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Abstract

We study the structure of the set of equilibrium payoffs in fi-
nite games, both for Nash equilibrium and correlated equilibrium.
A nonempty subset of R2 is shown to be the set of Nash equilibrium
payoffs of a bimatrix game if and only if it is a finite union of rect-
angles. Furthermore, we show that for any nonempty finite union of
rectangles U and any polytope P ⊂ R2 containing U , there exists a
bimatrix game with U as set of Nash equilibrium payoffs and P as
set of correlated equilibrium payoffs. The n-player case and the ro-
bustness of this result to perturbation of the payoff matrices are also
studied.
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1 Introduction

It is well known that the set of correlated equilibrium payoffs of a n-player

finite game is a polytope in Rn (Aumann, 1974). We show that, conversely,

any polytope in Rn is the set of correlated equilibrium payoffs of a n-player

game. Moreover, for any n-player game G and any polytope P in Rn con-

taining the correlated equilibrium payoffs of G, there exists a n-player game

with the same set of Nash equilibrium payoffs as G and P as set of correlated

equilibrium payoffs. If G is a two-player game, it suffices to assume that P

contains the Nash equilibrium payoffs of G (but not necessarily its correlated

equilibrium payoffs). We also show that a subset of R2 is the set of Nash

equilibrium payoffs of a finite game if and only if it is a finite union of rectan-

gles. Together with the previous result, this implies that: for any nonempty

finite union of rectangles U and any polytope P containing U , there exists

a bimatrix game with U as set of Nash equilibrium payoffs and P as set of

correlated equilibrium payoffs.

Finally, we study the robustness of our results to perturbation of the

payoff matrices. Since almost all games have a finite set of equilibria, all

we can hope to show is that, for any finite set U in Rn and any polytope

P in Rn containing U , there exists an open set of games whose set of Nash

equilibrium payoffs is arbitrarily close to U and whose set of correlated equi-

librium payoffs is arbitrarily close to P . We show that this is indeed the case.

Notations and definitions: throughout, n denotes an integer weakly greater

than 2. Let G be a n-player game with pure strategy set Si and payoff func-

tion ui : S := ×1≤i≤nSi → R for player i. Let S−i := ×j #=iSj. A correlated

equilibrium of G (Aumann, 1974) is a probability distribution µ on the set

of strategy profiles S of G such that, for every player i in {1, .., n} and every

pure strategy si in Si:

∀ti ∈ Si,
∑

s−i∈S−i

µ(si, s−i)[ui(si, s−i) − ui(ti, s−i)] ≥ 0 (1)

The set of correlated equilibria of G is a polytope, which contains the Nash

equilibria. An extreme correlated equilibrium is an extreme point of this
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polytope.

Let ui(µ) :=
∑

s∈S µ(s)ui(s) denote the average payoff of player i in the

correlated equilibrium µ. The set of correlated equilibrium payoffs of G is

the set of n-tuples (u1(µ), ..., un(µ)) where µ is a correlated equilibrium of

G. This is a polytope in Rn. It is denoted by CEP (G). Similarly, NEP (G)

denotes the set of Nash equilibrium payoffs of G, and we may write NE

and CE for “Nash equilibrium” and “correlated equilibrium”, respectively.

Finally, if A is a subset of Rn then Conv(A) denotes its convex hull.

2 Main results

We begin with a result on correlated equilibria:

Proposition 1 For any polytope P in Rn, there exists a n-player game

whose set of correlated equilibrium payoffs (resp. convex hull of the set of

Nash equilibrium payoffs) is P .

Proof. We prove the result for two-player games; see the appendix for the

n-player case. Let P be a polytope in R2. Let (x1, y1),...,(xm, ym) be its

extreme points. Assume that for every i in {1, 2, .., m}, xi and yi are strictly

positive. This is without loss of generality, since adding a constant to all

payoffs of a game does not change the set of Nash equilibria and correlated

equilibria. Consider the m×m game with payoff matrix (aij , bij)1≤i,j≤m such

that, for every i in {1, 2, ..., m}, aii = ami = xi, bii = bim = yi, and all other

payoffs are zero. For m = 4 this gives :





x1, y1 0, 0 0, 0 0, y1

0, 0 x2, y2 0, 0 0, y2

0, 0 0, 0 x3, y3 0, y3

x1, 0 x2, 0 x3, 0 x4, y4




(2)

Clearly, any diagonal square corresponds to a pure Nash equilibrium. Fur-

thermore, choosing the last row (column) is a weakly dominant strategy for

the row (column) player, and it gives a strictly higher payoff than choosing
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row (column) i '= m whenever the column (row) player does not choose col-

umn (row) i. It follows that in every correlated equilibrium, the probability

of every off-diagonal square is zero, hence there are no other Nash equilibria

or extreme correlated equilibria than the diagonal squares. Therefore, the

convex hull of the set of Nash equilibrium payoffs coincides with the set of

correlated equilibrium payoffs and is equal to P .

To state our next result, we first need a definition: let us say that a subset

of R2 is a rectangle if it is of the form [a, b]× [c, d], for some real numbers a,

b, c, d, with a ≤ b, c ≤ d.

Proposition 2 In any bimatrix game, the set of Nash equilibrium payoffs

is a finite union of rectangles. Conversely, for any nonempty finite union

of rectangles U , there exists a bimatrix game whose set of Nash equilibrium

payoffs is U . Moreover, for any bimatrix game G, there exists a bimatrix

game G′ with NEP (G′) = NEP (G) and CEP (G′) = Conv(NEP (G)).

Proof. Consider a bimatrix game with pure strategy set I for player 1 and

J for player 2. Let NEP ⊂ R2 denote its set of Nash equilibrium payoffs.

For any subsets I ′ of I and J ′ of J , let NEP (I ′, J ′) denote the set of payoffs

of Nash equilibria with support I ′×J ′. For any subset A of R2, let Ā denote

the closure of A. We have

NEP =
⋃

I′⊂I,J ′⊂J

NEP (I ′, J ′) =
⋃

I′⊂I,J ′⊂J

NEP (I ′, J ′)

where the second equality holds because NEP is closed. Thus, to show that

NEP is a finite union of rectangles, it suffices to show that NEP (I ′, J ′) is

a rectangle. This follows easily from the fact that, in bimatrix games, Nash

equilibria with the same support are exchangeable.

Conversely, let m ∈ N∗ and for 1 ≤ i ≤ m, let ai, bi, ci, di be real numbers.

Let U =
⋃

1≤i≤m[ai, bi] × [ci, di]. Assuming w.l.o.g. that the numbers ai, bi,

ci, di are all positive, we build below a bimatrix game with U as set of Nash

equilibrium payoffs. Consider first the game with payoff matrices:

(Ai, Bi) =

(
ai, ci bi, ci

ai, di bi, di

)
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In this game, a player does not influence its own payoffs and the set of Nash

equilibrium payoffs is [ai, bi] × [ci, di]. Let

(Ai, 0) =

(
ai, 0 bi, 0

ai, 0 bi, 0

)
, (0, Bi) =

(
0, ci 0, ci

0, di 0, di

)

and consider the game built by blocks:





(A1, B1) 0 .. 0 (0, B1)

0 (A2, B2) .. 0 (0, B2)

.. .. .. .. ..

0 0 .. (Am−1, Bm−1) (0, Bm−1)

(A1, 0) (A2, 0) .. (Am−1, 0) (Am, Bm)




(3)

where an isolated 0 represents a 2× 2 block of payoffs (0, 0). This game has

the same structure as (2), but the payoffs xi and yi have been replaced by

the blocks Ai and Bi, respectively. Any mixed strategy profile with support

in one of the blocks (Ai, Bi) is a Nash equilibrium. Furthermore, it is easy

to prove along the lines of the proof of proposition 1 that there are no other

Nash equilibria and that the set of correlated equilibria is the convex hull of

the set of Nash equilibria. It follows that: first, the set of NE payoffs of (3)

is equal to U , which shows that any finite union of rectangles is the set of

NE payoffs of a bimatrix game; and second, the set of CE payoffs of (3) is

equal to Conv(U). Since the set of NE payoffs of a bimatrix game is always

a finite union of rectangles, this implies that for any bimatrix game G, there

exists a bimatrix game G′ (of type (3)) such as NEP (G′) = NEP (G) and

CEP (G′) = Conv(NEP (G)).

Lemma 3 Let (x1, x2, ..., xn) ∈ Rn. For any n-player game G, there exists a

n-player game with the same set of Nash equilibrium payoffs as G and whose

set of correlated equilibrium payoffs is the convex hull of (x1, x2, ..., xn) and

of the set of correlated equilibrium payoffs of G.

Proof. We prove the result in the two-player case. For the n-player case,

see the appendix. Let G be a two-player m1 × m2 game and (x, y) ∈ R2.
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Assume w.l.o.g. that x, y, and all the payoffs in G are positive. Consider the

(3 + m1) × (3 + m2) game

Γ =





0, 0 x + 1, y − 1 x − 1, y + 1

x − 1, y + 1 0, 0 x + 1, y − 1

x + 1, y − 1 x − 1, y + 1 0, 0

[0, y]

[x, 0] G




(4)

where [x, 0] denotes a block of payoffs (x, 0) of appropriate size (same nota-

tions for player 2). Let ν denote the correlated strategy putting probability

1/6 on every off-diagonal square of the top-left block, and probability 0 on

every other square of the whole payoff matrix. Clearly, ν is a correlated equi-

librium of Γ, with payoff (x, y), and every correlated equilibrium of G induces

a correlated equilibrium of Γ. We claim that any correlated equilibrium of Γ

is a convex combination of ν and of a correlated equilibrium of G.

To see this, let µ be a correlated equilibrium of Γ. Clearly, µ12 ≥ µ13,

otherwise player 1 would have an incentive to deviate from his first to his last

strategy (recall that all payoffs in G are positive). Repeating this reasoning

with other strategies and with player 2 leads to the chain of inequalities

µ12 ≥ µ13 ≥ µ23 ≥ µ21 ≥ µ31 ≥ µ32 ≥ µ12

Since the first and last terms are equal, this is a chain of equalities, hence µ

puts equal weight on all off-diagonal squares of the top-left block. It is then

easy to see that µ puts probability zero on the diagonal of the top-left block

as well as on the top-right and bottom-left blocks. This implies that µ is a

convex combination of ν and of a correlated equilibrium of G, proving the

claim.

It follows that : (i) a fortiori, any CE payoff of Γ is a convex combination

of the payoff of ν and of a correlated equilibrium payoff of G; and (ii) Γ and

G have the same Nash equilibria, hence a fortiori the same NE payoffs. This

concludes the proof.

Proposition 4 For any n-player game G and for any polytope P in Rn con-

taining CEP (G), there exists a game with the same set of Nash equilibrium

payoffs as G and P as set of correlated equilibrium payoffs.
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Proof. Let P be a polytope containing CEP (G), with q extreme points.

Applying iteratively lemma 3 (q times), we obtain a game with the same

NE payoffs as G and whose set of CE payoffs is the convex hull of P and

CEP (G), hence is equal to P .

In the two-player case, we get a stronger result:

Corollary 5 For any bimatrix game G and for any polytope P in Rn con-

taining NEP (G), there exists a game with the same set of Nash equilibrium

payoffs as G and P as set of correlated equilibrium payoffs.1

Proof. By proposition 2, there exists a game G′ with NEP (G′) = NEP (G)

and CEP (G′) = Conv(NEP (G)). Applying proposition 4 to G′ gives the

result.

In light of proposition 2, corollary 5 may also be stated as follows : for

any nonempty finite union of rectangles U in R2 and for any polytope P in

R2 containing U , there exists a two-player game with U as set of Nash equi-

librium payoffs and P as set of correlated equilibrium payoffs. Proposition

2 and corollary 5 fully characterize the possible shapes of the set of Nash

equilibrium payoffs and correlated equilibrium payoffs for two-player games.

For n-player games, the general shape of the set of Nash equilibrium payoffs

remains to be understood. Furthermore, we do not know whether, for any

n-player game G, there exists a n-player game with the same set of Nash

equilibrium payoffs as G and whose set of correlated equilibrium payoffs is

the convex hull of its Nash equilibrium payoffs.

3 Genericity

The games used above are highly non generic. For instance, a small pertur-

bation of the payoffs of (2) is enough to eliminate all its Nash and correlated

equilibria but one. This raises the issue of the robustness of our results. Ide-

ally, to show that, for instance, corollary 5 is robust, one would like to show

1The difference with the n-player case in that we only assume P ⊃ NEP (G) instead
of P ⊃ CEP (G).
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that for any nonempty finite union of rectangles U and for any polytope P

in R2 containing U , there exists an open set of games whose set of Nash

equilibrium payoffs is “close” to U and whose set of correlated equilibrium

payoffs is “close” to P . This is hopeless however, since almost all games have

a finite set of Nash equilibria. Thus, all we can hope to prove is the same

result but with U being a finite set. This is the object of this section.

We first need some definitions. Let ε > 0. For any x in Rn, let ||x|| =

max1≤i≤n |xi|. Let A and A′ be subsets of Rn. Recall that A and A′ are

ε-close in the Hausdorff distance sense if

∀x ∈ A, ∃x′ ∈ A′, ||x− x′|| < ε (5)

and

∀x′ ∈ A′, ∃x ∈ A, ||x− x′|| < ε (6)

Let G be a finite game with payoff function ui for player i and let α > 0.

The open ball of center G and radius α, denoted by B(G,α), is the set of

all games G′ with the same sets of players and strategies as in G and such

that for every player i and every pure strategy profile s, |u′
i(s) − ui(s)| < α,

where u′
i is the payoff function of player i in G′. A set of games Σ is open

if for every game G in Σ, Σ contains an open ball of center G and positive

radius.

Proposition 6 Let U be a finite set in Rn. Let P ⊂ Rn be a polytope

containing U . There exists a (nonempty) open set of n-player games whose

set of Nash equilibrium payoffs is ε-close to U and whose set of correlated

equilibrium payoffs is ε-close to P .

Proof. We prove the result for two-player games. The proof for n-player

games is similar (see the appendix). Let U = {(x1, y1), ..., (xm, ym)}, let

P ⊂ R2 be a polytope containing U , with vertices (x′
1, y

′
1),...,(x

′
q, y

′
q). Assume

w.l.o.g. that, for all i in {1, .., q}, xi, yi, x′
i and y′

i are all positive. Let Gα

denote the m × m game with payoff matrix (aij, bij)1≤i,j≤m such that: for

every i in {1, 2, ..., m}, aii = xi and bii = yi; for every i in {1, 2, ..., m − 1},
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ami = xi −α and bim = yi −α; and all other payoffs are zero. For m = 4 this

gives:

Gα =





x1, y1 0, 0 0, 0 0, y1 − α

0, 0 x2, y2 0, 0 0, y2 − α

0, 0 0, 0 x3, y3 0, y3 − α

x1 − α, 0 x2 − α, 0 x3 − α, 0 x4, y4





Thus, G0 is the game used in the proof of proposition 1 and NEP (G0) = U .

For every (x, y) in R2, let C(x, y) denote the game corresponding to the

top-left block of (4).

C(x, y) =




0, 0 x + 1, y − 1 x − 1, y + 1

x − 1, y + 1 0, 0 x + 1, y − 1

x + 1, y − 1 x − 1, y + 1 0, 0



 (7)

Finally, let Γα denote the following game:

Γα =





C(x′
1, y

′
1) 0 ... 0 [0, y′

1 − α]

0 C(x′
2, y

′
2) ... 0 [0, y′

2 − α]

... ... ... ... ...

0 0 ... C(x′
q, y

′
q) [0, y′

q − α]

[x′
1 − α, 0] [x′

2 − α, 0] ... [x′
q − α, 0] Gα





where [x′
i − α, 0] means a block of payoffs (x′

i − α, 0) of appropriate size.

Γ0 is a slight modification of the game obtained from G0 by iterative

applications (q times) of lemma 3. Along the lines of the proof of lemma 3, it

is easy to show that its Nash equilibria correspond to the Nash equilibria of

G0 and that its extreme correlated equilibria are: (i) its Nash equilibria; (ii)

the probability distributions with support in one of the blocks C(x′
i, y

′
i) and

putting probability 1/6 on every off-diagonal square of this block. It follows

that NEP (Γ0) = U and CEP (Γ0) = P .

Moreover, for any α small enough and any game Γ in B(Γα,α/2), every

Nash equilibrium of Γ0 is a Nash equilibrium of Γ; therefore,

∀(a0, b0) ∈ NEP (Γ0), ∃(a, b) ∈ NEP (Γ), ||(a, b) − (a0, b0)|| < 3α/2 (8)
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(a closer look shows that we may replace 3α/2 by α/2 in the RHS, but

this is not needed). Finally, let ε > 0. By upper semi-continuity of the

Nash equilibrium correspondence, for α small enough, for any game Γ in

B(Γ0, 3α/2),

∀(a, b) ∈ NEP (Γ), ∃(a0, b0) ∈ NEP (Γ0), ||(a0, b0) − (a, b)|| < ε (9)

It follows from (8) and (9) that, for any α small enough and any game Γ in

B(Γα,α/2), NEP (Γ) and NEP (Γ0) are ε-close. The same argument (up to

replacement of Nash equilibrium by correlated equilibrium everywhere) shows

that for every α small enough and for every game Γ in B(Γα,α/2), CEP (Γ)

and CEP (Γ0) are ε-close. Recalling that NEP (Γ0) = U and CEP (Γ0) = P ,

this completes the proof.

Note that, in the above proof, for every game Γ in B(Γα,α/2), any Nash

equilibrium (resp. extreme correlated equilibrium) of Γ0 is actually a strict

Nash equilibrium (resp. strict correlated equilibrium2) of Γ. Since further-

more a convex combination of strict correlated equilibria is a strict correlated

equilibrium, it follows that for every finite set U in Rn, every polytope P con-

taining U and every ε > 0, there exists an open set of games Γ such that:

first, both the set of Nash equilibrium payoffs and the set of strict Nash

equilibrium payoffs of Γ are ε-close to U ; second, both the set of correlated

equilibrium payoffs and the set of strict correlated equilibrium payoffs of Γ

are ε-close to P .

A Proofs of lemma 3 and propositions 1 and

6 in the n-player case.

Proof of lemma 3. Let G be a three-player game and let (x, y, z) ∈ R3.

Assume w.l.o.g. that x, y, z, and all the payoffs in G are positive. Let

C(x, y, z) denote the 3×3×1 game (player 3 is a dummy) where the payoffs

2A correlated equilibrium µ is strict if for every pure strategy si with positive marginal
probability under µ, the inequalities in (1) are strict.

10



of players 1 and 2 are as in (7) and the payoff of player 3 is always z.

C(x, y, z) =




0, 0, z x + 1, y − 1, z x − 1, y + 1, z

x − 1, y + 1, z 0, 0, z x + 1, y − 1, z

x + 1, y − 1, z x − 1, y + 1, z 0, 0, z



 (10)

Let

Γ =

(
C(x, y, z) [0, y, 0]

[x, 0, 0] [x, y, 0]

)(
[0, 0, z] [0, y, z]

[x, 0, z] G

)

where [x, 0, 0] denotes a block of payoffs (x, 0, 0) of appropriate size. The

same proof as in the two-player case shows that Γ has the same set of NE

payoffs as G and that its set of CE payoffs is the convex hull of (x, y, z) and

of the set of CE payoffs of G.

In the n-player case, the generalization of C(x, y, z) simply consists in

adding more dummy players with constant payoff. The generalization of Γ

should be clear from the following description of the three-player case: the

pure strategy set of player i is S ′
i + Si (disjoint union), where Si and S ′

i are

respectively the pure strategy set of player i in G and in C(x, y, z). If for

every i, player i chooses a strategy in Si (resp. S ′
i), then the payoffs are as in

G (resp. as in C(x, y, z)). If there exist players i and j such that i chooses

a strategy in Si and j a strategy in S ′
j , then the payoff of player 1 (resp. 2,

3) is x (resp. y, z) if he chooses a strategy in S1 (resp. S2, S3) and 0 otherwise.

Proof of propositions 1 and 6. Let U = {(xi, yi, zi), 1 ≤ i ≤ m} and

let P be the convex hull of {(x′
i, y

′
i, z

′
i), 1 ≤ i ≤ q}. Assume w.l.o.g. that the

numbers xi, x′
i, etc. are all positive. Let

Gα =





x1, y1, z1 0, 0, 0 .. 0, 0, 0 0, y1 − α, 0

0, 0, 0 x2, y2, z2 .. 0, 0, 0 0, y2 − α, 0

.. .. .. .. ..

0, 0, 0 0, 0, 0 .. xm−1, ym−1, zm−1 0, ym−1 − α, 0

x1 − α, 0, 0 x2 − α, 0, 0 .. xm−1 − α, 0, 0 xm, ym, zm





The same argument as in the two-player case shows that the Nash equilibria

of G0 are equal to its extreme correlated equilibria and correspond to the
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diagonal squares. It follows that NEP (G0) = U and that CEP (G0) is the

convex hull of U . This proves proposition 1 in the three-player case (for the

n-player case, just add more dummy players).

Now recall (10) and let G′ denote the (3q + m)× (3q + m)× 1 game with

block diagonal payoff matrix

G′ =




C(x′

1, y
′
1, z

′
1) 0

. . .

0 C(x′
q, y

′
q, z

′
q)





Let x, y, z be positive real numbers. Let Γα denote the (3q+m)×(3q+m)×2

game:

Γα =

(
G′ [0, y′

i − α, 0]

[x′
j − α, 0, 0] [x, y, 0]

)(
[0, 0, z′i − α] [0, y, z]

[x, 0, z] Gα

)

This should be read as follows: if player 1 chooses row i > 3q and player

2 chooses column j ≤ 3q with 3p + 1 ≤ j ≤ 3p + 3, then the payoffs are

(x′
p−α, 0, 0) if player 3 chooses the left matrix and (x, 0, z) if player 3 chooses

the matrix on the right.

Fix ε > 0 and assume that P ⊃ U . The same arguments as in the

two-player case show that, for every α small enough, and for every game Γ

in B(Gα,α/2), NEP (Γ) is ε-close to U and CEP (Γ) is ε-close to P . The

n-player case is similar.3

References

[1] Aumann, R. (1974), “Subjectivity and Correlation in Randomized Strate-

gies”, Journal of Mathematical Economics 1, 67-96

3Instead of C(x, y, z), Γ, Gα, Γα, and their n-player version, it is possible to use games
in which the roles of the players are symmetric, but this is less parcimonious.

12


