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ANALYSIS

; The evolution of eusociality
Martin A. Nowak1, Corina E. Tarnita1 & Edward O. Wilson2

Eusociality, in which some individuals reduce their own lifetime reproductive potential to raise the offspring of others,
underlies the most advanced forms of social organization and the ecologically dominant role of social insects and humans.
For the past four decades kin selection theory, based on the concept of inclusive fitness, has been the major theoretical
attempt to explain the evolution of eusociality. Here we show the limitations of this approach. We argue that standard
natural selection theory in the context of precisemodels of population structure represents a simpler and superior approach,
allows the evaluation of multiple competing hypotheses, and provides an exact framework for interpreting empirical
observations.

F
or most of the past half century, much of sociobiological
theory has focused on the phenomenon called eusociality,
where adult members are divided into reproductive and (par-
tially) non-reproductive castes and the latter care for the

young. How can genetically prescribed selfless behaviour arise by
natural selection, which is seemingly its antithesis? This problem
has vexed biologists since Darwin, who in The Origin of Species
declared the paradox—in particular displayed by ants—to be the
most important challenge to his theory. The solution offered by the
master naturalist was to regard the sterile worker caste as a ‘‘well-
flavoured vegetable’’, and the queen as the plant that produced it.
Thus, he said, the whole colony is the unit of selection.

Modern students of collateral altruism have followed Darwin in
continuing to focus on ants, honeybees and other eusocial insects,
because the colonies ofmostof their species are dividedunambiguously
into different castes. Moreover, eusociality is not a marginal pheno-
menon in the living world. The biomass of ants alone composes more
than half that of all insects and exceeds that of all terrestrial nonhuman
vertebrates combined1. Humans, which can be loosely characterized
as eusocial2, are dominant among the land vertebrates. The ‘super-
organisms’ emerging from eusociality are often bizarre in their consti-
tution, and represent a distinct level of biological organization (Fig. 1).

Rise and fall of inclusive fitness theory
For the past four decades, kin selection theory has had a profound
effect on the interpretation of the genetic evolution of eusociality
and, by extension, of social behaviour in general. The defining feature
of kin selection theory is the concept of inclusive fitness. When
evaluating an action, inclusive fitness is defined as the sum of the
effect of this action on the actor’s own fitness and on the fitness of the
recipient multiplied by the relatedness between actor and recipient,
where ‘recipient’ refers to anyone whose fitness is modified by the
action.

The ideawas first stated by J.B. S.Haldane in1955, and a foundation
of a full theory3 was laid out by W. D. Hamilton in 1964. The pivotal
idea expressed by both writers was formalized by Hamilton as the
inequality R. c/b, meaning that cooperation is favoured by natural
selection if relatedness is greater than the cost to benefit ratio. The
relatedness parameter R was originally expressed as the fraction of the
genes shared between the altruist and the recipient due to their com-
mondescent, hence the likelihood the altruistic genewill be shared. For
example, altruism will evolve if the benefit to a brother or sister is

greater than two times the cost to the altruist (R5 1/2) or eight times
in the case of a first cousin (R5 1/8).

Due to its originality and seeming explanatory power, kin selection
came to bewidely accepted as a cornerstone of sociobiological theory.
Yet it was not the concept itself in its abstract form that first earned
favour, but the consequence suggested by Hamilton that came to
be called the ‘‘haplodiploid hypothesis.’’ Haplodiploidy is the sex-
determiningmechanism inwhich fertilized eggs become females, and
unfertilized eggs males. As a result, sisters are more closely related to
one another (R5 3/4) than daughters are to their mothers (R5 1/2).
Haplodiploidy happens to be the method of sex determination in the
Hymenoptera, the order of ants, bees and wasps. Therefore, colonies
of altruistic individuals might, due to kin selection, evolve more
frequently in hymenopterans than clades that have diplodiploid sex
determination.

In the 1960s and 1970s, almost all the clades known to have evolved
eusociality were in the Hymenoptera. Thus the haplodiploid hypo-
thesis seemed to be supported, at least at first. The belief that haplo-
diploidy and eusociality are causally linked became standard textbook
fare. The reasoning seemed compelling and even Newtonian in con-
cept, travelling in logical steps from a general principle to a widely
distributed evolutionary outcome4,5. It lent credence to a rapidly
developing superstructure of sociobiological theory based on the pre-
sumed key role of kin selection.

By the 1990s, however, the haplodiploid hypothesis began to fail.
The termites had never fitted this model of explanation. Then more
eusocial species were discovered that use diplodiploid rather than
haplodiploid sex determination. They included a species of platypo-
did ambrosia beetles, several independent lines of Synalpheus sponge-
dwelling shrimp (Fig. 2) and bathyergid mole rats. The association
between haplodiploidy and eusociality fell below statistical signifi-
cance. As a result the haplodiploid hypothesis was in time abandoned
by researchers on social insects6–8.

Although the failure of the hypothesis was not by itself considered
fatal to inclusive fitness theory, additional kinds of evidence began to
accumulate that were unfavourable to the basic idea that relatedness is
a driving force for the emergence of eusociality. One is the rarity of
eusociality in evolution, and its odd distribution through the Animal
Kingdom. Vast numbers of living species, spread across the major
taxonomic groups, use either haplodiploid sexdeterminationor clonal
reproduction, with the latter yielding the highest possible degree of
pedigree relatedness, yet with only one major group, the gall-making
aphids, known to have achieved eusociality. For example, among the

Nature nature09205.3d 13/7/10 14:20:04

1Program for Evolutionary Dynamics, Department of Mathematics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
2Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.

Vol 000j00 Month 2010jdoi:10.1038/nature09205

1

ANALY
SIS

; The evolution
of eusoc

iality

Martin A. Nowa
k1, Corin

a E. Tarn
ita

1 & Edward
O. Wilson

2

Eusocial
ity, in which some individu

als redu
ce their ow

n lifetime reprodu
ctive potentia

l to raise the offspring
of other

s,

underlie
s the most adva

nced forms of soci
al organ

ization and the ecol
ogically

dominant rol
e of soci

al insect
s and humans.

For the past fou
r decade

s kin selection
theory, b

ased on the concept
of inclus

ive fitness,
has been

the major theo
retical

attempt to explain the evolutio
n of eusoc

iality. He
re we show the limitations

of this a
pproach

. We argue
that stan

dard

natural s
election

theory in
the cont

ext of pr
ecisemodels of

populati
on struc

ture repr
esents a

simpler and
superior

approac
h,

allows th
e evaluati

on of multiple competing hypothe
ses, and

provides
an exact fra

mework fo
r interpr

eting empirical

observa
tions.

F
or most of th

e past hal
f centur

y, much of socio
biologica

l

theory has focu
sed on the phenom

enon called eusociali
ty,

where ad
ult members are

divided i
nto repr

oductive
and (par

-

tially) non-rep
roductiv

e castes and the latter care for the

young. H
ow can genetica

lly prescribe
d selfless b

ehaviour
arise by

natural
selection

, which
is seemingly its antithesi

s? This
problem

has vexed biologist
s since Darwin,

who in The Origin of Specie
s

declared
the paradox

—in particula
r displaye

d by ants—to be the

most important
challeng

e to his theor
y. The so

lution offered by the

master nat
uralist w

as to regard the steri
le worke

r caste a
s a ‘‘well-

flavoure
d vegetabl

e’’, and
the quee

n as the plant th
at produ

ced it.

Thus, he
said, the

whole co
lony is th

e unit of
selection

.

Modern students
of collat

eral altru
ism have followed

Darwin
in

continui
ng to focus on

ants, ho
neybees

and other eu
social in

sects,

because t
he colon

ies ofmostof the
ir species

are divid
edunam

biguousl
y

into different
castes. M

oreover,
eusociali

ty is not
a marginal p

heno-

menon in
the living

world. T
he biom

ass of an
ts alone c

omposes more

than half
that of al

l insects a
nd excee

ds that o
f all terre

strial non
human

vertebrat
es combined

1. Humans, whi
ch can be loose

ly characte
rized

as eusoc
ial

2, are dominant am
ong the land vertebrat

es. The
‘super-

organism
s’ emerging fr

om eusociali
ty are oft

en bizarr
e in their

consti-

tution, a
nd repre

sent a dis
tinct leve

l of biolo
gical org

anization
(Fig. 1).

Rise and fall of in
clusive f

itness th
eory

For the
past fou

r decade
s, kin selection

theory h
as had a profou

nd

effect on
the interpret

ation of the genetic evolutio
n of eusoc

iality

and, by e
xtension

, of socia
l behavio

ur in gen
eral. The

defining
feature

of kin selection
theory is the concept

of inclu
sive fitness. W

hen

evaluatin
g an action, i

nclusive
fitness is

defined
as the sum of the

effect of
this actio

n on the
actor’s o

wn fitne
ss and on

the fitne
ss of the

recipient
multiplied

by the re
latednes

s betwee
n actor an

d recipient
,

where ‘r
ecipient’

refers to
anyone

whose fi
tness is

modified by the

action.

The idea
was first

stated by
J.B. S.H

aldane in
1955, an

d a found
ation

of a full
theory

3 was laid
out by W

. D. Hamilton in 1964. Th
e pivotal

idea expresse
d by both writers w

as formalized by Hamilton as the

inequalit
y R. c/b, meaning that coo

peration
is favour

ed by natur
al

selection
if related

ness is g
reater th

an the cost
to benefit r

atio. The

relatedne
ss param

eter R was orig
inally ex

pressed a
s the frac

tion of th
e

genes sh
ared between

the altru
ist and the recip

ient due
to their c

om-

mondesce
nt, hence

the likeli
hood the

altruistic
genewill

be shared
. For

example, altru
ism will evol

ve if the be
nefit to

a brother
or sister

is

greater t
han two

times the co
st to the

altruist (
R5 1/2) or e

ight times

in the case
of a first

cousin (R5 1/8).

Due to it
s origina

lity and s
eeming expla

natory p
ower, kin

selection

came to bew
idely acc

epted as
a corners

tone of s
ociobiol

ogical th
eory.

Yet it wa
s not the

concept
itself in its abstra

ct form
that first

earned

favour,
but the

consequ
ence suggeste

d by Hamilton that cam
e to

be called
the ‘‘hap

lodiploid
hypothe

sis.’’ Haplodipl
oidy is the se

x-

determiningmechanism
inwhich

fertilized
eggs beco

me females, and

unfertili
zed eggs males. As a

result, si
sters are

more close
ly related

to

one anot
her (R5 3/4) than

daughte
rs are to

their mothers (R
5 1/2).

Haplodipl
oidy hap

pens to b
e the method of

sex deter
mination i

n the

Hymenoptera
, the ord

er of ant
s, bees an

d wasps.
Therefor

e, coloni
es

of altrui
stic individu

als might, du
e to kin selection

, evolve
more

frequent
ly in hymenoptera

ns than
clades th

at have d
iplodiplo

id sex

determination.

In the 19
60s and 1

970s, alm
ost all th

e clades k
nown to

have evo
lved

eusociali
ty were in

the Hymenoptera
. Thus th

e haplod
iploid hypo-

thesis se
emed to be suppo

rted, at l
east at fi

rst. The
belief th

at haplo
-

diploidy
and euso

ciality ar
e causall

y linked
became standar

d textbo
ok

fare. The
reasonin

g seemed compelling a
nd even Newtoni

an in con-

cept, tra
velling in logical s

teps from
a general p

rinciple
to a widely

distribut
ed evolutio

nary outcome4,
5. It lent

credence
to a rapidly

developi
ng super

structure
of sociob

iological
theory b

ased on t
he pre-

sumed key role
of kin selection

.

By the 1
990s, ho

wever, th
e haplod

iploid hypothe
sis began

to fail.

The term
ites had

never fit
ted this model of e

xplanati
on. Then

more

eusocial
species w

ere discover
ed that use

diplodip
loid rather th

an

haplodip
loid sex deter

mination.
They inc

luded a species
of platyp

o-

did ambrosia be
etles, sev

eral inde
pendent

lines of S
ynalpheu

s sponge
-

dwelling
shrimp (Fig. 2)

and bathyerg
id mole rats.

The asso
ciation

between
haplodip

loidy and eusociali
ty fell belo

w statistica
l signifi-

cance. A
s a result

the haplo
diploid h

ypothesi
s was in t

ime abando
ned

by resear
chers on

social in
sects

6–8.

Although
the failu

re of the
hypothe

sis was n
ot by itse

lf consid
ered

fatal to i
nclusive

fitness th
eory, add

itional k
inds of e

vidence
began to

accumulate tha
t were un

favourab
le to the

basic ide
a that rel

atedness
is

a driving
force for

the emergence
of eusoc

iality. O
ne is the

rarity of

eusociali
ty in evolutio

n, and its odd distribut
ion through

the Anim
al

Kingdom
. Vast n

umbers of l
iving species,

spread across th
e major

taxonom
ic groups

, use eith
er haplod

iploid se
xdeterm

inationo
r clonal

reproduc
tion, wit

h the latte
r yieldin

g the high
est possi

ble degre
e of

pedigree
relatedne

ss, yet w
ith only one

major grou
p, the ga

ll-making

aphids, k
nown to have ach

ieved eusociali
ty. For e

xample, among the

Nature
nature0

9205.3d
13/7/10

14:20:04

1Program
for Evolu

tionary D
ynamics, Depa

rtment of M
athematics, De

partment of Or
ganismic and Ev

olutiona
ry Biolog

y, Harva
rd Unive

rsity, Ca
mbridge, M

assachu
setts 02

138, USA
.

2Museum of Comparative
Zoology

, Harvard
Universi

ty, Cambridge, M
assachu

setts 02
138, USA

.

Vol 000
j00 Month 2010jdoi:1

0.1038/
nature0

9205

1





Evolutionary Theory 
in a Nutshell

‘Fitness is maximised’

OK.

But by whom or what ?

 



Levels of organisation

population
competition, predation, epidemiology, social interactions

individual
birth, death, development, behaviour

within-individual
physiology, learning, infection, immune response

ecosystem
biodiversity, nutrient cycles



Evolutionary Theory

Fitness = Lifetime Reproductive Success

Life-history theory, epidemiology, even population 
genetics…



Levels of organisation

population
competition, predation, epidemiology, social interactions

individual
birth, death, development, behaviour

within-individual
physiology, infection, immune response

ecosystem
biodiversity, nutrient cycles







An anthill is an individual

http://homepage.mac.com/ldr/albums/summer2001/images/rudsmaasan2.jpg

(almost)



A lichen is an association

http://en.wikipedia.org/wiki/Image:Hyella_caespitosa_hypae.jpg



within-individual
physiology, infection, immune response

Levels of organisation

population
competition, predation, epidemiology, social interactions

individual
birth, death, development, behaviour

ecosystem
biodiversity, nutrient cycles



Model for the origin of life

• interactions between simple molecules

• can persist where single species cannot

• susceptible to ‘parasites’

The Hypercycle



Hypercycle

Species 1

Species 2

Species 3

Species n

…



Exploited Hypercycle

Species 1

Species 2

Species 3

Species n

…

Parasite



22 M. C. Boerlijsr and P. Hogeweg /Spiral wat’e structure in pre-biotic el,olution 

Plate 1A Plate 1B Plate 1C 

Plate 3A Plate 3B Plate 3C 

Plate 4A Plate 48 Plate 5 

Spatialised hypercyle

Boerlijst & Hogeweg (1991) simulated a probabilistic 
cellular automaton to study spatial structure 
generated by hypercycles



22 M. C. Boerlijsr and P. Hogeweg /Spiral wat’e structure in pre-biotic el,olution 

Plate 1A Plate 1B Plate 1C 

Plate 3A Plate 3B Plate 3C 

Plate 4A Plate 48 Plate 5 

Exploited hypercyle

and then added parasites…





Spatial Hypercycles

Boerlijst & Hogeweg’s (1991) results

• Tend to form rotating spirals

• Parasites swept outward

• Selection on rotation speed
– favouring higher mortality



Spatial evolution

Spirals ‘unit of selection’

• Rotation speed selected trait

But:

• Rapidly rotating spirals ‘fly apart’

• Evolution towards criticality
– Rand, Keeling & Howard 1995



Viscous populations

Mutants create clusters

Clusters unit of selection (unit of adaptation)

Mathematical characterisation

• Correlation dynamics
– Van Baalen & Rand (1998), Van Baalen (2000), Ferrière 

& Le!Galliard (2001), Lion & van Baalen (2007)



Correlation
dynamics

 &
Pair 

approximation
techniques 

Analytical Methods

Van Baalen & Rand (1998)



Viscous populations

Dynamics of mutant given by sets of equations

• Fitness: dominant Lyapunov exponent

• Unit of selection: corresponding eigenvalue

.    . . 636

of the type qh!ij, which give the probability that a
neighbour of the i in an ij pair is occupied by an h.
(For example, the probability that an oS becomes an
AS pair because an A-neighbour of the pair
reproduces will be proportional to bAqA !oS). From
elementary probability theory we have,

qh!ij =
phij

pij
(5)

which implies that qh!ij depends on the frequency of hij
triplets. In fact, the differential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
we have to estimate or approximate the distribution
of these larger configurations in terms of pair
frequencies. For conditional probabilities of the type
qh!ij the most straightforward strategy is to adopt the
so-called pair approximation, i.e. to assume that

qh!yj ! qh!i (6)

i.e. the probability to find an h next to the i is assumed
not to be affected by i’s other neighbour j (Matsuda
et al., 1992).

This assumption may introduce a significant error.
Consider, for example, qA!SA. Under the pair
approximation assumption, this would be approxi-
mated by qA!S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
‘‘see’’ altruists). However, qA!SA is the probability that
the non-altruist has a second altruistic neighbour.
This implies that the S in question is likely to be in
a region where A is locally abundant, and that qA!SA

therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following differential equations:

dpS

dt
=[(b0 +BpA)po − d]pS

dpA

dt
=[(b0 +BpA −C)po − d]pA (7)

where po =1− pS − pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion

5.1.  

In order to determine under what conditions
altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is sufficient to verify that the resident has a positive
equilibrium which is the case if b0 is sufficiently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not affect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three differential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
different way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =!
"

#

pAo

pAS

pAA

!
$

%
and qA =!

"

#

qo!A

qS!A

qA!A

!
$

%
(10)

and M(qA) is a 3× 3 matrix that is fully given in
Appendix B.



Characteristic cluster
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds off is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3.   

Although simulations of PCA models are excellent
for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4.    

Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

F. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds off is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3.   

Although simulations of PCA models are excellent
for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4.    

Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

F. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).

individuals. As we have seen, this hypothesis was challenged
by early patch-structured models, on the basis that
population viscosity also increases competition between
relatives, which can impede the spread of altruism.
However, stochastic individual-based models have shown
that, under certain conditions, the balance can be easily
tipped in favour of altruism.

Evolution of cooperation in viscous populations can be
interpreted using three main arguments: kin selection, group
selection (clusters of altruists do better) or network
reciprocity. We argue that these three arguments are in a
large measure equivalent. This can be shown either with a
top–down approach, by showing that the results of
evolutionary graph theory can be retrieved as special cases
of a general kin selection model (Rousset 2004; Grafen
2007; Lehmann et al. 2007b; Taylor et al. 2007a); or with a
bottom–up approach, by showing that relatedness and
Hamilton’s rule can be recovered as emergent properties of
the ecological spatial dynamics (van Baalen & Rand 1998;
Lion & van Baalen 2007). We focus on the latter approach,
which we think is often more intuitive, and discuss briefly at
a later stage the limits and merits of each approach.

Invasion

When a mutant appears in a viscous population, stochastic
demographic processes will tend to lead to the emergence of a
cluster of mutants, with a local structure that is characterized
by spatial statistics (Fig. 2). For instance, in a lattice model,
one can use statistics such as aggregation (the local density
qM/M of mutants experienced by an average mutant) and local
saturation (the local density qo/Mof empty sites experienced by
an average mutant). The initial clustering of mutants implies
that the local density qM/M is much larger than the global
density pM. Therefore, Matsuda et al. (1992) have shown that,
when the mutants are rare, the local densities change faster
than the global densities, and the cluster reaches a stationary
local structure while the mutants are still rare (Fig. 2).

Let us consider individuals living on a regular network of
sites where each site can be either empty or occupied.
Reproduction is asexual and conditional to the availability of
empty sites in the neighbourhood of an individual. Then a
mutant will invade if its per-capita growth rate k (or any
relevant invasion criterion) is positive. Using correlation
equations, the invasion condition then reads (Matsuda et al.
1992; van Baalen & Rand 1998)

k ¼ bMqo=M " dM > 0; ð1Þ

where bM and dM are the birth and death rates of a
mutant and possibly depend on an individual’s environ-
ment. Here, qo/M gives the local density of empty sites
experienced by the mutants in the cluster, and is deter-
mined by the structure of the invading cluster. As we will

explain in more detail in the section on multilevel selec-
tion, this implies that we have defined fitness at the level
of the invading cluster.

Relatedness

The local density qM/M gives a measure of mutant clustering,
but is also the conditional probability that the recipient of an
altruistic act is a mutant, given that the donor is a mutant. As
shown by Day & Taylor (1998), this is a measure of
relatedness for a rare mutant (pM»0). When the mutant is
not rare, relatedness can be computed as a function of local
density qM/M and other spatial statistics (Lion & van Baalen
2007). This means that relatedness is not a fixed parameter,
but a spatio-temporal variable which depends on demo-
graphic and ecological parameters and variables, although in
practice the computation can be complex (for instance with
diploid genetics).

Hamilton’s rule

Let us now consider that individuals have a trait x that
represent the investment into altruism. Altruism increases
recipient’s survival and decreases donor’s fecundity. If a
mutant M with investment y appears in a selfish resident
population R with investment x ¼ 0, we know from eqn 1
that it will invade if k > 0. Under an assumption of weak
selection, altruism evolves if the selection gradient ¶k/¶y is
positive. Then, it can be shown (van Baalen & Rand 1998;
Le Galliard et al. 2003; Lion & van Baalen 2007) that the
condition for the spread of altruism takes the form

@B

@y
qM=M > "

@ðbMqo=M Þ
@y

ð2Þ

where qM/M and the partial derivatives are evaluated at
x ¼ y ¼ 0 (the mutant is only slightly altruistic, i.e. the
mutant is close to the resident). Here, B represents the
benefits of altruism, bM is the birth rate of a mutant and qo/M
is the local density of empty sites in the neighbourhood of a
mutant, so that bMqo/M is the reproductive output of a
mutant.

In words, altruism spreads if the marginal benefit of
altruism (¶B/¶y), weighted by relatedness qM/M, is greater
than the marginal cost of altruism [¶(bMqo/M)/¶y], i.e. how
much does a slight increase in altruism reduce the fecundity
of the donor. This means that we have recovered
Hamilton’s rule as an emergent property of the ecological
spatial dynamics.

In this version of Hamilton’s rule, relatedness and the
benefits and costs of altruism are not constant, but depend
on the demographic and ecological parameters. Moreover,
we see that altruism has a twofold cost: it has a direct
physiological cost (fecundity bM is decreased), and an
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variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.
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for developing intuition and formulating conjectures,
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should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.
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Following Metz et al. (1992) and Rand et al. (1994)
we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation suffices. These differential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coefficient of relatedness’’
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(Étude Mathématique). Hermann et Cie, Paris.

selfish and common interests of interacting individuals.
How does one assess the common interest of a prey and
a predator engaged in a chase, for example? How does
this common interest depend on the context? It will be
advantageous for a host to tolerate a mild parasite only
if there are more dangerous parasites around. As an-
other example, it may pay for a prey to signal its
capacity for escape only if there are weaker individuals
around. Much of the incentive for cooperation might
depend on the intensity of within-trophic level competi-
tion, on the principle of ‘the enemy of my enemy is my
friend’.

In this article, we will carry out an ESS analysis of
the interactions between individuals of two populations.
The structure of this article is as follows. First we will
discuss how a range of interactions from outright com-
petitive to fully mutualistic (from competition for re-
sources to predator-prey and host-parasite interactions,
via client-provider to obligate symbiosis) can be ex-
pressed in terms of a common framework. Then we will
outline how fitness is defined in this framework (from
the invasion exponent of rare mutants, see Metz et al.
1992, Rand et al. 1994, Dieckmann and Law 1996,
Geritz et al. 1997), and how this concept can be used to
sharpen the definitions of antagonism and mutualism.
These fitness concepts can then be dissected to separate
selfish interests from the common good of the interac-
tants. Finally, we will analyse the conditions for align-
ment of interests and how this is related to private
interest and common good. We intersperse the develop-
ment of our argument with a number of examples to
discuss the salient points. To preserve the flow of the
argument most of the mathematical detail is referred to
appendices.

Interacting individuals
Models for populations of interacting individuals date
back as far as 1934 (Kostitzin 1934, Wolin 1985).
Kostitzin’s approach has resurfaced many times and in
many guises, but always in relation to questions about
conditions favouring association (Law and Dieckmann
1998, Yamamura 1993, 1996, Genkai-Kato and Yama-
mura 1999). Law and Dieckmann (1998) derive the
model from considerations of physiological interactions
between unicellular organisms; Yamamura and col-
leagues (Yamamura 1993, 1996, Genkai-Kato and Ya-
mamura 1999) used it to study the evolution of vertical
transmission in host-parasite interactions. Depending
on the parameters, the mathematical framework can
model other types of interactions as well, including
predator-prey and client-provider interactions such as
between plants and pollinators. So-called ‘marriage
models’, used to assess the rate of spread of sexually
transmitted diseases, are another example of this class
of models (Heesterbeek and Metz 1993).

The underlying principle of the framework is that
interactions between individuals (denoted x and y) take
place only when two individuals associate and form a
complex xy, see Fig. 1A. Such associations may last as
long as no partner dies, as in some host-parasite inter-
actions, but it may also be of short duration, as in the
case of predator-prey interactions, where a predator
pursuing a prey may be considered a temporary (or
virtual) predator-prey association.

The framework is given by three differential equa-
tions that govern the densities of free individuals and of
the complex,

d[x ]
dt

=Fx [x ]−![x ][y ]+Px [xy ]

d[y ]
dt

=Fy [y ]−![x ][y ]+Py [xy ]

d[xy ]
dt

=![x ][y ]−Mxy [xy ], (1)

where symbols enclosed in square brackets denote den-
sities of free individuals and of complexes, and ! the
rate of encounter of free x and y individuals. The other
symbols represent fitness components of free and
bound individuals (see also Fig. 1B). The terms Fx and
Fy denote the net rate of reproduction of free
individuals,

Fi="i−#i, (2)

where "i denotes the rate of reproduction of free indi-
viduals of species i and #i their mortality rate. Because
the contribution of the association is not included, we
will call the rates Fx and Fy the ‘free fitness component’
of free x and y, or x and y ’s ‘free fitness’ for short.

Once an x- and a y-individual have formed an
association, this association may persist for a certain
time, producing free x and y and possibly new xy
complexes. We can define the net mortality rates of
such complexes as

Fig. 1. Schematic representation of the processes affecting free
and bound individuals. (A) Individuals of species x and y can
combine to form interacting complexes xy (with encounter rate
!), which can then dissociate again (with rate $). (B) Fitness
components of free and bound individuals (for an explanation
of the symbols see text).
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Private interest vs 
Common good

a clear common interest in the survival of the host, as
has been often observed. However, to the parasite, this
common interest is more important than it is to the
host! Fig. 3 shows a pair of coevolutionarily stable
strategies (CoESSs) in a host-parasite interaction. The
parasite curve represents the effects of variations in
virulence on the parasite’s private interests and the
common good of the association. As can be seen, at the
CoESS Q! y=P! x/M! xy is maximal. This represents the
optimum solution to the classical dilemma of increasing
transmissibility (private interest) and host longevity
(common good). The host’s curve results when the host
varies the intensity with which it fights the parasite. For
the host, selection pressure (indicated by the arrow)
points more in the direction of increasing private inter-
ests; in other words, to the host, private interests should
prevail. For the parasites, in contrast, the common
good is relatively more important, the selection pressure
(arrow) indicates that to the parasite it pays more to
decrease Mxy than to increase Py. Note that the direc-
tion of selection pressure is related to the overall
profitability of the association: the parasite’s curve is
above the dashed line in Fig. 3, the host’s below.

In the host-parasite example that we discussed, the
emergence of a common good can be discussed without

Fig. 4. The evolution of mutually assisted competition. (A)
Selection isoclines for the investment of partners (expressed as
a fraction of their potential rate of reproduction, cx, cy)
helping each other to survive intraspecific competition.
CoESSs are indicated by the heavy dots. Panel (B) shows the
proportion of investments under the mutual-aid CoESS, panel
(C) the densities under the mutual-aid CoESS (drawn lines)
and under the no-mutual-aid CoESS (dashed lines), as a
function of the productivity of the environment (rm). Both
partners have equal demographic parameters, with the excep-
tion that the rate of reproduction of y is always 20% greater
than that of x. (The model is described in Appendix D.
Parameters: !x=rm, !y=1.2rm, mx=my=1, "x="y=0.01,
#x=#y=30, $=0.01.)

Fig. 3. An example of the balance of private interests and
common good in a host-parasite interaction. As explained in
the text, mutants should increase their private interest Pi but at
the same time decrease the association’s mortality M! xy. The
optimum ratio between the two is such that the tangent passes
through the origin. The arrows indicate the direction of selec-
tion. Note that the CoESSs for host and parasite will coincide
at the same value for Mxy. Constraints assumed to draw this
plot (the CoESS was found numerically): the parasites have a
virulence trait ĉy that links propagule production, %̂y=4ĉy/
(1+0.25ĉy) to the mortality rate of infected hosts, &̂xy=1+
ĉy ; infected hosts have a defence trait ĉx that links their rate of
reproduction, %̂x=1.2(1− (ĉx/2)2) to recovery rate (parasite
death), &̂y= ĉx. No vertical transmission is assumed in this
example. Above the dashed line, being in association confers a
net benefit, below a net disadvantage.

considering the external world. Often, however, the
benefits of association are strongly density dependent.
For example, plants and soil microorganisms may en-
gage in mutually beneficial relationships in which they
exchange vital resources (Parker 1999). One effect of
such exchanges is that it helps partners compete. In-
deed, the model analysed in Appendix D shows that
such mutual aid may be a CoESS (Fig. 4A), but that it
is only favoured when the productivity of the environ-
ment exceeds a certain threshold value (Fig. 4B). Mu-
tual aid only pays when densities, and thus the intensity
of competition, are sufficiently high (Fig. 4C). Note
that this example is entirely based on the assumption
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Alignment of interests

that partners in association can withstand competition
more efficiently. Of course, in other cases partnerships
may be based on resistance to adverse conditions or
other factors. In those cases, the reasons for teaming up
will be the same but they need not be density dependent
in the same way (see also Hochberg 2000).

Alignment of interests
We have shown that, under certain conditions, individ-
uals will sacrifice part of their private interest for the
common good, the common good being defined as the
survival of the association. This trade-off may explain
such phenomena as reduction in virulence in host-para-
site systems and the exchange of resources to help
partners compete. Such cooperation works because pro-
moting the common good serves both partners.

However, this does not explain all forms of coopera-
tion. For example, a predator chasing a prey does form
a temporary association with the prey individual. How-
ever, it is hard to imagine why they both should
attempt to prolong the time they are in pursuit. Yet
behaviour like ‘stotting’ in gazelle is commonly ex-
plained as a way of communication between pursuer
and pursued (Caro 1995, Caro et al. 1995). Such com-
munication would not evolve if there were not anything
‘in it’ for both. But as bolstering the common good
(prolonging the pursuit) cannot be of mutual advan-
tage, how should we explain such forms of
cooperation?

As it turns out, bolstering the common good is only
one of the conditions favouring cooperation. In fact,
the key concept here is ‘alignment of interest’ which is
not the same as common good. Our framework allows
a definition of this commonly used concept: alignment
of interest occurs when the fitness of both partners
increases with a given change. For example, when being
in association is unprofitable to both partners, both will
let their private interest prevail over the common good.
Yet this does not preclude o!erlap in interest: in fact
both have an interest in shortening the interaction, so
whatever one partner does to achieve this will benefit
the other as well. In other words, there is an alignment
of interests in that partners ‘agree’ to sacrifice the
common good, rather than bolstering it. It is as if the
interaction is actually a tripartite game: both partners
team up against the partnership! Under such conditions
individuals may be selected to sacrifice some of their
resources to a cooperation to stop the interaction.

Thus, cooperation through alignment of interests is
not the same as serving the common good. By compar-
ing the amount by which the partners’ fitnesses increase
or decrease with changes in the different demographic
parameters, we can determine where their interests are
aligned and where they are in conflict. This is worked

out in Appendix E and the results are summarized in
Table 1. As can be seen, an arbitrary interaction may
be a mixture of aligned and conflicting interests. Note
that Table 1 presents the fitness effects of changes in
only a single demographic rate. In general, a trait will
affect (through constraints or trade-offs) more than one
demographic parameter at the same time and under
those circumstances alignment depends on a weighted
mixture of all effects. This means that conditions for
alignment of interest may be not at all immediately
obvious. Detailed knowledge of the interaction may
then be necessary to work out the overall effect.

Discussion
That ecological interactions are often complex mixtures
of conflicting and overlapping interests is increasingly
being recognized by evolutionary biologists (see reviews
by Bronstein 1994a, b, Leigh and Rowell 1995, Frank
1997, Herre et al. 1999, Keller 1999). This insight is
corroborated by our analysis which suggests that coop-
eration may evolve under different scenarios and in
widely different settings.

The first scenario is that individuals sacrifice some of
their private interests to serve the common good. An
example of this scenario would be the interaction be-
tween plants and soil microorganisms. Such an associa-
tion is sufficiently profitable for both partners (when
their competitive ability is boosted compared to free-
living individuals) that it warrants an investment to
promote the partnership. A second scenario, however,
is entirely opposite: if the interaction is detrimental for
both partners (as it is, for example, for predators and
well-defended prey) then their interests are in line again
in that both partners benefit when the interaction is
shortened. Such alignment, again, may warrant a cer-
tain investment by both partners.

Whenever an interaction involves an encounter be-
tween individuals of two species inevitably a common
good arises that is shared by these individuals. This is
important because, whatever the overall nature of the

Table 1. The effect of changes in demographic rates on the
fitness of partners x and y, as a function of their respective
private-to-common interest ratios Qx and Qy. (See Appendix
E for how these weights are derived.)

Effect on fitnessChange Alignment

yx

1increase !x 0 no
increase !y 0 1 no
increase !xy Qx Qy always

Qy−1Qxdecrease "x if Qy!1
decrease "y if Qx!1QyQx−1
decrease "xy Qx Qy always
decrease # Qx−1 Qy−1 if Qx−1 and Qy−1

of same sign
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Dangerous Liaisons

Whenever two individuals interact they will have 
aligned interests

• favouring (limited) cooperation

• survival, competitiveness
– e.g. plant-rhizosphere

• not individual reproduction
– a host should not help its parasites to spread

If there is relatedness, it helps!



Challenge

Better mathematical definition of

• Individual as unit of adaptation
– “who benefits”

• Common good (relative to selfish interest)

• Ecological conditions that affect balance


