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An old dream of Harsanyi and Selten is to select a unique

(the ‘best’) equilibrium in a game.

J.C. Harsanyi, R. Selten: A General Theory of Equilibrium Se-

lection in Games, MIT Press (1988).

Evolutionary/dynamic approaches to equilibrium selection

stochastic models:

Foster & Young (1990), Young (1993), Kandori, Mailath, Rob

(1993)



Today: How replicator dynamics (or some other deterministic

evolutionary game dynamics) can help to achieve this.

2 approaches based on replicator dynamics

n×m bimatrix game (A, B)

ẋi = xi

(
(Ay)i − x·Ay

)
, i = 1, . . . n

ẏj = yj

(
(BTx)j − x·By

)
j = 1, . . . m

meaning of payoffs?

risk–dominance



2× 2 coordination games

(
a1 0
0 a2

)
(ai > 0)

(
a1, b1 0,0
0,0 a2, b2

)
(ai, bi > 0)

1 is risk dominant over 2, if a > b, resp.

a1b1 > a2b2.

Every strict equilibrium is an attractor for every evolutionary/adaptive

dynamics.

quantity vs. quality ??



Equilibrium selection via travelling waves

J. Hofbauer, V. Hutson and G.T. Vickers, Travelling waves for

games in economics and biology, Nonlinear Analysis 30 (1997)

1235–1244.

P. Fife: Mathematical aspects of reacting and diffusing systems,

Springer Lecture Notes in Biomathematics 28 (1979).

spatial version of REP goes back to

R. Cressman, G. T. Vickers: Spatial and density effects in evo-

lutionary game theory, J. Theor. Biol. 184 (1997), 359-369.



The spatio–temporal model: Reaction diffusion equation

Players interact locally and migrate randomly (like particles in a

Brownian motion).

n player populations distributed in space (= line) pi = pi(x, t):

functions of space x ∈ R and time t.

∂pi

∂t
= fi(p) + d

∂2pi

∂x2
.

diffusion term: random migration of players at a uniform, strategy–

and player–independent rate d > 0.

reaction term: f(p) models the local interaction of players and

the resulting adaptations of their strategy according to their local

experience.



Symmetric 2× 2 games(
a1 0
0 a2

)
(ai > 0)

∂p

∂t
= p(1− p)(a1 + a2)p− a2) + d

∂2p

∂x2
(RD)

Solutions 0 ≤ p(x, t) ≤ 1

Stationary solutions p(x, t) = P (x) : dP ′′+ f(P ) = 0

Travelling wave solutions p(x, t) = P (x−ct): (c . . . wave speed)

dP ′′+ cP ′+ f(P ) = 0



Travelling wave solutions p(x, t) = P (x−ct): (c . . . wave speed)

dP ′′+ cP ′+ f(P ) = 0

bistable wave: P (−∞) = 0, P (∞) = 1

c < 0: p(x, t)→ 1 .... 1 drives out 0

c = 0: standing wave

Theorem: a1 > a2 ⇐⇒ c < 0⇐⇒ 1 drives out 2



Theorem: (see Fife, 1979)

For a bistable RD equation the following conditions are equivalent.

(1) There exists a unique ‘bistable’ travelling wave, and its speed

c < 0.

(2) For any initial condition satisfying p(x,0) = 0 for x < a and

p(x,0) = 1 for x > b, one has p(x, t) → 1 as t → ∞, for each

x ∈ R.

(3) 1 is asymptotically stable in the c–o–topology:

∃L > 0, ε > 0: for each initial function satisfying p(x,0) > 1 − ε for x ∈
[−L, L]: p(x, t)→ 1 as t →∞, uniformly on compact subsets of R.

(4) There exists a ‘standing pulse’ solution, i.e., a stationary

solution P (x) satisfying limx→±∞ P (x) = 0.

(5)
∫ 1
0 f(p)dp > 0.

(6) V (1) > V (0), where V is a potential function for the reaction

term: V ′(p) = f(p).



2× 2 bimatrix games

(
a1, b1 0,0
0,0 a2, b2

)
ai, bi > 0 coordination game (unanimity game)

Two strict equilibria 1, 2, and a mixed equilibrium (p, q)

1 is risk dominant over 2, if

a1b1 > a2b2,

(1 has the higher Nash product), or

p + q < 1.



replicator dynamics

u̇ = u(1− u) ((a1 + a2)v − a1)

v̇ = v(1− v) ((b1 + b2)u− b1)

u̇ = (a1 + a2)u(1− u)(v − q)

v̇ = (b1 + b2)v(1− v)(u− p)

p =
b1

b1 + b2
, q =

a1

a1 + a2



r = b1+b2
a1+a2

ratio of payoff scales of two players

p = b1
b1+b2

, q = a1
a1+a2

mixed equilibrium

u̇ = u(1− u)(v − q)

v̇ = rv(1− v)(u− p)

1 risk-dominates 2 iff p + q < 1



ut = u(1− u)(v − q) + duxx

vt = rv(1− v)(u− p) + dvxx



Theorem. For (RD) with REP dynamics as reaction term, there

exists a unique monotone travelling wave for (RD) that connects

the two strict equilibria.

wave speed c = 0 if

1) r = 1, p + q = 1, or

2) p = q = 1
2

wave speed c < 0 (1 drives out 2) if

1) r = 1, p + q < 1, or

2) p, q < 1
2



r → 0: singular perturbation theory (Hutson, Mischaikow 1996)

c = 0 at p = 2q3 − 3q2 + 1

r →∞:

c = 0 at q = 2p3 − 3p2 + 1



Inside the petal: outcome depends on weights (i.e., on r)
outside the petal: outcome depends on p, q only!



Selection + mutation

(JH + Boyu ZHANG)

ẋi = xi ((Ax)i − x·Ax) + ε(1− nxi), i = 1, . . . , n

with ε > 0 uniform mutation rate.

rest points (selection–mutation balance) x(ε)

ε → 0: x(ε)→ Nash equilibria of game A

ε →∞: x(ε)→ (1
n, . . . , 1

n) centroid

selection + mutation homotopy method



ẋi = 0 = xi ((Ax)i − x·Ax) + ε(1− nxi), i = 1, . . . , n

For almost every game, there is a unique, smooth path of selection–

mutation equilibria that connects the centroid (ε =∞) to a single

NE (ε = 0).

The set of selection–mutation equilibria forms a 1d submanifold

of ∆× [0,∞).



Harsanyi’s logarithmic games

π(y, x, t) = (1− t)y ·Ax + t
∑

i log yi

equilibria: (1− t)
(
(Ax)i − (Ax)j)

)
+ t( 1

xi
− 1

xj
) = 0 ∀i, j

ε = t
1−t

J.C. Harsanyi: Oddness of the number of equilibrium points: a

new proof, Int. J. Game Theory 2 (1973), 235–250.



closely related to quantal response equilibria

xi =
e(Ax)i/ε∑
j e(Ax)j/ε

, or x = L(
Ax

ε
)

with L : Rn →∆, Lk(u) = euk∑
j e

uj logit equilibria

ε →∞: x(ε)→ (1
n, . . . , 1

n) centroid
ε → 0: x(ε)→ NE
LLE ‘limiting logit equilibrium’
McKelvey, R. D. and T. D. Palfrey: Quantal response equilibria
for normal form games. Games Econ. Behav. 10 (1995), 6–38.

T.L. Turocy: A dynamic homotopy interpretation of the logistic
quantal response equilibrium correspondence.
Games Econ. Behav. 51, 243-263 —– implemented in Gambit



2× 2 bimatrix game

u̇ = u(1− u)(v − q) + ε(1− 2u)

v̇ = rv(1− v)(u− p) + ε(1− 2v)

1, i.e. (u, v) = (1,1) is selected by selection-mutation homotopy

if

1) r = 1, p + q < 1, or

2) p, q < 1
2, or

3) r ≈ 0, q < 1
2, or

4) r ≈ ∞, p < 1
2



r = 1
4



0 = u(1− u)(v − q) + ε(1− 2u)

0 = rv(1− v)(u− p) + ε(1− 2v)

eliminate ε:

r
1− 2u

u(1− u)
(u− p)−

1− 2v

v(1− v)
(v − q) = 0

S(u, v) = rf(u)(u− p)− f(v)(v − q) = 0

look for critical points (works for general QRE)

Su = rf ′(u)(u− p) + rf(u) = 0

Sv = −f ′(v)(v − q)− f(v) = 0

H(q) = rH(p)



H(q) = rH(p)

H(p) =
1

2
−
√

p(1− p)

The mutation–selection homotopy leads to 1 (A1B1) iff

√
a1 +

√
b1 >

√
a2 +

√
b2

1 is risk dominant over 2, iff

a1b1 > a2b2


