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Abstract. we investigate the paths of pure strategy profiles induced by the

fictitious play process. We present rules that such paths must follow. Using these rules
we prove that every non-degenerate’ 2x3 game has the continuous fictitious play
property, that is, every continuous fictitious play process, independent of initial actions

and beliefs, approaches equilibrium in such games.

1. Introduction

Consider n players that play repeatedly a game in strategic form. Each player has
subjective beliefs about other players future behavior. In each period each player
chooses a best response according to his belief and updates his belief according to the
past observations. We call such a process a belief-based |earning process.
The basic belief based learning process is the fictitious play (FP) process proposed by
Brown in 1951. In a FP process each player believes that each one of his opponentsis
using a stationary mixed strategy which is the empirical distribution of this opponent’s
past actions. Most of the research about the FP process has focused on the questions,
whether players beliefs approach equilibrium. A game in which every FP process,
independent of initial actions and beliefs, approaches equilibrium, is called a game with
the FP property.
Every learning process is a pair (X,B), where X is a path of pure strategy profiles,
and B is a belief sequence. If we eliminate all successive repetitions in the path X, we
get anew path of pure profiles which we call the reduced path. Studying reduced paths
of the fictitious play process teaches us a lot about properties of the process. We
present four rules which are called the four principles of motion that such paths must
follow :

1. The improvement principle : Given atwo person game, if the players are moving
from the pure strategy profile x to the pure strategy profile y, then for each
player i for which y' * x', y'isbetter for player i than x'versus x™'.

2. The stability principle? : If at some stage of the process the players choose a pure

strategy equilibrium strategy x, then they will choose this x from this stage on.

1 A game G is non-degenerate, if the payoff function of each player is one-to-one function for every
joint strategy of his opponents.
2 Thisisasimplification of the analogous principle established by Fudenberg and Kreps (1991).



3. The separation principle : If the players move from xto yand y'* x', then x’
and y' are not separated in the sense that B(x')1 B(y')* A, where B(x')is the

set of all mixed strategy profiles of player i's opponents against which x'is a best
response for player i .

4. The reduction principle : Given a two person game, if the players do not use
some dtrategies from a certain stage on, and if the sub game obtained by
eliminating these unused strategies is a 2x2 game, then the process approaches
equilibrium.

We use these rules to prove either existence or non-existence of the FP property for

some games. |In particular, using these rules we introduce a smple proof to the well

known example of Shapley (1964) which is an example to a class of games without
the FP property. On the other hand we use these rules in order to prove that every
non-degenerate 2x3 game has the FP property in the continuous (time) case.

Indeed we know just about few classes of games with the FP property . Zero-sum

games, i.e, bimatrix games of the form (A,- A) (Robinson (1951)). Games with

identical payoff functions, i.e, games in which al the players have the same payoff
matrix  (Monderer and Shapley(1996)). Games which are dominance solvable
(Milgrom and Roberts (1991)). Games with strategic complementarities and
diminishing returns (Krishna (1992)). 2x2 Games (Miyasawa (1964)). The results of
Miyasawa (1964) have been proved under certain indifference breaking rules.
Monderer and Sela (1996) have shown that if we do not assume any tie breaking rules
about the particular best response at each stage (when the best response is not unique),
thereis a 2x2 game that does not have the FP property. In order to avoid such extreme
cases we deal with non-degenerate games. Every 2x2 non-degenerate game has the FP
property (see Monderer and Shapley (1996))°. The current conjecture is that this
result can be extended for 2xn games, n >2. As was mentioned, we affirm part of
this conjecture. Using the four principles of motion, we prove that every 2x3 non-
degenerate game has the CFP property (the FP property for the continuous case). In
this case we find it convenient to work with the continuous time formulation of

fictitious Play (CFP) rather than the discrete time formulation (FP). In some cases the

® Monderer and Shapley (1993) give a new proof for the FP property of such games.



CFP ismore natural and more practical than the FP. For instance, the convergence of
the FP in zero-sum games, which require a complex proof for the discrete process

(Robinson (1951)), can be proved easily for the continuous case (Hofbauer (1994)).
Although there are no results relating the discrete and the continuous processes, it
seems that whenever the CFP exist, the FP’s path behaves similarly to the continuous

one.

2. Notation
Let N ={0,2,...,n} be the set of players. For each i1 N, S'isthe finite strategy set

of player i. For every M1 N we denote S" =X S'. In particular we denote

S=XS"and S'= X S'.Let U:S® Rbe player i's payoff function, where

iiN TN}

R denotes the set of real numbers. For each finite set A we denote by D(A) the set of

probability messures over A. For MI N we denote D" = X D(S') and

itM
DY =D(S"). The set of player i's mixed strategies D(S') is denoted by D. We
denote D' = D" andD, =D} . We identify x'T S' and x'T S™' with extreme

pointsin D and D, respectively.

3. No-Cycling Conditions
We define four order relations over S :
1. xf,y ifthereexistsaplayer i suchthat x'' =y ' and U'(x)>U'(y).

M M

2. xf,y if there exists a non-empty set of players M such that x " =y " and
U'(x',y")>U'(y) forevery i1 M.

3. xf,y if there exists aplayer i suchthat x ' =y ' and x' is a best response to

y

M:y-Mand Xi

4. xf,y if there exists a non-empty set of players M such that x°
isabest responseto y ' forevery il M.

The order relations are related according to the next diagram :



Xfay b Xxf,y

K K
Xf,y b Xxf,y

A path in S is a sequence, X =(x(t)), t3 0, of elements in S. The path is
k- increasing, 1EK £4,if x(t+2)f, x(t) forevery t3 1.
A path which is k- increasing, k =1,2 is caled path generated by the better reply
dynamic. And a path which is k - increasing, k =34 is cdled path generated by the
best reply dynamic.
We say that a game G sdtisfies the k -no-cycling condition or Gis k - acyclic if
every k - increasing sequence is finite®. The set of all k -no-cycling games is denoted
by NC(k) . The relations between these sets of games are:

NC(3) E NC(4)

U U

NC(1) E NC(2)
The following example shows a game that satisfies the 3-no cycling condition and does
not satisfy the 1-no-cycling condition. Similarly it can be shown that al inclusion

relations in the above diagram are strict.

Example 3.1
Let

€ (100) (-102) (0-10)u
G=g (06) (09 (155)

§-20-1) (-23) (4490
Denote by (i,j) the point in G such that, the row player chooses row i and the column
player chooses column j. The cycle:
1L)® (1L2)® (32)® (33y® (23)® (21) ® (L1) isgenerated 1-increasing.
A simple inspection reveals that there are no 3-cycles’.
The games G(U*,U?,...,U") and G(V*,V?,....V") ( U'and V'denote player i’s

utility functions) are better reply equivalent if for every player i, U'(,x") and

* Monderer and Shapley (1993) called a*“1-increasing path” an “improvement path” and they called a
1-acyclic game a“ game with the finite improvement property”.



V'(,x ") induce the same preference relation on S' for every x ' 1 S°'. The games
are best reply equivalent if for every player i, U'(,x") and V'(,x’") attain their
maximal values at the same subset of S' forevery x ' 1 S°'.

The game G is non-degenerate if for every i, U'(,x ") is a one-to-one function for
every x '1 57",

Monderer and Shapley (1996) showed that a non-degenerate game belongs to NC(1)
if and only if it is better reply equivaent in pure strategies to a game with identical
payoff functions. The analogous result can be similarly proved for the f , relation.
Lemma 3.2: A non-degenerate game satisfies the 3-no-cycling condition if and only if
it is best reply equivaent in pure strategies to a game with identical payoff functions’.

The following example appears in Monderer and Shapley (1996). It shows the

necessity of the “non-degenerate game” requirement in Lemma 3.2 :

Example 3.3:

400) (LO)

CUU)= %10 (ond

If G(U*,U?) is best reply equivalent to G(U,U), then the following contradiction

follows:
U@l)<Uu((2)<U(22)<U(1,2)=U(1)).

4. Fictitious Play Process

There are two versions of the FP process. In the first version each player believes that
each one of his opponents is using a stationary mixed strategy which is the empirical
distribution of this opponent’s past actions. Such a player will be called a IFP player

( “I” stands for Independent ). In the second version, each player believes that his
opponents are using a joint correlated mixed strategy, which is the empirical

distribution of his opponents’ past actions. Such a player will be caled a JFP player

® Actually, this game has strategic complementarities and diminishing returns and therefore by
Krishna (1992) it belongs to NC(3).

® Actually the “best reply” version can be proved for every class of games as well. We just need that
the best reply correspondences (in pure strategies) are single values.



(“J stands for Joint ). In two person games, the concepts of IFP player and JFP
player coincide. Since most of the research on FP process concentrated in two-person
games, the difference between JFP and IFP has been hardly noticed. In this paper we
refer to the IFP as FP.

A Dbelief sequence B ={b(t)}, for t31, consst of elements of X D', i.e.

iln
b'(t)T D', il N, isthe belief of player i about the other players strategies at stage
t. b (t)T D, it Kk, isthebelief of player i about player k's strategy at stage t .

A joint belief sequence B ={b(t)}, for t3 1, consist of elements of X D;, i.e

iln
b'(t)T D, , iT N, isthe belief of player i about the joint strategy of the other players
at stage t .
Let b'(t)T Dyand M1 N\{i}. Denote by b/, (t)the margina distribution on M.
Thatis, b\, (O(xX") = & b'(x,x")(t).
X1 gNUM.i}

A learning process is a par (X,B), where Xis a path in S, and Bis a belief
sequence or joint belief sequence, such that for every t3 1 and every player i, the
strategy x'(t) isabest responseto b'(t).
A learning process (X, B)is afictitious play (FP) process, if for every player i, and

t-1
forevery k1 i, b;(t):%é x“(s) , t3 1, (here x*(s)isapointin D" ).

s=0
Note that in a FP process by (t) = bS(t) foral it kands?® k. We denote by b, (t)the
identical belief of al the players about player k's strategy at stage t .

A FP process (X, B)approaches equilibrium, if for every e >0 there exist t, >0,

such that for every t 2 t,, there exist a mixed equilibrium profile p1 D", such that,

(by(1), by(t),...., b, (1) - p|<e .

We say that a game has the FP property , if every FP process, independent of initial
actions and beliefs, approaches equilibrium.

A learning process ( X, B)isajoint fictitious play (JFP) process, if for every player i,

t-1
bi(t):%é x'(s) , t3 1 (here x"'(s)isapointin D).

s=0



Note that in a JFP process, for every two players it k, and for adl M1 N\{i,k},
b{‘M}(t) = b{kM}(t) . We denote by b, (t) theidentical belief of al the players about player

k’sstrategy at stage t .

5. The Four Principles of Motion
Every learning process is a pair (X,B), where X is a path of pure strategy profiles

and Bisabelief sequence. If we eliminate all successive repetitions in the path of pure
profiles we get a new path of pure profiles which we call the reduced path. For
instance, x,Y,X,z,y is thereduced path of X,y,y,x,X,X,z,2,Y.

By investigation the reduced paths structure induced by the FP process, we obtain
four principles of motion that such paths must follow in non-degenerate games.

1. The Improvement Principle: Consider atwo person game. The reduced path of

pure strategies generated by a FP processis 2-increasing’.

Proof : It sufficesto show that if x(t) * x(t- 1)then for every player

iT M) ={kT N:x @) x"(t- D}, U'(X'(t),x'(t- D)>U'(x(t- 1)) .
Indeed, note that U (x'(t - 1),bi(t - 2)) 3 U (x'(t),b'(t - 2)), and

U'(x'(t),b'(t- D)3 U'(x'(t- 1),b'(t- 1)). As b'(t - 1) isaconvex combination of

b'(t- 2) and x ' (t - 1), and the game is non-degenerate, the result follows. B

Corollary 5.1: Every 2-acyclic game has the FP property.

The class of 2-acyclic games is quite restricted. The following example (due to Foster
and Y oung (1995)) give us areasonable doubt about the conjecture that corollary 5.1

isvalid aso for 1-acyclic games:

" The reduced path generated by a JFP process is 2-increasing for every n, n3 1, player game.



&2424) (66) (018) (018) (180) (180)  (50) (00) U
2(6,6) (2424) (018) (018) (180) (180)  (4,0) (00) §
8(180) (180) (2424) (66) (018) (018)  (30) 00) G
_£@80) (180) (66) (2424) (018) (018) (20 00) ¢
=818 (018) (180) (180) (2424) (66)  (10) (0,0) U
£(018) (018) (180) (180) (66) (2424)  (0,0) 00) §

c

2(0,4) (05 (02 (03 (00 (01 (2524) (- 25,-25){1J
8(00) (000 (000 (00) (00) (00) (-25-25) (24,25) §

Foster and Y oung (1995) introduced this game as an example of a coordination two
player game without the FP property. This game is not 1-acyclic game and therefore
this game is not a counter example to the conjecture that every 1-acyclic game has the
FP property. Still, the reduced path generated by a FP in thiscase is:

(12)® (2)® (34)® (43)® (56)® (65 ® (1,2).....

This path is 2-increasing. Therefore the question whether a game is either 1-acyclic or
not seemsirrelevant . Further, by the Improvement principle we show that the reduced
path generated by a FP is a better reply dynamic. We can see by this example that the
reduced path generated by the FP process is not necessarily a best reply dynamic for

some stage on.

Shapley’ s Example

Now, we proceed to show an application of the improvement principle. Consider the
following game satisfying the ordinal properties of Shapley (1964):

€00) (ab) (ba)u
G, =gba) (00) (ab)j wheea>b>0,anda<2b.

§a,b) (ba) (00f

Proposition (Shapley, 1964) : G, does not have the FP property.

We prove this result by the improvement principle :

| =

- 11
Proof : This game has a unique equilibrium (p,q) I D'XD’, where p=q = (3,5,5).

Therefore, If a FP process approaches equilibrium it must actually convergesto



(p,q). Consider aprocess starting from one of the non-zero entries. We show that

this process does not converge to (p,q).
Consider the following game G, obtained by adding a 4" row to G, :

&0,0) (a,b) (b,a)i
_dba) (00) (ab)y
2" ga,b) (b,a) (000
&c0) (c0) (c0)q

er<c<b.

a
where

By the improvement principle ( because b < ¢), player 1 never chooses the 4™ row.
Therefore the process generates the same play of pure strategiesin G,and G, .
Suppose in negation that the process convergesto (p,q) in G, then it must converge
to (p,q) in G,, where p =(p,, p,, P;,0). Note that the 4" row is the unique best
reply of player 1to q. Thereforeit is the unique best reply to mixed strategies of
player 2 that are sufficiently closeto q . Hence, if The FP convergesto (p,q), player

1 eventually switches to the 4" row, contradicting the improvement principle. ®

The proof of the non-approach result for the generalized fictitious play in the
examples given by Deschamps, Elison and Fudenberg is very smilar (Ssmpler actually)

S0 we omit it.

&00) (a,b) (ba) (0.c)u
_gba) (00) (ab) (0,0)¢
Lt G‘@(a,b) (b,a) (0,0) (o,c)g

&c0) (0 (c.0 (d.d)y

b>O.

a+
Whered >a>b>c>

Note that by the improvement principle, in every FP process starting at one of the
(a,b) or (b,a) entries, the players will not use their 4™ strategies. On the other hand,
the unique equilibrium in this game is attained at the (d,d) entry.

The second principle is an immediate conclusion of the improvement principle :

2. The Stahility Principle: If a pure strategy equilibrium is played at some stage in

10



aFP process, then it is played from this stage on for ever.

Denote by B(x), x T S', the set of all joint mixed strategy profilesin D' against which
X is best reply. We now establish the third principle :
3. The Separation Principle: Let x and y be pure strategies of player i .Suppose

that B(x) and B(y)do not intersect. Then in every FP process, for sufficiently late

stage, player i will never change its choice from xto y and vice versa.

Proof : The distance between two successive beliefs of player i, b'(t) and b'(t +1)is
2 . .

at most vl Therefore, if player i chooses x at stage t, he will not choose yin the

next dt stages, where d is the distance between the sets B(x) and B(y). ®

The fourth principle is derived from Miyasawa's proof (1961) about the existence of
the FP property in 2x2 games
4. The Reduction Games. Consider a two person game. If the reduced path

generated by a FP process dwaysliesfor t 2 T inthe strategy profile set of a

MxN sub game, where M + N £ 4. Then the process approaches equilibrium®.

6. Continuous Fictitious Play (CFP)

We find it convenient to work with the continuous time formulation of fictitious play
rather than the discrete time formulation, in order to prove the existence of the FP
property for al non-degenerate 2x3 games. Although there are no results relating the
discrete and the continuous processes, it seems that whenever the continuous fictitious
play exist, the fictitious play’s path behaves similarly to the continuous one. Since our
proof based on the four principles of motion relating to both processes, we assume that
this result holds for the discrete case as well.

While the time space is continuous, a path x in S is a right continuous function

X:[0,¥)® S such that the set of discontinuity points of xdoes not have an

accumulation point in [0,¥).

& We conjecture that this principle holds for every sub-game with the FP property. That is, for every
MXN sub-game suchthat M 3 land N 3 1.

11



A belief path isapair (b,t;), where t, >0, and b:[t,,¥) ® D isthe belief function.
A continuous learning process isapair (x,(b,t,)), where xisapathin S, and (b,t,)
isabelief path, such that x'(t) isahbest responseto b'(t)for every t3 t,.

A continuous learning process (X,(b,t,)) is a continuous fictitious play (CFP)

t
process, if for every i, andforevery jti, b}(t): @(j(s)ds, forevery t3 t,.
s=0

A CFP (x,(b,t,)) process approaches equilibrium if for every e >0 thereexist t, >0,

such that for every t 2 t,, there exist a mixed equilibrium profile p1 D", such that,

(0, (8), by (1), ., b, (1)) - [ <e .
We say that a game has the CFP property , if every CFP process, independent of initial
actions and beliefs, approaches equilibrium.

Let (x,(b,t,)) be a CFP process. Since x is right continuous and takes values in a

finite set S, it must be a step function. Further, since x has only finite number of

discontinuity points at any bounded interval, there exists an increasing sequence
{T}, OEKEK of times (2Ek £¥), where 0£T, <t, =T,, that will be called the
reduced time sequence. Likewise, there exists a sequence {z,} , O£k £k , in S that
will be called the reduced path, such that :

(6.1) z(k)* z(k-1), 2£k £k.

(6.2) z(k)=x(t), T, £t<T,,, , O£k £k,

where T, = ¥ if k isfinite,

It can be verified that the four principles of motion for the FP process hold for the
CFP as well. Further, The improvement, stability, and separation principles can be

shown by the same arguments as in the discrete case. For the reduction principle see

the discussion in the following section.

7. 2x2 Games

The result of Miyasawa (1961) that every 2x2game has the FP property proved under

atie-breaking rule about the particular best reply at each period (when there are some

12



best replies). Without tie-breaking rules, Monderer and Shapley (1996) showed that
every 2x2game that satisfies the diagonal property ° is best response equivalent in
mixed strategies to either a game with identical payoff functions (A, A), or to a zero-
sum game (A,- A). Therefore every such game has the FP property. Hofbauer (1994)

showed that every two person zero-sum game has the CFP property. Likewise, it can
be verified that every game with identical payoff functions, and particularly every
two person 2x2game has the CFP property™. Hence, every 2x2 game with the
diagonal property has the CFP property. If a game does not have the diagonal
property, it implies that for one of the players has either dominated strategy, or
identical strategies. The case of dominated strategies is easy to analyze. The harder
case is where there are identical strategies. As was shown by Monderer and Sela
(1996) there is such a 2x2 game without the FP property. It can be shown that this
game does not have aso the CFP property. Hence, we discuss only about non-
degenerate games. Every 2x2 non-degenerate game is either a game with dominated
strategies, or a game with the diagonal property, and therefore weobtain the following

result :

Corollary 7: Every non-degenerate 2x2 game has the CFP property.

8. 2x3 Games

We conjecture that corollary 7.1 holds for every 2xk , k >2 non-degenerate game. By
the principles of motion we affirm this conjecture for the case k = 3:

Theorem 8.1: Every non-degenerate 2x3 game has the CFP property.

Proof : Let G, bea 2x3 game asfollows:

é(all’ bll) (a12’ b12) (a13’ b13)l;|

G, =(AB)=¢g
AR =G b)) (anby) (am byl

® We say that agame G = (A, B) = (a(i, j), b(i, j))iz]j:1 has the diagonal property if ¢ 2 Oand
d 1 0 where,

d =b(1,0)- b(21) - b(1,2)+b(2,2) and c =a(Ll) - a(21) - a(l,2) +a(2,2).

1911 the following we actually need only the existence of the reduction principle in the continuous
case for zero-sum 2X2 sub-game. This result is derived from Hofbauer (1994).

13



Without loss of generality we assume that b, >b,, > b,,. We can assume that there are
no strictly dominated strategies ( non-degenerate game does not have weakly
dominated strategies ). Thus, b,, >b,, > b, . We can apply utility transformation that

do not change the best response structure of the game. In particular, we can multiply a
payoff matrix by a positive constant. We can aso add a constant to a column in A,

and we can add a constant to arow in B . Applying these transformationsto G, yields:

_daw) (b0) (c.2)u

= al0,br10c¢t0z>0w<0,v<0O u>0.
>TEow (00) (O
Depending on the signs of a, b and ¢, there are eight different forms of G, . But there

are only four different better response structures (each class of better response
structure includes two symmetric forms). The four classes are as follows :
Classl:a>0, b>0, ¢ >0 (thesymmetricformis: a<0, b<0, c<0).
Class2:a<0,b<0,¢c>0 (a<0,b>0,¢c>0).

Class3:a>0,b<0,¢c>0 (a<0,b>0, c<0).

Class4:a>0,b>0,c<0 (a>0,b<0, c<0).

Classes 1-3

We use now the four principles in order to prove the CFP property in the three first
Cases.

_(a,w) (b0) (c,2)

LG = o) (00) (0.v)

(a b,c,u,v,w,z)>0.

Class1: a>0, b>0,c>0M
In this class of games row 2 is strictly dominated, and therefore we have actually a 1x3

game. It is obviousthat every 1xn, n 3 1, hasthe CFP property. B
Class2: a<0,b>0, c>0%

By the improvement principle, the following diagram describes all possible moves

along areduced path, that can be generated by a CFP process.

" The same argument holds for thecase: a <0, b <0, ¢ <0.
12 The same argument holds for thecase: a <0, b >0, ¢ >0.

14



1) ® (12) ® (13

21) - (22 - (23
Note that smultaneously moves (11) « (2,2) and (1,2) « (2,3) are impossible in the
CFP process, since the meaning of such moves according to the structure of the game,
is that at least one of the points in A ={(11),(2,2),(12),(2,3)} is played only once
among successive plays of other point in A. And this is a contradiction to the
increasing property of the reduced time sequence generated by the CFP process.
The separation principle implies that player 2 will not move between column 1 and
column 3. So, we can omit all arrows between these columns. This leaves us with :

1) ® (12 ® (13

21 - (22 -~ (23
Note that all the paths lead to one of the pure equilibrium point, and by the stability
principle, if the process lands on pure equilibrium point, it will stay there forever. So,

we can conclude that every CFP process approaches equilibrium in case 2. B

Class3: a>0,b<0,c>0%,
By the improvement and the separation principle, the following diagram describes all

possible moves along a reduced path generated by a CFP process.
1) ® (12 ® (13

(2) - (22 - (23
By the stability principle, without loss of generality, we can consider only arrows that

do not point towards the equilibrium point (1,3) . This give us the following diagram :

1) ® @12 @13

(2) - (22) - (23

So the only potential non-converging process must cycle between :
(1D)® (12)® (22)® (2) ® (L1)...

13 The same argument holds for thecase: a >0, b <0, ¢ >0.

15



Apply the reduction principle to conclude that the process must approach equilibrium
inthis case. m
Class4
The following gameG is atypica game of class 4
(a,-w) (b,0) (0,2)
T (U (00) (-1)

Without loss of generdity, assume that w >uz , since otherwise column 2 is amost

(a,b,u,w,z)>0.

dways"™ gtrictly dominated, and by the continuation of the CFP, the column player will
not use this column for ever, since otherwise we have a contradiction to the increasing
of the reduced time sequence generated by the CFP process.

Let (x,(b,t)) bea CFPin G , and let {T,} and{z,), O£k £k" , be the time
sequence and the reduced path associated with the process respectively. By the
stability principle , we can assume without loss of generality , that these sequences are
infinite. By the separation principle, for sufficient late stage, the column player will not
switch from column 1 to column 3 and vice versa. By the improvement principle, the

player may move from z(k) to z(k +1) only according to the following arrows :

1) ® (12) ® (13

21) - (22 -~ (23
Since the smultaneously move (2,2) ® (1,1)is impossible by the CFP process , the

reduced path induces only two cycle forms:

1) ® (12 ® (13 1) (12 ® (13
2) - (22 - (23 2D (22 - (23
Six point cycle four point cycle

Since the process lands in the point (1,2) infinite times, round n, n=12,.... is defined

asthe n™ time in which the process lands in the point (1,2). The initial point of each

round is naturally the point (1,2).

14 Note that the 2X2 sub-game induced by the process is best response equivalent to a 2X 2 zero-sum
game.

> We say that astrategy X of player | isamost always strictly dominated, if the set B(X) has
measure 0.
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We proceed to prove that a CFP process can not generate only six point cycles, and
therefore it must generate also four point cycles. Later we will prove that if the process
generates once the four point cycle, then it generates only this cycle for ever. Apply
the reduction principle to conclude that the process approaches equilibrium in this

case.

Denoteby x; i=12, j=1,23,theamount of time spent playing in the point (i, j)
up to (including) round n , n=123,...

Denoteby y; i=12, j=1,23, theamount of time spent playing in the point (i, j)
inround n , n=123...

A CFP generating only six point cycles, can be described by the difference equations
((8.3)-(8.8)). Each equations describes the variables x; at times in which the CFP

switches (given in parentheses) from point to point in the six point cycle ( equations

(8.1) and (8.2) refer to previous round). n >0 indicates the number of the round,
while xi i=12, j=123, m£0, assigns the initia amount of the point (i, j)

before the first time generating this cycle.

The equations are as follows :

(81) axj;? +axy! +bx ! +bxG! = x5+ x5 (2D ® (L)

(8.2) wx +wxiyt +wish = gt + uxgt +uxt (L) ® (12)).

(8.3) 1yt + X, + x5t = xg x5 + x5 (12) ® (1),

(84) axjyt +axg! +bxp, +bx3h = xpy + x5! (L3) @ (23).

(8.5) zx; ' +zx), + zx, = x5t + x5t + X0 ((23) ® (2,2).

(8.6) wx[; ! +wx], +wxpy = uxj;t +uxy, +uxd, ((22)® (22)).

(8.7) axy 't +axj), +bx], +bx), = x + x5 ((2) ® (11)).

(8.8) wxy, + WX, + WX = UXy, + UXy, +UXy (L) ® (12)).

We will show that these equations yield a contradiction. By subtraction pairs of

equations (given in parentheses) we obtain :
(89) zy; =Yz ((85)- (83)).

(8.10) Wy, +Wyy3 = Wy, + Uy ((86) - (82)).
(8.12) wy,; = uy3, ((88)- (86)).
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(8.12) ayy +by;, = y5((87)- (84)).

(8.13) ay;; ' +byy, =y ((84) - (81)).
Using equations (8.9)-(8.13) giveus:

. 11,2U Zu . b
(8.14) y;; = ylll(W_ b(1- W))_ ylz(a_W(W_ uz)(1+b)).
Thisyidds:y, <ry}* where 0<r =zu/w<1. Thus, limyj, =0.

On the other hand, since (w- uz)/((1+z)(w+u))is the length of the set
B( columni), we obtain :

(8.15) y, >(w- uz)/(1+z)(w+u))>0 "n>1.

But equation (8.15) contradicts, by equation (8.14), the convergence of y;; to zero
when n approaches infinity.

We showed that there is no a stage, such that a CFP process generates only six point
cycles from this stage on. Thus, every CFP process generates four point cycles
infinitely often. Now we will show that if a CFP generates the four point cycle at some
stage, then it will generate only four point cycles from this stage on.

A CFP process generating the four point cycle for some n >0 , can be described by
the following equations ((8.16)-(8.19)) :

(8.16) 2" +2x), + 2t = X3+ x5+ X3 (L) ® (13).

(817) 2xjt + 2x, + x5t = x5 + x5+ x5 (1) ® (13)).

(8.18) zx)it +zx), + zx, = X3+ x5+ X, (23 ® (2,2)).

(8.19) ax);* +axpy; ' +bxy, +bx}, = x7, + x5, ((22)® (12)).

The subtraction (8.19)-(8.17) yields :

(8.20) by, = yas,.

By the improvement principle, the unique escape route from the four point cycle, could
be by moving from the point (2,2) to the point (2,1). We will show that if the process
lands on (2,2) after one round through the four point cycle, then the next move will be
necessarily to (1,2) and not to (2,1). That is, the process will induce only four point
cycles for ever.

Suppose in negation that the process induces the four point cycle in round n- 1,

n >1, and immediately after that the process moves from (2,2) to (2,1), that is, leaves

18



the four point cycle. Then, the next move according to the improvement principle is
from (2,1) to (1,1). Theroute (2,2) ® (21) ® (11) implies:

(8.21) ayy +bys, = Y.
Where y., isthe time which is needed to move from (2,2) to (2,1), and vy, isthetime

which is needed to move from (2,2) to (1,2). Because of the geometrical structure of
the sets B(columni) i =123, we obtain that,

(822) ¥z > Vo,
Equations (8.20) , (8.21), and (8.22) yield that y,;, = 0. But this is a contradiction to

our assumption about the escape of the four point cycle, that is, the move from (2,2)
to(2,1). m
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