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Abstract The dual reduction process, introduced by Myerson, allows a finite
game to be reduced to a smaller-dimensional game such that any correlated
equilibrium of the reduced game is an equilibrium of the original game. We
study the properties and applications of this process. It is shown that generic
two-player normal form games have a unique full dual reduction (a known
refinement of dual reduction) and that all strategies that have probability zero
in all correlated equilibria are eliminated in all full dual reductions. Among
other applications, we give a linear programming proof of the fact that a
unique correlated equilibrium is a Nash equilibrium, and improve on a result
due to Nau, Gomez-Canovas and Hansen on the geometry of Nash equilibria
and correlated equilibria.
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1 Introduction

Dual reduction (Myerson 1997) is a reduction process for finite normal form
games which, in a sense, generalizes elimination of dominated strategies. Its
roots lie in the proofs of existence of correlated equilibria of Hart and Schmei-
dler (1989) and Nau and McCardle (1990). The reduction consists in elimi-
nating some pure strategies or merging several pure strategies into a single
mixed strategy that serves as a new pure strategy. The main property is that
any Nash or correlated equilibrium of the reduced game is an equilibrium of
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the original game. Moreover, by iterative reduction, any finite game can be
reduced to an elementary game, that is, to a game in which all incentive con-
straints defining correlated equilibria may be satisfied as strict inequalities in
a correlated equilibrium. Myerson (1997) also showed that, while some games
can be reduced in several ways, this ambiguity is alleviated if we focus on a
specific class of dual reductions, called full dual reductions.

A first aim of this article is to better understand the properties of dual
reduction: in particular, which strategies and equilibria are eliminated, and
whether focusing on full dual reduction allows us to get a uniquely defined
reduction process. Our main results are that: (i) full dual reductions need not
eliminate weakly dominated strategies; however, they eliminate all strategies
which have probability zero in all correlated equilibria; (ii) generic two-player
normal form games have a unique full dual reduction. The main step in prov-
ing (ii) is to understand that the ways in which dual reduction merges pure
strategies is linked to the Nash equilibria of the games obtained by omitting
certain pure strategies of the original game.

The second aim of this article is to show that dual reduction is a useful tool
to study properties of Nash and correlated equilibria. We give three examples:
(i) a linear programming proof of the fact that a unique correlated equilibrium
is a Nash equilibrium; (ii) a proof that any tight game (Nitzan 2005) has a
completely mixed Nash equilibrium; (iii) a refinement of a result of Nau et
al. (2004) on the geometry of Nash equilibria and correlated equilibria. Other
applications are discussed.

The remainder of the article is organized as follows: the next section sums
up known results, with some new insights. In Section 3, we try to understand
which strategies and equilibria are eliminated by dual reduction. Section 4
gives examples of applications of dual reduction. Finally, the Appendix shows
that almost all two-player games have a unique full dual reduction. All refer-
ences to Myerson are to Myerson (1997).

Notation. As Myerson, we denote a finite game in strategic form by

Γ = (N, (Ci)i∈N , (Ui)i∈N )

where N is the finite set of players, Ci the finite set of pure strategies of
player i, and Ui : ×j∈NCj → R the utility function of player i. The set
of pure strategy profiles is denoted by C = ×j∈NCj . For each player i, we
let C−i = ×j∈N\{i}Cj . If c = (cj)j∈N is a pure strategy profile and di a pure
strategy of player i, we let (c−i, di) denote the pure strategy profile that differs
from c only in that the i-component is di.

For any finite set S, we let |S| denote its number of elements and let ∆(S)
be the set of probability distributions over S. We identify the element s of S
with the corresponding vertex of ∆(S). A correlated strategy of the players in
N is an element of ∆(C). Thus, µ = (µ(c))c∈C is a correlated strategy if and
only if µ(c) ≥ 0 for any c in C and

∑

c∈C µ(c) = 1.
Let µ be a correlated strategy. Assume that before play, a mediator draws a

pure strategy profile c with probability µ(c) and then privately recommends ci
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to player i, for every i in N . The correlated strategy µ is a correlated equilibrium
(Aumann 1974; 1987) if no player has an incentive to deviate unilaterally from
these recommendations. That is, µ is a correlated equilibrium if and only if it
satisfies the following incentive constraints:

∑

c
−i∈C

−i

µ(c) [Ui(c−i, di) − Ui(c)] ≤ 0 ∀i ∈ N, ∀ci ∈ Ci, ∀di ∈ Ci (1)

For any mapping αi : Ci → ∆(Ci) and any ci, di in Ci, we may write αi ∗ci

instead of αi(ci) to denote the image of ci by this mapping, and αi(di|ci)
instead of (αi ∗ ci)(di) to denote the probability of di in the mixed strategy
αi ∗ ci. This is for consistency with Myerson.

2 Basics of dual reduction

Unless stated otherwise, all results of this section are due to Myerson.

Dual vectors. Assume that before play a mediator privately recommends
a pure strategy to each player, who can either obey or deviate from this rec-
ommendation. The behavior of player i can then be described by a mapping
αi : Ci → ∆(Ci), which associates to every pure strategy ci the randomized
strategy αi ∗ ci that she will play if recommended ci. The mapping αi may be
called a deviation plan for player i. If a mediator tries to implement a pure
strategy profile c, then player i’s gain from deviating unilaterally according to
αi instead of following the mediator’s recommendation is

Di(c, αi) := Ui(c−i, αi ∗ ci) − Ui(c)

Let α = (αi)i∈N be a profile of deviation plans and let D(c, α) denote the sum
of the above gains over the set of players:

D(c, α) :=
∑

i∈N

Di(c, αi) =
∑

i∈N

[Ui(c−i, αi ∗ ci) − Ui(c)]

Definition. A dual vector is a profile of deviation plans α = (αi)i∈N such that
D(c, α) ≥ 0 for every pure strategy profile c in C.

Any game has at least one dual vector. Indeed, letting αi ∗ ci = ci for all i
in N and all ci in Ci defines a dual vector. We call it the trivial dual vector.

Duality and existence of correlated equilibria. Dual vectors natu-
rally arise from the linear programming proofs of existence of correlated equi-
libria (Hart and Schmeidler 1989; Nau and McCardle 1990). The term dual
vector comes from the following duality theorem: For any c in C, the problem
of finding a correlated equilibrium µ such that µ(c) > 0 is a linear program
whose dual is equivalent to the problem of showing that there is no dual vector
α such that D(c, α) > 0 (Nau and McCardle 1990, Proposition 2 1).

1 Up to normalization of α, the quantity D(c, α) here corresponds to −A(s)α there.
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In light of this result, to prove existence of correlated equilibria, it suffices
to show that there is at least one c for which there is no dual vector αc such
that D(c, αc) > 0. To prove this by contradiction, assume that for every c
there is some such dual vector. Then any interior combination of these dual
vectors yields a dual vector α such that D(c, α) > 0 for all c. But for every
mixed strategy profile σ and every j in N ,

∑

c∈C

σ(c)Dj(c, αj) = Uj(σ−j , αj ∗ σj) − Uj(σ) (2)

where
αj ∗ σj =

∑

cj∈Cj

σj(cj)(αj ∗ cj)

Indeed, both sides of (2) represent the expected gain for player j from deviating
according to αj , when all other players obey a mediator who is trying to
implement σ. Summing over the set of players N , we get

∑

c∈C

σ(c)D(c, α) =
∑

j∈N

[Uj(σ−j , αj ∗ σj) − Uj(σ)] (3)

Now the mapping αj : Cj → ∆(Cj) may be seen as a transition probability on
Cj and as such induces a Markov chain on Cj . By basic properties of Markov
chains, every player j has a mixed strategy σj which is αj-stationary, that is,
such that αj ∗ σj = σj . For such an αj-stationary strategy σj and any σ−j ,
Uj(σ−j , αj ∗ σj) = Uj(σ) so that

∑

c∈C σ(c)Dj(c, αj) = 0 by (2). If σj is αj-
stationary for all j in N , then

∑

c∈C σ(c)D(c, α) = 0 by (3), contradicting the
assumption that D(c, α) > 0 for all c.

A variant of this proof of existence of correlated equilibria has recently
been used by Papadimitriou and Roughgarden (2008) to develop algorithms
for finding correlated equilibria in a broad class of succinctly representable
multiplayer games, in a time which is polynomial in the succinct representation
of the game. For more on (mostly Nash) equilibrium computation, see the
excellent survey by Roughgarden (2010) and the other articles in the same
special issue of Economic Theory.

How to reduce a game using a dual vector. Let α be a dual vector.
As noted above, the mapping αi : Ci → ∆(Ci) induces a Markov chain on
Ci. This Markov chain partitions Ci into a set of transient states and disjoint
minimal absorbing sets.2 From the basic theory of Markov chains, it follows
that for every minimal absorbing set Bi ⊂ Ci, there is a unique αi-stationary
mixed strategy with support Bi. Let Ci/αi denote the set of such αi-stationary
strategies with support equal to a minimal absorbing set. The set Ci/αi is thus
a subset of the set of mixed strategies of player i in Γ , and, because the minimal
absorbing sets are disjoints, it has as most as many elements as Ci. The α-
reduced game, denoted by Γ/α, is the game with the same set of players and

2 A nonempty subset Bi of Ci is a minimal absorbing set for the Markov chain induced
by αi if: (i) for every ci in Bi, αi ∗ ci has support in Bi and (ii) it contains no nonempty
proper subset satisfying (i).
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the same utility functions as in Γ , but in which, for every i in N , the pure
strategy set of player i is Ci/αi:

Γ/α = {N, (Ci/αi)i∈N , (Ui)i∈N}

The reduction thus operates by eliminating some strategies and merging
other strategies. The pure strategies of Γ/α are mixed strategies of Γ . If a
pure strategy ci ∈ Ci is a transient state for the Markov chain induced by αi,
then ci is eliminated. It is not a pure strategy and does not take part in any
pure strategy of the reduced game Γ/α: for all σi in Ci/αi, seen as elements
of ∆(Ci), we have σi(ci) = 0. If ci is αi-stationary (i.e. αi ∗ ci = ci), then ci

is kept as a pure strategy of the reduced game: ci ∈ Ci/αi. Finally, if ci is
neither transient nor stationary, then the strategies in the minimal absorbing
set of ci are merged (Myerson says “consolidated”) into an equivalence class,
which is represented by the unique αi-stationary strategy with support equal
to this minimal absorbing set. Thus, ci is not in Ci/αi, but there exists σi in
Ci/αi such that σi(ci) > 0 (where σi is seen as an element of ∆(Ci)).

Furthermore, due to properties of Markov chains, a mixed strategy σi in
∆(Ci) is αi-stationary if and only if it is a convex combination of the αi-
stationary strategies with support equal to some minimal absorbing set, that
is, if and only if it belongs to ∆(Ci/αi). So the set of mixed strategies of player
i in Γ/α corresponds to his set of αi-stationary mixed strategies in Γ .

Definition. A dual reduction of Γ is any α-reduced game Γ/α where α is a dual
vector. An iterative dual reduction of Γ is any game Γ/α1/α2/ . . . where each
αk is a dual vector for Γ/α1/α2/ . . . /αk−1. (The expression “dual reduction”
may refer either to a reduced game or to the reduction technique.)

Dual reduction and equilibria. Let C/α = ×i∈NCi/αi denote the set
of pure strategy profiles of the reduced game Γ/α. So the set of correlated
strategies of the reduced game is ∆(C/α). Any correlated strategy µ in C/α
can be mapped back to a Γ -equivalent correlated strategy µ̄ in the natural
way:

µ̄(c) =
∑

σ∈C/α

µ(σ)σ(c) ∀c ∈ C

(the mapping µ 7→ µ̄ can be shown to be injective). Myerson’s main result
is that if µ is a correlated equilibrium of a dual reduction of Γ , then µ̄ is a
correlated equilibrium of Γ . The same result holds for Nash equilibrium.

The main step of the proof is to show that, if σ is a mixed strategy profile
such that σj is αj-stationary for all j 6= i, then Ui(σ) ≤ Ui(σ−i, αi ∗ σi). To
see this, note that if αj ∗ σj = σj for all j 6= i, then (3) is reduced to

∑

c∈C

σ(c)D(c, α) = Ui(σ−i, αi ∗ σi) − Ui(σ) (4)

Because α is a dual vector, D(c, α) ≥ 0 for all c, hence the left hand side of
(4) is nonnegative. Thus, (4) implies Ui(σ) ≤ Ui(σ−i, αi ∗ σi).



6

From this, it can be seen that if σj is αj-stationary for all j 6= i, then
player i has an αi-stationary best-response to σ−i (for instance, the Cesàro
limit - that is, the limit of the arithmetic mean - of the sequence (σk

i ) defined
inductively by σ0

i = σi and σk+1

i = αi ∗ σk
i , where σi is any best-response to

σ−i; the sequence (σk
i ) need not converge, but its arithmetic mean does). It

is then relatively straightforward to show that any equilibrium of Γ/α is an
equilibrium of Γ .

Payoff rescaling. Linear transformations of the utility functions do not
affect the players’ preferences. So, for dual reduction not to depend on specific
representations of these preferences, such transformations ought not affect the
ways in which a game may be reduced. We show that this is indeed the case,
although Myerson does not mention it.

For instance, consider the following games Γ and Γ ′, where Γ ′ is obtained
from Γ by multiplying player 1’s payoffs by 1/2:

Γ :

x2 y2

x1

y1

2, 0 0, 2
0, 2 2, 0

Γ ′ :

x2 y2

x1

y1

1, 0 0, 2
0, 2 1, 0

Define α by αi ∗ xi = yi and αi ∗ yi = xi for every i in {1, 2} (recall that pure
strategies are identified with the vertices of the simplex). Then α is a dual
vector of Γ but not of Γ ′, because D(α, c) < 0 for c = (x1, y2). However, α can
be rescaled into a dual vector of Γ ′ inducing the same reduction. The idea is to
replace α1 by a deviation plan α′

1 which deviates similarly but twice as much.
However, α′

1(y1|x1), for instance, would then be greater than 1. So instead, we
replace α1 and α2 by deviations plans which deviate 2K and K times as much,
respectively, with 2K ≤ 1. This doubles the impact of player 1’s deviations
compared to player 2’s, hence compensates for the fact that player 1’s payoffs
have been multiplied by 1/2, while ensuring that the new deviation plans are
well defined.

Formally, let λ1 = 1/2 and λ2 = 1, and let 0 < K ≤ mini∈N λi = 1/2. Let

α′
i ∗ ci =

(

1 −
K

λi

)

ci +

(

K

λi

)

[α1 ∗ ci]

for all ci in Ci. Then for every σi in ∆(Ci), [α′
i ∗ σi]− σi = (K/λi)[αi ∗ σi]. It

follows that α′ is a dual vector of Γ ′ and that the same mixed strategies are
stationary under αi and α′

i, so that α and α′ induce the same reduced game:
Γ ′/α′ = Γ ′/α.

More generally, let Γ and Γ ′ be two games with the same sets of players
and strategies. Let us say that Γ ′ is a rescaling of Γ if for every player i in
N , there exists a positive constant λi and a function fi : C−i → R such that
U ′

i(c) = λi.Ui(c) + fi(c−i) for all c in C. Drawing on the above construction,
it is easy to show that if Γ ′ is a rescaling of Γ then for any dual vector α of Γ
there is a dual vector α′ of Γ ′ such that Γ ′/α′ = Γ ′/α.

Symmetric games. Let Γ be a two-player symmetric game. That is,
C1 = C2 = {1, 2, ..., m} and for all (k, l) in {1, 2, ..., m}2, U1(k, l) = U2(l, k). If
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α = (α1, α2) is a dual vector, then so are α′ = (α2, α1) and ᾱ = (α + α′)/2.
Moreover, Γ/ᾱ is symmetric. More generally, if there are some symmetries in
the roles of the players (e.g. if within a subset of the set of players, the roles of
the players are cyclically symmetric), then the game can be reduced in a way
that respects these symmetries (Viossat 2008a, Proposition 21).

Jeopardization and reduction to elementary games. A game is
elementary (Myerson) if it has a correlated equilibrium µ which satisfies all
incentive constraints with strict inequality:

∑

c∈C

µ(c) [Ui(c−i, di) − Ui(c)] > 0 ∀i ∈ N, ∀ci 6= di (5)

If µ satisfies (5), then for any correlated strategy µ′ with full support and for
any ǫ small enough, (1 − ǫ)µ + ǫµ′ is a strict correlated equilibrium with full
support; conversely, any strict correlated equilibrium with full support satisfies
(5). So, elementary games can also be defined as those games having a strict
correlated equilibrium with full support.3

Myerson shows that a game may be strictly reduced if and only if it is not
elementary; this implies that, though many games are not elementary (e.g.,
Matching Pennies), any game may be reduced to an elementary game by iter-
ative dual reduction. The proof is based on the concept of jeopardization and
Proposition 1 below which we will use extensively.

Definition. Let ci and di be pure strategies of player i. The strategy di

jeopardizes ci if in every correlated equilibrium µ, the incentive constraint
stipulating that player i should not gain by deviating from ci to di is tight.
That is,

∑

c
−i∈C

−i

µ(c) [Ui(c−i, di) − Ui(c)] = 0

Proposition 1 (Myerson) There exists a dual vector α such that αi(di|ci) > 0
if and only if di jeopardizes ci.

Proof This is a special case of strong complementary slackness in linear pro-
gramming. See Myerson for details. ⊓⊔

Full dual reduction Let us say that a dual vector is full (or has full
support) if it is positive in every component that is positive in at least one
dual vector. By Proposition 1, for any full dual vector α and any pure strategies
ci and di in Ci, αi(di|ci) > 0 if and only if di jeopardizes ci. Existence of full
dual vectors follows from the convexity of the set of dual vectors. A full dual
reduction of Γ is any reduced game Γ/α where α is a full dual vector.

3 A correlated equilibrium µ has full support if µ(c) > 0 for all c in C. It is strict if the
incentive constraint (1) is satisfied with strict inequality, for any i in N , any ci that has
positive marginal probability in µ, and any di 6= ci.
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Full dual reduction significantly refines dual reduction. Indeed, we show in
the Appendix that almost all two-player games have a unique full dual reduc-
tion. This is not true of general dual reductions (for instance, any game with
several weakly dominated strategies has several nontrivial dual reductions).

The interest of full dual reductions also lies in the following properties,
which remain implicit in Myerson: all full dual vectors, having the same pos-
itive components, induce the same minimal absorbing sets. Therefore, in all
full dual reductions, the pure strategies that are eliminated (resp. kept as pure
strategies, merged together) are the same. Moreover, in any full dual reduc-
tion, there are weakly fewer pure strategies than in any other dual reduction
of the same game. That is, if α is a full dual vector and β is any dual vector,
then |Ci/αi| ≤ |Ci/βi| for all i. This follows from the fact that any component
that is positive in βi is also positive in αi.

3 Which strategies and equilibria are eliminated?

We say that the pure strategy ci is eliminated in the dual reduction Γ/α
if σi(ci) = 0 for all σi in Ci/αi. A pure strategy profile c is eliminated if
σ(c) = 0 for all σ in C/α; that is, if ci is eliminated for some i in N . Finally,
a correlated equilibrium µ is eliminated if there is no correlated strategy of
Γ/α which induces µ in Γ . In this section, we try to understand which kind
of strategies and equilibria are eliminated in dual reductions.

Strategies. As shown by Myerson, if a pure strategy is weakly dominated
then there is a dual reduction which exactly eliminates this strategy. Moreover,
iterative dual reduction always leads to a game that has no weakly dominated
strategies. Finally, if a dual reduction consists in eliminating a pure strategy,
say ci, then this strategy is weakly dominated, or gives exactly the same payoffs
as another mixed strategy. Indeed, for all j 6= i, every pure strategy in Cj must
be stationary under the associated dual vector α. Due to (4), this implies that
Ui(c−i, αi ∗ ci) ≥ Ui(c) for all c−i in C−i.

In the sense that these properties hold, dual reduction generalizes elimina-
tion of dominated strategies. However, full dual reductions need not eliminate
weakly dominated strategies:

Example 1
x2 y2

x1

y1

1, 1 1, 0
1, 0 0, 0

In this game, µ is a correlated equilibrium if and only if y2 is not played in µ.
That is, µ(x1, y2) = µ(y1, y2) = 0. Therefore x1 and y1 jeopardize each other.
It follows that, in all full dual reductions, x1 and y1 are merged, hence y1 is
not eliminated.

By contrast, in full dual reductions, strategies that have marginal probability
zero in all correlated equilibria are eliminated, and a similar result holds for
strategy profiles.
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Proposition 2 Let c ∈ C (resp. ci ∈ Ci) be a pure strategy profile (resp. pure
strategy) that has probability zero in all correlated equilibria. Then c (resp. ci)
is eliminated in all full dual reductions and in all elementary iterative dual
reductions.

To prove Proposition 2, we introduce a new class of dual vectors.

Definition. A dual vector is strong if for every pure strategy profile c in C
that has probability zero in all correlated equilibria

D(c, α) =
∑

i∈N

[Ui(c−i, αi ∗ ci) − Ui(c)] > 0.

(the first equality simply recalls the definition of D(c, α)). Existence of strong
dual vectors follows from Nau and McCardle’s (1990) proof of existence of cor-
related equilibria. Due to the linearity of the conditions defining dual vectors
and their refinements, any interior convex combination of a full dual vector
and of a strong dual vector is a dual vector which is both strong and full. This
implies that there is at least one strong and full dual vector. It is actually easy
to show that a dual vector is both strong and full if and only if it belongs to
the relative interior of the (convex) set of dual vectors.

Proof of Proposition 2. First consider elementary iterative dual reductions: if
Γ e is an elementary iterative dual reduction of Γ , then it has a correlated
equilibrium with full support, which induces a correlated equilibrium of Γ .
Therefore all pure strategy profiles and pure strategies of Γ that have not been
eliminated in Γ e have positive probability in some correlated equilibrium.4

Now consider full dual reductions. Let α be a dual vector. Let σ ∈ C/α.
By definition of C/α, αi ∗ σi = σi for all i in N . Therefore, it follows from (3)
that

∑

c∈C σ(c)D(c, α) = 0. Since by definition of dual vectors, D(c, α) ≥ 0
for all c in C, this implies that

D(c, α) > 0 ⇒ σ(c) = 0. (6)

Assume now that α is strong and full, and let c be a pure strategy profile
that has probability zero in all correlated equilibria. Since α is strong, by
definition, D(c, α) > 0, hence σ(c) = 0 by (6). Therefore, c is eliminated
in the dual reduction Γ/α. Furthermore, α is a full dual vector and in all
full dual reductions, the same strategies, hence the same strategy profiles are
eliminated. It follows that c is eliminated in all full dual reductions.

Finally, let ci be a pure strategy profile with marginal probability zero in all
correlated equilibria. For all c−i in C−i, the profile c = (c−i, ci) has probability
zero in all correlated equilibria. Therefore, in a full dual reduction, (c−i, ci) is
eliminated for all c−i in C−i, hence ci itself is eliminated. This completes the
proof. ⊓⊔

4 I owe my understanding of this point to Roger Myerson.
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Equilibria. We now turn to equilibria. Let us say that in a dual reduction,
a correlated equilibrium µ is eliminated if there is no correlated strategy of
the reduced game which induces µ in the original game.

Proposition 3 Strict correlated equilibria cannot be eliminated, not even in
an iterative dual reduction.

Proof If µ is a strict correlated equilibrium, then a strategy that has positive
marginal probability in µ cannot be jeopardized by another strategy. It follows
that in any dual reduction of Γ , all pure strategies used in µ remain as pure
strategies. Furthermore, as the player’s options for deviating are more limited
in the reduced game than in Γ , the distribution µ is a strict correlated equilib-
rium of the reduced game. Inductively, in any iterative dual reduction of Γ , all
strategies used in µ are available and µ is a strict correlated equilibrium.5 ⊓⊔

Recall that a Nash equilibrium σ is quasi-strict if for all i in N , any pure best
response to σ−i belongs to the support of σi. Contrary to strict equilibria,
quasi-strict equilibria may be eliminated by dual reduction as follows from
Example 1. Actually, in the following game :

x2 y2

x1

y1

1, 1 1, 1
1, 1 0, 0

the unique full dual reduction consists in eliminating y1 and y2; thus, in this
game, every full dual reduction eliminates all quasi-strict equilibria (this also
happens in the game of Myerson’s figure 6).

Moreover, the following example shows that completely mixed Nash equi-
libria may be eliminated in all nontrivial dual reductions. In the left game,
playing each strategy with equal probability is a completely mixed Nash equi-
librium:

x2 y2 z2

x1

y1

3, 1 2, 2 0, 0
3, 1 0, 0 2, 2

y2 z2

y1

z1

2, 2 0, 0
0, 0 2, 2

However, the unique nontrivial dual reduction is the game on the right, in
which x2 and thus all completely mixed Nash equilibria of the original game
have been eliminated. (To see that the only nontrivial dual reduction consists
in eliminating x2, note that, for player 2, x2 is equivalent to 1

2
y2 + 1

2
z2; this

implies that y2 and z2 jeopardize x2. Furthermore, for any i in {1, 2}, the
strategies yi and zi must be stationary under any dual vector because they
have positive probability in a strict correlated equilibrium. The result follows.)

In this example, the reduced game is obtained by eliminating a pure strat-
egy of player 2 which is redundant in the sense that it gives her the same payoffs
as another mixed strategy. More generally, let Γ ′ = {N, (C′

i)i∈N , (Ui)i∈N} be

5 This proof shows that a pure strategy that has positive marginal probability in some
strict correlated equilibrium can never be eliminated nor merged with other strategies. This
generalizes the fact that elementary games cannot be reduced.
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a game obtained from Γ by omitting some pure strategies (thus C′
i ⊂ Ci for

all i). Assume that the omitted strategies are redundant in the sense that for
every omitted pure strategy ci, there is a mixed strategy in ∆(C′

i) that gives
the same payoffs to player i as ci:

∀i ∈ N, ∀ci ∈ Ci\C
′
i, ∃σi ∈ ∆(C′

i), ∀c−i ∈ C−i, Ui(c−i, ci) = Ui(c−i, σi) (7)

Then Γ ′ is a dual reduction of Γ . Indeed, for all i in N , let αi ∗ ci = ci if
ci ∈ Ci and αi ∗ ci = σi (defined in (7)) otherwise; this defines a dual vector α
such that Γ/α = Γ ′. In particular, dual reduction allows to reduce any game
to its reduced normal form (Kohlberg and Mertens 1986).

4 Some applications of dual reduction

This section aims at showing that dual reduction is a useful tool to study
properties of Nash equilibria and correlated equilibria. We focus on three ap-
plications. First, we prove by linear programming that a unique correlated
equilibrium is a Nash equilibrium. Second, we show that tight games (Nitzan
2005) have a completely mixed Nash equilibrium. Third, we refine a result of
Nau et al. (2004) on the geometry of Nash equilibria and correlated equilibria.

A unique correlated equilibrium is a Nash equilibrium: an ele-

mentary proof. Consider the fact that, if a game has a unique correlated
equilibrium, then this correlated equilibrium is a Nash equilibrium. Of course,
this follows from the existence of a Nash equilibrium and the fact that any Nash
equilibrium is a correlated equilibrium. However, as for existence of correlated
equilibria (Hart and Schmeidler 1989; Nau and McCardle 1990), it would be
nice to find a more direct proof, relying solely on linear programming. Dual
reduction provides such a proof.

Indeed, let Γ be a game with a unique correlated equilibrium. By iterative
dual reduction, Γ may be reduced to an elementary game Γ e. Since Γ e is
elementary (i.e. has a strict correlated equilibrium with full support), it follows
that either Γ e has an infinity of correlated equilibria, or Γ e has a unique
strategy profile. Since Γ has a unique correlated equilibrium and since different
correlated equilibria of Γ e induce different correlated equilibria of Γ , the first
case is ruled out. Therefore, Γ e has a unique strategy profile, hence trivially
a Nash equilibrium. This implies that Γ has a Nash equilibrium. Hence that
the unique correlated equilibrium of Γ is a Nash equilibrium.

This proof relies on: a) the definition of dual reduction, which requires the
Minimax theorem and existence of stationary distributions for finite Markov
chains; and b) the fact that any game may be reduced to an elementary game,
which Myerson proved through the strong complementary property of linear
programs. Since the existence of stationary distributions for finite Markov
chains can be deduced from the Minimax theorem, the above proof relies
solely on linear duality. In particular no fixed point theorem is used.6

6 The fact that the existence of stationary distributions for finite Markov chains can be
deduced from the Minimax theorem is mentioned by Mertens et al. (1994, ex. 9, p.41). Here
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Tight games. Consider the class of tight games (Nitzan 2005):

Definition. A game is tight if in every correlated equilibrium µ, all incentive
constraints are tight:

∑

c
−i∈C

−i

µ(c)[Ui(c−i, di) − Ui(c)] = 0 ∀i ∈ N, ∀ci ∈ Ci, ∀di ∈ Ci (8)

Nitzan (2005) shows that, for any positive integer n, there is an open set
of tight games within the set of n × n two-player games.

Proposition 4 Any tight game has a completely mixed Nash equilibrium

Proof The definition of tight games may be rephrased as follows: a game is
tight if di jeopardizes ci, for every player i and every pair of pure strategies
(ci, di) in Ci ×Ci. Therefore, if α is a full dual vector of a tight game Γ , then
for every pair of pure strategies (ci, di) in Ci×Ci, we have αi(di|ci) > 0. Thus,
for the Markov chain induced by αi, there is a unique minimal absorbing set,
namely the whole of Ci. Therefore, in the full dual reduction Γ/α, all strategies
of player i are merged into a single representative, and this holds for every i in
N . It follows that Γ/α has a unique strategy profile σ, which is a completely
mixed strategy profile of Γ ; furthermore, since σ is trivially a Nash equilibrium
of Γ/α, it is a Nash equilibrium of Γ . ⊓⊔

Pretight games Let Cc
i denote the set of pure strategies of player i that

have positive marginal probability in at least one correlated equilibrium. Let us
say that a game is pretight if, in every correlated equilibrium µ, every incentive
constraint (1) with ci and di in Cc

i is tight. That is,

∑

c
−i∈C

−i

µ(c)[Ui(c−i, di) − Ui(c)] = 0 ∀i ∈ N, ∀ci ∈ Cc
i , ∀di ∈ Cc

i (9)

This condition, which is weaker than (8), has been introduced by Nau et al.
(2004). Recall that the inequalities defining the set of correlated equilibria are
linear in µ, so that the set of correlated equilibria is a convex polytope. Nau et
al (2004, Proposition 2) showed that if there exists a Nash equilibrium in the
relative interior of the correlated equilibrium polytope, then (a) the game is
pretight, and (b) there exists a Nash equilibrium with support ×i∈NCc

i . Dual
reduction allows us to show that (a) implies (b).

Proposition 5 Any pretight game has a quasi-strict Nash equilibrium with
support ×i∈NCc

i .

is a proof: let M = (mij) denote a stochastic matrix (that is, the mij are nonnegative and
each column sums to unity). Applying the lemma of Hart and Schmeidler (1989, p.19) with
ajk = mkj and u a basis vector, we get that there exists a probability vector x such that
Mx = x. Since Hart and Schmeidler prove this lemma via the Minimax theorem, this shows
that existence of stationary distributions for finite Markov chains can indeed be deduced
from the Minimax theorem.
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Proof Let Γ be pretight. Let α be a strong and full dual vector. Let i ∈ N . By
Proposition 2, in any full dual reduction, all strategies in Ci\C

c
i are eliminated.

Moreover, by the definition of pretight games, all strategies of Cc
i jeopardize

each other. Therefore, in a full dual reduction, they are either all eliminated or
all merged together. The first case is ruled out because all other pure strategies
of player i are eliminated. It follows that Ci/αi consists of a unique mixed
strategy σi, with support Cc

i . Hence, in Γ/α there is a unique pure strategy
profile σ, which has support ×i∈NCc

i , and which is a Nash equilibrium of Γ/α,
hence of Γ .

We now show that σ is quasi-strict. Let ci ∈ Ci\C
c
i and let τ = (σ−i, ci).

Since ci has marginal probability zero in all correlated equilibria, it follows
that every strategy profile c with τ(c) > 0 has probability zero in all correlated
equilibria. By definition of strong dual vectors, this implies that D(c, α) > 0.
Therefore

∑

c∈C

τ(c)D(c, α) > 0.

However, because for every j 6= i the strategy τj is equal to σj hence αj-
stationary, it follows that equation (4) is satisfied (with τ replacing σ). There-
fore

0 <
∑

c∈C

τ(c)D(c, α) = Ui(τ−i, αi ∗ τi) − Ui(τ) = Ui(σ−i, αi ∗ ci) − Ui(σ−i, ci)

which implies that ci is not a best reply to σ−i, so σ is quasi-strict. ⊓⊔

Proposition 5 does not only show that Nau et al.’s condition (a) implies
their condition (b), but also that any pretight game has a quasi-strict Nash
equilibrium: a nontrivial fact, since for n ≥ 3, not all n-player games have a
quasi-strict Nash equilibrium (van Damme 1991). Moreover, from Proposition
5 and a few basic arguments given in Viossat (2006), a converse of Nau et al.’s
result can be obtained. Namely, if a game is pretight, then there is a Nash
equilibrium in the relative interior of the correlated equilibrium polytope.

Remark: it follows from the proof of Proposition 5 that in any full dual
reduction of a pretight game, for every player, all pure strategies that have
positive marginal probability in at least one correlated equilibrium are merged
together, and all others are eliminated. Since two-player zero-sum games and
games with a unique correlated equilibrium are pretight (Viossat 2006), this
result also holds in these classes of games. This generalizes examples given by
Myerson (Figures 3 and 5).

Other applications. Dual reduction is used in Viossat (2008b) to show
that a unique correlated equilibrium is a quasi-strict Nash equilibrium. A gen-
eralization, still based on dual reduction, is given in Viossat (2008a). Namely,
every finite game has a Nash equilibrium σ such that, for all i in N , all pure
best-responses to σ−i have positive probability in some correlated equilibrium.
Dual reduction can also be used to show that, generically, there are certain
dimensions that the correlated equilibrium polytope cannot have (Viossat,
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2008a) or to check that a game has a unique correlated equilibrium.7 Finally,
dual reduction is used in Viossat (2005, Chapter 9B) to show that, in all
3 × 3 symmetric games, from any interior initial condition and under any
two-population convex monotonic dynamics (Hofbauer and Weibull 1996), all
strategies that have marginal probability zero in all correlated equilibria are
eliminated.

Appendix: Uniqueness of the reduction process

In this appendix, we show that generic two-player normal form games have a unique
full dual reduction. We first show that this is not true of all games. Let Γ denote the rather
trivial game:

x2 y2

x1 1, 1 0, 1

Let 0 < ǫ < 1. Define the full dual vector αǫ by αǫ
2
∗ x2 = αǫ

2
∗ y2 = ǫx2 + (1 − ǫ)y2. In the

full dual reduction Γ/αǫ, there is a unique pure strategy profile whose payoffs (ǫ, 1) depend
on ǫ. Thus, even if only full dual reductions are used, there might still be multiple ways
to reduce a game. Other examples (omitted) suggest however that multiplicity of full dual
reductions typically arises when a player is indifferent between some of his strategies, or
becomes so after elimination of strategies of the other players. Such indifference is a non-
generic phenomenon in the normal form payoff space, and we show below that almost all
two-player normal form games have a unique full dual reduction. We first show that there
are severe restrictions on the ways strategies may be merged.

Notation: for all i in N , let Bi ⊂ Ci and let B = ×i∈NBi. We denote by ΓB =
(N, (Bi)i∈N , (Ui)i∈N ) the game obtained from Γ by reducing the pure strategy set of player
i to Bi, for all i in N .

Proposition 6 Let α be a dual vector. For each i in N , let Bi ⊂ Ci denote a minimal αi-

absorbing set and B = ×i∈NBi. Let σBi
denote the unique αi-stationary strategy of player

i with support Bi and σB = (σBi
)i∈N . Then σB is a completely mixed Nash equilibrium of

ΓB.

Proof The proof draws on the remark made by Myerson at the end of the proof of his lemma
2. Since Bi is αi-absorbing, we may define α′

i : Bi → ∆(Bi) by α′

i ∗ ci = αi ∗ ci for all ci

in Bi. Since α is a dual vector of Γ , it follows that α′ is a dual vector of ΓB. Moreover,
B/α′ = {σB}, hence σB is a Nash equilibrium of ΓB/α′. This implies that σB is a Nash
equilibrium of ΓB. Finally, σB is completely mixed because σBi

has support Bi. ⊓⊔

Corollary 1 Assume that for every product B = ×i∈NBi of subsets Bi of Ci, the game

ΓB has at most one completely mixed Nash equilibrium. Then Γ has a unique full dual

reduction.

Proof Let α and α′ be two full dual vectors. Let σ ∈ C/α. Let Bi denote the support of
σi (seen as an element of ∆(Ci)) and let B = ×i∈N Bi. Note that, as the support of an αi-
stationary strategy, Bi is a minimal αi-absorbing set. Since full dual vectors have the same
minimal absorbing sets, it follows that Bi is also a minimal α′

i-absorbing set. Therefore,
there exists τ in C/α′ such that τi has support Bi, for all i in N . By Proposition 6, both
σ and τ are completely mixed Nash equilibria of ΓB. By assumption, this implies σ = τ ,
hence σ ∈ C/α′. Therefore C/α ⊂ C/α′ with equality by symmetry. ⊓⊔

7 As shown in Viossat (2006): (i) a game has a unique correlated equilibrium if and only
it is pretight and has a unique Nash equilibrium; (ii) a game is pretight if and only if it has
some specific dual vectors. So if it is known that a game has a unique Nash equilibrium,
it can be shown that it has a unique correlated equilibrium by exhibiting appropriate dual
vectors, without computing the correlated equilibria.
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Proposition 7 Let Γ be a two-player game. Assume that for any game ΓB obtained from

Γ by omitting some pure strategies, and any Nash equilibrium σ of ΓB, the supports of σ1

and σ2 have the same number of elements. Then Γ has a unique full dual reduction.8

Proof It suffices to show that the assumption of corollary 1 is met. The proof is by contra-
diction. Assume that there exists B = B1 × B2 ⊂ C1 × C2 such that ΓB has two distinct
completely mixed Nash equilibria σ and τ . Without loss of generality, assume σ1 6= τ1. There
exists λ in R such that σλ

1
:= λσ1 + (1 − λ)τ1 is in ∆(C1) but its support is a strict subset

of the support of σ1. Since ΓB is a two-player game and σ and τ are completely mixed (in
ΓB), it follows that (σλ

1
, σ2) is a Nash equilibrium of ΓB. But so is σ, and for at least one of

these equilibria, the supports of the strategies of the players do not have the same number
of elements. Therefore the assumption of Proposition 7 is not satisfied. ⊓⊔

Additional arguments can be used to show that almost all two-player normal form games
have a unique sequence of iterative full dual reductions. See (Viossat 2008a) for details.
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