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Abstract. Using an explicit representation in terms of the logit
map we show, in a unilateral framework, that the time average of
the replicator dynamics is a perturbed solution, hence an asymp-
totic pseudo-trajectory of the best reply dynamics.

1. Presentation

The two prime examples of deterministic evolutionary game dynam-
ics are the replicator dynamics (RD) and the best response dynamics
(BRD). In the framework of a symmetric 2 person game with K ×K
payoff matrix A played within a single population, the replicator equa-
tion is given by

(1) ẋk
t = xk

t

(
ekAxt − xtAxt

)
, k ∈ K (RD)

with xk
t denoting the frequency of strategy k at time t. It was intro-

duced in [22] as the basic selection dynamics for the evolutionary games
of Maynard Smith [19], see [15] for a summary. The interpretation is
that in an infinite population of replicating players, the per capita
growth rate of the frequencies of pure strategies is linearly related to
their payoffs.

The best reply dynamics

(2) żt ∈ BR(zt)− zt, t ≥ 0 (BRD)

was introduced in [8] and studied further in [12], [15], [4]. Here BR(z)
denotes the set of all pure and mixed best replies to the strategy profile
z. The interpretation is that in an infinite population of players, in each
small time interval, a small fraction of players revises their strategies
and changes to a best reply against the present population distribution.
It is the prototype of a population model of rational (but myopic)
behaviour.

(BRD) is closely related to the fictitious play process introduced by
Brown [3]. In the framework of a bimatrix game and continuous time
this is given, for all t ≥ 0, by Xt = 1

t

∫ t

0 xsds, Yt = 1
t

∫ t

0 ysds such that
xt ∈ BR1(Yt), yt ∈ BR2(Xt). This implies that Zt = (Xt, Yt) satisfies

Date: June 2007.
1



2 JOSEF HOFBAUER, SYLVAIN SORIN AND YANNICK VIOSSAT

the continuous fictitious play equation

(3) Żt ∈
1

t
(BR(Zt)− Zt) , t > 0 (CFP )

which is equivalent to (BRD) via a change in time Zes = zs.

Despite the different interpretation and the different dynamic char-
acter there are amazing similarities in the long run behaviour of these
two dynamics, that have been summarized in the following heuristic
principle, see [7] and [12].

For many games, the long run behaviour (t →∞) of the time aver-
ages Xt = 1

t

∫ t

0 xsds of the trajectories xt of the replicator equation is
the same as for the BR trajectories.

In this paper we will provide a rigorous statement that largely ex-
plains this heuristics. We show that for any interior solution of (RD),
for every t ≥ 0, xt is an approximate best reply against Xt and the
approximation gets better as t → ∞. This implies that Xt is an as-
ymptotic pseudo trajectory of (BRD) and hence the limit set of Xt has
the same properties as a limit set of a true orbit of (BRD), i.e. it is
invariant and internally chain transitive under (BRD). The main tool
to prove this is via the logit map which is a canonical smoothing of
the best response correspondence. We show that xt equals the logit
approximation at Xt with error rate 1

t .

2. Unilateral processes

The model will be in the framework of an N -person game but we
consider the dynamics for one player, without hypotheses on the be-
havior of the others. Hence, from the point of view of this player, he
is facing a (measurable) vector outcome process U = {Ut, t ≥ 0}, with
values in the cube C = [−c, c]K where K is his action’s set and c is
some positive constant. Uk

t is the payoff at time t if k is the action
at that time. The cumulative vector outcome up to stage t is thus
St =

∫ t

0 Usds and its time average is denoted Ūt = 1
t St.

br denotes the (payoff based) best reply correspondence from C to the
simplex ∆ on K, defined by

br(U) = {x ∈ ∆; 〈x, U〉 = max
y∈∆

〈y, U〉}

The U -fictitious play process (FPP ) is defined on ∆ by

(4) Ẋt ∈
1

t
[br(Ūt)−Xt]

The U -replicator process (RP ) is specified by the following equation
on ∆:

(5) ẋk
t = xk

t [U
k
t − 〈xt, Ut〉], k ∈ K.
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Explicitely, in the framework of a N -player game with payoff for
player 1 defined by a function G from

∏
i∈N Ki to IR, with X i = ∆(Ki),

one has Uk
t = G(k, x−1

t ).
If all the players follow a (payoff based) fictitious play dynamics, each
time average strategy satisfies (4). For N = 2 this is (CFP ).
If all the players follow the replicator dynamics then (5) is the replicator
dynamics equation.

3. Logit rule and perturbed best reply

Define a map L from IRK to ∆ by

(6) Lk(V ) =
exp V k

∑
j exp V j

.

Given η > 0, let [br]η be the correspondence from C to ∆ with graph
being the η-neighborhood for the uniform norm of the graph of br.
The L map and the br correspondence are related as follows:

Proposition 3.1. For any U ∈ C and ε > 0

L(U/ε) ∈ [br]η(ε)(U)

with η(ε) → 0 as ε → 0.

Proof
Given η > 0, define the correspondence Dη from C to ∆ by

Dη(U) = {x ∈ ∆; (Uk + η < max
j∈K

U j ⇒ xk ≤ η),∀k ∈ K}.

and note that Dη ⊂ [br]η.
Let ε(η) satify

exp(−η/ε(η)) = η.

By definition of L, one has for all (j, k)

Lk(U/ε) =
exp((Uk − U j)/ε)

1 +
∑

# #=j exp((U # − U j)/ε)

and it follows that ε ≤ ε(η) implies

L(U/ε) ∈ Dη(U).

Define finally η(ε) to be the inverse function of ε to get the result.

Remarks
L is also given by

L(V ) = argmaxx∈∆{〈x, V 〉 −
∑

k

xk log xk}.
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Hence introducing the (payoff based) perturbed best reply brε from C
to ∆ defined by

brε(U) = argmaxx∈∆{〈x, U〉 − ε
∑

k

xk log xk}

one has
L(U/ε) = brε(U)

and the previous property also follows from Berge’s maximum theorem.
The map brε is the logit approximation.

4. Explicit representation of the replicator process

4.1. CEW. The following procedure has been introduced in discrete
time in the framework of on-line algorithms under the name ”multi-
plicative weight algorithm” ([5], [18]). We use here the name (CEW)
(continuous exponential weight) for the process defined, given U , by

xt = L(

∫ t

0

Usds).

4.2. Properties of CEW . The main property of (CEW) that will be
used is that it provides an explicit solution of (RD).

Proposition 4.1. (CEW ) satisfies (RP ).

Proof
Straightforward computations lead to

ẋk
t = xk

t U
k
t − xk

t

∑

j

U j
t exp

∫ t

0 U j
vdv

∑
j exp

∫ t

0 U j
vdv

which is
ẋk

t = xk
t [U

k
t − 〈xt, Ut〉]

hence gives the previous (RP) equation (5).
Note that (CEW) specifies the solution starting from the barycenter of
∆.
The link with the best reply correspondence is the following.

Proposition 4.2. CEW satisfies

xt ∈ [br]δ(t)(Ūt)

with δ(t) → 0 as t →∞.

Proof
Write

xt = L(

∫ t

0

Usds) = L(t Ūt)

= L(U/ε) ∈ [br]η(ε)(U)

with U = Ūt and ε = 1/t, by Proposition 3.1. Let δ(t) = η(1/t).
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4.3. Time average. We describe here the consequences for the time
average process.
Define

Xt =
1

t

∫ t

0

xsds

Proposition 4.3. If xt follows (CEW) then Xt satisfies

Ẋt ∈
1

t
([br]δ(t)(Ūt)−Xt)

with δ(t) → 0 as t →∞.

Proof
Since

Ẋt ∈
1

t
(xt −Xt)

the result follows from the previous section.

4.4. Initial conditions. The solution of (RP ) starting from x0 ∈
int ∆ is given by xt = L(U0 +

∫ t

0 Usds) with Uk
0 = log xk

0. The av-
erage process satisfies

(7) Ẋt ∈
1

t
([br]δ(t)(U0/t + Ūt)−Xt).

which can be written as

(8) Ẋt ∈
1

t
([br]α(t)(Ūt)−Xt).

with α(t) → 0 as t →∞.

5. Consequences for games

Consider a 2 person (bimatrix) game (A, B). If the game is symmet-
ric this gives rise to the single population replicator dynamics (RD)
and best reply dynamics (BRD) as defined in section 1. Otherwise, we
consider the two population replicator dynamics

(9) ẋk
t = xk

t

(
ekAyt − xtAyt

)
, k ∈ K1

ẏk
t = yk

t

(
xtBek − xtByt

)
, k ∈ K2

and the corresponding BR dynamics as in (3).
Let M be the state space (a simplex ∆ or a product of simplices

∆1 ×∆2).
We now use the previous results with the U process being defined by
Ut = Ayt for player 1, hence Ūt = AYt. Note that br(AY ) = BR1(Y ).

Proposition 5.1. The limit set of every replicator time average process
Xt starting from an initial point x0 ∈ int M is a closed subset of M
which is invariant and internally chain transitive (ICT) under (BRD).
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Proof
Equation (8) implies that Xt satisfies a perturbed version of (CFP)
hence Xet is a perturbed solution to the differential inclusion (BRD),
according to Definition II in Benaim et al [1]. Now apply Theorem 3.6
of that paper.

In particular this implies:

Proposition 5.2. Let A be the global attractor (i.e., the maximal in-
variant set) of (BRD). Then the limit set of every replicator time av-
erage process Xt is a subset of A.

Some consequences are:
If the time averages of an interior orbit of the replicator dynamics

converge then the limit is a Nash equilibrium. Indeed, by Proposition
5.1 the limit is a singleton invariant set of the (BRD), and hence a
Nash equilibrium. As a consequence one obtains: If an interior orbit of
the replicator dynamics converges then the limit is a Nash equilibrium.
(For a direct proof see [15, Theorem 7.2.1].)

For 2 person zero-sum games, the global attractor of (BR) equals
the (convex) set of NE (this is a strengthened version of Brown and
Robinson’s convergence result for fictitious play, due to [16]). There-
fore, by Proposition 5.2 the time averages of (RD) converge to the set
of NE as well. For a direct proof (in the special case when an interior
equilibrium exists) see [15]. Note that orbits of (RD) in general do
not converge, but oscillate around the set of NE, as in the matching
pennies game.

In potential games the only ICT sets of (BRD) are (connected subsets
of) components of NE, see [1, Theorem 5.5]. Hence, by Proposition 5.1
time averages of (RD) converge to such components. In fact, orbits of
(RD) themselves converge.

For games with a strictly dominated strategy, the global attractor
of (BRD) is contained in a face of M with no weight on this strategy.
Hence time averages of (RD) converge to this face, i.e., the strictly
dominated strategy is eliminated on the average. In fact, the frequency
of a strictly dominated strategy under (RD) vanishes, see [15, Theorem
8.3.2].

How do our general results compare with the examples in Gauners-
dorfer and Hofbauer [7]? In the rock–scissors–paper game with payoff

matrix A =




0 −b2 a3

a1 0 −b3

−b1 a2 0



, ai, bi > 0, there are two cases. If

a1a2a3 ≥ b1b2b3 then the NE x̂ is the global attractor of (BRD). Hence,
Proposition 5.2 implies that the time averages of (RD) converge to x̂ as
well. Note that in case of equality, a1a2a3 = b1b2b3 the orbits of (RD)
oscillate around x̂ and hence do not converge, only their time averages
do. If a1a2a3 < b1b2b3 then there are two ICT sets under (BRD), x̂
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and the Shapley triangle. Then Proposition 5.1 implies that time av-
erages of (RD) converge to one of these, whereas the limit set of all
non constant orbits is the boundary of M . However, our results do not
show that for most orbits, the time average converges to the Shapley
triangle. This still requires a more direct argument, as in [7].

If x̂ ∈ int M is the global attractor of (BRD), then time averages of
(RD) converge to x̂. In the literature on (RD) the following sufficient
condition for the convergence of its time averages is known: If the (RD)
is permanent, i.e., all interior orbits have their ω–limit set contained
in a compact set in int M , then the time averages of (RD) converge
to the unique interior equilibrium x̂. (See [15, Theorem 13.5.1].) It is
tempting to conjecture that, for generic payoff matrices A, permanence
of (RD) is equivalent to the property of (BRD) that its global attractor
equals the unique interior equilibrium.

6. External consistency

6.1. Definition. A procedure satisfies external consistency if for each
process U ∈ IRK , it produces a process xt ∈ ∆, such that for all k

∫ t

0

[Uk
s − 〈xs, Us〉]ds ≤ Ct = o(t)

This property says that the (expected) average payoff induced by xt

along the play is asymptotically not less than the payoff obtained by
any fixed choice k ∈ K, see [6].

6.2. CEW. We recall this result from [21], where the aim was to com-
pare discrete and continuous time procedures.

Proposition 6.1. (CEW) satifies external consistency.

Proof
Define Wt =

∑
exp Sk

t . Then

Ẇt =
∑

k

exp(Sk
t )Uk

t =
∑

k

Wt xk
t Uk

t = 〈xt, Ut〉Wt.

Hence

Wt = W0 exp(

∫ t

0

〈xs, Us〉ds).

Thus, Wt ≥ exp(Sk
t ) for every k, implies:
∫ t

0

〈xs, Us〉ds ≥
∫ t

0

Uk
s ds− log W0.
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6.3. RP. In fact a direct and more simple proof is available, see [13]:

Proposition 6.2. (RP ) satifies external consistency.

Proof
By integrating equation (5), one obtains, on the support of x0:

∫ t

0

[Uk
s − 〈xs, Us〉]ds =

∫ t

0

ẋk
s

xk
s

ds = log(
xk

t

xk
0

) ≤ − log xk
0.

Remark
The previous proof shows in fact more: for any accumulation point
x̄ of xt, one component x̄k will be positive hence the corresponding
asymptotic average difference in payoffs will be 0.
Back to a game framework this implies that if player 1 follows (RP )
the set of accumulation points of the empirical correlated distribution
process will belong to her reduced Hannan set, see [6], [9], [10]:

H̄1 = {θ ∈ ∆(S); G1(k, θ−1) ≤ G1(θ),∀k ∈ S1, with equality for one component}.

The example due to Viossat [23] of a game where the limit set for the
replicator dynamics is disjoint from the unique correlated equilibrium
shows that (RP ) does not satisfy internal consistency.

7. Comments

We can now compare several processes in the spirit of (payoff based)
fictitious play.
The original fictitious play process (I) is defined by

xt ∈ br(Ūt)

The corresponding time average satisfies (CFP ).
With a smooth best reply process (see [17]) one has (II)

xt = brε(Ūt)

and the corresponding time average satisfies a smooth fictitious play
process.
Finally the replicator process (III) satisfies

xt = br1/t(Ūt)

and the time average follows a time dependent perturbation of the fic-
titious play process.
While in (I), the process xt follows exactly the best reply correspon-
dence, the induced average Xt does not have good unilateral properties.
One the other hand for (II), Xt satisfies a weak form of external con-
sistency, with an error term α(ε) vanishing with ε ([6], [2]).
In contrast, (III) satisfies exact external consistency due to a both
smooth and time dependent approximation of br.
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