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1 Introduction

• A series of joint studies in an ongoing research project

• All drawing upon a general notion of

local evolutionary stability

• Today’s study (#3) is focused on evolutionarily stable altruism, with

- implications for cooperation and

- relations to Hamilton’s rule and inclusive-fitness maximization



1.1 Related literatures

• Strategy evolution in populations with assortative matching:
- Hamilton (1964), Grafen (1979)

- Bergstrom (1995, 2003), Day and Taylor (1998)

- Nowak (2006)

• Preference evolution in populations with uniform random matching:

- Güth and Yaari (1992), Bester and Güth (1998), Ely and Yilankaya

(2001)

- Heifetz, Shannon and Spiegel (2006a,b), Dekel, Ely and Yilankaya

(2007)



2 The model

• A large population of individuals

• Individuals have some (abstract) heritable trait  ∈ 

• They are randomly, but not necessarily uniformly randomly, matched
into pairs

• Each pair has a symmetric two-person interaction

• Average increase of (personal) fitness 
¡
 0

¢
to an individual with

trait  ∈  when interacting with an individual with trait 0 ∈ 



2.1 The matching process

• Allow for non-uniform random matching, use “algebra of assortative

encounters” in Bergstrom (2003)

1. Two traits,  and 0, present in the population

2. 1−  the population share with trait ,  that with trait 0

3. Let  () = Pr [| ]− Pr
£
|0 

¤
This defines an assortment function  : (0 1)→ [−1 1] which to each
population share  assigns an index of assortativity,  ()



4. Expected fitness increase for a -individual:
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= [ () + (1− ) (1−  ())]· ( )+ (1−  ())·

³
 0

´

and likewise for a 0-individual

• Assume matching process such that  () continuous in  with limit

0 as → 0



• Uniform random matching in infinite population:  () ≡ 0

• Uniform random matching in finite population:

 () ≡ −1 ( − 1)  0

• Sibling interaction in sexually reproducing diploid species:

 ()→  = 12 as → 0 [ being Wright’s coefficient of relatedness]



2.2 Evolutionary stability

Definition 2.1 A trait  ∈  is evolutionarily stable if for every trait 0 6= 

there exists some ̄ ∈ (0 1) such that for all  ∈ (0 ̄):
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• Special case: Uniform random matching in an asexually reproducing

infinite population. The interaction a finite and symmetric two-player

game. The set  of traits is the mixed-strategy simplex. Payoff func-

tions being bilinear, the definition ⇔ ESS

• A sufficient condition for evolutionary stability of a trait:

 ( )  (1− 0) · 
³
0 

´
+ 0 · 

³
0 0

´
(1)

∀ 0 6= .



Definition 2.2 A trait  ∈  is locally strictly evolutionarily stable (LSES)

if (1) holds for all 0 6=  near .

Remark 2.1 A trait  is LSES iff the RHS of (1), viewed as a function of

the mutant type 0, has a strict local maximum at 0 = .

• This simple observation turns out to give lots of analytical power:

1. Let  ⊂ R for some   0

2. Let  :  2→  be continuously differentiable

3. Take the derivative of the RHS w.r.t. 0:


³
 0

´
= (1− 0) ·∇1

³
0 

´
+ 0 ·

h
∇1

³
0 0

´
+∇2

³
0 0

´i




4. Call  :  2→ R the drift function

Proposition 2.1 Condition (i) below is necessary for  to be LSES. Condi-

tions (i) and (ii) are together sufficient for  to be LSES.

(i) ( ) = 0

(ii)
¡
0 − 

¢
·( 0)  0 for all 0 6=  near 

• Call (i) the no-drift condition



2.3 The pairwise interaction

• The pairwise interactions as a symmetric two-player games  = ()

-  the set of strategies (available to each player)

-  ( ) payoff to a player who uses strategy  ∈  against strategy

 ∈ 

- payoff = the increase in one’s (personal) fitness

• Special case 1:  the unit simplex of mixed strategies in a finite game

• Special case 2:  an interval of pure strategies on the real line

• Call the game  the personal-fitness game



3 Strategy evolution

• Trait = mixed strategy in the game  = ()

• The no-drift condition:

∇1( ) + 0 ·∇2( ) = 0

• Identical with the necessary FOC for symmetric NE in a symmetric

game with payoff function

 ( ) =  ( ) + 0 ·  ( )

• As if individuals were altruistic/spiteful of degree 0



• Special case: asexual reproduction in infinite population: 0 = 0

• Special case: sexual reproduction in infinite population:

0 =  [Wright’s coefficient of relatedness]

⇔ Hamilton’s rule



4 Preference evolution

• Traits as “behavioral inclinations”, represented by a parameter that
guides the individual’s choice of strategy, in interactions where individ-

uals know each others’ behavioral inclinations

• More specifically: an individual with trait  =  chooses a strategy

 ∈  so as to maximize

 ( ) =  ( ) +  ·  ( )

•   0 expresses altruism,  = 0 selfishness, and   0 spite

• Now  =  = (−1 1)



• The notion that each individual takes an action  ∈  that maxi-

mizes her (altruistic, selfish or spiteful) goal function amounts to the

requirement that the strategy pair ( ) be a NE the “derived” game

 =
³
 

´

• Focus on derived games  that have a unique, interior and regular

Nash equilibrium

• The no-drift condition:

1( ) + 0 · 2() = 0

where (0 ) is the fitness increase, in equilibrium play, for an 0-
altruist when playing an -altruist



4.1 A general result

Definition 4.1 The strategies in  = () are

(a) strategically independent if 12 ( ) = 0 for all   ∈ 

(b) strategic substitutes if 12 ( )  0 for all   ∈  and

(c) strategic complements if 12 ( )  0 for all   ∈ 



Proposition 4.1 If the matching process has index of assortativity 0 and

a degree  of altruism/spite is locally strictly evolutionarily stable, then

(i)   0 if the strategies in  = () are strategic substitutes

(ii)   0 if the strategies in  = () are strategic complements

(iii)  = 0 if the strategies in  = () are strategically independent



• Special case: asexual reproduction in infinite population: 0 = 0

• Special case: sexual reproduction in infinite population:

0 =  [Wright’s coefficient of relatedness]

⇔ Hamilton’s rule in case (iii), but not in cases (i) and(ii)



4.2 Intuition for violation of Hamilton’s rule

• A social dilemma

 ( ) = (+ ) −  · 2

for 0    1,   0 and   ≥ 0

• ⇒ strategic substitutes



• Two more or less selfish siblings (0 =  = 12):

x

y



• However, Hamilton’s rule holds in an abstract sense

A meta-game in which

- the strategies are  and  [or, equivalently, the associated best-reply

correspondences]

- the payoffs are personal fitnesses in the associated NE
³
 

´
[fixed

point to the BR correspondences]



5 Conclusions

• In theoretical biological research on the evolution of altruistic behavior,
the standard approach is to assume that evolution operates at the level

of strategies, or actions.

• This amounts to assuming that individuals either have no information
or knowledge about the inclinations of the individual they interact with,

or they have such information or knowledge but fail to use it.

• To this standard approach we here add a model of the evolution of al-
truistic behavioral inclinations, in pairwise strategic interactions where

both parties know each other’s inclination.

• We encompass both approaches under a general paradigm for evolution
of “traits”



• For this general setting, we define a notion of (local) evolutionary
stability and introduce a drift function that allows the researcher to

easily identify evolutionarily stable traits in a wide range of pair-wise

interactions.

• We derive testable prediction for the degree of cooperation in social
dilemmas and other games

• We identify classes of games in which evolutionary stability under pref-
erence evolution disagrees with standard application of Hamilton’s rule

and inclusive-fitness maximization



• The analysis may be extended in many directions:

- intermediate levels of social cognitive capacity

- repeated interactions

- more interacting individuals than two

- other kinds of other-regarding preferences than altruism/spitefulness


