Cooperation in Social Dilemmas

Christoph Hauert
Department of Mathematics, UBC Vancouver, Canada

Sanctioning institutions for governing the commons

www.evoludo.org
Public goods games

Games and population dynamics

- Large population, players interact in randomly formed groups of size \(N \).
- Two strategic types
 - cooperators \(x \) - contribute to common pool at cost \(c \).
 - defectors \(y \) - contribute nothing
- Total contributions are multiplied by \(r > 1 \) and equally split among all other participants (irrespective of their type):
 \[
 P_{y} = \frac{r c}{N - 1} x (N - 1) = r c \ x \\
 P_{x} = P_{y} - c = (r x - 1) c
 \]
- Payoffs translate into reproductive fitness.
 \[
 \dot{x} = x (P_{x} - \bar{P}) \\
 = x (1 - x) (P_{x} - P_{y})
 \]
- Cooperators go extinct.
Punishment

Promoting cooperation - part I

- Punishment is costly - punisher pays γ, punishment fine β.
- Three strategic types
 - cooperators x - contribute to public goods, do not punish
 - defectors y - do not contribute, do not punish
 - peer punishers w - contribute and punish those that did not

- Payoffs

 \[
 P_x = B - c \\
 P_y = B - (N - 1)w \beta \\
 P_w = B - c - (N - 1)y \gamma
 \]

 \[
 B = rc(x + w) \quad \text{benefits from public good}
 \]
Punishment

Effects of punishment

- Defection is the only stable state.
- No selection in populations of cooperators and peer punishers (line of fixed points).
- Cooperators pave the way for defectors.
- How can punishment gain a foothold in the population?

Sigmund, Hauert & Nowak (2001) PNAS 98 10757.
Volunteering

Promoting cooperation - part II

- Participation in public goods interactions is voluntary.
- Joint effort is risky - potential for high costs and large benefits.
- Risk averse individuals obtain small but fixed payoff σ

 $$0 < \sigma < (r - 1)c,$$
 better than mutual defection but worse than mutual cooperation).
- Three strategic types
 - cooperators x - contribute to public goods
 - defectors y - do not contribute
 - loners z - refuse to participate
- Single participant receives σ.
Volunteering

Theory

- Payoffs

\[
\begin{align*}
 P_y &= \sigma z^{N-1} + (1 - z^{N-1}) r c \frac{x}{1-z} \\
 P_x &= P_y - (1 - z^{N-1}) c \\
 P_z &= \sigma
\end{align*}
\]

- Rock-Scissors-Paper type cyclic dominance along boundary of \(S_3\).

- Loners provide an escape hatch out of states of mutual defection - but this is a fleeting state.

Hauert, De Monte, Hofbauer & Sigmund (2002)
Science 296 1129.
Volunteering & Punishment

Promoting cooperation - part III

- Four strategic types
 - cooperators x: contribute to public goods, do not punish
 - defectors y: participate but do not contribute, do not punish
 - loners z: do not participate
 - peer punishers w: contribute and punish

- Allow for second order punishment - punish those that failed to punish (α controls strength).

- Payoffs

 \[
 P_x' = \alpha \beta w (N - 1) (1 - (1 - y)^{N-2})
 \]

 \[
 P_y' = \beta w (N - 1)
 \]

 \[
 P_z = \sigma
 \]

 \[
 P_w' = \alpha \gamma x (N - 1) (1 - (1 - y)^{N-2})
 \]

 \[
 \gamma y (N - 1)
 \]

Voluntary public goods

Punishment
Volunteering & Punishment

Population dynamics

- Replicator dynamics exhibits two basins of attraction:
 - neutral mixtures of punishers and cooperators (line of fixed points).
 - loners only.

- Fails to explain the evolution of punishment.

- Second order punishment barely affects the dynamics.

- Degenerate dynamics - long term outcome unclear.

- Stochastic model.

Brandt, Hauert, Sigmund (2006) PNAS 103 495.
Finite Populations

Genetic reproduction or social imitation

- Interaction:
 - Random sampling of interaction group without replacement.

- Evolution:
 - Randomly choose focal individual i.
 - Randomly choose model individual j.
 - Focal individual adopts strategy of model with probability proportional to payoff difference $P_j - P_i$:
 \[
 \frac{1}{1 + \exp[-s(P_j - P_i)]}
 \]
 - $s \geq 0$: strength of selection
 - $s \to 0$: random selection
 - $s \to +\infty$: deterministic selection

\[s \geq 0\] strength of selection
\[s \to 0\] random selection
\[s \to +\infty\] deterministic selection

Saturday, November 6, 2010
Finite populations

Stochastic dynamics

- Rare mutations μ:
 - population is homogeneous most of the time.
 - occasionally a single mutant strategy occurs.
 - mutant disappears or takes over the entire population before next mutation occurs.

- Stochastic dynamics along edges of simplex S_n.

- Probability that type i increases competing against type j, T_{ij}^+:
 \[
 T_{ij}^+ = \frac{X_i M - X_i}{M} \frac{1}{1 + \exp \left[-s(P_i - P_j) \right]}
 \]
 M: population size, X_i: number of type i individuals, $M-X_i$: number of j types.

- Fixation probability of single i mutant in j population.
 \[
 \rho_{ij} = \frac{1}{\sum_{k=0}^{M-1} \prod_{X_i=1}^k T_{ij}^-} = \frac{1}{\sum_{k=0}^{M-1} \exp \left[s \sum_{X_i=1}^k (P_j - P_i) \right]}
 \]

- Embedded Markov chain for transitions between homogenous states.
Finite populations

Strong imitation $s \to \infty$

- Strong imitation significantly simplifies Markov chain.

 Ex. voluntary public goods games: $\rho_{XY} = \rho_{YZ} = 1$ and $\rho_{ZX} = 1/2$ all other $\rho_{ij} = 0$.

\[
\begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{4} & 0 & \frac{3}{4}
\end{pmatrix}
\to
\begin{pmatrix}
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{2}
\end{pmatrix}
\]

- The result becomes independent of the parameters! (as long as the cyclic dominance $X \to Y \to Z \to X$ persists).

- $\rho_{ZX} = 1/2$ because two cooperators are required to invade a loner population (non-hyperbolic fixed point in replicator equation).

- Neutral evolution (no fitness differences) yields fixation probability of $1/M$ where M denotes the population size.
Volunteering & Punishment

Results

Compulsory public goods games with peer punishment: defectors rule.

Voluntary public goods games: cyclic dominance.

Voluntary public goods games with peer punishment: punishers reign ($M=92$).

In cultural evolution ‘mutation’ rates may not be small - individuals randomly experiment with different strategies.

For smaller μ, punishment prevails.

The stochastic dynamics in finite populations can resolve the problem of establishing altruistic punishment.

Cooperators prevail for large μ.
(Note that here the contributors also get a return on their own investment - otherwise loners dominate.)

Loners are no longer crucial.

Punishers are pivotal for the success of mild cooperators (second order free riders).

Sanctioning Institutions

Promoting cooperation - part IV

- Second order free riders (contribute but do not punish) undermine punishing efforts.
- Even $\alpha=1$ cannot prevent this because cannot identify among contributors.
- Establish punishment pool where individual contribute before engaging in the public goods interaction.
- Precursor to institutionalized punishment.
- Easy identification of free riders.

- Five strategic types
 - cooperators x - contribute to public goods, do not punish
 - defectors y - participate but do not contribute, do not punish
 - loners z - do not participate
 - peer punishers w - contribute and punish those that did not contribute
 - pool punishers v - contribute to public goods and to punishment pool

- Pool punishers pay an additional amount $G > 0$ into the punishment pool and free riders are fined proportional to the number of pool punishers $N_v: N_v G$.
Peer versus pool punishment

No second order punishment, $\alpha=0$

- **Payoffs** (infinite populations)

 \[
 P_x = P'_x - \alpha G v(N - 1)
 \]

 \[
 P_y = P'_y - G(v(N - 1))
 \]

 \[
 P_z = \sigma
 \]

 \[
 P_w = P'_w - \alpha G v(N - 1)
 \]

 \[
 P_v = P'_v - G
 \]

- Punishment pool only used to punish non-contributors (defectors).

 - For small μ peer-punishment dominates.

 - For large μ the public good collapses.

 - Pool punishment ineffective.

- For compulsory interactions (no loners) defectors dominate.
Peer versus pool punishment

With second order punishment, \(\alpha=1 \)

- Punishment pool used to punish non-contributors (defectors) as well as those that do not commit to pool-punishment (cooperators and peer-punishers).
- Pool punishers prevail for most \(\mu \).
- For very large \(\mu \) the public good collapses.
- For compulsory interactions (no loners) defectors again dominate.
- Punishment often fails in compulsory public goods.
- Preservation of global resources (climate, air, water, fish...).
- “Mutual coercion mutually [and voluntarily] agreed upon”. Hardin, 1968

Conclusions

Sanctioning Institutions

- Peer punishment relates to the instinct for revenge.
- Pool punishment as a step towards establishing sanctioning institutions: commit resources to prepare for punishing free-riders.
- Pool punishment is based on foresight rather than anger.
- Populations of peer punishers are better off than pool punishers.
- The upkeep of the punishment pool incurs costs.
- With second order punishment, pool punishers prevail.
- Higher efficiency of peer punishment is traded for greater stability of pool punishment.
Acknowledgements

Karl Sigmund, University of Vienna, Austria.

Josef Hofbauer, University of Vienna, Austria.

Hannelore De Silva (née Brandt), Vienna University of Economics, Austria.

Martin Nowak, Program for Evolutionary Dynamics, Harvard University.

Arne Traulsen, Max-Planck Institute for Evolutionary Biology, Plön, Germany.

Silvia De Monte, École Normale Superieure, Paris, France.

Tutorials:
http://www.univie.ac.at/virtuallabs
and soon http://www.evoludo.org

VirtualLabs installation on 3D NOVA display
Location: main train station Zürich, Switzerland
Media artist: Chandrasekhar Ramakrishnan