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Nash’s three proofs for the existence of equilibria in strategic games correspond to three dynamics: The best re-

sponse dynamics (equivalent to Brown’s fictitious play), the smoothed best response dynamics, and the Brown–von

Neumann–Nash dynamics. We prove that an equilibrium which is evolutionarily stable as defined by Maynard

Smith is (globally) asymptotically stable for each of these three dynamics.
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1. Introduction

When Maynard Smith and Price invented the con-

cept of an evolutionarily stable strategy in 1973,

they most likely did not envisage the big success and

that they would create an entire new field: evolution-

ary game theory. Because of its simplicity and wide

applicability this purely phenotypical concept has

been adopted by many theoretical biologists in

studying evolutionary phenomena. A look into jour-

nals like JTB or Selection shows how much this con-

cept has penetrated evolutionary theory. Moreover it

has turned out that in more sophisticated models, an

equilibrium satisfying the ESS conditions often re-

mains stable in some sense. For example, in the stan-

dard dynamic model for haploids, the replicator dy-

namics, an ESS is asymptotically stable. Similar

results due to Maynard Smith, Lessard, Weissing,

Cressman and others show this also for genetic mod-

els for diploids. I refer here only to Hofbauer and

Sigmund (1998) for a review of the present state of

art in this area.

In this paper I establish a link back to the origins

of (noncooperative) game theory: In fact, the re-

plicator dynamics written down by Taylor and Jon-

ker in 1978 was not the first game dynamics. The

first dynamic models were created around 1950 by

G. W. Brown as devices for computing the equilib-

rium strategies in zero-sum games. In the modern

view of evolutionary game theory which comprises

both biological and economic ideas, these early dy-

namics are used as population (or learning) models

of agents who behave more rationally than biologi-

cal replicators or imitators.

In this paper we show that Maynard Smith’s ESS

notion helps also towards understanding these early

dynamics for general, non-zero-sum games. We

prove that an ESS is asymptotically stable also for

these first dynamic models due to Brown and other

economically motivated dynamics.

The paper is structured as follows: We reexamine

the three proofs which Nash gave for the existence

of equilibria (section 2) and explain how they relate

to the game dynamics introduced by Brown, von

Neumann, and Fudenberg and Levine (section 3).

Section 4 contains the main results of this paper: the

(global) stability of ESS. In section 5 analogs of

Fisher’s fundamental theorem (increase of mean

payoff) are given. We conclude with more general

dynamics.
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2. Nash equilibria

We restrict to finite symmetric 2 person games.

Such a game is described by an n × n payoff matrix A

= (a
ij
). The real number a

ij
denotes the payoff which

strategy i receives when playing against j. We as-

sume that there is a large population of players, each

committed (for some time) to one of the pure strate-

gies. Let x
i
= x

i
(t) ≥ 0 be the frequency of strategy i

in the population at time t.

The probability simplex ∆ ⊂ Rn (of dimension

n – 1) is then the set of all possible population pro-

files x = (x1, ..., x
n
) (with x

i
≥ 0 and x ii

n =
=∑ 1

1
) which

correspond to the mixed strategies in classical game

theory.1

A point ] ∈∆ is a (Nash) equilibrium (point) if

] ⋅A ] ≥ x ⋅ A] ∀ x ∈∆ (1)

or equivalently

] ⋅A ] ≥ (A])i ∀ i.

Another equivalent condition is

] ⋅A ] = (A])i ∀ i with ]i > 0 and

] ⋅A ] ≥ (A])i ∀ i with ]i = 0. (2)

The existence of such points is not obvious and

was proved by Nash (in the more general context of

finite N person games). Actually he gave three dif-

ferent proofs in (Nash, 1950a, b, 1951).

Theorem 2.1 (Nash 1950/1951): Every game has at

least one equilibrium point.

2.1. The first proof

Nash’s brief note in PNAS 1950 introduces the no-

tion of noncooperative N-person games, the concept

of equilibrium and the following existence proof.

The definition (1) means that ] is best reply to itself.

Hence, if we denote by

BR x y Ax
y

( ) max= ⋅ =
∈∆

arg

= ∈ ⋅ = ⋅







⊆
∈

y y Ax z Ax
z

∆ ∆
∆

: max (3)

the set of all (mixed) best responses to x (which

forms a subsimplex of ∆) then (1) is equivalent to

] ∈ BR(]). (4)

The existence of such an ] follows now directly

from Kakutani’s (1941) fixed point theorem for set-

valued maps.2

2.2. Second proof

In his unpublished thesis Nash (1950b) essentially

considers a family of continuous functions bε ε( )>0

with

1. each bε is a continuous map from ∆ into ∆ and

2. for each x ∈ ∆ , all limit points of bε(y), as ε → 0

and y → x, are contained in BR(x).

By Brouwer’s fixed point theorem each of these

approximate best response maps has a fixed point ]ε

in ∆ : bε(]ε) = ]ε. Taking an accumulation point ] of

these ]ε, as ε → 0, ] ∈ BR ( ]) follows from the sec-

ond property above.

Actually Nash (1950b), see also Leonard (1994,

p. 500, footnote 18), considers the particular family

(or rather the sequence with ε = 1/n)

b x
c x

c x
i

i

kk

ε ( )
( )

( )
=
∑

with

c x Ax Axi i
k

k( ) [( ) max( ) ] ,= − + +ε (5)

where u
+

= max (u, 0) denotes the positive part. Only

strategies which lose at most ε compared to the max-

imal payoff are used in this approximate best re-

sponse.
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1 Besides the conception of ESS there are two features

in Maynard Smith’s EGT that distinguish it from the classical

game theoretic literature say up to 1990: The emphasis of sym-

metric games and the view of a whole population of agents play-

ing the same game. It came as a big surprise when Leonard

(1994) pointed to the last chapter in Nash’s thesis (1950b) which

was not included in the final publication from 1951 where such a

population interpretation (mass action interpretation) is given:

equilibria are simply equilibria (= stationary points) of the BR

dynamics. Also symmetric games are emphasised in Nash

(1950b, 1951).
2 Nash (1950a) thanks ‘David Gale for suggesting the

use of Kakutani’s theorem to simplify the proof’. It may be in-

teresting to note that Kakutani’s motivation was to give a sim-

pler proof of the minimax theorem, i.e. the existence of equilib-

ria in zero-sum games.



More interesting and even smooth versions of

such perturbed best-response maps are obtained by

regularizing the optimization problem (3) which de-

fines Nash equilibria: Consider the modified payoff

function

F z x z Ax v z( , ) ( )= ⋅ +ε (6)

where v is a strictly concave function. More pre-

cisely we require that v: int ∆ → R is twice differen-

tiable, the second derivative v”(x) is negative defi-

nite for each x in the interior of ∆ and |v′(x)| → ∞ as x

approaches the boundary of ∆. Typical examples are

v z z i

i

( ) log=∑ (7)

and

v z z zi i( ) log .= −∑ (8)

The latter choice has the advantage that the

maximizer

b x F z x
z

ε ( ) arg max ( , )=
∈∆

(9)

can be explicitly computed as

b x

Ax

Ax

i

i

jj

ε
ε

ε

( )

exp ( )

exp ( )

=















∑

1

1
(10)

In any case the assumptions on v imply that the

maximizer bε(x) in (9) is unique, depends smoothly

on x and ε, and approaches BR(x) as ε → 0. This ele-

gant modification of Nash’s (1950b) ansatz arose re-

cently from a stochastic learning model for games,

see Fudenberg and Levine (1998, chs 4 and 8).

2.3. Third proof

Nash’s final proof from the Annals of Mathematics

(1951) is much more streamlined and is reproduced

in many texts on game theory, e.g. Owen (1982). It

simply applies Brouwer’s fixed point theorem to the

continuous map f : ∆ → ∆ defined by

f x
x k x

k x
i

i i

jj

n
( )

( )

( )
= +

+
=∑1

1

(11)

where

k x Ax x Axi i( ) [( ) ]= − ⋅ + (12)

and u
+

= max (u, 0). This map is similar to Nash’s

perturbed BR map (5) but now all strategies doing

better than average are considered. It is easy to see

that ] is a fixed point of f if and only if ki(]) = 0 for

all i, i.e. ] is an equilibrium of the game.

3. Dynamics

Summarizing, these three proofs correspond to three

maps on ∆:

1. the (multivalued) BR map x → BR(x);

2. the perturbed BR maps x → bε(x);

3. the map x → f(x).

Iterating these maps leads to dynamical systems

on ∆ in discrete time. Now continuous time dynam-

ics usually behave more reasonably.3 Hence we con-

sider the differential equations corresponding to the

above three maps.

1. The best response dynamics (BR)

ô ∈ BR(x) – x; (13)

2. the perturbed (or smoothed) BR dynamics

(BRε)

ô = bε(x) – x; (14)

3. the BNN dynamics

ôi = k x x k xi i j

j

n

( ) ( ).−
=
∑

1

(15)

While the second of these, (14), with bε defined

by (9), was introduced rather recently, see Fuden-

berg and Levine (1998, ch. 4), the other two, (13)

and (15) go back to George W. Brown, the pioneer

of game dynamics. (15) appears in Brown and von
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3 The BR map leads to a somewhat trivial dynamical be-

haviour: for generic games and generic initial conditions, an or-

bit either becomes fixed on a pure strategy equilibrium or cycles

ultimately between finitely many pure strategies. The perturbed

BR maps will behave similarly for small ε. On the other hand,

the Nash map (11) can lead to chaotic dynamics even for 2 strat-

egies.



Neumann (1950)4 for symmetric zero-sum games

for which k
i
(x)= [(Ax)

i
]

+
. They show convergence to

equilibrium for these games. In this dynamics the

proportions of the pure strategies that are below av-

erage decrease at the same rate. Only strategies do-

ing better than average can increase. The right-hand

side of (15) is not smooth but still Lipschitz continu-

ous. Hence the differential equation (15) has a

unique solution to each initial condition.

The best response dynamics (BR) was formu-

lated in the above form by Gilboa and Matsui

(1991): In a very large population, in each small

time interval a few players revise their strategy and

switch to a best reply against the current population

profile x. These players are rational, but myopic:

they do not anticipate the results of their actions.

With a different interpretation as a learning process,

but in a mathematically equivalent form, the best re-

sponse dynamics was already introduced as ficti-

tious play by Brown (1949, 1951).

Due to the discontinuity or possible multivalued-

ness of BR(x), (13) is actually a differential inclu-

sion. Existence of solutions (these are Lipschitz

functions x(t) satisfying the inclusion (13) for almost

all times t) follows from the general theory. On the

other hand, one can explicitly construct piecewise

linear solutions (in a not necessarily unique way)

through each initial condition. It is shown in Hof-

bauer (1995), that it is sufficient to consider these

piecewise linear solutions.

One of the attractive features of the smoothed

best response map (9) is that because of our assump-

tions on v, bε is a smooth function of x and hence

(14) has unique solutions, in contrast to the discon-

tinuous differential equation (BR).

4. Evolutionarily stable strategies

According to the definition of Maynard Smith and

Price (1973) and Maynard Smith (1982), a mixed

strategy ] is an evolutionarily stable strategy (ESS)

if

(i) x⋅A] ≤ ] ⋅ A] ∀ x ∈∆ , and

(ii) x⋅Ax ≤ ]⋅Ax if there is equality in (i).

The first condition (i) is simply Nash’s definition (1)

for an equilibrium. It is well known that ] is an ESS,

iff ] · Ax > x · Ax holds for all x ≠ ] in a neighbour-

hood of ], see Hofbauer and Sigmund (1998), May-

nard Smith (1982), or Weibull (1995). For an inte-

rior equilibrium ], the equilibrium condition ] · A]
= x ⋅ A] for all x ∈ ∆ together with (ii) implies ( ] – x)

⋅ A (x – ]) > 0 for all x and hence

ξ ξ ξ ξ ξ⋅ < ∀ ∈ = ∈ =







∑A n n

i

i

0 00R R :

with ξ ≠ 0. (16)

The condition (16) says that the mean payoff x · Ax is

a strictly concave function on ∆. Conversely, games

satisfying (16) have a unique ESS (possibly on the

boundary) which is also the unique Nash equilib-

rium of the game, see Hofbauer and Sigmund (1998,

p. 72). The slightly weaker condition

ξ⋅Aξ ≤ 0 ∀ξ∈ R0

n (17)

includes also the limit case of zero-sum games and

games with an interior equilibrium that is a neutrally

stable strategy (i.e., equality is allowed in (ii)) as de-

fined by Maynard Smith (1982), see also Weibull

(1995). Games satisfying (17) need no longer have a

unique equilibrium, but the set of equilibria is still a

nonempty convex subset of ∆.

4.1. The best reply dynamics

Theorem 4.1 Consider a game with (17). Then the

convex set of its equilibria is globally asymptotically

stable for the best-response dynamics (13). In par-

ticular, if ] is an interior ESS then ] is globally

asymptotically stable for (13). Moreover all (piece-

wise linear) paths reach ] in finite time.

Proof. Consider the convex function

V x Ax x Ax
i

i( ) max( )= − ⋅ (18)

which satisfies V(x) ≥ 0, and V(x) = 0 if and only if x

is a Nash equilibrium. Hence the set of equilibria is

convex. Along a linear piece ô = b – x of a solution

of (13), one has V = (b – x) · Ax and
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4 Nash submitted his paper (1951) in October 1950, af-

ter spending the summer at RAND, see Leonard (1994, p. 499,

footnote 17). Brown worked at RAND from 1948 to 1952. It

seems not impossible that Nash’s third proof was inspired by the

Brown–von Neumann paper.



V = –ô · Ax + (b – x) · Aô =

= – (b – x) · Ax + (b – x) · A(b – x). (19)

Since the second term is nonpositive due to (17)

we get V ≤ –V ≤ 0. This shows the global asymptotic

stability of the equilibrium set {V = 0}. If ] is an in-

terior ESS then the second term in (19) is negative

and even bounded away from 0 since b is on the

boundary of ∆ unless x = ]. Hence V(x(t)) decreases

strictly and reaches the value 0 in finite time. @

Actually more can be shown, see Hofbauer

(1995): If (16) holds, then there is a unique solution

to (13) through each initial value. If ] is an ESS on

the boundary of ∆ then it is locally asymptotically

stable for (13). The ESS assumption can be consid-

erably relaxed. Moreover, these local and global sta-

bility assertions hold also for Brown’s discrete ficti-

tious play process.

As a special case we recover a version of Brown’s

(1951) result: For a symmetric zero-sum game, all

solutions of (13) converge to the set of equilibria.

4.2. The smoothed BR dynamics

We start with a simple lemma which shows that the

directional derivative of the modified payoff func-

tion F(z, x) at z = x pointing towards z = bε(x) is posi-

tive at every x (with the obvious exception of an

ε-equilibrium where bε(x) = x). (∂1 denotes the deriv-

ative with respect to the first variable.)

Lemma

∂ ε1 0F x x b x x( , )( ( ) ) ,− ≥

with equality only when be(x) = x.

Proof. Since ∂1F(bε(x), x) = 0 from (9), the claim is

equivalent to

( ( ( ), ) ( , )) ( ( ) ) .∂ ∂ε ε1 1 0F b x x F x x b x x− − ≤

This follows easily from the fact that F(⋅, x) is a

strictly concave function on int ∆ in its first variable.

Theorem 4.2 Let the game satisfy (17). Then there

is a unique e-equilibrium ]e which is globally

asymptotically stable for the smoothed BR dynamics

(14). In particular, an interior ESS ] generates glob-

ally asymptotically stable equilibria ]e of (14) that

approach ] as e ® 0.

Proof. Consider the function

V x F b x x F x x F z x F x x
z

( ) ( ( ), ) ( , ) max ( , ) ( , )= − = −
∈ε ∆

which is nonnegative by definiton of bε and vanishes

precisely at points x ∈ ∆ with bε(x) = x, i.e. the rest

points of (14). Moreover, V is strictly convex and

hence attains its minimum value 0 at a unique such

point. Then

V =∂ ∂ ∂ε ε ε1 1 2F b x F x x F b x( , ) ( , ) ( , )ß ô ô− + −

−∂ 2F x x( , ) .ô

The first expression vanishes, since ∂1F(bε(x),x)

= 0 by definition (9) of bε(x), the second term is

taken care of by the Lemma, and the last two terms

simplify to (bε – x) ⋅ Aô = ô ⋅ Aô which is nonpositive

thanks to the negative semidefiniteness assumption

(17). Hence V ≤ 0 with equality only at the unique

ε-equilibrium, and V is a global Lyapunov function.

The convergence of ]ε → ] as ε → 0 follows from

the closed graph of the BR-correspondence, see sec-

tion 2.2. @

The local stability of interior ESS was already

shown by Hopkins (1999). From his elegant expres-

sion for the linearization of (14), j
·

=
1

ε
ξ ξC A(] ) − ,

with C a symmetric positive definite matrix depend-

ing on v, one can easily derive the following con-

verse result: If an (isolated) interior equilibrium ]
generates nearby (locally asymptotically) stable

ε-equilibria ]ε after small perturbation with all ad-

missable choices of v then A satisfies the negative

semidefiniteness condition (17). Hence ] is a neu-

trally stable strategy, i.e. ‘almost’ an ESS.

4.3. The Brown–von Neumann–Nash dynamics

Theorem 4.3 For every game with (17) the set of its

equilibria is globally asymptotically stable for (15).

In particular, an interior ESS is globally asymptoti-

cally stable for (15).

Proof. Let us first compute the derivative of k
i
. If

k
i
(x) > 0 then

EQUILIBRIA, DYNAMICS AND ESS 85



„i = (A x A Axiô) ô ô− ⋅ − ⋅

= k A q x x A q x q x Axi[( ( )) ( ) ( ) ]− − ⋅ − − − ⋅

with k kii
=∑ and q k ki i= / . Consider now the con-

vex function V =
1

2

2k xii
( )∑ . Then

V „ „= = ∑∑ k k qi i i i

ii

= ⋅ − − ⋅ − − − ⋅k q A q x x A q x q x Ax2 [ ( ) ( ) ( ) ]

= − ⋅ − − ⋅k q x A q x k Ax2 ( ) ( ) .ô (20)

The first term is nonpositive due to (17), and the

second term is nonnegative because of

ô ⋅ = − ⋅ =∑Ax k Ax kx Axi i

i

( )

= − ⋅ = ≥∑∑ k Ax x Ax ki i i

ii

[( ) ] .2 0 (21)

Hence V(x) < 0 for all x outside the equilibrium set,

and V is a global Lyapunov function. @

This theorem contains also the classical result of

Brown and von Neumann (1950) as special case:

For a zero-sum game A = –AT, the set of equilibria is

globally asymptotically stable for (15).

For ESS on the boundary, local stability can be

shown at least under an additional regularity as-

sumption. I refer to Berger and Hofbauer (1998) for

this and many other results on the Brown–von Neu-

mann–Nash dynamics.

5. Fisher’s fundamental theorem

We consider now games with a symmetric payoff

matrix A = AT (a
ij

= a
ji

for all i, j). Such games are

known as partnership games and potential games.

The basic population genetic model of Fisher is

equivalent to the replicator dynamics for such

games, which is then a gradient system with respect

to the Shahshahani metric and the mean payoff as

potential, see e.g. Hofbauer and Sigmund (1998).

The resulting increase of mean fitness or mean pay-

off x · Ax in time is often referred to as the fundamen-

tal theorem of natural selection. This statement

about the replicator dynamics generalizes to the dy-

namics considered in this paper.

The generalization is based on the concept, de-

fined by Swinkels (1993), of a (myopic) adjustment

dynamics which satisfies ô ⋅Ax ≥ 0 for all x ∈ ∆ , with

equality only at equilibria. If A = AT then the mean

payoff x · Ax is increasing for every adjustment dy-

namics since (x · Ax)· = 2 ô ⋅ Ax ≥ 0. It is obvious that

the best-response dynamics (13) is an adjustment

dynamics and, as shown in (21), (15) is as well (see

(27) below for its generalization to (23)). As a con-

sequence, we obtain the following result.

Theorem 5.1 For every potential game A = AT, ev-

ery trajectory of every adjustment dynamics (in par-

ticular (13), (15) and (23)) converges to (a con-

nected set of) equilibria.

For the perturbed BR dynamics there is the follow-

ing modification, thanks to the lemma in section

4.2.

Theorem 5.2 For every potential game, the func-

tion P(x) = ½ x × Ax + e v(x) increases monotonically

along solutions of (14) and hence every solution

converges to (a connected set) of e-equilibria.

Proof.

P
·
= ô ô ô⋅ + ′ = ≥Ax v x F x xε ∂( ) ( , )1 0

according to the Lemma, with equality only at

ε-equilibria. @

6. Generalized “Brownian motion”

Let f: R+ → R+ be a continuous function with

f ( )0 0= and f u( ) >0 for u > 0. (22)

Then, recalling the definiton (12) of k
i
(x), we con-

sider the dynamics

ô i i i j

j

n

f k x f k= −
=
∑( ) ( )

1

. (23)

Theorem 6.1 For a game with (17), the set of equi-

libria is globally asymptotically stable for (23). In

particular, an interior ESS is globally asymptoti-

cally stable for (23).
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Proof. Consider the function

V x F k xi

i

( ) ( ( ))=∑ (24)

where F denotes an antiderivative of f, i.e. F′ = f.

Using the abbreviations f f kii
=∑ ( ) and f

~
i = f(ki)/ f ,

we have (whenever k
i
(x) > 0)

„ j ji if e x A x x Ax= − ⋅ − − − ⋅[( ) ( ) ( ) ]

and

V „ „ j „= ′ = =∑ ∑∑F k f k f
i i i i i iii

( ) ( ) (25)

= f 2 [(f
~
– x) · A(f

~
– x) – (f

~
– x) ·Ax] =

= ô · Aô – f ô·Ax (26)

which is negative as in the proof of Theorem 4.3. For

the second term observe

ô ⋅ = − ⋅ =∑Ax f k Ax fx Axi i

i

( )( )

= − ⋅ =∑ f k Ax x Axi i

i

( )[( ) ]

= ≥∑ f k ki i

i

( ) 0 (27)

because of (22). Equality holds iff k
i
= 0 for all i, i.e.,

if x is a Nash equilibrium. @

An important special case of (22) is f(u) = uα

where α > 0, see Weibull (1994). For α = 1, i.e. f(u)

= u we recover the BNN dynamics (15) and in the

limit α → ∞ (23) tends (after normalization) to the

BR dynamics. Hence (23) is a joint generalization of

the two dynamics introduced by G. W. Brown. We

note that the Lyapunov function (24) reduces to

V kii
=

+
+∑1

1

1

α
α for f u u( ) = α and converges in the

limit α → ∞ (after normalization) to V(x) = max
i

k
i
(x) = max

i
(Ax)

i
– x · Ax. So it recovers the two Lya-

punov functions used for the proofs of Theorem 4.1

and 4.3.

7. Conclusion

Two families of game dynamics have been pre-

sented for which interior ESS are globally asymp-

totically stable: the family (23) which includes the

Brown–von Neumann–Nash dynamics as the sim-

plest special case, and the perturbed BR dynamics

(14). Both contain the BR dynamics (Brown’s ficti-

tious play) as limit case. Both families are large, in-

finite dimensional in fact, as an arbitrary function (f

in the first case, v in the second case) can be chosen.

The replicator dynamics (together with a few of its

relatives) is the only other dynamics known so far to

enjoy this fundamental property that an interior ESS

is globally asymptotically stable. The global stabil-

ity results presented here are even stronger than

those for the replicator dynamics, as they hold under

the weaker assumption of (17). In particular they in-

clude the limit case of zero-sum games for which the

replicator dynamics yields only neutral stability for

interior equilibria.

Apparently Maynard Smith’s ESS concept has to

offer as much to these rationalistic game dynamics

originating in Brown’s and Nash’s work as to the

evolutionary dynamics of replicators.

References

BERGER, U. and HOFBAUER, J. (1998): The Nash Dynamics.

Preprint.

BROWN, G. W. (1949): Some notes on computation of games

solutions. RAND Report P-78.

BROWN, G. W. (1951): Iterative solution of games by fictitious

play. In Activity Analysis of Production and Allocation.

Wiley, New York, pp. 374–376.

BROWN, G. W. and VON NEUMANN, J. (1950): Solutions of

games by differential equations. Ann. Math. Studies 24:

73–79.

CRESSMAN, R. (1997): Local stability of smooth selection dy-

namics for normal form games. Math. Social Sciences

34:1–19.

FUDENBERG, D. and LEVINE, D. K. (1998): The Theory of

Learning in Games. MIT Press.

GILBOA, I. and MATSUI, A. (1991): Social stability and equilib-

rium. Econometrica 59:859–867.

HOFBAUER, J. (1995): Stability for the Best Response Dynam-

ics. Preprint.

HOFBAUER, J. and SIGMUND, K. (1998): Evolutionary Games

and Population Dynamics. Cambridge University Press.

HOPKINS, E. (1999): A note on best response dynamics. Games

Econ. Behav. 29:138–150.

KAKUTANI, S. (1941): A generalization of Brouwer’s fixed

point theorem. Duke J. Math. 8:457–459.

LEONARD, R. J. (1994): Reading Cournot, reading Nash: The

creation and stabilisation of the Nash equilibrium. The Eco-

nomic Journal 104:492–511.

MAYNARD SMITH, J. (1982): Evolution and the Theory of

Games. Cambridge University Press.

MAYNARD SMITH, J. and PRICE, G. (1973): The logic of animal

conflicts. Nature 246:15–18.

EQUILIBRIA, DYNAMICS AND ESS 87



NASH, J. (1950a): Equilibrium points in N-person games. Proc.

Natl. Ac. Sci. 36:48–49.

NASH, J. (1950b): Non-cooperative Games. Dissertation, Prin-

ceton University, Dept. Mathematics.

NASH, J. (1951): Non-cooperative games. Ann. Math. 54:

287–295.

[NASH, J.] The Work of John Nash in Game Theory. Nobel

Seminar Dec 8, 1994. J. Econ. Theory 69 (1996):153–185.

OWEN, G. (1982): Game Theory. 2nd ed. Academic Press, Or-

lando.

SWINKELS, J. M. (1993): Adjustment dynamics and rational

play in games. Games Econom. Behav. 5:455–484.

WEIBULL, J. W. (1994): The Mass-action Interpretation of

Nash Equilibrium. Preprint, Stockholm. Revised 1995.

Partly published in J. Econ. Theory 69 (1996).

WEIBULL, J. W. (1995): EvolutionaryGameTheory.MITPress.

88 J. HOFBAUER


