
 

 
Geometry, Correlated Equilibria and Zero-Sum Games 

 
 
 

Yannick Viossat 
 
 

 
Décembre 2003 

 
 

Cahier n° 2003-032 
 

 
 

 

ECOLE POLYTECHNIQUE 
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

LABORATOIRE D'ECONOMETRIE 
1rue Descartes F-75005 Paris 

(33) 1 55558215 
 http://ceco.polytechnique.fr/  

mailto:labecox@poly.polytechnique.fr 
 



 

 
Geometry, Correlated Equilibria and Zero-Sum Games 

 
 

 
Yannick Viossat1 

 
 

 
Décembre 2003 

 
 

Cahier n°
 
2003-032 
 

 

Résumé: Ce papier porte à la fois sur la géométrie des équilibres de Nash et des 
équilibres corrélés et sur une généralisation des jeux à sommes nulles fondée 
sur les équilibres corrélés. L'ensemble des distributions d'équilibres corrélés 
de n'importe quel jeu fini est un polytope, qui contient les équilibres de Nash. 
Je caractérise la classe des jeux tels que ce polytope (s'il ne se réduit pas à un 
singleton) contienne un équilibre de Nash dans son intérieur relatif. Bien que 
cette classe de jeux ne soit pas définie par une propriété d'antagonisme entre 
les joueurs, je montre qu'elle inclut et qu'elle généralise la classe des jeux à 
deux joueurs et à somme nulle. 

 
Abstract: This paper is concerned both with the comparative geometry of Nash and 

correlated equilibria, and with a generalization of zero-sum games based on 
correlated equilibria. The set of correlated equilibrium distributions of any 
finite game in strategic form is a polytope, which contains the Nash equilibria. 
I characterize the class of games such that this polytope (if not a singleton) 
contains a Nash equilibrium in its relative interior. This class of games, 
though not defined by some antagonistic property, is shown to include and 
generalize two-player zero-sum games. 
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1 Introduction

The correlated equilibrium concept (Aumann, [2]) generalizes the Nash equilibrium
concept to situations where players may condition their behavior on payoff-irrelevant
observations made before play1. Aumann showed that correlated equilibria are some-
times more efficient or more reasonable than Nash equilibria [2], and that playing a
correlated equilibrium is the natural expression of Bayesian rationality [3]. The cor-
related equilibrium concept is also well suited to the study of biological conflicts in
which the agents may have different “roles” [6] and has been implicitly used in theo-
retical biology ever since Maynard Smith and Parker [16].

The geometry of correlated equilibria is relatively simple. Indeed, the set of cor-
related equilibrium distributions of any finite game is a polytope and existence of cor-
related equilibria can actually be proved by linear programming [14]. It follows that,
when the entries of the payoff matrices are rational, a correlated equilibrium with, say,
maximum payoff-sum may be computed in polynomial time [10]. In sharp contrast, the
set of Nash equilibria of a finite game may be disconnected, its connected components
need not be convex, and computing a Nash equilibrium with maximum payoff-sum is
NP hard, even in two-player games [10].

In the last decade, the comparative geometry of Nash and correlated equilibria has
been further investigated. It has been found that, in two-player games, extreme Nash
equilibria are extreme points of the polytope of correlated equilibrium distributions
([7], [11]), which we denote byC. More recently, Nau et al [19] showed that in any
n-playergameG, all Nash equilibria belong to the relative boundary ofC, unlessG
satisfies a rather restrictive condition. More precisely, let us say that a pure strategy is
coherentif it has positive probability in some correlated equilibrium distribution. Nau
et al [19] showed that if a Nash equilibrium lies in the relative interior ofC thenG
satisfies the following condition:in any correlated equilibrium distribution, all the in-
centive constraints stipulating that a player has no incentive to “deviate” to a coherent
strategy are binding2 (condition A).

This shows that the class of games with a Nash equilibrium in the relative interior
of C is “small” but do not provide a precise characterization of this class of games.
My first result is such a characterization. More precisely, let us call “prebinding” the
games that satisfy the above condition A. I show thatC contains a Nash equilibrium in
its relative interior if and only ifG is prebinding andC is not a singleton.

My second result is that, though they are not defined by requiring antagonism
between the players, prebinding games include and generalize two-player zero-sum
games. For instance, in two-player prebinding games, Nash equilibria are exchange-
able and any correlated equilibrium payoff is a Nash equilibrium payoff. Prebind-
ing games actually appear to be the first generalization of two-player zero-sum games
whose definition is entirely based on correlated equilibria.

This paper is thus at the intersection of two literatures: the literature that studies
the geometry of Nash and correlated equilibria and the literature that studies classes
of two-player games which, in some sense, generalize zero-sum games (e.g. [1], [9],

1A formal definition of correlated equilibrium distributions will be given in the next section.
2A more formal statement and a proof of this result will be given in section 3.
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[15], [17], [21]). Moreover, many proofs are based on dual reduction ([18], [23]): a
technique which, to my knowledge, has never been applied. This paper thus also shows
how dual reduction may be used to investigate the geometry of correlated equilibria.

The remaining of the paper is organized as follow: the next section is devoted to
basic notations and definitions. In section 3, we define two classes of games: “bind-
ing” and “prebinding” games. The link between these two classes of games is studied
in section 4. The class of games with a Nash equilibrium in the relative interior of the
correlated equilibrium polytope is characterized in section 5. The last section shows
that two-player prebinding games generalize two-player zero-sum games. Finally, ele-
ments of dual reduction are recalled in appendix A.

2 Notations

The analysis in this paper is restricted to finite games in strategic forms. LetG =
{I, (Si)i∈I , (ui)i∈I} denote a finite game in strategic form:I is the nonempty finite set
of players,Si the nonempty finite set of pure strategies of playeri andui : ×i∈ISi → R
the utility function of playeri. The set of (pure) strategy profiles isS = ×i∈ISi; the
set of strategy profiles for the players other thani is S−i = ×j∈I−iSj . Pure strategies
of player i (resp. strategy profiles; strategy profiles of the players other thani) are
denotedsi or ti (resp. s; s−i). Similarly, mixed strategy of playeri (resp. mixed
strategy profiles, mixed strategy profiles of the players other thani) are denotedσi or
τi (resp.σ; σ−i). Thus, we may write(ti, s−i) (resp.(τi, σ−i)) to denote the strategy
(resp. mixed strategy) profile that differs froms (resp.σ) only in that itsi−component
is ti (resp.τi). For any finite setΣ, ∆(Σ) denotes the set of probability distributions
overΣ. Finally,N denotes the cardinal ofS.

2.1 Correlated equilibrium distribution

The set∆(S) of probability distributions overS is anN − 1 dimensional simplex,
henceforth calledthe simplex. A correlated strategyof the players inI is an element
of the simplex. Thusµ = (µ(s))s∈S is a correlated strategy if:

(nonnegativity constraints) µ(s) ≥ 0 ∀s ∈ S (1)

(normalization constraint)
∑

s∈S

µ(s) = 1 (2)

For (i, si, ti) ∈ I × Si × Si, let hsi,ti denote the linear form onRS which maps
x = (x(s))s∈S to

hsi,ti(x) =
∑

s−i∈S−i

x(s)[ui(s)− ui(ti, s−i)]

A correlated strategyµ is acorrelated equilibrium distribution[2] (abbreviated occa-
sionally in c.e.d.) if:

(incentive constraints) hsi,ti(µ) ≥ 0 ∀i ∈ I,∀si ∈ Si,∀ti ∈ Si (3)
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Let µ ∈ ∆(S), i ∈ I andsi ∈ Si. If si has positive probability inµ, let µ(.|si) ∈
∆(S−i) be the correlated strategy givensi of the players other thani:

∀s−i ∈ S−i, µ(s−i|si) =
µ(s)

µ(si × S−i)
whereµ(si × S−i) =

∑

s−i∈S−i

µ(s)

The incentive constraints (3) mean that, for any playeri and any pure strategysi of
playeri, eithersi has zero probability inµ (in which casehsi,ti(µ) = 0 for all ti in Si)
or si is a best response toµ(.|si). A possible interpretation is as follow: assume that
before play a mediator (“Nature”, some device,...) chooses a strategy profiles with
probability µ(s) and privately “recommends”si to playeri. In this framework, the
incentive constraints (3) stipulate that if all the players buti follow the recommenda-
tions of the mediator, then playeri has no incentives to deviate fromsi to some other
strategyti.

Since conditions (1), (2) and (3) are all linear, the set of correlated equilibrium
distributions is a polytope, which we denote byC.

Notations and vocabulary: Let si ∈ Si, s ∈ S andµ ∈ ∆(S). The strategysi

(resp. strategy profiles) is playedin the correlated strategyµ if µ(si×S−i) > 0 (resp.
µ(s) > 0). Furthermore, the average payoff of playeri in µ is

ui(µ) =
∑

s∈S

µ(s)ui(s)

3 Definitions and remarks

3.1 Binding Games

Definition 3.1 A game is binding if in any correlated equilibrium distribution all the
incentive constraints are binding. Formally,

∀µ ∈ C, ∀i ∈ I, ∀si ∈ Si, ∀ti ∈ Si, hsi,ti(µ) = 0 (4)

Let i be in I andsi, ti in Si. Following Myerson [18], let us say thatti jeopardizes
si if hsi,ti(µ) = 0 for all µ in C. That is, if wheneversi is played in a correlated
equilibrium distributionµ, ti is an alternative best response toµ(.|si). The concept of
jeopardization is at the heart of the theory of dual reduction [18], [23]. Dual reduction,
in turn, will be a key-tool to prove some of the main results of this article. It is thus
useful to rephrase definition 3.1 in terms of jeopardization:

Alternate definition 3.2 A game is binding if for alli in I any pure strategy of player
i jeopardizes all his pure strategies.

(Indeed the above condition is exactly:

∀i ∈ I, ∀ti ∈ Si, ∀si ∈ Si, ∀µ ∈ C, hsi,ti(µ) = 0

which is equivalent to (4))
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Example 3.3

G1 =
(

1,−1 0, 0
0, 0 1,−1

)
G2 =

(
1,−1 0, 0 0,−1
0, 0 1,−1 0,−1

)

The gameG1 (i.e. Matching Pennies) is binding. Indeed,G1 has a unique correlated
equilibrium distribution: the Nash equilibriumσ in which both players play(1/2, 1/2).
Therefore, definition 3.1 boils down to:G1 is binding if, inσ, all incentive constraints
are binding. Butσ is a completely mixed Nash equilibrium. Therefore, inσ, all incen-
tive constraints are indeed binding and definition 3.1 is checked.

In contrast,G2 is not binding. Indeed, there is still a unique correlated equilibrium
distribution: the Nash equilibriumσ in which the row player plays( 1

2 , 1
2 ) and the

column player( 1
2 , 1

2 , 0). But againstσ1, player2 has a strict incentive not to play her
third strategy.

3.2 Prebinding Games

Following Nau et al [19], let us define a strategy to be coherent if it is played in some
correlated equilibrium. Formally,

Definition 3.4 Let i be inI andsi in Si. The strategysi is coherent if there exists a
correlated equilibrium distributionµ such thatµ(si × S−i) is positive.

We denote bySc
i the set of coherent strategies of playeri. We can now define prebind-

ing games:

Definition 3.5 A game isprebindingif in any correlated equilibrium distribution all
the incentive constraints stipulating not to “deviate” to a coherent strategy are binding.
That is,

∀µ ∈ C, ∀i ∈ I, ∀si ∈ Si, ∀ti ∈ Sc
i , hsi,ti(µ) = 0

Alternate definition 3.6 A game is prebinding if every coherent strategy of every player
jeopardizes all his other pure strategies.

(Definitions 3.5 and 3.6 are equivalent, just as definitions 3.1 and 3.2). Note that ifsi

is not coherent, thenhsi,ti(µ) = 0 for all µ in C and allti in Si. Therefore, definition
3.5 boils down to:

Alternate definition 3.7 A game isprebindingif:

∀µ ∈ C, ∀i ∈ I,∀si ∈ Sc
i , ∀ti ∈ Sc

i , hsi,ti(µ) = 0

Example 3.8 Any game with a unique correlated equilibrium distribution is prebind-
ing. For instance, the gamesG1 andG2 of example 3.3 are prebinding.

Indeed, ifG has a unique correlated equilibrium distributionσ, thenσ is necessarily a
Nash equilibrium. Furthermore, the set of coherent strategies of playeri is simply the
support ofσi. Therefore, definition 3.7 boils down to: for any playeri in I and any
pure strategiessi andti in the support ofσi, ui(si, σ−i) = ui(ti, σ−i). This condition
is satisfied sinceσ is a Nash equilibrium. ThereforeG is prebinding.
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Example 3.9 Any two-player zero-sum game is prebinding (see section 6 for a proof).

For an example of a three-player binding and prebinding game, in which, moreover,
extreme Nash equilibria are not extreme correlated equilibria, see Nau et al [19].

3.3 Remarks

First, in the definitions of binding and prebinding games, the utility functions only
intervene via the best-response correspondences, so that:

Remark 3.10 If G is binding (resp. prebinding) then any game that is best-response
equivalent3[21] to G is binding (resp. prebinding).

Second, there is a difference between acorrelated equilibriumand acorrelated equilib-
rium distribution4,5. We chose to phrase definitions 3.1 and 3.5 in terms of correlated
equilibrium distributions. Equivalently, we could have defined binding and prebinding
games in terms of correlated equilibria. For instance, the reader may check that: a
game is binding if and only if in all correlated equilibria, all incentive constraints are
binding6.

4 Links between binding and prebinding games

In this section we study the link between binding and prebinding games. In so doing,
we establish a lemma which will prove crucial to the next section. We first need to
introduce the gameGc obtained fromG by restricting the players to their coherent
strategies:

Gc = {I, (Sc
i )i∈I , (ui)i∈I}7

For instance, in example 3.3,Gc
2 = G1 andGc

1 = G1. We denote bySc = ×i∈IS
c
i

the set of strategy profiles ofGc and byCc ⊂ ∆(Sc) the set of correlated equilibrium
distributions ofGc. Since any correlated equilibrium distribution ofG has support
in Sc, the set of correlated equilibrium distributions ofG may be seen as a subset of
∆(Sc). We then have:

3Two games with the same sets of players and strategies arebest-response equivalent[21] if they have
the same best-response correspondences.

4For alli in I, letMi be a finite set, and letM = ×i∈IMi. Letν ∈ ∆(M). Consider the extended game
in which: first, a pointm = (mi)i∈I is drawn at random according to the probabilityν andmi is privately
announced to playeri for all i; second,G is played (In this extended game, players can condition their
behavior inG on their private information. A pure strategy of playeri is thus a mapping fromMi to Si.).
A correlated equilibrium ofG is a Nash equilibrium of such an extended game. A correlated equilibrium
distribution is a probability distribution induced onS by some correlated equilibrium (this definition of c.e.d.
may be shown to be equivalent to the one of section 2).

5Following Nau et al [19], I callC the correlated equilibrium polytope. This is abusive, sinceC is
actually the polytope of correlated equilibriumdistributions.

6In the sense that in all correlated equilibria, for any messagemi received by playeri with positive
probability, any strategy of playeri is a best response to the conditional strategy of the other players given
mi.

7To be precise, the utility functions inGc are the utility functionsinducedon Sc = ×i∈ISc
i by the

utility functionsui of the original game.
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Remark 4.1 Any correlated equilibrium distribution ofG is a correlated equilibrium
distribution ofGc. That is,C ⊆ Cc. Furthermore, the inclusion may be strict.

The first assertion is straightforward : ifµ is in C, thenhsi,ti
(µ) ≥ 0, for all i in I

and all pure strategiessi and ti of player i. Therefore, a fortiori,hsi,ti(µ) ≥ 0 for
all i in I and all coherentpure strategies of playeri; that is, µ is in Cc. The fact
that the inclusion may be strict is less intuitive. Indeed, at first glance, it seems that
eliminating strategies that are never played in correlated equilibria should not affect the
set of correlated equilibrium distributions. But in the following example this intuition
fails:

Example 4.2

s2 t2
s1 1, 1 0, 1
t1 0, 1 1, 0

s2 t2
s1 1, 1 0, 1

LetG denote the left game. ThenGc is the game on the right8. In both games Nash
equilibrium and correlated equilibrium distributions coincide. InGc any correlated
strategy is, trivially, a Nash equilibrium distribution; in contrast, inG, a mixed strategy
profileσ is a Nash equilibrium if and only ifσ1(t1) = 0 andσ2(t2) ≤ 1/2. Thus,

C = {µ ∈ ∆(S) : µ(t1 × S2) = 0 andµ(s) ≥ µ(s1, t2)}  Cc

Finally note thatG is prebinding. Therefore the inclusionC ⊂ Cc may be strict even
if we restrict our attention to prebinding games.

We now link binding and prebinding games:

Proposition 4.3 (a) A gameG is prebinding if and only ifGc is binding; (b) a game
is binding if and only if it is prebinding and every pure strategy of every player is
coherent.

We first need a lemma:

Lemma 4.4 (a) If G is binding, thenG has a completely mixed Nash equilibrium. (b)
If G is prebinding, thenG has a Nash equilibriumσ such that:σ has supportSc; in σ,
all players have a strict incentive not to deviate from coherent to incoherent strategies.
Formally,

∀s ∈ Sc, σ(s) > 0 (5)

∀i ∈ I, ∀si ∈ Sc
i , ∀ti ∈ Si − Sc

i , hsi,ti(σ) > 0 (6)

(For prebinding games, condition (6) may be rephrased as follow: for every playeri
and every pure strategysi of playeri, si is a best response toσ−i if and only if si is
coherent.)

8The strategyt1 cannot be played in a c.e.d. for the following reason: ifµ(t1, t2) > 0 thenu2(µ) is
less than1, i.e. less than whats2 guarantees, henceµ cannot be an equilibrium. But ifµ(t1, t2) = 0 then
player1 cannot be incited to playt1.

6



Proof. We only prove the second assertion. The proof of the first assertion is similar
and simpler. The proof is based on dual reduction. The reader unfamiliar with dual
reduction is advised to first go through appendix A.

(i) Defineg(α, s) as in equation (12) of appendix A. By [20, proposition 2] and by
convexity of the set of dual vectors there exists a dual vectorα such that:

∀s ∈ S, [µ(s) = 0 for all µ in C ⇒ g(α, s) > 0] (7)

We may assumeα full (otherwise, take a strictly convex combination ofα and some
full dual vector).

(ii) In the full dual reduction induced byα, as in all full dual reductions, all strate-
gies ofSi − Sc

i are eliminated [23, proposition 5.13]; furthermore, since the coherent
strategies of playeri jeopardize each other, they must either all be eliminated or all be
grouped together (see [23, section 4]); since some strategies of playeri must remain
in the reduced game, the first possibility is ruled out; therefore, all coherent strategies
of playeri are grouped in a single mixed strategyσi, with supportSc

i . In the reduced
game, the resulting strategy profileσ = (σi)i∈I is the only strategy profile, hence
trivially a Nash equilibrium. By [23, proposition 5.7], this implies thatσ is a Nash
equilibrium ofG. Moreover,σ has supportSc.

(iii) Let i ∈ I and letsi (resp.ti) be a coherent (resp. incoherent) pure strategy of
playeri. Let τ = (ti, σ−i) ∈ ∆(S). Sinceti is incoherent,µ(t) = 0 for all µ in C and
all t−i in S−i. Therefore, by (7),

∑

t−i∈S−i

σ−i(t−i)g(α, t) > 0

Sinceσj is αj-invariant for allj 6= i, the above boils down to:

ui(αi ∗ ti, σ−i)− ui(ti, σ−i) > 0

Thereforeti is not a best response toσ−i. Sinceσ is a Nash equilibrium andσi(si) >
0, si is a strictly better response thanti to σ−i. As σi(si) > 0 this implieshsi,ti(σ) >
0.

By lemma 4.4, binding games have a completely mixed Nash equilibrium, hence:

Corollary 4.5 If G is binding, then every pure strategy of every player is coherent.
That is,G = Gc.

We can now prove proposition 4.3:
Proof of (a): The gameGc is binding if and only if

∀µ ∈ Cc, hsi,ti(µ) = 0 ∀i ∈ I,∀si ∈ Sc
i , ∀ti ∈ Sc

i (8)

Similarly, by definition 3.7,G is prebinding if and only if

∀µ ∈ C, hsi,ti(µ) = 0 ∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Sc

i (9)
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SinceC ⊂ Cc (remark 4.1), (8) implies (9).9 We show that (9) implies (8) by
contraposition. Assume that (8) does not hold. Then:

∃µ ∈ Cc,∃i ∈ I, ∃si ∈ Sc
i ,∃ti ∈ Sc

i , hsi,ti(µ) > 0

By lemma 4.4, there existsµ∗ checking (6). Forε > 0 small enough,µε = εµ + (1−
ε)µ∗ is in C. But hsi,ti

(µε) > 0. This contradicts (9).
Proof of (b): AssumeG binding. By corollary 4.5,G = Gc. ThereforeGc is bind-

ing. Therefore, by proposition 4.3 (a),G is prebinding. Grouping these observations:
G = Gc andG is prebinding. Conversely, assume that (i)G = Gc and (ii) G is pre-
binding. By (ii) and proposition 4.3 (a),Gc is binding. Therefore, by (i),G is binding.

5 The Geometry of Nash and Correlated Equilibria

Nau et al [19] proved the following:

Proposition 5.1 If G has a Nash equilibriumσ in the relative interior ofC, then:10

(a) The Nash equilibriumσ assigns positive probability to every coherent strategy
of every player; that is,σ has supportSc.

(b) G is prebinding.11

Proof. If (a) is not checked, thenσ satisfies with equality some nonnegativity constraint
which is not satisfied with equality by all correlated equilibrium distributions, henceσ
belongs to the relative boundary ofC. Assuming now that condition (a) is checked,σ
renders indifferent every player among its coherent strategies; thereforeσ satisfies with
equality all incentive constraints of typehsi,ti(.) ≥ 0, wheresi andti are coherent. If
G is not prebinding, at least one of these constraints is not satisfied with equality by all
correlated equilibrium distributions, henceσ belongs to the relative boundary ofC.

The aim of this section is to prove a converse of this result. Namely,

Proposition 5.2 If a game is prebinding, then eitherC is a singleton orC contains a
Nash equilibrium in its relative interior.

Proposition 5.2, together with example 3.8 and proposition 5.1, allows to charac-
terize prebinding games:

Theorem 5.3 A gameG is prebinding if and only ifC is a singleton orC contains a
Nash equilibrium in its relative interior. Thus,C contains a Nash equilibrium in its
relative interior if and only ifG is prebinding andC is not a singleton.

9Example 4.2 shows that the implication(9) ⇒ (8) is not as trivial.
10We abusively identify here and in what follows a Nash equilibrium and the independent distribution it

induces on∆(S).
11The term “prebinding” is mine: Nau et al write thatG satisfies the property of definition 3.5.
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Note thatC is a singleton if and only if its relative interior is empty. So theorem 5.3
could be rephrased as follow: a game is prebinding if and only if the relative interior
of C is empty or contains a Nash equilibrium.

Proofs Theorem 5.3 is straightforward, so we only need to prove proposition 5.2. We
first need a lemma:

Lemma 5.4 Let G be prebinding and assume thatC is not a singleton. A Nash equi-
librium of G belongs to the relative interior ofC if and only if it checks conditions (5)
and (6) of lemma 4.4.

Proof. Let σ be a Nash equilibrium ofG. By lemma 4.4,G has a Nash equilib-
rium - hence a correlated equilibrium distribution - checking (5) and (6). Therefore,
if σ does not check (5) or (6), there exists a nonnegativity or an incentive constraint
which is binding inσ but not in all correlated equilibrium distributions; henceσ be-
longs to a strict face ofC. Conversely, assume thatσ checks (5) and (6). Note that
there exists an neighborhoodΩ of σ in RS in which (5) and (6) are checked. Let
E denote the set of pointsx = (x(s))s∈S of RS such that:

∑
s∈S x(s) = 1 and

∀i ∈ I, ∀si ∈ Si, ∀ti ∈ Sc
i , hsi,ti(x) = 0. SinceG is prebinding, the affine span ofC

is a subset ofE. Furthermore,Ω∩E ⊂ C. Finally, sinceC is not a singleton,E is not
a singleton either. Therefore,σ belongs to the relative interior ofC.

We can now prove proposition 5.2: assume thatG is prebinding. By lemma 4.4(b),
there exists a Nash equilibriumσ checking (5) and (6). If furthermoreC is not a sin-
gleton, lemma 5.4 implies thatσ belongs to the relative interior ofC.

We end this section with two remarks on lemma 5.4: first, in binding games, con-
dition (6) is void. Thus, the analogous of lemma 5.4 for binding games is: a Nash
equilibrium of a binding gameG belongs to the relative interior ofC if and only if
it is completely mixed andC is not a singleton; second, we might wonder whether,
for prebinding games, condition (6) is really needed. That is, ifG is prebinding, do
all Nash equilibria with supportSc check condition (6) and thus belong to the relative
interior ofC ? The following example shows that this is not so.

Example 5.5 Reconsider the gameG of example 4.2. Letσ denote the Nash equilib-
rium ofG given byσ1(s1) = 1 andσ2(s2) = 1/2; σ has supportSc (and thus belongs
to the relative interior ofCc) but lies on the relative boundary ofC.

6 Two-player prebinding games

In this section we first show that two-player zero-sum games are prebinding but that a
prebinding game need not be best-response equivalent to a zero-sum game. We then
show that, nevertheless, some of the properties of the equilibria and equilibrium pay-
offs of zero-sum games extend to prebinding games. We then discuss the interest and
implications of these findings.
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6.1 Prebinding games and zero-sum games

Proposition 6.1 A two-player game which is best-response equivalent to a zero-sum
game is prebinding.

Proof. In view of proposition 3.10 we only need to prove the result for two-player
zero-sum games. So letG be a two-player zero-sum game andv its value. Note in
succession that:

(i) In any c.e.d. the payoff for player 1 given a move is at least the value of the
game. Formally,

∀µ ∈ C,∀s1 ∈ S1, µ(s1 × S2) > 0 ⇒
∑

s2∈S2

µ(s2|s1)u1(s) ≥ v

(indeed,s1 is a best-response toµ(.|s1) and player 1 can guaranteev)
(ii) In any c.e.d. the average payoff for player 1 is the value of the game:

∀µ ∈ C, u1(µ) = v

(indeed,u1(µ) ≥ v by (1) and symmetricallyu2(µ) ≥ −v; butu2(µ) = −u1(µ))
(iii) In any c.e.d., the payoff of player 1 given a move is the value of the game.

Formally,

∀µ ∈ C,∀s1 ∈ S1, µ(s1 × S2) > 0 ⇒
∑

s2∈S2

µ(s2|s1)u1(s) = v

(use (i) and (ii))
(iv) For all µ in C and alls1 in S1, if µ(s1 × S2) > 0 thenσ2 = µ(.|s1) is an

optimal strategy of player 2.
(Otherwiseu1(s1, σ2) =

∑
s2∈S2

µ(s2|s1)u1(s) > v, sinces1 is a best response toσ2.
This contradicts (iii).)

(v) If a pure strategyt1 of player1 is coherent, then it is a best response to any
optimal strategy of player 2.
(If t1 is coherent there existsµ in C ands2 in S2 such thatµ(t1|s2) is positive. Assume
that there exists an optimal strategyσ2 of player2 to which t1 is not a best response.
By playing σ2 againstµ(.|s2), player 2 would get strictly more than−v. Therefore
µ(.|s2) is not an optimal strategy of player 1. This contradicts the analogous of (iv) for
player 2.)12

(vi) Let s1 ∈ S1, t1 ∈ Sc
1. Then, for allµ in C, hs1,t1(µ) = 0

(if µ(s1 × S2) = 0, this holds trivially; otherwiseµ(.|s1) is optimal by (v); so by (iv),
t1 is an alternative best response toµ(.|s1)).

It follows from (vi) and from the symmetric of (vi) for player 2 thatG is prebind-
ing.

The following example shows that the converse of proposition 6.1 is false. That
is, a two-player prebinding game need not be best-response equivalent to a zero-sum
game.

12(v) can also be proved directly by writing the maximization programm of player 1 and its dual. (v) then
appears as a complementary slackness property.
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Example 6.2 (Bernheim [5])

G =




0, 7 2, 5 7, 0
5, 2 3, 3 5, 2
7, 0 2, 5 0, 7




This game is not best-response equivalent to a zero-sum game.13 However,G has
a unique correlated equilibrium distribution (see [20, p.439] for a proof); hence, as a
particular case of example 3.8,G is prebinding.

We now show that, nevertheless, some of the main properties of two-player zero-
sum games extend to prebinding games. Noticeably, in two-player prebinding games,
the Nash equilibria are exchangeable and any correlated equilibrium payoff is a Nash
equilibrium payoff.

6.2 Equilibria of prebinding games

Let us first introduce some notations: we denote byNE the set of Nash equilibria of
G and byNEi the set of Nash equilibrium strategies of playeri. That is,

NEi = {σi ∈ ∆(Si), ∃σ−i ∈ ×j∈I−i∆(Sj), (σi, σ−i) ∈ NE}

Our first result is that:

Proposition 6.3 In a two-player prebinding game:

(a) NE1 andNE2 are convex polytopes.

(b) NE = NE1 ×NE2. That is, the Nash equilibria are exchangeable.

We first need a lemma:

Lemma 6.4 Let G be a two-player prebinding game and letσ1 ∈ ∆(S1) be a mixed
strategy of player1. The following assertions are equivalent:

(i) σ1 is a Nash equilibrium strategy. That is,σ1 ∈ NE1.

(ii) For some pure strategys2 of player2, σ1 is the conditional strategy of player 1
givens2 in some correlated equilibrium distribution. Formally,∃µ ∈ C,∃s2 ∈
S2, µ(s2 × S1) > 0 andσ1 = µ(.|s2).

13Indeed, assume by contradiction thatG is best-response equivalent to a zero-sum game. Exploiting the
symmetries of the game, it is possible to show thatG is also best-response equivalent to a zero-sum game
G′ with payoffs for player1: 0

@
−α −β α
β 0 β
α −β −α

1
A

for some real numbersα andβ. Furthermore, inG, the two first strategies of player1 are both best responses
to (1/5, 1/5, 3/5) and to(0, 2/3, 1/3). SinceG andG′ are best-response equivalent, this must also be the
case inG′. This impliesα = β = 0. Therefore, inG′, any strategy of player1 is a best-response to the first
strategy of player2. But this is not the case inG: a contradiction.
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(iii) Every pure strategy played inσ1 is coherent and all coherent strategies of player
2 are best responses toσ1.

(The symmetric results forσ2 in ∆(S2) hold obviously just as well.)

Proof. (i) trivially implies (ii) and (ii) implies (iii) by definition 3.5. So we only need
to prove that (iii) implies (i). Letσ1 check (iii) and letτ2 ∈ NE2. Necessarily, any
pure strategy played inτ2 is coherent. Since any coherent strategy of player2 is a best
response toσ1, τ2 is a best response toσ1. Similarly, by the analogous of(i) ⇒ (iii)
for player2, any coherent strategy of player 1 is a best response toτ2. Since all pure
strategies played inσ1 are coherent,σ1 is a best response toτ2. Grouping these results,
we get that(σ1, τ2) is a Nash equilibrium, henceσ1 ∈ NE1.

We now prove proposition 6.3: it follows from the proof of lemma 6.4 that if
σ1 ∈ NE1, then for anyτ2 ∈ NE2, (σ1, τ2) is a Nash equilibrium. This implies
that Nash equilibria are exchangeable (point (b)). Furthermore, from the equivalence
of (i) and (iii) it follows thatNE1 can be defined by a finite number of linear inequali-
ties. Therefore,NE1 is a polytope, and so isNE2 by symmetry (point (a)).

Our second result is that ifµ is a correlated equilibrium distribution, then the prod-
uct of its marginals is a Nash equilibrium. More precisely:

Proposition 6.5 Let µ be a correlated equilibrium distribution of a two-player pre-
binding game. Letσ1 ∈ ∆(S1) (resp. σ2 ∈ ∆(S2)) denote the marginal probability
distribution ofµ on S1 (resp. S2). That is,∀s1 ∈ S1, σ1(s1) = µ(s1 × S2). Let
σ = (σ1, σ2) so thatσ is the product of the marginals ofµ. We have:

(a) σ is a Nash equilibrium

(b) The average payoff of the players is the same inσ and inµ. That is,
∀i ∈ {1, 2}, ui(σ) = ui(µ).

Proof. First note thatσ2 may be written:

σ2 =
∑

s1∈S1:µ(s1×S2)>0

µ(s1 × S2)µ(.|s1) (10)

Proof of (a): assumeµ(s1 × S2) > 0; then by lemma 6.4µ(.|s1) ∈ NE2. There-
fore, by (10) and convexity ofNE2, σ2 ∈ NE2. Similarly, σ1 ∈ NE1, so that, by
proposition 6.3,σ ∈ NE.

Proof of (b): assumeµ(s1 × S2) > 0; thens1 is coherent and, by the analogous
for player2 of (ii) ⇒ (iii) in lemma 6.4, any coherent strategy of player 1 is a best
response toµ(.|s1). Sinceσ1 ∈ NE1, σ1 has support inSc

1, so that

u1(σ1, µ(.|s1)) = u1(s1, µ(.|s1)) (11)

Using successively (10), (11) and a straightforward computation, we get

u1(σ) =
∑

s1∈S1:µ(s1×S2)>0 µ(s1 × S2)u1(σ1, µ(.|s1))
=

∑
s1∈S1:µ(s1×S2)>0 µ(s1 × S2)u1(s1, µ(.|s1)) = u1(µ)
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Similarly, u2(σ) = u2(µ), completing the proof.

As mentioned in [8], if a two-player zero-sum game has a unique Nash equilibrium
σ thenC = {σ}. Similarly:

Corollary 6.6 A two-player prebinding game has a unique Nash equilibrium if and
only if it has a unique correlated equilibrium distribution.

Proof. Let G be a two-player prebinding game. Assume thatG has a unique Nash
equilibriumσ. Necessarily,σ is an extreme Nash equilibrium (in the sense of [7]). But
in two-player games, an extreme Nash equilibrium is an extreme point ofC [7]. There-
fore σ does not belong to the relative interior ofC. Therefore, by theorem 5.3,C is a
singleton. Conversely, ifC is a singleton,G has trivially a unique Nash equilibrium.

6.3 Equilibrium payoffs of prebinding games

Let NEP (resp.NEPi, CEP ) denote the set of Nash equilibrium payoffs (resp. Nash
equilibrium payoffs of playeri, correlated equilibrium payoffs). That is,

NEP = {g = (gi)i∈I ∈ RI /∃σ ∈ NE, ∀i ∈ I, ui(σ) = gi}

NEPi = {gi ∈ R /∃σ ∈ NE, ui(σ) = gi}
CEP = {g = (gi)i∈I ∈ RI /∃µ ∈ C, ∀i ∈ I, ui(µ) = gi}

Two-player games which are best-response equivalent to zero-sum games may have
an infinity of Nash equilibrium payoffs (for instance, see [23, example 5.20]). So pre-
binding games do not generally have a unique Nash equilibrium payoff. Nonetheless
some of the properties of equilibrium payoffs of zero-sum games are preserved. In
particular, proposition 6.3 and proposition 6.5 imply respectively that:

Corollary 6.7 In a two-player prebinding game,NEP1 and NEP2 are convex and
NEP = NEP1 ×NEP2

Corollary 6.8 In a two-player prebinding game,CEP = NEP

Thus, allowing for correlation is useless in two-player prebinding games, in the sense
that it cannot improve the payoffs of the players in equilibria. Furthermore:

Corollary 6.9 In a two-player prebinding game, any correlated equilibrium distribu-
tion payoff of playeri given his move is a Nash equilibrium payoff of playeri:

∀µ ∈ C, ∀i ∈ {1, 2}, ∀si ∈ Si, µ(si × S−i) > 0 ⇒
∑

s−i∈S−i

µ(s−i|si)ui(s) ∈ NEPi

Proof. For clarity we takei = 1. In (11), (σ1, µ(.|s1)) is a Nash equilibrium (by
lemma 6.4, proposition 6.5(a) and proposition 6.3). Therefore,u1(s1, µ(.|s1)) =∑

s2∈S2
µ(s2|s1)u1(s) ∈ NEP1.
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6.4 Discussion

(a) Several classes of non-zero sum games in which some of the properties of two-
player zero-sum games are still satisfied have been studied. Most are defined in either
of these three ways:

(i) by requiring some conflict in the preferences of the players over strategy profiles
(“Strictly competitive games” [1], [9], “Unilaterally competitive games” [15]);

(ii) by comparing the payoff structure inG and in some zero-sum game (“Strategi-
cally zero-sum games” [17], games “best-response equivalent” [21] or “order-equivalent”
[22] to a zero-sum game);

(iii) by comparing the Nash equilibria or Nash equilibrium payoffs ofG and of
some auxiliary game (“Almost strictly competitive games” [1] and several other classes
of games studied in [4]).

The definition of binding and prebinding games do not fall in these categories;
binding games however may be defined by comparing thecorrelated equilibriaof G
and of some auxiliary game. Indeed, let−G be the game with the same sets of players
and strategies thanG but in which all the payoffs are reversed:

−G = {I, (Si)i∈I , (−ui)i∈I}

We let the reader check thatG is binding if and only ifG and−G have the same
correlated equilibria.

(b) Lemma 6.4 implies that in two-player binding games, as in two-player zero-sum
games, the Nash equilibrium strategies of the players can be computed independently,
as solutions of linear programs that depend only on the payoffs of theother player.
In two-player prebinding games, the additional knowledge of the sets of individually
coherent strategies is required14.

(c) A wide range of dynamic procedures converge towards correlated equilibrium
distributions in all games (for instance generalized no-regret procedures [12], [13]). By
proposition 6.5, suitably modified versions of these dynamics converge towards Nash
equilibria in all two-player prebinding games.

(d) In 3-player binding games, Nash equilibria are not exchangeable (see [19, sec-
tion 6]). To my knowledge, whether the other properties of section 6 extend to n-player
games is open.

A Elements of Dual Reduction

We recall here some basic elements of dual reductions that are useful in the proofs (for
more details, see [18] and [23]).

(a) Leti ∈ I. Consider a mapping

αi : Si → ∆(Si)
si → αi ∗ si

14Indeed the1× 2 games( 0, 1 0, 0 ) and( 0, 0 0, 1 ) are both prebinding and in both games the
payoffs of player1 are the same. However, the Nash equilibrium strategies of player2 are not the same in
both games.
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That is,αi associates to every element ofSi a probability distribution overSi. This
mapping induces a Markov chain onSi. We denote bySi/αi a basis of the invariant
measures onSi for this Markov chain. A mixed strategyσi ∈ ∆(Si) is αi-invariant [in
the sense that

∀ti ∈ Si,
∑

si∈Si

σ(si) αi ∗ si(ti) = σi(ti) ]

if and only if σi ∈ ∆(Si/αi).
(b) Let α = (αi)i∈I be a a vector of mappingsαi : Si → ∆(Si). Theα-reduced

gameG/α is the game obtained fromG by restricting the players to theirα-invariant
strategies. That is,

G/α = {I, (Si/αi)i∈I , (ui)i∈I}
Let s ∈ S. Define:

g(α, s) =
∑

i∈I

[ui(αi ∗ si, s−i)− ui(s)] (12)

Myerson [18] definesα to be adual vectorif g(α, s) ≥ 0 for all s in S. A dual vector
is full if, for all (i, si, ti) in I × Si × Si, αi ∗ si(ti) is positive wheneverti jeopardizes
si. There exist full dual vectors. The set of dual vectors is convex and any positive
convex combination of a dual vector with a full dual vector is a full dual vector.A (full)
dual reduction ofG is anα-reduced gameG/α whereα is a (full) dual vector.(The
terminology is somewhat ambiguous as “dual reduction” may refer either to a reduced
game or to the reduction technique.)

(c) Let (i, si, ti) ∈ I × Si × Si. Generally (that is, whetherα is a dual vector or
not), if αi ∗ si(ti) is positive then, inG/α, si is either eliminated or grouped withti.
So, if α is a full dual vector: ifsi jeopardizesti, then inG/α, si is either eliminated
or grouped withti; if si andti jeopardize each other then inG/α, si andti are either
both eliminated or grouped together. Moreover, in full dual reductions, all incoherent
strategies are eliminated.

(d) Let α be a dual vector. A probability distributionµ over S/α = ×i∈ISi/αi

induces a probability distributioñµ overS:

µ̃(s) =
∑

σ∈S/α

µ(σ)σ(s)

If µ is a correlated (resp. Nash) equilibrium distribution ofG/α thenµ̃ is a correlated
(resp. Nash) equilibrium distribution ofG.
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mod̀eles de jeux ŕeṕet́es”, Ph’D thesis, Université Paris VI.
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