Hh + 2(1− α)t−1
a Ha2αt−1

a Hr (15)

0 =
dHh

dt
= −νh(Hs + Ms)Hh− t−1

h Hh + (νgf + νh(Mh + Dh)) Hs + 2αt−1
a Ha

+2(1− α)t−1
a Hr (16)

0 =
dHa

dt
= −2t−1

a Ha + νh(Hh + Rh)Hs (17)

0 =
dHr

dt
= −2t−1

a Hr + νh(Hs + Ms)Hh (18)
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A model of kleptoparasitism

The payoff to Hawk II

We also have
He = Hs + Hh + Ha + Hr (19)

Using equations (15), (16), (17), (18) and (19) we obtain

He

Hh
= 1 +

t−1
h + ανh(Hs + Ms)

νgf + νh(Dh + Mh) + ανh(Hh + Rh)

(
1 + νh(Hh + Rh)

ta
2

)
+νh(Hs + Ms)

ta
2

(20)
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A model of kleptoparasitism

Finding ESSs

We search for evolutionarily stable strategies (ESSs).

A strategy p is an ESS if, for any other strategy q, and for sufficiently
small ε;
in a population comprising a fraction 1− ε of p individuals and ε q
individuals, p has a higher handling fraction (equivalent to the payoff)
than q.

For pure strategies we have shown that we only need to consider invasion
by strategies that differ in one of their components e.g. for Dove to be an
ESS it must resist Retaliator and Marauder, and if it resists these it will
also resist Hawk.

Thus Dove is an ESS if in a population almost entirely consisting of
Doves

Dh

De
> max

(
Rh

Re
,

Mh

Me

)
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A model of kleptoparasitism

Pure ESSs I: Dove

We consider Dove as an example.

To resist invasion by Retaliator (by drift), we must allow a constant
presence of a small amount of Hawks and/or Marauders (a trembling
hand).

Then Retaliator cannot invade Dove as long as

1− α <
ta
2

νf f (21)

Since De ≈ P, from (8) we get that Dove cannot be invaded by Marauder
if

Dh <
νf f − νgf

νh
⇒ P <

νf f − νgf
νh

thνf f + 1
thνf f

(22)

Dove is an ESS if the two conditions (21) and (22) hold.
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A model of kleptoparasitism

Pure ESSs II: Hawk

When Hawk is the only type in the population, we obtain Hh = Phr, where hr

is the positive root of h2
r taνhP + hr(1 + νgfth)− νgfth = 0.

Retaliator cannot invade Hawk if

ta
2

νf f < α and Phr >
νf f − νgf

νh

1
α− ta

2 νf f
or

ta
2

νf f > α and Phr <
νgf − νf f

νh

1
ta
2 νf f − α

(23)

Similarly Hawk cannot be invaded by Marauder if

2α < 1 and Phr >
νgf − 2(1− α)/ta

νh

1
1− 2α

or

2α > 1 and Phr <
νgf − 2(1− α)/ta

νh

1
1− 2α

(24)

Hawk is an ESS if the above conditions (23) and (24) hold.
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A model of kleptoparasitism

Mixed ESSs

We consider a mixture of Dove and Marauder as an example.
A mixture of Marauders and Doves occurs if Doves can invade Marauders,
Marauders can invade Doves and neither Hawks nor Retaliators can invade.
This gives the following conditions, the first resisting invasion, the second
necessary for a Dove-Marauder equilibrium

νf f
ta
2

> 1− α,
(νf f − νgf )(νf fth + 1)

νf fthνh
< P <

(νf f − νgf )(νgfth + 1)

νgfthνh

Notice that this is possible only if νf f > νgf , i.e. if kleptoparasites have a
lower foraging rate.
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A model of kleptoparasitism

Possible ESS combinations
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A model of kleptoparasitism

Results summary

Hawk occurs when the food gathering ability of foragers that also attack,
or general food availability, is poor and population density is not large.

Marauders generally thrive when the population density is large and food
availability is also large.

Retaliators do better when food levels are intermediate and the
population density is not large.

Doves do better when food is plentiful and the population density is not
too large.

Cases where kleptoparasites have the higher foraging rate (including
when Marauder, Retaliator and Hawk are all ESSs) are perhaps
unrealistic.

The “paradoxical” Marauder might not occur in conditions when it is not
the only ESS.
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A game of brood care and desertion

The basic model

Webb J.N., Houston,A.I.& McNamara, J.M. (1999) Multiple patterns of
parental care Animal Behaviour 58 983-993
considers a two-stage game of brood care and desertion which reduces to
a bimatrix game.

At the start of a breeding season all individuals have found a mate. After
their first breeding attempt there is the opportunity for a second, but to
take this they will have to desert their offspring.

If both parents desert, then the offspring will die and so they receive
reward 0 from that mating.

If both stay they receive reward V2.

If one deserts and one stays, they both receive V1 < V2, and the deserter
has the chance to mate again.
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A game of brood care and desertion

The payoffs

If the male deserts, the probability that he can mate again is rm, and if the
female deserts the probability that she can mate again is rf .

Since V2 > V1 and there is no opportunity for a third mating, it is clear
that the best strategy in any second mating for both individuals is not to
desert, so gaining reward V2 for that mating.

The game thus reduces to whether to “Desert” or “Care” at the first
mating. With the male in role 1 and the female in role 2, this gives us the
bimatrix of payoffs as

Male/Female Care Desert
Care V2, V2 V1, V1 + rf V2

Desert V1 + rmV2, V1 rmV2, rf V2
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A game of brood care and desertion

ESSs

As described above, from Selten (1980) there cannot be any mixed ESSs for
this game. Any of the pure strategy pairs can be ESSs for this game.

There can be biparental care (male chooses Care, female chooses Care) if

rm <
V2 − V1

V2
, rf <

V2 − V1

V2
.

There can be male uniparental care (male Cares, female Deserts) if

rm <
V1

V2
, rf >

V2 − V1

V2
.

There can be female uniparental care (male Deserts, female Cares) if

rm >
V2 − V1

V2
, rf <

V1

V2
.

There can be biparental desertion (male Deserts, female Deserts) if

rm >
V1

V2
, rf >

V1

V2
.
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A game of brood care and desertion

The variable remating model

Webb et al (1999) also extended their model to consider variable
remating possibilities.

After desertion the potential number of available partners will depend
upon whether other males or females desert, i.e. they will depend upon
the strategies of the players in the current game.

They use the payoffs

rf (x, y) = k
x√

x + y
, rm(x, y) = k

y√
x + y

where rf and rm are the payoffs to males and females as before, this time
being functions of x and y, the proportion of males and females
respectively which desert their first broods.
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A game of brood care and desertion

Non-linearity and a mixed ESS

An interesting consequence of this non-linearity, is that the result of
Selten (1980) no longer holds.

It was shown that a mixed ESS occurred for sufficiently large V1/V2.

If 3/4 ≤ V1/V2 then x∗ = y∗ = 1/2 is the ESS, and if
1/
√

2 < V1/V2 < 3/4 then the ESS is

x∗ = y∗ =
2(V2 − V1)

2

(2V1 − V2)2 .

Otherwise for V1/V2 ≤ 1/
√

2 biparental care is an ESS (as implausibly
is biparental desertion, although this is removed by the inclusion of any
mating cost).
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A simple general game

The game

The simplest non-trivial scenario to consider where interaction rates are
not constant is a two player contest with two pure strategies A and B,
with payoffs given by a standard payoff matrix

A B
A a b
B c d

but where the three types of interaction happen with probabilities not
simply proportional to their frequencies.

This is the scenario in
Taylor,C. & Nowak,M.A. (2006) Evolutionary game dynamics with
non-uniform interaction rates Theoretical Population Biology 69 243-252,
where it is assumed that each pair of A individuals meet at rate r1, each
pair of A and B individuals meet at rate r2 and each pair of
B individuals meet at rate r3.
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A simple general game

Payoffs

Thus the frequency of interactions of a type A individual with other type
A individuals is r1p and the frequency with type B individuals is
r2(1− p), where p is the proportion of As in the population.

This yields the following non-linear payoff function

E[A, p] =
ar1p + br2(1− p)

r1p + r2(1− p)
.

Similarly for B individuals we have

E[B, p] =
cr2p + dr3(1− p)

r2p + r3(1− p)
.

This reduces to the standard payoffs for a matrix game when
r1 = r2 = r3, but otherwise does not.
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A simple general game

ESSs

How do these non-uniform interaction rates affect the game?

In particular, when are there differences between this case and the simple
two player matrix game?

Taylor and Nowak (2006) consider replicator dynamics rather than ESSs.
However, a strategy p is an ESS of this game (with two strategies) if and
only if it is a stable rest point of the replicator dynamics.

In the simple game if a < c and b > d there is a mixed ESS, and this is
not altered by the use of non-uniform interaction rates, although the ESS
proportions of the strategies do change.

If a > c and b < d then there are two ESSs in the simple case, and this is
also always true for non-uniform interactions, although the location of
the unstable equilibrium between the pure strategies changes, which
affects the dynamics.
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A simple general game

A mixed ESS

In the game with constant interaction rates, if a < c and b < d, then B is
a unique ESS. This is the most interesting case here.

Under some circumstances there is not a unique solution in this case for
the non-uniform situation, and it is possible that there can be two ESSs, a
pure B ESS, but also a mixed ESS.
Setting r2 = 1 without loss of generality, this occurs if either
c > a > d > b and

r1r3 >

(√
(a− b)(c− d) +

√
(a− c)(b− d)

d − a

)2

or d > b > c > a and

r1r3 <

(√
(a− b)(c− d)−

√
(a− c)(b− d)

d − a

)2
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A simple general game

The prisoner’s dilemma

The prisoner’s dilemma is an example of the final case above, and
cooperation is possible if interaction rates are non-uniform.

There is a mixed ESS if

r1r3 >
1

(R− P)2

(√
(T − R)(P− S) +

√
(R− S)(T − P)

)2
.

In particular setting r1 = r3(= r) with payoffs from Axelrod and
Hamilton (1981) T = 5, R = 3, P = 1, S = 0 there is a mixed ESS of
cooperators and defectors when r > 2.44.

As r →∞ the proportion of cooperators in the mixture tends to 1, and
the basin of attraction of the mixed ESS in the proportion of cooperators
p increases, tending to p ∈ (0, 1].
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Discussion

Existing models of strategy-dependent interactions

There are a number of different game models which involve
strategy-dependent interactions.

In general they are models of specific biological situations.

The exception is the model of Nowak and Taylor (2006). This is a
symmetric game with no “roles”, and interactions are instantaneous and
sequentially independent.

In the brood care game of Webb et al (1999), the game is asymmetric
with fixed roles, and interactions are effectively sequentially
independent.

In the kleptoparasitism game of Broom et al (2008), the game is
asymmetric and interactions depend upon the game history, following a
Markov process.
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Discussion

What do we know about games with strategy-dependent
interactions?

It is possible to have mixed ESSs in asymmetric contests with
strategy-dependent interactions.

In general these models show that a wide range of behaviour is possible
which cannot be predicted by independent interactions.

It is possible to have very complex structures of dependence.
Broom,M., Cannings,C., & Vickers,G.T. (2000) Evolution in Knockout
Contests: the Variable Strategy Case. Selection 1 5-21
considered multi-player games comprised of pairwise interactions in a
structure where selection of opponents depends on previous results.

With two strategies, there could be 2n ESSs in an n round game.

Thus with no restrictions on the ways interactions can be dependent on
strategy there are likely to be few rules which govern what
behaviours can occur.
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Discussion

Where do we go from here?

Different models have been developed for various specific reasons, and
so currently there is no consistent framework for games with
strategy-dependent interactions.

We need to limit the kind of strategy-dependence in some way to a
restricted set of useful concepts.

Games can be symmetric or asymmetric.

Strategy may affect the probability of occupying a given role, as well as
the rate of interaction.

The history of the sequence of interactions may affect the probability of
certain interactions as well as the probability of occupying a given role.

Ideas are welcome!
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