Group size evolution and the emergence of sociality

Silvia De Monte Thomas Garcia

eco-evolutionary mathematics group ecology and evolution lab, Paris

Sociality in microbs

¹⁶⁰ Bacteria: extracellular nutrient scavenging

Diatoms: 'collective suicide'

Dyctyostelium and Myxobacteria: multicellular life stage

Common features

 existence of a subpopulation of public good producers or cooperators

regulation of cell density or colony size

100

Time [min]

200

300

30

20

10

Fluorescence/OD

Group size and the evolution of cooperation

Most models consider that social groups have a fixed size.

The average fitness of cooperators can be modulated by: kinship green beards assortative mating spatial extension/metapopulations duration of the interaction or of the public good

In general, cooperation evolves in small groups.

Group size dynamics and evolution

Some models for the evolution of cooperation have dynamically varying group sizes as a consequence of:

demography (Hauert et al. 2006) facultative participation (Hauert et al. 2002) time-dependent forcing (Chuang at al. 2008)

Models for group size evolution

based on a priori assumptions on nonlinear group size effect on fitness

(Aviles 1999, 2002, van Veelen et al. 2010)

 \Rightarrow explicit aggregation process

Random group formation by attachment leads to scale-free size distributions (Bonabeau et al., 1999)

What is the role of group size inhomogeneities?

How can the aggregation process affect the evolution of sociality?

Aggregation by differential attachment

Aggregation rules

Social players have higher attachment probability than nonsocial ones ($p^+ > p^-$), and they pay a cost c.

The focal recruiter has the opportunity of meeting T other players in the aggregation stage, and it remains bound to them with a probability depending on p^+ and p^-

A one-round public goods game is played within each group, and all individuals reproduce according to their payoff.

A one-round public goods game is played within each group, and all individuals reproduce according to their payoff.

A one-round public goods game is played within each group, and all individuals reproduce according to their payoff.

A one-round public goods game is played within each group, and all individuals reproduce according to their payoff.

A one-round public goods game is played within each group, and all individuals reproduce according to their payoff.

A one-round public goods game is played within each group, and all individuals reproduce according to their payoff.

A one-round public goods game is played within each group, and all individuals reproduce according to their payoff.

A one-round public goods game is played within each group, and all individuals reproduce according to their payoff.

Payoff difference between social (cooperators) and nonsocial (defectors)

$$\Delta P(x) = \sum_{n=2}^{+\infty} \frac{b}{n} \left[(n-1) \frac{(d_s - d_{ns})x}{(d_s - d_{ns})x + d_{ns}} + 1 \right] d_s - c$$
$$d_s = d_s(n, x) \qquad \qquad d_{ns} = d_{ns}(n, x)$$

Distribution of group sizes that a social individual encounters Distribution of group sizes that a nonsocial individual encounters

Payoff difference between social (cooperators) and nonsocial (defectors)

$$\Delta P(x) = \sum_{n=2}^{+\infty} \frac{b}{n} \left[(n-1) \frac{(d_s - d_{ns})x}{(d_s - d_{ns})x + d_{ns}} + 1 \right] d_s - c$$

benefit term depending on the distributions and nonvanishing for large group sizes

Payoff difference between social (cooperators) and nonsocial (defectors)

$$\Delta P(x) = \sum_{n=2}^{+\infty} \frac{b}{n} \left[(n-1) \frac{(d_s - d_{ns})x}{(d_s - d_{ns})x + d_{ns}} + 1 \right] d_s - c$$

Condition for the evolution of sociality

 $\Delta P(x) > 0$

$$\frac{b}{c} > \frac{1}{\sum_{n=2}^{+\infty} \left[\frac{n-1}{n} \frac{(d_s - d_{ns})x}{(d_s - d_{ns})x + d_{ns}} + \frac{1}{n}\right] d_s}$$

Payoff difference between social (cooperators) and nonsocial (defectors)

$$\Delta P(x) = \sum_{n=2}^{+\infty} \frac{b}{n} \left[(n-1) \frac{(d_s - d_{ns}) x}{(d_s - d_{ns}) x + d_{ns}} + 1 \right] d_s - c$$

Simpson's paradox:

- Within any group, the payoff difference between social and asocial players is -c.
- When averaged over the population, with groups of different size and composition, this payoff difference can be positive.

Special cases

Only one size class is present in the population

$$d_s = d_{ns} = \begin{cases} 1 & \text{if } n = N \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta P(x) = \frac{b}{N} - c$$

Condition for cooperation to evolve:

b > N c

Special cases

Nonsocial individuals are excluded (green beard)

$$d_{ns} = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta P(x) = b [1 - d_s(1, x)] - c$$

Condition for cooperation to evolve:

$$b > \frac{c}{1 - d_s(1, x)} \ge c$$

Aggregation by attachment

Probabilities to attach to a social (nonsocial) recruiter

$$Q_{+} = \frac{p^{+} + p^{-}}{2}x + \frac{p^{+} - p^{-}}{2}$$
$$Q_{-} = \frac{p^{+} - p^{-}}{2}x + p^{-}$$

Aggregation by attachment

Aggregation by attachment

Cooperation can evolve if the initial fraction x* of social individuals is above a threshold

Effect of finite-size fluctuations

In finite populations, stochastic fluctuations can lead the frequencies over the threshold and the evolution of cooperation is more likely

Conclusions

Group size inhomogeneities within a population may favour the emergence of social behaviour

In the simple case of aggregation presented here, this happens by a feedback of positive assortment onto the frequency of the social strategy via a public goods game and Darwinian selection

More complex aggregation schemes to be explored...