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Evolution of Cooperation

Hamilton’s Rule
Kin Selection



Evolutionary game theory began in the 1970s
when John Maynard Smith introduced the
intuitive idea of an evolutionarily stable
strategy (ESS) to predict the eventual behaviour
of individuals (i.e. their strategy choice)
without analyzing complex dynamical systems
of evolution that may ultimately depend on
many factors such as genetics and/or mating
systems.

Definition: (maynard smith, 1982) An
ESS is a strategy such that, if all members of
a population adopt it, then no mutant strategy
could invade the population under the
influence of natural selection.

He goes on to say that, to make this definition
precise, assumptions must be made about the
evolving population.



Assume we have a mixed population consisting
of mostly p* individuals with a few individuals
using strategy p. That is, the strategy distri-
bution in the population is

(1—-ep +ep

where € > 0 is the small frequency of p—users
in the population.

Let the fitness (i.e. reproductive success) of an
individual using strategy ¢ in this mixed popu-
lation be

(g, (1 — e)p" + ep).



Assume we have a mixed population consisting
of mostly p* individuals with a few individuals
using strategy p. That is, the strategy distri-
bution in the population is

(1—-ep +ep

where € > 0 is the small frequency of p—users
in the population.

Let the fitness (i.e. reproductive success) of an
individual using strategy ¢ in this mixed popu-
lation be

w(q, (1 — €)p* + €p).

Then one interpretation of Maynard Smith's
requirement for p* to be an ESS is that, for all

p#F p*,

m(p, (1 — e)p* + ep) < w(p*, (1 — €)p" + €p).

for all e > 0 sufficiently small.



At an ESS, for all p # p*,

m(p, (1 —e)p" + ep) < w(p", (1 — €)p" + ep).

for all € > 0 sufficiently small.

By continuity as € — 0, we have, for all p # p*,

m(p, p*) < w(p*, p*).

That is, we have our first result; namely, if p*
is an ESS, then it must be a (symmetric) Nash
equilibrium (NE) for the game where #(q, p*)
is the payoff to a player using strategy ¢ when
interacting with strategy p*.

If 7(q,(1 — €)p* + €p) is linear in € > 0 and p*
is an ESS, then we also have the requirement
that

w(p, p) < w(p*, p).
whenever n(p, p*) = 7 (p*, p*).



Matrix Games (Symmetric normal form
games with finitely many strategies)

Pure strategies: eq,€es, ..., em
Mixed strategies: p= (p1,...,pm) € A™ where

T

A" ={(p1, -, pm) | D pispi > 0}
i=1

Note: Pure strategies are unit vectors in R™.
Payoffs: If «(e;, ej-} = A;j, then
TrL

1,j=1
Theorem (Maynard Smith, 1982):
p* € A™ is an ESS of a matrix game iff
(a) n(p, p*) < w(p*, p*) for all pe A™
(NE condition)
(b) If n(p, p*) = =(p*, p*) and p # p*,
then 7(p,p) < =(p*,p) (stability condition).



T heorem (Hofbauer & Sigmund, 1998):
p* € A™ is an ESS of a matrix game iff

w(p*,p) > n(p, p)

for all p e A™ sufficiently close (but not equal)
to p*.

Note 1: This characterization of ESS is also
valid when w(p,q) is of the form X", p;fi(q)
and f;(qg) is nonlinear in the components of g.
The modelis then called a frequency-dependent
population game.

Note 2: A p* that satisfies this inequality is
also called locally superior (Weibull, 1995).



Replicator Equation

Some Assumptions:

1. Each individual receives a payoff from one
random pairwise interaction per unit time.

2. Payoffs translate directly into fitness

(i.e. reproductive success).

3. Offspring are clones of their only parent.

If n;(t) is the number of individuals using
strategy e at time ¢, then for matrix games,

ﬁi — niﬂ(e?:: p)

Here N =n1+ ...+ nm is the total population
size and p; = n;/N is the frequency of strategy
¢ in the population. From calculus,

pi = pi(w(e;, p) — 7(p, p))
This is called the replicator equation.



T heorem (Taylor & Jonker, 1978):

If p* € A™ is an ESS of a matrix game, then it
is locally asymptotically stable (l.a.s.) for the
replicator equation.

Notes: 1. Tavlor & Jonker proved this using
linearization techniques but the best proof is
based on the above characterization of an ESS
as locally superior and works for frequency-
dependent population games as well. T his proof
also shows that a matrix-game ESS p* in the
interior of A™ (that is, a completely mixed
strategy) is globally asymptotically stable for
the replicator equation since it is globally
superior.



T heorem (Taylor & Jonker, 1978):

If p* € A™ is an ESS of a matrix game, then it
is locally asymptotically stable (l.a.s.) for the
replicator equation.

Notes: 1. Taylor & Jonker proved this using
linearization techniques but the best proof is
based on the above characterization of an ESS
as locally superior and works for frequency-
dependent population games as well. T his proof
also shows that a matrix-game ESS p* in the
interior of A™ (that is, a completely mixed
strategy) is globally asymptotically stable for
the replicator equation since it is globally
superior.

2. The converse is not true. However, if
individuals can play mixed strategies, then

pt e A™ is an ESS iff it is l.a.s. for all mixed-
strategy replicator equations. In fact, it could
be argued that the mixed-strategy replicator
equation with only two strategies p* and p is
Maynard Smith’s original intuition of an
uninvadable strategy.



Hawk-Dove Game
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The replicator equation evolves to the ESS.
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H D

>
O
<

(a) If % > (', then Hawk is the only ESS.

(b) If ¥ < C, the unique ESS is X(%,C - ¥).
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The replicator equation evolves to the ESS.

- . . Vv 1'2
The expected payoff at equilibrium is 5 = IC

The highest expected payoff % occurs when
the population is monomorphic at Dove.

In particular, evolutionary games are NOT
models of group selection.



Doubly Symmetric Games (Weibull, 1995)
Partnership Games (Hofbauer & Sigmund, 1998)
Potential Games (Sandholm, 2011)

Theorem. Suppose that the m xm payoff ma-
trix A is symmetric. Then p* € A™ is an ESS
Iff it is a strict local maximum of the average
payoff function p- Ap. Every such matrix game
has at least one ESSet; namely,

{pe A™ | pecargmax{q- Aq| g€ A™}}.

For almost all symmetric payoff matrices, every
ESSet consists of a finite number of ESS's.

For these games, almost all trajectories of the
replicator equation converge to an ESS. That
is, for almost all (i.e. up to a set of measure
zero) points in A™, the trajectory with this
initial point converges to some ESS.



Proof. This is a corollary of the
Fundamental Theorem of Natural Selection
(at a single locus with multiple alleles)

since these games are equivalent to viability
selection in these circumstances where A;; is

the survival probability of genotype A,;Aj.

Example of an ESSet: Let A =

Then E = {p€ A™ | py =0 or pg = 0} since
A is symmetric and p- Ap < 1 with equality iff

pe E.
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Folk Theorem of Evolutionary Games

For deterministic evolutionary dynamics

(a) A stable rest point is a NE.

(b) Any convergent trajectory evolves to a NE.

(c) A strict NE is asymptotically stable.

The theorem is true for the replicator
equation applied to frequency-dependent
population games with the understanding that
part (b) applies for trajectories starting with
all strategies present.



Unfortunately, many evolutionary games (even
matrix games) have no stable rest points, strict
NE, ESS or convergent trajectories, especially
when there are a large number of strategies.
This issue already appears for three-strategy
games (e.g. Rock-Scissors-Paper games with
cyclic dominance).

However, there are still many situations where
the folk theorem applies as illustrated briefly by
the following examples that I am particularly
interested in.



Unfortunately, many evolutionary games (even
matrix games) have no stable rest points, strict
NE, ESS or convergent trajectories, especially
when there are a large number of strategies.
This issue already appears for three-strategy
games (e.g. Rock-Scissors-Paper games with
cyclic dominance).

However, there are still many situations where
the folk theorem applies as illustrated briefly by
the following examples that I am particularly
interested in.

The n-stage war of attrition

The two plavers now have a finite sequence
of interactions where their strategy choice at
later interactions depend on earlier choices.
Here, players choose between Leave (L) and
Remain (R) at each stage until some player
chooses L or stage n is reached.

This is a symmetric simultaneity game whose
extensive form has a large number of subgames.



The Three-Stage War of Attrition
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T heorem (Cressman, 2003):

Consider the reduced-strategy normal form of
the N-Stage War of Attrition where the cost of
waiting to stage i, m;, IS an increasing function
of i. The game has N+ 1 pure strategies and
a unique ESS p* e ANt

This ESS is pervasive (i.e. it reaches every
player information set) and is found by back-
ward induction. It is globally asymptotically
stable for the N-dimensional replicator

equation. The expected payoff at the ESS is
less than that obtained by both players leaving

immediately (i.e. less than % —my).




3. Theorem (Cressman, 2003)
Suppose ' is a symmetric simultaneity game.

(a) If p* is an asymptotically stable NE of the
standard normal form of I under the replicator
equation, then p* is

(i) pervasive (i.e. p* against p* reaches all
subgames) and

(ii) p* is subgame perfect (i.e. p* induces a NE
in every subgame).

(b) If ' has no moves by nature, then a per-
vasive NE p* of the reduced-strategy normal
form of I is asymptotically stable if and only
If p* is given by backward induction applied to
the asymptotically stable pervasive NE of the
subgames of I and their truncations.

Note: In part (b), we cannot replace "asymp-
totically stable” with "ESS" . A well-known two-
stage counterexample is given by van Damme
(1991) (see also Selten, 1988).



A Symmetric Signaling Game
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Single-Species Habitat Selection Game

1. Individuals choose which of H habitats (patches)
to inhabit. Pure strategies: ey, es, ..., €.

2. Payoff F; in patch i depends only on the
population size in i.

3. Assume F; decreases as size increases.

VWhen total population size is fixed at N, the
payoff in i only depends on frequency p; in
patch 2. Let

m(e;, p) = Fi(Np;).

This is an example of a frequency-dependent
population game.

As an example, the logistic effect is

Nn:
F(Np;) = r; (1 - ;*) .
1




Ideal Free Distribution (Fretwell & Lucas, 1969):
Species will distribute itself so that

(i) all occupied patches have the same payoff
(ii) the payoff in any unoccupied patch would
be no greater than in any occupied patch.

In game-theoretic terms, the IFD is a NE of
the habitat selection game.

Theorem (Fretwell & Lucas, 1969)
There exists a unique IFD p* for each fixed
population size N.

Theorem (Cressman & Krivan, 2006)
ThelIFD p* is an ESS and it is globally asymp-
totically stable (under the replicator equation).



Theorem (Cressman & Krivan, 2006)
The IFD p* is an ESS and it is globally asymp-
totically stable (under the replicator equation).

Proof. It is enough to show that =(p*, p) >
m(p, p) for all p # p*.

H
‘Z (p{ — pi) F;(Np;)

m(p* — p, p)

I

Z(ﬁ*i — pi)(F;(Np;) — F;(Np})) (1)

> 0(2)

(1) Fj(Npj) < F(Np)) if p; =0 and p; #0

(2) (pf — pi)(F;(Np;) — F;(Np})) > 0 if p; # p}.



Adaptive Movement

n; is the population size (density) in patch i.
H H
ni= Y Lijm)nj— Y Iji(n)n,
J=1 =1
where I;;(n) is the migration rate from patch
7 to patch s.

Note: This is not the replicator equation if
animals can migrate to an unoccupied patch
when this patch has higher payoff.

Theorem (Cressman & Krivan, 2006)
Suppose (i) animals never migrate to a patch
with lower payoff and

(ii) some animals always migrate to a patch
with the highest payoff.

Then the above migration dynamics evolves to
the IFD corresponding to the total population
size N = Zlenj. That is, n; evolves to Np!.



Dynamics satisfying properties (i) and (ii) are
called “"better response” dynamics and include
the best response dynamics. For general frequency-
dependent population games, an ESS may not
be stable under all better response dynamics.

Frequency and density dependent
habitat selection game:

H H
ni = niFi(Np) +r | Y Lj(n)n;— Y Lji(n)n;
j=1 =1
where r is a positive parameter giving the time
scale between population dynamics and
migration (i.e. frequency) dynamics.

In this polymorphic model with a fixed time
scale r, the density in each patch i evolves to
the patch carrying capacity K;.

This corresponds to the IFD, pf = K;/N*, at
the population equilibrium N* = K; 4 ... K.



Separation of time scales

Fast migration dynamics:

For fixed N, the frequency distribution p
converges to the IFD p*(N). At this IFD, all
individuals have the same fithess; namely,

F(N) = Y s (N) BB (N)N).
Note that F(N) = F,(pf(N)N) for each
occupied patch (i.e. for pf(N) > 0).

The slow population dynamics is then
N =) n; = NF(N)

as p instantaneously tracks the IFD.

Question: Does N evolve to the population
equilibrium N* = K; 4+ ...Kg7



Fast population dynamics:
For fixed p, the density of the monomorphic
population evolves according to

N =) n;= NF(N) with F(N)=)> p;F(p;N).

Suppose that N converges to a stable
equilibrium N*(p) for each fixed p.

The slow frequency dynamics is then

H H
pi= Y Lij(N“(Dp)pj— X Li(N*(p)p)pi
j=1 =1

as N instantaneously tracks the N*(p).

Question: Does this system evolve to carrying
capacity in each patch?



Theorem

For any better response evolutionary strategy
dynamics and any choice of time scale r
(including a complete separation of time scales),
the frequency and density habitat selection game
for a single species evolves to the IFD at the
population density equilibrium.

That is, the system converges to the carrying
capacity in each patch.



Theorem

For any better response evolutionary strategy
dynamics and any choice of time scale r
(including a complete separation of time scales),
the frequency and density habitat selection game
for a single species evolves to the IFD at the
population density equilibrium.

That is, the system converges to the carrying
capacity in each patch.

This result is not true for two (or more) species
habitat selection games (e.g. for predator-prey
systems or for competitive species) with
adaptive movement.

For example, there are two-habitat predator-
prey systems that reach a stable equilibrium
under fast migration dynamics but become
unstable when the time scales are reversed.



For example, there are two-habitat predator-
prey systems that reach a stable equilibrium
under fast migration dynamics but become
unstable when the time scales are reversed.

That is, time scales are important.

The above discussion raises a basic question of
how population dynamics interact with behav-
ioral dynamics. In particular, what is the effect
of different time scales for these processes?

Time scales also play an important role for
games with continuous strategy spaces.

For example, the assumptions underlying the
canonical equation of adaptive dynamics typi-
cally include population dynamics that operate
on a fast time scale compared to evolutionary
dynamics.



Adaptive dynamics for a one-dimensional
trait space S.

S is a subinterval of real numbers.
z € S are the pure strategies.

m(y,x; N) is the payoff to an individual using
pure strategy y if the resident population is
monomorphic with trait z and density N.

Assume (i) T he resident population dynamics
(i,.e. N= Nn(z,z; N)) is on a fast time scale,
(i) For fixed z, population dynamics evolves
to a stable positive equilibrium N*(z).

Define n(y,z) = w(y,z; N*(x)). In particular,
w(x,z) = 0.



The canonical equation of adaptive dynamics
models the evolution of this monomorphism =
through trait substitution by successful inva-
sion by nearby mutant traits y.

Specifically, at = in the interior of S,
om(y, )
dy
where k(x) is a positive function related to the

rate of mutation.

z = k(x) ly=z (1)

Theorem. Suppose that =* is a rest point of
(1) in the interior of S (i.e. wi(z*,z*) = 0).

(a) z=* is asymptotically stable (also called
convergence stable) if w11 + w12 < 0.
If =* is convergence stable, then w11+ w12 < 0.

Here the second order partial derivatives are all
evaluated at (z*, z*).



Theorem. Suppose that =* is a rest point

of (1) in the interior of S.

(a) x=* is convergence stable if w11+ 712 < 0.
If z* is convergence stable, then w11+ w12 < 0.
(b) If w11 < 0, then z* is a neighborhood strict
NE. Conversely, if z* is a NE, then w11 < 0.

Notes: 1. A strict NE z* need not be
convergence stable (c.f. Folk T heorem).

2. A convergence stable z* need not be a
(strict) NE.

Inthis case, a y € S can invade the dimorphism
evenly split between z*4=z and =z*—« if and only
ifly—a*|>e.

This forms the basis of an initial evolutionary
branching.

3. A continuously stable strategy (CSS) z* is
a strict NE that is convergence stable.



Questions: 1 What happens if the popula-
tion density time scale is not separated from
the evolutionary time scale? One approach is
the Darwinian dynamics of Vincent and Brown
(2005).

2. What happens if the resident population is
polymorphic. One approach is the replicator
equation generalized to an infinite-dimensional
dynamics on the set of probability measures
over S (Cressman and Hofbauer, 2005).



Multi-dimensional trait space

S is a subinterval of R"™ with =™ in its interior.
The canonical equation of adaptive dynamics
is now

dx

- = k(@)C(@)Vin(y, 2) ly=z . (2)

Vim(y,z) |y=z is the gradient vector with ith
component 27{¥:2) ly=2 and

C(z) is an n x n covariance matrix

(i.e. positive definite and symmetric) modeling
the mutation process in different directions.

Theorem. (Leimar, 2009) Suppose z* in the
interior of S is a rest point of (2).

(a) z* is asymptotically stable for any choice
of continuous covariance matrix C(z) (i.e. z*
is (strongly) convergence stable) if A 4+ B is
negative definite where

&?n (y, z*) | B 0%n (y, x) |
Oy0y; VYT Oydx; TV




Theorem. (Leimar, 2009) Suppose z* in the
interior of S is a rest point of (2).

(a) =* is convergence stable if A4+ B is negative
definite.

Conversely, if z* is convergence stable, then
A+ B is negative semi-definite.

(b) If A is negative definite, then z* is a
neighborhood strict NE. Conversely, if z* is a
NE, then A is negative semi-definite.

(c) If A and A+ B are negative definite, then
x* i1s a neighborhood CSS and neighborhood
half-superior.

Conversely, if z* is a neighborhood CSS or
neighborhood half-superior, then A and A+ B
are negative semi-definite.



Definition. (Cressman, 2009) Suppose the
strategy space S of a symmetric game is a
subset of R™ and 0 < p* < 1 is fixed. Strategy
¥ € § is neighborhood p*-superior if

w(z*, P) > w(P, P)

for all probability measures P € A(S) with
1> P({z*}) > p* and the support of P
sufficiently close to z*.

It is neighborhood superior if p" = 0.
It is neighborhood half-superior if p* = %

Notes. 1. Half-superiority is the same as CSS
by the above theorem (if borderline cases are
excluded).

2. Neighborhood superiority is the same as
convergence of the replicator equation.

It is also related to the neighborhood invader
strategy (NIS) of Apaloo (1997).

3. It is the superiority concept that generalizes
most easily to asymmetric games (such as
two-species games) with continuous strategy
spaces (Cressman, 2010).



Monomorphism versus Polymorphism

Time Scales: Behavioral: Ecological:
Evolutionary. Predator versus prey.

Two Species and Multi Species

Non Equilibrium Behavior

Invadable and Uninvadable
Replacement



Monomorphism versus Polymorphism

Time Scales: Behavioral: Ecological:
Evolutionary. Predator versus prey.

Two Species and Multi Species

Non Equilibrium Behavior

Invadable and Uninvadable
Replacement

Finite and Stochastic Effects

Spatial Effects

Evolution of Cooperation

Kin Selection
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