
The Geometry of Nash Equilibria and Correlated

Equilibria and a Generalization of Zero-Sum Games ∗

Yannick Viossat†

Stockholm School of Economics and
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Abstract

A pure strategy is coherent if it is played with positive probability
in at least one correlated equilibrium. A game is pre-tight if in every
correlated equilibrium, all incentives constraints for non deviating to
a coherent strategy are tight. We show that there exists a Nash equi-
librium in the relative interior of the correlated equilibrium polytope
if and only if the game is pre-tight. Furthermore, the class of pre-
tight games is shown to include and generalize the class of two-player
zero-sum games.
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1 Introduction

The set of correlated equilibria of a finite game is a polytope containing

the Nash equilibria. A better understanding of the location of the Nash
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Lattre de Tassigny, 75775 Paris cedex 16, France

1



equilibria within this polytope might allow not only to shed light on the

connections between Nash equilibria and correlated equilibria, but also to

design more efficient algorithms to compute Nash equilibria. The question

was first studied by Evangelista and Raghavan (1996) [6] and by Gomez

Canovas et al. (1999) [9]. They showed that in bimatrix games, extreme Nash

equilibria are extreme points of the correlated equilibrium polytope. More

recently, Nau et al. (2004) [17, proposition 2] proved the following result,

which applies to finite games with any number of players. Call coherent

the pure strategies that are played with positive probability in at least one

correlated equilibrium. If there is a Nash equilibrium in the relative interior

of the correlated equilibrium polytope, then:

(i) The Nash equilibrium assigns positive probability to every coherent

strategy of every player;

(ii) In every correlated equilibrium, the incentive constraints for non devi-

ating from one coherent strategy to another coherent strategy are all satisfied

with equality.

In particular, if condition (ii) is not satisfied, then all Nash equilibria

belong to the relative boundary of the correlated equilibrium polytope.

This leaves several questions unanswered: is it possible to find necessary

and sufficient conditions for a Nash equilibrium to lie in the relative interior

of the correlated equilibrium polytope? If so, is it possible to check that

these conditions are satisfied without computing the correlated equilibria of

the game? Finally, are these conditions satisfied by many games and in

conceptually important classes of games?

This article answers these questions positively: first, condition (ii) is ac-

tually necessary and sufficient. Thus, there exists a Nash equilibrium in the

relative interior of the correlated equilibrium polytope if and only if condi-

tion (ii) is satisfied. Second, it is possible to check that a game satisfies (ii)

without computing its correlated equilibria. Third, the class of games satis-

fying (ii), which we call pre-tight games, has positive measure. Furthermore,

in the two-player case, it includes and generalizes the class of two-player

zero-sum games. In particular, Nash equilibria are exchangeable, Nash equi-

librium payoffs and correlated equilibrium payoffs coincide, and profiles of

correlated equilibria’s marginals are Nash equilibria. Up to our knowledge,
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this is the largest class of games in which it is known that Nash equilibria

are exchangeable.

Several proofs are based on dual reduction (Myerson, 1997 [16]). An

additional interest of this paper is thus to illustrate the use of this technique

to investigate the properties of correlated equilibria and Nash equilibria.

The material is organized as follows: the next section is devoted to basic

notations and definitions. In section 3, we recall the definition of tight games

(Nitzan, 2005 [19]) and introduce the class of pre-tight games. Section 4

shows that whether a game is tight (resp. pre-tight) or not may be checked

without computing its correlated equilibria. The link between tight and pre-

tight games is made precise in section 5. Topological properties of the sets of

tight and pre-tight games are studied in section 6. In section 7, we show that

the relative interior of the correlated equilibrium polytope contains a Nash

equilibrium iff the game is pre-tight. Finally, in section 8, we show that in

the two-player case, pre-tight games include and generalize zero-sum games.

2 Notations and definitions

Let

G = {I, (Si)i∈I , (Ui)i∈I}

denote a finite game in strategic form; I is the nonempty finite set of players,

Si the nonempty finite set of pure strategies of player i and Ui : ×i∈ISi → R
the utility function of player i. Let S := ×i∈ISi and S−i := ×j∈I\{i}Sj. For

any finite set Σ, ∆(Σ) denotes the set of probability distributions over Σ. As

usual, letting s ∈ S and ti ∈ Si, we denote by (ti, s−i) the strategy profile

that differs from s only in that its i−component is ti. Similarly, for any

mixed strategy profile σ ∈ ×i∈I∆(Si), we may write σ = (σi, σ−i).

A correlated strategy of the players in I is a probability distribution over

the set S of pure strategy profiles. Thus µ = (µ(s))s∈S is a correlated strategy

if:

(nonnegativity constraints) µ(s) ≥ 0 ∀s ∈ S (2.1)

(normalization constraint)
∑
s∈S

µ(s) = 1 (2.2)
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For every µ ∈ ∆(S), we let Ui(µ) :=
∑

s∈S µ(s)Ui(s). Furthermore, for every

pure strategy si in Si, µ(si × S−i) :=
∑

s−i∈S−i
µ(s) denotes the marginal

probability of si in µ. We say that the pure strategy si ∈ Si is played in µ

if this marginal probability is positive. The correlated strategy of the other

players given si is then denoted by µ(.|si) ∈ ∆(S−i):

∀s−i ∈ S−i, µ(s−i|si) =
µ(s)

µ(si × S−i)

For every (i, si, ti) in I×Si×Si, let hsi,ti denote the linear form on RS which

maps µ to

hsi,ti(µ) :=
∑

s−i∈S−i

µ(s)[Ui(s)− Ui(ti, s−i)]

Note for later purposes that:

Remark 2.1 If µ(si × S−i) = 0, then hsi,ti(µ) = 0 for all ti in Si.

A correlated strategy µ is a correlated equilibrium (Aumann [2]) if

(incentive constraints) hsi,ti(µ) ≥ 0 ∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si (2.3)

A possible interpretation is as follows: assume that before play a mediator

chooses a strategy profile s with probability µ(s) and privately recommends

si to player i. The incentive constraints (2.3) stipulate that if all the players

other than i follow the recommendations of the mediator, then player i has

no incentives to deviate from si to some other strategy ti.

Since conditions (2.1), (2.2) and (2.3) are all linear in µ, the set of corre-

lated equilibria is a polytope, which we denote by C. Furthermore, assimi-

lating ×i∈ISi to a subset of ∆(S), it is easily checked that the Nash equilibria

are exactly the correlated equilibria µ with a product distribution; that is,

such that

∀s ∈ S, µ(s) =
∏
i∈I

µ(si × S−i)

The set of Nash equilibria is thus the intersection of the correlated equilibrium

polytope and of the variety of product distributions.

We now introduce the classes of games that will be studied throughout.
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3 Tight and pre-tight games

3.1 Tight games

Definition 3.1 A game is tight (Nitzan [19]) if in any correlated equilibrium

all the incentive constraints are tight. Formally,

∀µ ∈ C,∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si, hsi,ti(µ) = 0 (3.1)

This means that whenever a pure strategy si is played in a correlated equi-

librium µ, every pure strategy of player i is a best-response to µ(·|si).

Example 3.2

G1 =

(
1,−1 −1, 1

−1, 1 1,−1

)
G2 =

(
1,−1 −1, 1 0,−1

−1, 1 1,−1 0,−1

)
The game G1 (i.e. Matching Pennies) is tight. Indeed, it has a unique

correlated equilibrium: the Nash equilibrium σ in which both players play

(1/2, 1/2). Since σ is a completely mixed Nash equilibrium, it follows that in

σ, all incentive constraints are satisfied with equality, hence (3.1) is satisfied.

By contrast, the game G2 is not tight. Indeed, the mixed strategy profile

in which the row player plays (1
2
, 1

2
) and the column player (1

2
, 1

2
, 0) is a

Nash equilibrium, hence a correlated equilibrium. However, the incentive

constraint stipulating that player 2 has no incentive to deviate from his first

strategy to his third is satisfied with strict inequality. Another way to see

that G2 is not tight is to note that the third strategy of player 2 is strictly

dominated. Indeed:

Proposition 3.3 If there exists a pure or mixed strategy which is strictly

dominated then the game is not tight.

Proof. Let σ be a Nash equilibrium. If the game is tight, then every pure

strategy, hence also every mixed strategy of player i is a best-response to

σ−i. It follows that no mixed strategy is strictly dominated.

More examples will be given in section 4.5
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3.2 Pre-tight games

Definition 3.4 (Nau et al. [17]) The pure strategy si (resp. the pure strategy

profile s) is coherent if it is played in correlated equilibrium; that is, if there

exists a correlated equilibrium µ such that µ(si × S−i) > 0 (resp. µ(s) > 0).

Denote by Sc
i the set of coherent pure strategies of player i.

Definition 3.5 A game is pre-tight if in any correlated equilibrium all the

incentive constraints for non deviating to a coherent strategy are tight. For-

mally,

∀µ ∈ C,∀i ∈ I, ∀si ∈ Si,∀ti ∈ Sc
i , hsi,ti(µ) = 0 (3.2)

Note that, by remark 2.1, (3.2) is equivalent to

∀µ ∈ C,∀i ∈ I,∀si ∈ Sc
i ,∀ti ∈ Sc

i , hsi,ti(µ) = 0 (3.3)

A game is thus pre-tight if, whenever a pure strategy si is played in a corre-

lated equilibrium µ, every coherent pure strategy of player i is a best-response

to µ(·|si). This does not imply that every coherent pure strategy is played in

all correlated equilibria. For instance, the game G3 (below, left) is pre-tight,

as follows from proposition 3.8. Furthermore, since the correlated strategy µ

(below, center) is a completely mixed Nash equilibrium, it follows that every

pure strategy is coherent. Nevertheless, the third column is not played in the

Nash equilibrium ν (below, right).

G3 =

(
1,−1 −1, 1 0, 0

−1, 1 1,−1 0, 0

)
µ =

1/6 1/6 1/6

1/6 1/6 1/6
ν =

1/4 1/4 0

1/4 1/4 0

Proposition 3.6 Any tight game is pre-tight.

Proof. Condition (3.2) is weaker than (3.1).

Proposition 3.7 Any game with a unique correlated equilibrium is pre-tight.
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Proof. If a game has a unique correlated equilibrium σ, then σ is a Nash

equilibrium. Furthermore, the set of coherent strategies of player i is simply

the support of σi and for every pure strategy si in the support of σi, σ(·|si) =

σ−i. Therefore, the game is pre-tight iff for every i in I, every pure strategy

in the support of σi is a best-response to σ−i. Since σ is a Nash equilibrium,

this condition is satisfied.

Proposition 3.8 Any two-player zero-sum game is pre-tight.

This will be proved in section 8, proposition 8.1.

3.3 Best-Response Equivalence

Consider two games G and G′ with the same sets of players and strategies,

but with different utility functions:

Definition 3.9 The games G and G′ are best-response equivalent if for

every player i in I, every pure strategy si in Si, and every correlated strategy

ν in ∆(S−i), the pure strategy si is a best-response to ν in G iff si is a

best-response to µ−i in G′.

Proposition 3.10 If G is tight (resp. pre-tight) then any game that is best-

response equivalent to G is tight (resp. pre-tight).

Proof. In the definitions of tight and pre-tight games, the utility functions

only intervene via best-responses to correlated strategies of the other players.

The result follows.

In particular, whether a game is tight or not (resp. pre-tight or not) is

unaffected by positive affine transformations of the payoff functions. We now

provide a criterion that allows to check that a game is tight (resp. pre-tight)

without having to compute its correlated equilibria.

4 Characterization of tight and pre-tight games

The results are stated in section 4.1 and proved in sections 4.2 and 4.3. It

is also shown that every pre-tight game has a quasi-strict Nash equilibrium
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(section 4.4), paving the way for section 7. Finally, examples of applications

of the characterization of tight and pre-tight games are given in section 4.5.

4.1 Statement of the results

We first need a definition: for each player i in I, let αi be a transition

probability over the set of pure strategies of player i:

αi : Si → ∆(Si)

si → αi ∗ si

Let α = (αi)i∈I and for every strategy profile s in S, let

f(s, α) :=
∑
i∈I

[Ui(αi ∗ si, s−i)− Ui(s)] (4.1)

Definition The vector of transition probabilities α is a dual vector (Myerson

[16]) if for every s in S, f(s, α) ≥ 0

Note that there always exists a dual vector: just take αi ∗ si = si for all

i and si.

Proposition 4.1 A game is tight iff there exists a dual vector α such that,

for every player i in I and every pure strategy si in Si, the mixed strategy

αi ∗ si is completely mixed.

Proposition 4.2 A game is pre-tight iff there exists a dual vector α, and,

for every player i in I, a subset S ′
i ⊆ Si of pure strategies such that:

(A) For every player i in I and every pure strategy si in S ′
i, the mixed

strategy αi ∗ si has support S ′
i.

(B) For every pure strategy profile s in S that does not belong to S ′ :=

×i∈IS
′
i, we have f(s, α) > 0

In that case, S ′
i is the set of coherent pure strategies of player i. That is,

S ′
i = Sc

i .
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4.2 Proof of proposition 4.1

The proof relies on the strong complementary property of dual linear pro-

grams. We first need a definition and a few lemmas.

Definition (Myerson [16]) Let si and ti be two pure strategies of player i.

The strategy ti jeopardizes si if

∀µ ∈ C, hsi,ti(µ) = 0

That is, ti jeopardizes si if for every correlated equilibrium µ in which

si is played, the pure strategy ti is a best response to µ(.|si). Note that

the definitions of tight and pre-tight games may be rephrased in terms of

jeopardization:

Lemma 4.3 A game is tight iff for every i in I, any pure strategy of player

i jeopardizes all his pure strategies.

Indeed the above condition is exactly:

∀i ∈ I, ∀ti ∈ Si,∀si ∈ Si,∀µ ∈ C, hsi,ti(µ) = 0

which is equivalent to (3.1). Similarly, it follows from (3.3) that:

Lemma 4.4 A game is pre-tight iff for every i in I, every coherent pure

strategy of player i jeopardizes all his coherent pure strategies.

Moreover, dual vectors arise as the solutions of a dual linear program, such

that the solutions of the primal are the correlated equilibria of the game

(Myerson [16]). Exploiting this fact and the strong complementary property

of dual linear programs allows to show that:

Lemma 4.5 (Myerson [16]) There exists a dual vector α such that (αi ∗
si)(ti) > 0 iff ti jeopardizes si.

and

Lemma 4.6 (Nau & McCardle [18]; Myerson [16]) If a pure strategy profile

s is coherent, then f(s, α) = 0 for every dual vector α. If a pure strategy

profile s is incoherent, then there exists a dual vector α such that f(s, α) > 0.
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Finally, the set of dual vectors of a game is bounded and defined by a set

of linear inequalities, hence it is a polytope. A dual vector is interior if it

belongs to the relative interior of this polytope. Since the relative interior of

a nonempty convex set is always non-empty, there always exists an interior

dual vector. Furthermore:

Lemma 4.7 If α is an interior dual vector then, for every player i and all

pure strategies si and ti of player i, (αi ∗ si)(ti) > 0 iff ti jeopardizes si

Proof. If α is an interior dual vector, then it satisfies with strict inequal-

ity all linear inequality constraints that are satisfied by all dual vectors and

satisfied with strict inequality by at least one dual vector. This being noted,

the result follows from the definition of a dual vector and lemma 4.5.

We are now in a position to prove proposition 4.1:

Proof of proposition 4.1. If a game is tight, then it follows from lemmas

4.3 and 4.7 that any interior dual vector satisfies the desired property. Con-

versely, if there exists a dual vector α such that, for all i and all si, αi ∗ si is

completely mixed, then it follows from lemmas 4.5 and 4.3 that the game is

tight.

4.3 Proof of proposition 4.2

We first need to introduce elements of dual reduction (Myerson [16]). Through-

out, α denotes a dual vector. For every mixed strategy σi in ∆(Si), define

the mixed strategy αi ∗ σi by:

∀ti ∈ Si, (αi ∗ σi)(ti) :=
∑
si∈Si

σi(si) [(αi ∗ si)(ti)]

The transition probability αi induces a Markov chain on Si. This Markov

chain partitions Si into a set of transient states and disjoint recurrent classes:

Si = Ti

∐( ∐
1≤k≤K

Ri,k

)
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where
∐

denotes disjoint union, Ti is the (possibly empty) set of transient

states, K a positive integer, and Ri,k a recurrent class. A mixed strategy σi

in ∆(Si) is αi-invariant if αi ∗ σi = σi. For each recurrent class Ri,k ⊆ Si,

there exists a unique αi-invariant mixed strategy with support in Ri,k, and its

support is exactly Ri,k. Let Si/αi denote the set αi-invariant mixed strategies

with support in some recurrent class. It may be shown that a mixed strategy

is αi-invariant iff it is a convex combination of the strategies in Si/αi.

Definition (Myerson [16]) The α-reduced game G/α is the game obtained

from G by restricting player i to its αi-invariant strategies. That is,

G/α = {I, (Si/αi)i∈I , (Ui)i∈I}

Note that, since the pure strategies of G/α are mixed strategies of G,

the mixed strategies of G/α may be seen as mixed strategies of G. As a

particular case of (Myerson [16, theorem 1]), we have:

Lemma 4.8 Any Nash equilibrium of G/α is a Nash equilibrium of G.

Definition A pure strategy si ∈ Si is recurrent under αi if it belongs to

a recurrent class of the Markov chain on Si induced by αi; that is, if there

exists σi in Si\αi such that σi(si) > 0. Otherwise si is transient under αi.

Lemma 4.9 For every i in I, there exists a coherent pure strategy of player

i which is recurrent under αi.

Proof. Let σ be a Nash equilibrium of G/α, hence also of G. Any pure

strategy in the support of σi is both coherent (because σ is a Nash equilib-

rium, hence a correlated equilibrium of G) and recurrent under αi (because

σi ∈ Si/αi).

Recall (4.1) and, for every mixed strategy profile σ, let

f(σ, α) :=
∑
s∈S

σ(s)f(s, α) (4.2)

It follows from simple manipulations of the right-hand-side of (4.2) that (My-

erson [16])

f(σ, α) =
∑
i∈I

[Ui(αi ∗ σi, σ−i)− Ui(σ)] (4.3)
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Define a mixed strategy profile σ to be α-invariant if αi ∗ σi = σi for every i

in I. It is immediate from (4.3) that:

Lemma 4.10 ([18]; [16]) If σ is α-invariant, then f(σ, α) = 0.

This allows to show that:

Lemma 4.11 (i) Let s ∈ S. If f(s, α) > 0 then for every σ in S/α we have

σ(s) = 0.

(ii) Let si ∈ Si. If for every s−i in S−i we have f(s, α) > 0, then for

every σi in Si/αi we have σi(si) = 0; that is, si is transient under αi.

(iii) For every i in I, let S ′
i ⊆ Si and let S ′ := ×i∈ISi. Assume that for

all s in S\S ′, f(s, α) > 0. Then every si in Si\S ′
i is transient under αi.

Proof. Proof of (i): Let σ ∈ S/α. By definition of S/α, σ is α-invariant,

hence by lemma 4.10, f(σ, α) =
∑

s∈S σ(s)f(s, α) = 0. Since f(s, α) ≥ 0 for

all s in S by definition of a dual vector, this implies that σ(s) = 0 for every

s in S such that f(s, α) > 0.

Proof of (ii): Let si ∈ Si. Assume that for every s−i ∈ S−i, f(s, α) > 0.

By (i), this implies that for every s−i ∈ S−i and every σ in S/α, σ(s) = 0.

This implies that σi(si) = 0 for every σi in Si/αi.

Proof of (iii): Let si ∈ Si\S ′
i. The assumption implies that for every

s−i ∈ S−i we have f(s, α) > 0. This being seen, (iii) follows from (ii).

Finally:

Lemma 4.12 If α is an interior dual vector then, for every incoherent pure

strategy profile s in S, f(s, α) > 0.

Proof. As the proof of lemma 4.7, up to replacement of lemma 4.5 by lemma

4.6.

We are now in a position to prove proposition 4.2:

Proof of proposition 4.2. Consider a pre-tight game. Let S ′
i = Sc

i and let

α be an interior dual vector. It follows from lemma 4.12 that condition (B) is

satisfied. We now prove that condition (A) is satisfied. By lemma 4.9, there

exists a coherent pure strategy si which is recurrent under αi. It follows from
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lemmas 4.4 and 4.7 that the support of αi ∗ Si contains Sc
i . Furthermore,

any pure strategy in the support of αi ∗ Si is recurrent. But it follows from

condition (B), lemma 4.11 item (iii), and from S ′
i = Sc

i , that every pure

strategy in Si\Sc
i is transient. Therefore the support of αi ∗ Si is exactly

Sc
i = S ′

i. Since this implies that any coherent pure strategy is recurrent, the

same reasoning applies to any si in S ′
i. This shows that condition (A) is

satisfied.

We have shown that if a game is pre-tight then, for any interior dual

vector and for S ′
i = Sc

i , conditions (A) and (B) are satisfied. Conversely,

assume that there exists a dual vector α and, for every player i in I, a subset

S ′
i of Si such that conditions (A) and (B) are satisfied. Assume first that

S ′
i = Sc

i for every i in I. In view of lemmas 4.4 and 4.5, condition (A) then

implies that the game is pre-tight. Thus to prove that the game is pre-tight,

it suffices to show that S ′
i = Sc

i ; this will also prove that if conditions (A)

and (B) are satisfied then S ′
i = Sc

i , as asserted in the last sentence of the

proposition.

Let si ∈ Si\S ′
i. For every s−i in S−i, s = (si, s−i) /∈ ×i∈IS

′
i. Therefore,

f(s, α) > 0 by condition (B). By lemma 4.6 (contraposition of the first sen-

tence), this implies that the strategy profile s is incoherent. Since this holds

for any strategy profile of the players other than i, it follows that the pure

strategy si is incoherent. Therefore,

Sc
i ⊆ S ′

i (4.4)

It remains to prove the reverse inclusion. Condition (A) implies that S ′
i is a

recurrent class. Furthermore, it follows from condition (B) and lemma 4.11,

item (iii), that the pure strategies of player i that do not belong to S ′
i are

transient under αi. Therefore, S ′
i is the unique recurrent class. This implies

that there exists a unique αi-invariant strategy σi and that its support is S ′
i.

In the reduced game G/α, the corresponding strategy profile σ = (σi)i∈I is

the unique strategy profile, hence, trivially, a Nash equilibrium. By lemma

4.8, this implies that σ is a Nash equilibrium of G. Therefore, any pure

strategy in the support of σi is coherent, i.e. S ′
i ⊆ Sc

i . Together with (4.4),

this shows that S ′
i = Sc

i . This completes the proof.

Before turning to applications of propositions 4.1 and 4.2, we prove a
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result that will be used in later sections. It is more conveniently proved here

as its proof is related to the proof of proposition 4.2.

4.4 Pre-tight games have quasi-strict equilibria

Definition A Nash equilibrium σ is quasi-strict if for every player i in I,

any pure best-response to σ−i belongs to the support of σi.

Games with 3 or more players need not have a quasi-strict Nash equilib-

rium (see van Damme [23, fig. 3.4.1 p. 56] ). However:

Proposition 4.13 (i) Any pre-tight game has a quasi-strict Nash equilib-

rium with support Sc := ×i∈IS
c
i .

(ii) Any tight game has a completely mixed Nash equilibrium

Proof. Proof of (i): Let G be a pre-tight game and let α be an interior dual

vector. As shown in the proof of proposition 4.2 (first paragraph), conditions

(A) and (B) of proposition 4.2 are satisfied. Therefore, if follows from the

proof of proposition 4.2 (last paragraph) that in the reduced game G/α there

is a unique strategy profile σ, that σ is a Nash equilibrium of G with support

Sc and that if s /∈ Sc, then f(s, α) > 0. We now show that σ is quasi-strict:

let si be a pure strategy of player i that does not belong to the support of

σi. Since σi has support Sc
i , si is incoherent. This implies that for every s−i

in S−i, s = (si, s−i) /∈ Sc, hence f(s, α) > 0. Therefore, letting τi = si and

τj = σj for j 6= i,

f(τ, α) =
∑

s−i∈S−i

τ(s)f(s, α) > 0 (4.5)

(The first equality merely recalls the definition of f(τ, α)). It follows from

(4.3) and (4.5) that ∑
k∈I

[Uk(αk ∗ τk, τ−k)− Uk(τ)] > 0 (4.6)

Since for all j 6= i, τj = σj is αj-invariant, and since τi = si, (4.6) boils down

to

Ui(αi ∗ si, σ−i)− Ui(si, σ−i) > 0
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Therefore si is not a best response to σ−i. This shows that σ is quasi-strict.

Proof of (ii): Consider a tight game. By proposition 4.1, the game satis-

fies the conditions of proposition 4.2 with S ′
i = Si, hence Si = Sc

i . Therefore

it follows from (i) and from proposition 3.6 that the game has a completely

mixed Nash equilibrium.

4.5 Examples

This section illustrates the use of propositions 4.1 and 4.2 and provides more

examples of tight and pre-tight games.

Example 4.14 (A pre-tight game) Consider the following game, due to

Bernheim [4] and studied by Nau and McCardle [18]:

L M ′ R

T

M

B

 0, 7 2, 5 7, 0

5, 2 3, 3 5, 2

7, 0 2, 5 0, 7


Define α by α1∗T = α1∗M = α1∗B = M and α2∗L = α2∗M ′ = α2∗R = M ′.

Let S ′
1 = {M} and S ′

2 = {M ′}. As noted, with another terminology, by Nau

and McCardle [18, example 2]), α is a dual vector. Furthermore, if s1 6= M

and s2 6= M ′, then f(α, s) = 3. If s1 6= M or s2 6= M ′ (but not both),

then f(α, s) = 1. Thus, in any case, if s /∈ S ′
1 × S ′

2 (i.e. s 6= (M, M ′)),

then f(α, s) > 0. By proposition 4.1 this implies that the game is pre-tight.

Proposition 4.1 also implies that Sc
i = S ′

i for i = 1, 2; that is, that (M, M ′) is

the unique correlated equilibrium of the game, as noted by Nau and McCardle

[18].

Example 4.15 (General Rock-Paper-Scissors games) A Rock-Paper-

Scissors game is a 3×3 symmetric game in which the second strategy (Paper)

beats the first (Rock), the third (Scissors) beats the second, and the first

beats the third. Up to normalization (i.e. putting zeros on the diagonal) the
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payoff matrix of player 1 is of the form:

1 2 3

1

2

3

 0 −a2 b3

b1 0 −a3

−a1 b2 0

 with ak > 0, bk > 0 for all k = 1, 2, 3. (4.7)

Note that we consider general Rock-Paper-Scissors games and not only the

standard case ai = bi = K for i = 1, 2, 3, where K is a positive constant.

Proposition 4.16 Any Rock-Paper-Scissors game (4.7) is tight.

Proof. Let {1,2,3} denote the set of pure strategies of both players (recall

that the game is symmetric). Assume without loss of generality that ak+bk <

1 for all k in {1, 2, 3}. Counting k modulo 3, define the transition probability

αi as follows, for i = 1, 2: αi maps the pure strategy k on the mixed strategy

consisting in playing k + 1 with probability ak, k− 1 with probability bk and

k with the remaining probability 1− ak − bk. Note that αi ∗ k is completely

mixed, for every player i in {1, 2} and every pure strategy k in {1, 2, 3}. Thus,

by proposition 4.1, it suffices to check that α := (α1, α2) is a dual vector to

prove that the game is tight. Due to the symmetry and cyclic symmetry of

both α and the game, it is enough to check that f(α, s) is nonnegative for

s = (1, 1) and s = (1, 2). For s = (1, 1) we get:

f(α, s) = 2(a1[b1] + b1[−a1]) = 0

For s = (1, 2), we get

f(α, s) = (a1[a2] + b1[a2 + b2]) + (a2[−b1 − a1] + b2[−b1]) = 0

Example 4.17 (An n-player game) The following example (an n-player

version of Matching Pennies) generalizes an example which appeared in an

earlier version of (Nau et al. [17]). Consider an n-player game Gn in which

every player has two pure strategies: K (for Keep) and R (for Reverse). The

payoff of player i ∈ {1, 2, ..., n} is (−1)i+r where r is the number of players

playing R.
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Proposition 4.18 For every positive integer n, the game Gn is tight

Proof. If n is even, define α by (αi ∗ R)(K) = (αi ∗K)(R) = 1/2 for every

i in {1, 2, ..., n}. If n is odd, hence n = 2p + 1, define αi by (αi ∗ R)(K) =

(αi ∗K)(R) = p+1
2p+1

if i is even and by (αi ∗ R)(K) = (αi ∗K)(R) = p
2p+1

if

i is odd. It is easily checked that α is a dual vector. Furthermore, αi ∗ si is

completely mixed for every player i in {1, 2, ..., n} and every pure strategy si

in {K, R}. By proposition 4.1, this implies that the game is tight.

5 Links between tight and pre-tight games

This section clarifies the links between tight and pre-tight games.

Proposition 5.1 A game is tight iff it is pre-tight and every pure strategy

of every player is coherent.

Proof. If a game is pre-tight and if all pure strategies are coherent, then

it follows from the definitions of tight and pre-tight games that the game

is tight. Conversely, if a game is tight, then it is pre-tight, as noted in

proposition 3.6, and it follows from proposition 4.13 that all pure strategies

are coherent.

The next result shows that a game is pre-tight iff it becomes tight after

deletion of all incoherent pure strategies. This motivates the choice of the

term “pre-tight”. We first need to introduce the game Gc obtained from G

by restricting the players to their coherent strategies:

Gc = {I, (Sc
i )i∈I , (Ui)i∈I}

Proposition 5.2 A game G is pre-tight iff the game Gc is tight.

Proof. First, denote by Cc ⊆ ∆(Sc) the set of correlated equilibria of Gc.

Since any correlated equilibrium of G has support in Sc, the set of correlated

equilibria of G may be seen as a subset of ∆(Sc). Since the players have

less possibilities of deviations in Gc than in G, it follows that any correlated

equilibrium of G is a correlated equilibrium of Gc. That is, C ⊆ Cc.
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Second, by definition 3.1, the game Gc is tight iff

∀µ ∈ Cc, hsi,ti(µ) = 0 ∀i ∈ I,∀si ∈ Sc
i ,∀ti ∈ Sc

i (5.1)

Similarly, by definition 3.5, G is pre-tight iff

∀µ ∈ C, hsi,ti(µ) = 0 ∀i ∈ I,∀si ∈ Sc
i ,∀ti ∈ Sc

i (5.2)

We need to show that (5.2) and (5.1) are equivalent. One sense is trivial:

since C ⊆ Cc, it follows that (5.1) implies (5.2). We now show that (5.2)

implies (5.1) by contraposition. Assume that (5.1) does not hold. Then:

∃µ ∈ Cc,∃i ∈ I,∃s∗i ∈ Sc
i ,∃t∗i ∈ Sc

i , hsi,ti(µ) > 0

Since µ ∈ Cc, it follows that:

∀i ∈ I, ∀si ∈ Si,∀ti ∈ Sc
i , hsi,ti(µ) ≥ 0 (5.3)

(for si ∈ Si\Sc
i , this holds trivially as µ(si × S−i) = 0). Furthermore, by

lemma 4.13, there exists a quasi-strict Nash equilibrium σ with support Sc.

Since σ is a Nash equilibrium, hence a correlated equilibrium,

∀i ∈ I,∀si ∈ Si,∀ti ∈ Si, hsi,ti(σ) ≥ 0 (5.4)

Since σ is quasi-strict with support Sc,

∀i ∈ I,∀si ∈ Sc
i ,∀ti ∈ Si\Sc

i , hsi,ti(σ) > 0 (5.5)

It follows from (5.3), (5.4) and (5.5) that, for ε > 0 small enough, µε :=

εµ + (1 − ε)σ is in C (to check that hsi,ti(µε) ≥ 0, use (5.5) for ti in Si\Sc
i

and (5.3) and (5.4) for ti in Sc
i ). But it follows from (5.4) and the definition

of µ that hs∗i ,t∗i
(µε) > 0. This contradicts (5.2).

The reason why this implication (5.2) ⇒ (5.1) in the above proof is not

trivial is that eliminating incoherent strategies can create new correlated

equilibria. This occurs in the following example:

x2 y2

x1 1, 1 0, 1

y1 0, 1 1, 0

x2 y2

x1 1, 1 0, 1

Let G denote the left game. It may be seen that Gc is the game on the right.

In Gc any pure of mixed strategy profile is a Nash equilibrium. In G, a mixed

strategy profile σ is a Nash equilibrium iff σ1(y1) = 0 and σ2(y2) ≤ 1/2. Thus

Gc has more Nash equilibria than G, hence also more correlated equilibria.
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6 Topology of tight and pre-tight games

In this section we first show that the set of tight (resp. pre-tight) games is

neither closed nor open; we then study the size of the class of tight (resp.

pre-tight) games, i.e. whether it has Lebesgue measure 0 or not.

Example 6.1 Consider the following 2× 2 games:

L R

T

B

(
ε,−ε 0, 0

0, 0 ε,−1

) L R

T

B

(
ε, ε 0, 0

0, 0 ε, ε

)
For ε > 0, the left game is tight (apply proposition 4.1 with α defined by:

(α1 ∗ T )(B) = (α2 ∗ R)(L) = (α2 ∗ L)(R) = ε/2 and (α1 ∗ B)(T ) = 1/2).

However, for ε = 0, the left game is not even pre-tight, as in the Nash

equilibrium (B, L), player 2 has a strict incentive not to play R, even though

R is clearly coherent. This shows that the set of tight (resp. pre-tight)

games is not closed. Furthermore, the game on the right is tight for ε = 0,

but for ε > 0 it is not even pre-tight. This shows that the set of tight (resp.

pre-tight) games is not open.

Another issue is the size of the class of tight (resp. pre-tight) games. Fix

a positive integer n:

Proposition 6.2 (i) Within the set of n×n bimatrix games, the set of tight

games contains an open set. (ii) If n 6= m, then within the set of n × m

bimatrix games, the set of tight games has Lebesgue measure 0.

Proof. Proof of (i): Nitzan [19] shows that the set of n× n bimatrix games

with a unique correlated equilibrium and such that this correlated equilibrium

is a completely mixed Nash equilibrium, is nonempty and open. It follows

from proposition 3.7 and proposition 5.1 that such games are tight, hence

the result.

Proof of (ii): By item (ii) of proposition 4.13, any tight game has a

completely mixed Nash equilibrium. Since, for n 6= m, the set of n × m

games with a completely mixed Nash equilibrium has Lebesgue measure 0

(von Stengel [25, discussion following theorem 2.10]), this implies (ii).

In contrast with point (ii) of proposition 6.2, for any number of players

n and any positive integers m1, m2,...,mn:
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Proposition 6.3 The set of n-player pre-tight games of size m1×m2× ...×
mn contains a nonempty, open subset of the set of all n-player games of size

m1 ×m2 × ...×mn.

Proof. It is shown in (Viossat, 2005) that the set of n-player games of size

m1×m2× ...×mn with a unique correlated equilibrium is a nonempty, open

subset of the set of all n-player games of size m1 ×m2 × ...×mn. Since any

game with a unique correlated equilibrium is pre-tight, the result follows.

Thus, at least for n×m bimatrix games with n 6= m, the set of pre-tight

games is much bigger than the set of tight games. Note however that for

any positive integers n and m, within the set of n×m bimatrix games, the

set of pre-tight games which do not have a unique correlated equilibrium has

Lebesgue measure 0. This will be shown in section 8.

7 The geometry of Nash equilibria and cor-

related equilibria

As mentioned in the introduction, Nau et al. [17] proved the following:

Proposition 7.1 If there is a Nash equilibrium σ in the relative interior of

C, then:

(a) The Nash equilibrium σ assigns positive probability to every coherent

strategy of every player; that is, σ has support Sc := ×i∈IS
c
i .

(b) The game is pre-tight.

For completeness, we recall the proof:

Proof. If (a) is not checked, then σ satisfies with equality some nonnega-

tivity constraint which is not satisfied with equality by all correlated equilib-

ria, hence σ belongs to the relative boundary of C. If condition (a) is checked

then every coherent strategy of player i is a best-response to σ−i. It follows

that σ satisfies with equality all incentive constraints of type hsi,ti(σ) ≥ 0,

where si and ti are coherent. If the game is not pre-tight, at least one of these
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constraints is not satisfied with equality by all correlated equilibria, hence σ

belongs to the relative boundary of C.

This section proves a converse of this result:

Proposition 7.2 If a game is pre-tight, then C contains a Nash equilibrium

in its relative interior.

Proof. By proposition 4.13, there exists a quasi-strict Nash equilibrium σ

with support Sc. This Nash equilibrium satisfies

∀s ∈ Sc, σ(s) > 0 (7.1)

and, by quasi-strictness,

∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Si\Sc

i , hsi,ti(σ) > 0 (7.2)

Since the inequalities in (7.1) and (7.2) are strict, there exists an neighbour-

hood Ω of σ in RS in which (7.1) and (7.2) are still satisfied. Let E denote

the linear subspace of RS consisting of all vectors x = (x(s))s∈S such that∑
s∈S

x(s) = 1 and ∀s ∈ S\Sc, x(s) = 0, (7.3)

∀i ∈ I, ∀si ∈ Si\Sc
i ,∀ti ∈ Si, hsi,ti(x) = 0, (7.4)

and

∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Sc

i , hsi,ti(x) = 0. (7.5)

Any correlated equilibrium satisfies trivially (7.3) and (7.4). Moreover, since

the game is pre-tight, any correlated equilibrium satisfies (7.5). It follows

that C is a subset of E. Furthermore, any vector in RS satisfying the five

conditions (7.1) to (7.5) is a correlated equilibrium. Therefore, Ω ∩ E ⊆ C.

Since Ω is an open set containing σ and E a linear subspace containing C,

it follows that σ belongs to the relative interior of C.

As an immediate consequence of propositions 7.1 and 7.2, we get:

Theorem 7.3 The correlated equilibrium polytope of a game contains a Nash

equilibrium in its relative interior iff the game is pre-tight.
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To conclude this section, note for later purposes that:

Proposition 7.4 In a pre-tight game, a Nash equilibrium belongs to the rel-

ative interior of C iff it is quasi-strict.

Proof. Let σ be a Nash equilibrium of a pre-tight game. By proposition

4.13, there exists a Nash equilibrium satisfying (7.1) and (7.2). If σ does not

have support Sc, then it does not satisfy (7.1). If σ has support Sc but is not

quasi-strict then it does not satisfy (7.2). In any case, if σ is not quasi-strict,

then it satisfies with equality a nonnegativity or an incentive constraints that

is satisfied with strict inequality by some correlated equilibrium. Therefore,

σ does not belong to the relative interior of C.

Conversely, let σ be a quasi-strict Nash equilibrium. If σ has support Sc,

then it follows from the proof of proposition 7.2 that σ belongs to the relative

interior of C. But if si ∈ Sc
i then, by definition of pre-tight games, si is a

best-response to σ−i. Since σ is quasi-strict, this implies that σi(si) > 0. It

follows that σ has support Sc, completing the proof.

8 Two-player pre-tight games

In this section we first show that two-player zero-sum games are pre-tight

but that a pre-tight game need not be best-response equivalent to a zero-sum

game. We then show that, nevertheless, some of the properties of the equi-

libria and equilibrium payoffs of zero-sum games extend to pre-tight games.

8.1 Pre-tight games and zero-sum games

Proposition 8.1 A two-player game which is best-response equivalent to a

zero-sum game is pre-tight.

Proof. In view of proposition 3.10 we only need to prove that two-player

zero-sum games are pre-tight. Consider a two-player zero-sum game with

value v. Let µ ∈ C and si ∈ Si. As noted by Forges [7]:

(i) If µ(s1 × S2) > 0, then µ(·|s1) is an optimal strategy of player 2.

It follows that:
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(ii) If a pure strategy of player 1 is coherent, then it is a best response to

any optimal strategy of player 2.

Indeed, if t1 is coherent then there exists µ in C and s2 in S2 such that

µ(t1|s2) is positive. Assume that there exists an optimal strategy σ2 of player

2 to which t1 is not a best response. By playing σ2 against µ(·|s2), player

2 would obtain strictly more than −v. Therefore µ(·|s2) is not an optimal

strategy of player 1. This contradicts the analogue of (i) for player 2.

It follows from (i) and (ii) that in every correlated equilibrium µ and for

every pure strategy s1 played in µ, every coherent pure strategy of player 1

is a best-response to µ(·|s1). Together with the analogous result for player

2, this implies that the game is pre-tight.

The converse of proposition 8.1 is false:

Proposition 8.2 A two-player tight game need not be best-response equiva-

lent to a zero-sum game.

Proof. Recall that every Rock-Paper-Scissors game is tight (proposition

4.16). We now show that Rock-Paper-Scissors games need not be best-

response equivalent to a zero-sum game: In all bimatrix games that are

best-response equivalent to a zero-sum game, fictitious play and its contin-

uous time analog: the best-response dynamics, converge to the set of Nash

equilibria (Robinson [20], Hofbauer and Sorin [13]). But, in Rock-Paper-

Scissors games (4.7) such that a1a2a3 > b1b2b3, the best-response dynamics

does not converge to the unique Nash equilibrium but to a triangle (see, for

instance, Hofbauer and Sigmund [12]). The result follows.

The next section shows that, nevertheless, some of the main properties

of two-player zero-sum games extend to pre-tight games. Noticeably, in two-

player pre-tight games, the Nash equilibria are exchangeable and any corre-

lated equilibrium payoff is a Nash equilibrium payoff.

8.2 Equilibria of pre-tight games

Let us first introduce some notations: we denote by NE the set of Nash

equilibria of G and by NEi the set of Nash equilibrium strategies of player
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i. That is,

NEi = {σi ∈ ∆(Si),∃σ−i ∈ ×j∈I\{i}∆(Sj), (σi, σ−i) ∈ NE}

Proposition 8.3 In a two-player pre-tight game:

(a) NE1 and NE2 are convex polytopes.

(b) NE = NE1 ×NE2. That is, Nash equilibria are exchangeable.

We first need a lemma:

Lemma 8.4 Let G be a two-player pre-tight game and let σ1 ∈ ∆(S1). The

following assertions are equivalent:

(i) σ1 is a Nash equilibrium strategy. That is, σ1 ∈ NE1.

(ii) For some pure strategy s2 of player 2, σ1 is the conditional strategy

of player 1 given s2 in some correlated equilibrium. Formally, ∃µ ∈
C,∃s2 ∈ S2, µ(s2 × S1) > 0 and σ1 = µ(·|s2).

(iii) Every pure strategy in the support of σ1 is coherent and all coherent

pure strategies of player 2 are best responses to σ1.

(The analogous results for σ2 in ∆(S2) hold obviously just as well.)

Proof. (i) trivially implies (ii) and (ii) implies (iii) by definition of pre-tight

games (definition 3.5). So we only need to prove that (iii) implies (i). Let

σ1 check (iii) and let τ2 ∈ NE2. Necessarily, any pure strategy played in

τ2 is coherent. Since any coherent strategy of player 2 is a best response to

σ1, it follows that τ2 is a best response to σ1. Similarly, by the analogue of

(i) ⇒ (iii) for player 2, any coherent strategy of player 1 is a best response to

τ2. Since all pure strategies played in σ1 are coherent, σ1 is a best response to

τ2. Grouping these results, we get that (σ1, τ2) is a Nash equilibrium, hence

σ1 ∈ NE1.

We now prove proposition 8.3: it follows from the proof of lemma 8.4 that

if σ1 ∈ NE1, then for any τ2 ∈ NE2, (σ1, τ2) is a Nash equilibrium. This
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implies that Nash equilibria are exchangeable (point (b)). Furthermore, from

the equivalence of (i) and (iii) it follows that NE1 can be defined by a finite

number of linear inequalities. Therefore, NE1 is a polytope, and so is NE2

by symmetry (point (a)).

Our second result is that if µ is a correlated equilibrium, then the profile

of its marginals is a Nash equilibrium:

Proposition 8.5 Let µ be a correlated equilibrium of a two-player pre-tight

game. Let σi ∈ ∆(Si) denote the marginal probability distribution of µ on

Si. That is, ∀si ∈ Si, σi(si) = µ(si × S−i). Let σ = (σ1, σ2) so that σ is the

profile of the marginals of µ. We have:

(a) σ is a Nash equilibrium

(b) The average payoff of the players is the same in σ and in µ. That is,

∀i ∈ {1, 2}, Ui(σ) = Ui(µ).

Proof. First note that σ2 may be written:

σ2 =
∑

s1∈S1 : µ(s1×S2)>0

µ(s1 × S2)µ(·|s1) (8.1)

Proof of (a): it follows from lemma 8.4 that for every s1 ∈ S1 with

µ(s1 × S2) > 0, µ(·|s1) ∈ NE2. Therefore, by (8.1) and convexity of NE2,

σ2 ∈ NE2. Similarly, σ1 ∈ NE1, so that, by proposition 8.3, σ ∈ NE.

Proof of (b): assume µ(s1×S2) > 0; then s1 is coherent and, by definition

of pre-tight games, any coherent strategy of player 1 is a best response to

µ(·|s1). Since σ is a Nash equilibrium, every pure strategy in the support of

σ1 is coherent, so that

U1(σ1, µ(·|s1)) = max
ti∈Si

U1(t1, µ(·|s1)) = U1(s1, µ(·|s1)) (8.2)

Using successively (8.1), (8.2) and a straightforward computation, we get

U1(σ) =
∑

s1∈S1:µ(s1×S2)>0 µ(s1 × S2)U1(σ1, µ(·|s1))

=
∑

s1∈S1:µ(s1×S2)>0 µ(s1 × S2)U1(s1, µ(·|s1)) = U1(µ)
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Similarly, U2(σ) = U2(µ), completing the proof.

Finally, as noted by Forges [7], a two-player zero-sum game has a unique

Nash equilibrium iff it has a unique correlated equilibrium. Since Bohnen-

blust et al. [5] showed that almost all zero-sum games have a unique Nash

equilibrium, this implies that almost all zero-sum games have a unique cor-

related equilibrium. The next two propositions extend these results to two-

player pre-tight games:

Proposition 8.6 A two-player pre-tight game has a unique Nash equilibrium

iff it has a unique correlated equilibrium.

Proposition 8.7 Within the set of p × q bimatrix games, the set of pre-

tight games which do not have a unique correlated equilibrium has Lebesgue

measure 0.

Before proving these propositions note that, by proposition 6.3 the set of

p × q pre-tight games contains a nonempty, open subset of the set of p × q

bimatrix games. Therefore, proposition 8.7 implies that almost all pre-tight

games have a unique correlated equilibrium. Note also, as an example of

application of proposition 8.6, that since Rock-Paper-Scissors games 4.7 are

tight (proposition 4.16) and have a unique Nash equilibrium (Hofbauer and

Sigmund [12]), they have a unique correlated equilibrium.

Proof of propositions 8.6 and 8.7 If C is a singleton, then G has trivially

a unique Nash equilibrium. Conversely, let G be a two-player pre-tight game

such that C is not a singleton. By proposition 7.2, there exists a Nash equilib-

rium σ in the relative interior of C. Let τ be an extreme Nash equilibrium (in

the sense of Evangelista and Raghavan [6]). Since, in two-player games, an

extreme Nash equilibrium is an extreme point of C (Evangelista and Ragha-

van [6]), it follows that τ is an extreme point of C. Therefore τ 6= σ. This

proves proposition 8.6.1 Furthermore, since τ does not belong to the relative

interior of C, it follows from proposition 7.4 that τ is not quasi-strict. Since

1Proposition 8.6 also follows, and more directly, from lemma 8.4; but the above argu-
ment is convenient to prove jointly propositions 8.6 and 8.7.
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almost all games have only quasi-strict equilibria (Harsanyi [10]), this implies

proposition 8.7

Proposition 8.8 For almost all bimatrix games, either C is a singleton or

all Nash equilibria belong to the relative boundary of C.

Proof. This follows from theorem 7.3 and proposition 8.7.

The author does not know whether this result extends to games with

three or more players. The reason why the proof for the two-player case does

not go through is that, in games with three or more players, there need not

be a Nash equilibrium that is an extreme point of C (Nau et al. [17]).

8.3 Equilibrium payoffs of pre-tight games

Let NEP (resp. NEPi, CEP ) denote the set of Nash equilibrium payoffs

(resp. Nash equilibrium payoffs of player i, correlated equilibrium payoffs).

That is,

NEP = {g = (gi)i∈I ∈ RI : ∃σ ∈ NE,∀i ∈ I, Ui(σ) = gi}

NEPi = {gi ∈ R : ∃σ ∈ NE, Ui(σ) = gi}

CEP = {g = (gi)i∈I ∈ RI : ∃µ ∈ C,∀i ∈ I, Ui(µ) = gi}

Two-player games which are best-response equivalent to zero-sum games

may have an infinity of Nash equilibrium payoffs. So pre-tight games need

not have a unique Nash equilibrium payoff. Nonetheless, some of the prop-

erties of equilibrium payoffs of zero-sum games are preserved. In particular,

proposition 8.3 and proposition 8.5 imply respectively that:

Corollary 8.9 In a two-player pre-tight game, NEP1 and NEP2 are convex

and NEP = NEP1 ×NEP2

Corollary 8.10 In a two-player pre-tight game, CEP = NEP

Thus, allowing for correlation is useless in two-player pre-tight games, in the

sense that it cannot improve the equilibrium payoffs. In particular, there are

no “good” correlated equilibria in the sense of Rosenthal [21]. Furthermore:
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Proposition 8.11 In a two-player pre-tight game, any correlated equilib-

rium payoff of player i given his move is a Nash equilibrium payoff of player

i:

∀µ ∈ C,∀i ∈ {1, 2},∀si ∈ Si, µ(si×S−i) > 0 ⇒
∑

s−i∈S−i

µ(s−i|si)Ui(s) ∈ NEPi

Proof. Let µ ∈ C and si ∈ Si with µ(si × S−i) > 0. Since µ ∈ C,

it follows that Ui(si, µ(·|Si)) = maxti∈Si
Ui(ti, µ(·|si)). But by lemma 8.4,

µ(·|si) ∈ NEi. Therefore maxti∈Si
Ui(ti, µ(·|si)) ∈ NEPi. The result follows.

Finally, there exists a dominant Nash equilibrium. That is,

Proposition 8.12 There exists a Nash equilibrium σ such that

∀i ∈ {1, 2}, Ui(σ) = max NEPi (8.3)

Proof. Let τ , τ ′ be Nash equilibria such that U1(τ) = max NEP1 and

U2(τ
′) = max NEP2. From exchangeability of equilibria, it follows that

σ = (τ ′1, τ2) is a Nash equilibrium which satisfies (8.3).

8.4 Discussion

(a) Several classes of non-zero sum games in which some of the properties of

two-player zero-sum games are satisfied have been studied. Most are defined

in either of these three ways:

(i) by requiring some conflict in the preferences of the players over strategy

profiles (“Strictly competitive games” (Aumann [1]; Friedman [8]), “Unilat-

erally competitive games” (Kats and Thisse [14]));

(ii) by comparing the best- or better-response correspondence in G and

in some zero-sum game (games “order-equivalent” (Shapley [22]) or “best-

response equivalent” (Rosenthal [21]) to a zero-sum game; “strategically zero-

sum games” (Moulin and Vial [15]));

(iii) by comparing the Nash equilibria or Nash equilibrium payoffs of G

and of some auxiliary game (“Almost strictly competitive games” (Aumann

[1]) and other classes of games studied by Beaud [3]).
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The definition of tight and pre-tight games do not fall in these categories;

tight games however may be defined by comparing the correlated equilibria

of G and of some auxiliary game. Indeed, let −G be the game with the same

sets of players and strategies as G but in which all the payoffs are multiplied

by −1:

−G = {I, (Si)i∈I , (−Ui)i∈I}

It is easily checked that G is tight iff G and −G have the same correlated

equilibria.

(b) Lemma 8.4 implies that in two-player tight games, as in two-player

zero-sum games, the Nash equilibrium strategies of the players can be com-

puted independently, as solutions of linear programs that depend only on

the payoffs of the other player. In two-player pre-tight games, the additional

knowledge of the sets of coherent strategies is required (indeed the 1 × 2

games ( 0 , 1 | 0 , 0 ) and ( 0 , 0 | 0 , 1 ) are both pre-tight and in both games

the payoffs of player 1 are the same; but the Nash equilibrium strategies of

player 2 are not the same).

(c) A wide range of dynamic procedures converge towards the set of corre-

lated equilibria in all games (Hart [11]). By proposition 8.5, suitably modified

versions of these dynamics converge towards the set of Nash equilibria in all

two-player pre-tight games.

(d) In three-player tight games, Nash equilibria are not exchangeable.

For instance, in the tight game from example 4.17, any mixed strategy profile

in which two players randomize between their strategies with equal proba-

bility is a Nash equilibrium. Thus, for n ≥ 3, if the Nash equilibria were

exchangeable, then there would exist a pure Nash equilibrium. This is not

the case.

Up to our knowledge, whether the other properties of section 8 extend to

n-player games is not known.
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