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Abstract. We investigate the paths of pure strategy profiles induced by the

fictitious play process. We present rules that such paths must follow. Using these rules

we prove that every non-degenerate1 2x3 game has the continuous fictitious play

property, that is, every continuous fictitious play process, independent of initial actions

and beliefs, approaches equilibrium in such games.

1. Introduction

Consider n  players that play repeatedly a game in strategic form. Each player has

subjective beliefs about other players’ future behavior. In each period each player

chooses a best response according to his belief and updates his belief  according to the

past observations. We call such a process a belief-based learning process.

The basic belief based learning process is the fictitious play (FP) process proposed by

Brown in 1951. In a FP process each player believes that each one of his opponents is

using a stationary mixed strategy which is the empirical distribution of this opponent’s

past actions. Most of the research about the FP process has focused on the questions,

whether players’ beliefs  approach equilibrium. A game in which every FP process,

independent of initial actions and beliefs, approaches equilibrium, is called a game with

the FP property.

Every learning process is a pair ( , )X B , where X is a path of pure strategy profiles,

and B is a belief sequence. If we eliminate all successive repetitions in the path X, we

get a new path of pure profiles which we call the reduced path. Studying reduced paths

of the fictitious play process teaches us a lot about properties of the process. We

present four rules which are called the four principles of motion that such paths must

follow :

1.  The improvement principle : Given a two person game, if the players are moving

from the pure strategy profile x  to the pure strategy profile y , then for each

player i for which y xi i≠ , y i is better for player i than x i versus x i− .

2.  The stability principle2 : If at some stage of the process the players choose a pure

strategy equilibrium strategy x , then they will choose this x from this stage on.

                                                       
1 A game G is non-degenerate, if the payoff function of each player is one-to-one function for every
joint strategy of his opponents.
2 This is a simplification of the analogous principle established by Fudenberg and Kreps (1991).
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3.  The separation principle : If the players move from x to y and y xi i≠ , then x i

and y i  are not separated in the sense that B x B yi i( ) ( )Ι ≠ ∅ , where B x i( ) is the

set of all mixed strategy profiles of player i' s opponents against which x i is a best

response for player i .

4.  The reduction principle : Given a two person game, if the players do not use

some strategies from a certain stage on, and if the sub game obtained by

eliminating these unused  strategies is a 2 2x  game, then the process approaches

equilibrium.

We use these rules  to prove either existence or non-existence of the FP property for

some games.  In particular, using these rules we introduce a simple proof to the well

known example of Shapley (1964) which is an example to a class of games without

the FP property. On the other hand we use these rules in order to prove that every

non-degenerate 2 3x  game has the FP property in the continuous (time) case.

 Indeed we know just about few classes of games with the FP property . Zero-sum

games, i.e., bimatrix games of the form ( , )A A−  (Robinson (1951)). Games with

identical payoff functions, i.e., games in which all the players have the same payoff

matrix  (Monderer and Shapley(1996)). Games which are dominance solvable

(Milgrom and Roberts (1991)). Games with strategic complementarities and

diminishing  returns (Krishna (1992)). 2x2 Games (Miyasawa (1964)). The results of

Miyasawa (1964) have been proved under certain indifference breaking rules.

Monderer and Sela (1996) have shown that if we do not assume any  tie breaking rules

about the particular best response at each stage (when the best response is not unique),

there is a 2x2 game that does not have the FP property. In order to avoid such extreme

cases we deal with non-degenerate games. Every 2x2 non-degenerate game has the FP

property (see Monderer and Shapley (1996))3. The current conjecture is that  this

result can be extended for 2xn  games, n > 2 . As was mentioned, we affirm part of

this conjecture. Using the four principles of motion, we prove that every 2x3 non-

degenerate game has the CFP property (the FP property for the continuous case). In

this case we find it convenient to work with the continuous time formulation of

fictitious Play (CFP) rather than the discrete time formulation (FP). In some cases the

                                                       
3 Monderer and Shapley (1993) give a new proof for the FP property of such games.
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CFP is more natural and more practical than the FP. For instance, the convergence of

the FP in zero-sum games, which require a complex proof for the discrete process

(Robinson (1951)), can be proved easily for the continuous case (Hofbauer (1994)).

Although there are no results relating the discrete and the continuous processes, it

seems that whenever the CFP exist, the FP’s path behaves similarly to the continuous

one.

2. Notation

Let N n= { , , ,..., }0 1 2 be the set of players. For each i N∈ , S i is the finite strategy set

of player i . For every M N⊆  we denote S SM

i M

i=
∈
X . In particular we denote

S S
i N

i=
∈
X  and S Si

j N i

i−

∈
= X

\{ }
. Let U S Ri: → be player i' s  payoff function, where

R denotes the set of real numbers. For each finite set A  we denote by ∆( )A  the set of

probability measures over A . For M N⊆  we denote ∆ ∆M

i M

iS=
∈
X ( )  and

∆ ∆J
M MS= ( ) . The set of player i' s mixed strategies ∆( )S i  is denoted by ∆i . We

denote ∆ ∆− =i N i\{ } and ∆ ∆J
i

J
N i− = \{ } . We identify x Si i∈  and x Si i− −∈  with extreme

points in ∆i  and ∆ J
i− respectively.

3.  No-Cycling Conditions

We define four order relations over S :

1.  x yφ 1  if there exists a player i  such that x yi i− −=  and U x U yi i( ) ( )> .

2.  x yφ 2  if there exists a non-empty set of players M  such that x yM M− −=  and

U x y U yi i i i( , ) ( )− >  for every i M∈ .

3.  x yφ 3  if there exists a player i such that x yi i− −=  and x i  is a best response to

y i− .

4.  x yφ 4  if there exists a non-empty set of players M  such that x yM M− −= and x i

is a best response to y i− for every i M∈ .

The order relations are related according to the next diagram :
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x y x y

x y y

φ φ

φ φ

3 4

1

    

                    

    x 2

⇒

⇓ ⇓
⇒

A path in S  is a sequence, X x t t= ≥( ( )),  0 , of elements in S . The path is

k − increasing , 1 4≤ ≤k , if x t x tk( ) ( )+ 1 φ  for every t ≥ 1.

A path which is  k − increasing, k = 1 2,  is called path generated by the better reply

dynamic. And a path which is k − increasing, k = 3 4,  is called path generated by the

best reply dynamic.

We say  that a game G  satisfies the k -no-cycling condition or G is k − acyclic if

every k − increasing sequence is finite4. The set of all k -no-cycling games is denoted

by NC k( ) . The relations between these sets of games are :

NC NC

NC NC

( ) ( )

( ) ( )

3 4

1 2

    

                  

    

⊃

⊃
Υ Υ

The following example shows a game that satisfies the 3-no cycling condition and does

not satisfy the 1-no-cycling condition. Similarly it can be shown that all inclusion

relations in the above diagram  are strict.

Example 3.1

Let

G =
− −

− − −

















( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

10 0 10 2 0 10

0 6 0 9 15 5

20 1 2 3 14 4

Denote by (i,j) the point in G such that, the row player chooses row i and the column

player chooses column j. The cycle:

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )11 1 2 3 2 3 3 2 3 21 11→ → → → → →  is generated 1-increasing.

A simple inspection reveals that there are no 3-cycles5.

The games G U U U n( , , ..., )1 2  and G V V V n( , , ..., )1 2  ( U i and V i denote player i ’s

utility functions) are better reply equivalent if for every player i , U xi i( ) , −  and

                                                       
4 Monderer and Shapley (1993) called a “1-increasing path” an “improvement path” and they called a
1-acyclic game a “game with the finite improvement property”.
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V xi i( ) , − induce the same preference relation on S i  for every x Si i− −∈ . The games

are best reply equivalent if for every player i , U xi i( ) , −  and V xi i( ) , −  attain their

maximal values at the same subset of S i  for every x Si i− −∈ .

The game G is non-degenerate  if for every i , U xi i( ) , −  is a one-to-one function for

every x Si i− −∈ .

Monderer and Shapley  (1996) showed that a non-degenerate game belongs to NC(1)

if and only if it is better reply equivalent in pure strategies to a game with identical

payoff  functions. The analogous result can be similarly proved for the φ 3  relation.

Lemma 3.2: A non-degenerate game satisfies the 3-no-cycling condition if and only if

it is best reply equivalent in pure strategies to a game with identical payoff functions6.

The following example appears in Monderer and Shapley (1996). It shows the

necessity of the “non-degenerate game” requirement in Lemma 3.2 :

Example 3.3:

G U U( , )
( , ) ( , )

( , ) ( , )
1 2

0 0 1 0

1 0 01
=











If G U U( , )1 2  is best reply equivalent to G U U( , ) , then the following contradiction

follows :

U U U U U( , ) ( , ) ( , ) ( , ) ( , )11 2 1 2 2 1 2 11< < < = .

4. Fictitious  Play Process

There are two versions of the FP process. In the first version each player believes that

each one of his opponents is using a stationary mixed strategy which is the empirical

distribution of this opponent’s past actions. Such a player will be called a IFP player

( “I” stands for Independent ). In the second version, each player believes that his

opponents are using a joint correlated mixed strategy, which is the empirical

distribution of his opponents’ past actions. Such a player will be called a  JFP player

                                                                                                                                                              
5 Actually, this game has strategic complementarities and diminishing returns and therefore by
Krishna (1992) it belongs to NC(3).
6 Actually the “best reply” version can be proved for every class of games as well. We just need that
the best reply correspondences (in pure strategies) are single values.
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( “J” stands for Joint ). In two person games, the concepts of IFP player and  JFP

player coincide. Since most of the research on FP process concentrated in two-person

games, the difference between JFP and IFP has been hardly noticed. In this paper we

refer to the IFP as FP.

A belief sequence B b t= { ( )} , for t ≥ 1, consist of elements of X
i n

i

∈

−∆ , i.e.

b t i Ni i( ) ∈ ∈−∆  ,  , is the belief of player i about the other players’ strategies at stage

t . b t i kk
i k( ) ,∈ ≠∆  ,   is the belief of player i about player k ' s strategy at stage t .  

A joint belief sequence B b t= { ( )} , for t ≥ 1, consist of elements of X
i n

J
i

∈

−∆ , i.e.

b t i Ni
J
i( ) ,∈ ∈−∆   , is the belief of player i about the joint strategy of the other players

at stage t .

Let b ti
J
i( ) ∈ −∆ and M N i⊆ \ { } . Denote by b tM

i
{ }( ) the marginal distribution on M .

That is , b t x b x x tM
i M i M

x S N M i
{ }( )( ) ( , )( )

\{ , }

=
∈
∑ .

A learning process is a pair ( , )X B , where X is a path in S , and B is a belief

sequence or joint belief sequence, such that for every t ≥ 1 and every player i , the

strategy x ti ( )  is a best response to b ti ( ) .

A learning process ( , )X B is a fictitious play (FP) process, if for every player i , and

for every k i≠ , b t
t

x s tk
i k

s

t

( ) ( )= ≥
=

−

∑1
1

0

1

  ,  , ( here x sk ( ) is a point in ∆k  ).

Note that in a FP process b t b tk
i

k
s( ) ( )=  for all i k s k≠ ≠ and . We denote by b tk ( ) the

identical belief of all the players about player k s'  strategy at stage t  .

A FP process ( , )X B approaches equilibrium, if for every ε > 0  there exist t0 0> ,

such that for every t t≥ 0 , there exist a mixed equilibrium profile p N∈∆ , such that,

( ( ), ( ),..., ( ))b t b t b t pn1 2 − < ε  .

We say that a game has the FP property , if every FP process, independent of initial

actions and beliefs, approaches equilibrium.

A learning process ( , )X B is a joint fictitious play (JFP) process, if for every player i ,

b t
t

x s ti i

s

t

( ) ( ) ,= ≥−

=

−

∑1
1

0

1

  ,   ( here x si− ( ) is a point in ∆ J
i− ).
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Note that in a JFP process, for every two players i k≠ , and for all M N i k⊆ \ { , } ,

b t b tM
i

M
k

{ } { }( ) ( )= . We denote by b tk ( ) the identical belief of all the players about player

k ’s strategy at stage t .

5. The Four Principles of Motion

Every learning process is a pair ( , )X B , where X  is a path of pure strategy profiles

and B is a belief sequence. If we eliminate all successive repetitions in the path of pure

profiles we get a new path of pure profiles which we call the reduced path. For

instance, x y x z y, , , ,  is  the reduced path of x y y x x x z z y, , , , , , , , .

By investigation  the reduced paths structure induced by the FP process, we obtain

four principles of motion  that such paths must follow in non-degenerate games.

1. The Improvement Principle: Consider a two person game. The reduced path of

pure strategies generated by a FP process is 2-increasing7.

Proof : It suffices to show that if  x t x t( ) ( )≠ − 1 then for every player

  i M t k N x t x tk k∈ = ∈ ≠ −( ) { : ( ) ( )}1 ,  U x t x t U x ti i i i( ( ), ( )) ( ( ))− − > −1 1  .

Indeed, note that  U x t b t U x t b ti i i i i i( ( ), ( )) ( ( ), ( ))− − ≥ −1 2 2 , and

U x t b t U x t b ti i i i i i( ( ), ( )) ( ( ), ( ))− ≥ − −1 1 1 . As b ti ( )− 1  is a convex combination of

b ti ( )− 2  and x ti− −( )1 , and the game is non-degenerate, the result follows. n

Corollary 5.1: Every 2-acyclic game has the FP property.

The class of 2-acyclic games is quite restricted. The following example (due to Foster

and Young (1995)) give us a reasonable doubt  about the conjecture that  corollary 5.1

is valid also for 1-acyclic games :

                                                       
7 The reduced path generated by a JFP process is 2-increasing for every n n,  ≥ 1 , player game.
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G =

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

24 24 6 6 0 18 018 18 0 18 0 5 0 0 0

6 6 24 24 0 18 018 18 0 18 0 4 0 0 0

18 0 18 0 24 24 6 6 018 0 18 3 0 0 0

18 0 18 0 6 6 24 24 018 0 18 ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

2 0 0 0

0 18 0 18 18 0 18 0 24 24 6 6 1 0 0 0

0 18 0 18 18 0 18 0 6 6 24 24 0 0 0 0

0 4 0 5 0 2 0 3 0 0 0 1 25 24 25 25

0 0 0 0 0 0 0 0

− −
( , ) ( , ) ( , ) ( , )0 0 0 0 25 25 24 25− −

































Foster and Young (1995) introduced this game as an example of a coordination two

player game without the FP property. This game is not 1-acyclic game and therefore

this game is not a counter example to the conjecture that every 1-acyclic game has the

FP property. Still, the reduced path generated by a FP in this case is :

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ).....1 2 2 1 3 4 4 3 5 6 6 5 1 2→ → → → → →

This path is 2-increasing. Therefore the question whether a game is either 1-acyclic  or

not seems irrelevant . Further, by the Improvement principle we show that the reduced

path generated by a FP is a better reply dynamic. We can see by this  example  that the

reduced path generated by the FP process is not necessarily a best reply dynamic for

some stage on.

Shapley’s Example

Now, we proceed to show an application of the improvement principle. Consider the

following  game satisfying the ordinal properties of Shapley (1964):

G

a b b a

b a a b

a b b a
1

0 0

0 0

0 0

=

















( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

    where a b> > 0  , and a b< 2 .

Proposition (Shapley, 1964) :  G1 does not have the FP property.

We prove this result by the improvement principle :

Proof :  This game has a unique equilibrium ( , )p q x∈∆ ∆1 2 , where p q= = ( , , )
1

3

1

3

1

3
.

Therefore, If a FP process approaches equilibrium it must actually converges to
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( , )p q . Consider  a process starting from one of the non-zero entries. We show that

this process does not converge to ( , )p q .

Consider the following game G2  obtained by adding a 4th row to G1  :

G

a b b a

b a a b

a b b a

c c c

2

0 0

0 0

0 0

0 0 0

=



















( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( ,

( , ) ( , ) ( , )

where 
a b

c b
+

< <
3

.

By the improvement principle ( because b c< ) , player 1 never chooses the 4th  row.

Therefore the process generates the same play of pure strategies in G1 and G2 .

Suppose in negation that the process converges to ( , )p q  in G1 , then it must converge

to ( , )p q  in G2 , where p p p p= ( , , , )1 2 3 0 . Note that  the 4th  row is the unique best

reply of player 1 to q . Therefore it is the unique best reply to mixed strategies of

player 2 that are sufficiently close to q . Hence, if The FP converges to ( , )p q , player

1 eventually switches to the 4th  row, contradicting the improvement principle. n

The proof  of the non-approach result for the generalized fictitious play in the

examples given by Deschamps, Elison and Fudenberg is very similar (simpler actually)

so we omit it.

Let   G

a b b a c

b a a b c

a b b a c

c c c d d

=



















( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

0 0 0

0 0 0

0 0 0

0 0 0

Where d a b c
a b

> > > >
+

>
3

0 .

Note that by the improvement principle, in every FP process starting at one of the

( , )a b  or ( , )b a  entries, the players will not use their 4 th  strategies. On the other hand,

the unique equilibrium in this game is attained at the ( , )d d  entry.

The second principle  is an immediate conclusion of the improvement principle :

2. The Stability Principle: If a pure strategy equilibrium is played at some stage in
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a FP process, then it is played from this stage on for ever.

Denote by B x x S i( ),  ∈ , the set of all joint mixed strategy profiles in ∆− i against which

x is best reply. We now establish the third principle :

3. The Separation Principle: Let x  and y  be pure strategies of player i .Suppose

that B x B y( ) ( ) and do not intersect. Then in every FP process, for sufficiently late

stage, player i will never change its choice from x to y  and vice versa.

Proof : The distance between two successive beliefs of player i , b ti ( )  and b ti ( )+1 is

at most 
2

1t +
. Therefore, if player i chooses x at stage t, he will not choose y in the

next dt stages, where d is the distance between the sets B x( ) and B y( ) . n

The fourth principle is derived from  Miyasawa’s proof (1961) about the existence of

the FP property in 2 2x  games

4. The Reduction Games: Consider a two person game. If the reduced path

generated by a FP process always lies for t T≥  in the strategy profile set of a

MxN sub game, where M N+ ≤ 4 . Then the process approaches equilibrium8.

6. Continuous Fictitious Play (CFP)

We find it convenient to work with the continuous time formulation of fictitious play

rather than the discrete time formulation, in order to prove the existence of the FP

property for all non-degenerate 2 3x  games. Although there are no results relating the

discrete and the continuous processes, it seems that whenever the continuous fictitious

play exist, the fictitious play’s path behaves similarly to the continuous one. Since our

proof based on the four principles of motion relating to both processes, we assume that

this result holds for the discrete case as well.

While the time space is continuous, a path x in S is a right continuous function

x S:[0, )∞ →  such that the set of discontinuity points of x does not have an

accumulation point in [0, )∞ .

                                                       
8 We conjecture that this principle holds for every sub-game with the FP property. That is, for every
MxN sub-game such that M ≥ 1and N ≥ 1.



12

A belief  path is a pair ( , )b t1 , where t1 0> , and b t:[ , )1 ∞ → ∆  is the belief function.

A continuous learning process is a pair ( , ( , ))x b t1 , where x is a path in S , and ( , )b t1

is a belief path, such that x ti ( )  is a best response to b ti ( ) for every t t≥ 1 .

A continuous learning process ( , ( , ))x b t1  is a  continuous fictitious play (CFP)

process, if for every i , and for every j i≠ , b t x s dsj
i j

s

t

( ) ( )=
=
∫

0

, for every t t≥ 1 .

A CFP ( , ( , ))x b t1  process approaches equilibrium if for every ε > 0  there exist t0 0> ,

such that for every t t≥ 0 , there exist a mixed equilibrium profile p N∈∆ , such that,

(( ( ), ( ),..., ( ))b t b t b t pn1 2 − < ε  .

We say that a game has the CFP property , if every CFP process, independent of initial

actions and beliefs, approaches equilibrium.

Let ( , ( , ))x b t1  be a CFP process. Since x  is right continuous and takes values in a

finite set S , it must be a step function. Further, since x  has only finite number of

discontinuity points at any bounded interval, there exists an increasing sequence

{ }T k kk  ,  0 ≤ ≤  of times ( 2 ≤ ≤ ∞k ), where 0 0 1 1≤ < =T t T , that will be called the

reduced time sequence. Likewise, there exists a sequence { }z k kk  ,  0 ≤ ≤ , in S that

will be called the reduced path, such that :

(6.1)  z k z k k k( ) ( )≠ − ≤ ≤1 2 ,  .

(6.2)  z k x t T t T k kk k( ) ( )= ≤ < ≤ ≤+ ,   ,  1 0 ,

where T
k + = ∞

1
if k is finite.

It can be verified that the four principles of motion for the FP process  hold for the

CFP as well. Further, The improvement, stability, and separation principles can be

shown by the same arguments as in the discrete case. For the reduction principle see

the discussion in the following section.

7. 2x2 Games

The result of Miyasawa (1961) that every 2 2x game has the FP property proved under

a tie-breaking rule about the particular best reply at each period (when there are some
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best replies). Without tie-breaking rules, Monderer and Shapley (1996)  showed that

every 2 2x game that satisfies the diagonal property 9 is best response equivalent in

mixed strategies to either a game with identical payoff functions ( , )A A , or to a zero-

sum game ( , )A A− . Therefore every such game has the FP property. Hofbauer (1994)

showed that every two person zero-sum game has the CFP property. Likewise, it can

be verified  that every  game with identical payoff functions, and particularly every

two person 2 2x game has the CFP property10. Hence, every 2 2x  game with the

diagonal property has the CFP property. If  a game does not have the diagonal

property, it implies that for one of the players has either dominated strategy, or

identical strategies. The case of dominated strategies is easy to analyze. The harder

case is where there are identical strategies. As was shown by Monderer and Sela

(1996) there is  such a 2 2x  game without the FP property. It can be shown that this

game does not have also the CFP property. Hence, we discuss only about non-

degenerate games. Every 2 2x  non-degenerate game is either a game with dominated

strategies, or a game with the diagonal property, and therefore weobtain the following

result :

Corollary 7: Every non-degenerate 2 2x game has the CFP property.

8. 2x3 Games

We conjecture that corollary 7.1 holds for every 2 2xk k ,  >  non-degenerate game. By

the principles of motion  we affirm this conjecture for the case  k = 3:

Theorem 8.1: Every non-degenerate 2x3 game has the CFP property.

Proof :  Let G1  be a 2 3x  game as follows :

G A B
a b a b a b

a b a b a b1

11 11 12 12 13 13

21 21 22 22 23 23

= =








( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

                                                       
9 We say that a game G A B a i j b i j i j= = =( , ) ( ( , ), ( , )) , 1

2  has the diagonal property if c ≠ 0 and

d ≠ 0  where,

d b b b b c a a a a= − − + = − − +( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )1 0 21 1 2 2 2 11 2 1 1 2 2 2 and  .
10 In the following we actually need only the existence of the reduction principle in the continuous
case for zero-sum 2 2x sub-game. This result is derived from Hofbauer (1994).
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Without loss of generality we assume that b b b11 12 13> > . We can assume that there are

no strictly dominated strategies ( non-degenerate game does not have weakly

dominated strategies ). Thus, b b b23 22 21> > . We can apply utility transformation that

do not change the best response structure of the game. In particular, we can multiply a

payoff matrix by a positive constant. We can also add a constant to a column in A ,

and we can add a constant to a row in B . Applying these transformations to G1  yields:

G
a w b c z

u v
a b c z w v u2

0

0 0 0 0
0 0 0 0 0 0 0=









 ≠ ≠ ≠ > < < >

( , ) ( , ) ( , )

( , ) ( , ) ( , )
, , , , , ,           .

Depending on the signs of a b c,   and , there are eight different forms of G2 . But there

are only four different better response structures (each class of better response

structure includes two symmetric forms). The four classes are as follows :

Class 1 : a b c> > >0 0 0, ,   ( the symmetric form is : a b c< < <0 0 0, ,  ).

Class 2 : a b c a b c< < > < > >0 0 0 0 0 0, , ( , , )      .

Class 3 : a b c a b c> < > < > <0 0 0 0 0 0, , ( , , )      .

Class 4 : a b c a b c> > < > < <0 0 0 0 0 0, , ( , , )      .

Classes 1-3

We use now the four principles in order to prove the CFP property in the three first

cases.

Let G
a w b c z

u v2

0

0 0 0 0
=

( , ) ( , ) ( , )

( , ) ( , ) ( , )
   (a, b, c, u, v, w, z) > 0 .

Class 1: a b c> > >0 0 0 ,   ,  11.

In this class of games row 2 is strictly dominated, and therefore we have actually a 1 3x

game. It is obvious that every 1 1xn n ,  ≥ , has the CFP property. n

Class 2: a b c< > >0 0 0 ,   ,  12.

By the improvement principle, the following diagram describes all possible moves

along a reduced path, that can be generated by a CFP process.

                                                       
11 The same argument holds for the case : a b c< < <0 0 0, ,  .
12 The same argument holds for the case : a b c< > >0 0 0, ,  .
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( , ) ( , ) ( , )

( , ) ( , ) ( , )

11 1 2 13

21 2 2 2 3

→ →
↓ ↑ ↑

← ←
      

Note  that simultaneously moves ( , ) ( , )11 2 2↔ and ( , ) ( , )1 2 2 3↔ are impossible in the

CFP process, since the meaning of such moves according to the structure of the game,

is that at least one of the points in A = {( , ), ( , ), ( , ), ( , )}11 2 2 1 2 2 3 is played only once

among successive plays of other point in A . And this is a contradiction to the

increasing property of the reduced time sequence generated by the CFP process.

The separation principle implies that player 2 will not move between column 1 and

column 3. So, we can omit all arrows between these columns. This leaves us with :

( , ) ( , ) ( , )

( , ) ( , ) ( , )

11 1 2 13

21 2 2 2 3

→ →
↓ ↑ ↑

← ←
      

Note that all the paths lead to one of the pure equilibrium point, and by the stability

principle, if the process lands on pure equilibrium point, it will stay there forever. So,

we  can conclude that every CFP process approaches equilibrium in case 2. n

Class 3: a b c> >0 0 ,  < 0 ,  13.

By the improvement and the separation principle, the following diagram describes all

possible moves along a reduced path generated by a CFP process.

( , ) ( , ) ( , )

( , ) ( , ) ( , )

11 1 2 13

21 2 2 2 3

→ →
↑ ↓ ↑

← ←
      

By the stability principle, without loss of generality, we can consider only arrows that

do not point towards the equilibrium point ( , )13 . This give us the following diagram :

( , ) ( , ) ( , )

( , ) ( , ) ( , )

11 1 2 1 3

21 2 2 2 3

→
↑ ↓

← ←

 

      

So the only potential non-converging process must cycle between :

( , ) ( , ) ( , ) ( , ) ( , )...11 1 2 2 2 21 11→ → → →

                                                       
13 The same argument holds for the case : a b c> < >0 0 0, ,  .
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Apply the reduction principle to conclude that the process must approach equilibrium

in this case.14 n

Class 4

The following game G is a typical game of class 4:

G
a w b z

u
a b u w z=

−
−

>
( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , , , , )

0 0

0 0 0 1 1
0     .

Without loss of generality, assume that w uz>  , since otherwise column 2 is almost

always15 strictly dominated, and by the continuation of the CFP, the column player will

not use this column for ever, since otherwise we have a contradiction to the increasing

of the reduced time sequence generated by the CFP process.

Let ( , ( , ))x b t1  be a CFP in G  , and let { } { ), *T z k kk k and  0 ≤ ≤  , be the time

sequence and the reduced path associated with the process respectively. By the

stability principle , we can assume without loss of generality , that these sequences are

infinite. By the separation principle, for sufficient late stage, the column player will not

switch from column 1 to column 3 and  vice versa. By the improvement principle, the

player may move from z k( )  to z k( )+1  only according to the following arrows :

( , ) ( , ) ( , )

( , ) ( , ) ( , )

11 1 2 13

21 2 2 2 3

→ →
↑ ↑ ↓

← ←
      

Since the simultaneously move ( , ) ( , )2 2 11→ is impossible by the CFP process , the

reduced path induces only two cycle forms:

( , ) ( , ) ( , )

( , ) ( , ) ( , )

11 1 2 13

21 2 2 2 3

→ →
↑ ↓

← ←
                 

( , ) ( , ) ( , )

( , ) ( , ) ( , )

11 1 2 1 3

21 2 2 2 3

→
↑ ↓

←
   

   six point cycle                             four point cycle

Since the process lands in the point (1,2) infinite times, round n n, , , ....  = 1 2  is defined

as the n th  time in which the process lands in the point (1,2). The initial point of each

round is naturally the point (1,2).

                                                       
14 Note that the 2 2x sub-game induced by the process is best response equivalent to a 2 2x zero-sum
game.
15 We say that a strategy x of player i is almost always strictly dominated, if the set B x( )  has

measure 0.
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We proceed to prove that a CFP process can not generate only six point cycles, and

therefore it must generate also four point cycles. Later we will prove that if the process

generates once the four point cycle, then it generates only this cycle for ever. Apply

the reduction principle to conclude that the process approaches equilibrium in this

case.

Denote by x i jij
n    = 1,2  ,   = 1,2,3  , the amount of time spent playing in the point ( , )i j

up to (including) round n n  ,  = 1 2 3, , , ...

Denote by y i jij
n    = 1,2  ,   = 1,2,3 , the amount of time spent playing in the point ( , )i j

in round n n  ,  = 1 2 3, , , ...

A CFP generating only six point cycles, can be described by the difference equations

((8.3)-(8.8)). Each equations describes the variables xij
n  at times in which the CFP

switches (given in parentheses) from point to point in the six point cycle ( equations

(8.1) and (8.2) refer to previous round). n > 0  indicates the number of the round,

while x i j mij
m   = 1,2  ,   = 1,2,3 ,  ≤ 0 , assigns the initial amount of the point ( , )i j

before the first time generating this cycle.

The equations are as follows :

(8.1)  ax ax bx bx x xn n n n n n
11

2
21

1
12

1
22

1
13

1
23

1− − − − − −+ + + = + (( , ) ( , ))2 1 11→ .

(8.2)  wx wx wx ux ux uxn n n n n n
11

1
12

1
13

1
21

1
22

1
23

1− − − − − −+ + = + + (( , ) ( , ))11 1 2→ .

(8.3)  zx zx zx x x xn n n n n n
11

1
12 13

1
21

1
22

1
23

1− − − − −+ + = + + (( , ) ( , ))1 2 1 3→ .

(8.4)  ax ax bx bx x xn n n n n n
11

1
21

1
12 22

1
13 23

1− − − −+ + + = + (( , ) ( , ))1 3 2 3→ .

(8.5)  zx zx zx x x xn n n n n n
11

1
12 13 21

1
22

1
23

− − −+ + = + + (( , ) ( , ))2 3 2 2→ .

(8.6)  wx wx wx ux ux uxn n n n n n
11

1
12 13 21

1
22 23

− −+ + = + + (( , ) ( , ))2 2 2 1→ .

(8.7)  ax ax bx bx x xn n n n n n
11

1
21 12 22 13 23

− + + + = + (( , ) ( , ))2 1 11→ .

(8.8)  wx wx wx ux ux uxn n n n n n
11 12 13 21 22 23+ + = + +  (( , ) ( , ))11 1 2→ .

We will show that these equations yield a contradiction. By subtraction pairs of

equations (given in parentheses) we obtain :

(8.9)  zy yn n
13 23=  ( ( . ) ( . )85 83− ).

(8.10) wy wy wy uyn n n n
12 13 22 23+ = +  ( ( . ) ( . )8 6 8 2− ).

(8.11) wy uyn n
11 21=  ( ( . ) ( . )88 8 6− ).
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(8.12) ay by yn n n
21 22 23+ = ( ( . ) ( . )8 7 8 4− ).

(8.13)  ay by yn n n
11

1
12 13

− + = ( ( . ) ( . )8 4 81− ).

Using equations (8.9)-(8.13)  give us :

(8.14)  y y
zu
w

b
zu
w

y
b

aw
w uz bn n n

11 11
1

121 1= − − − − +− ( ( )) ( ( )( )) .

This yields : y ryn n
11 11

1< −  where 0 1< = <r zu w/ .  Thus, lim
n

ny
→∞

=11 0 .

On the other hand, since ( ) / (( )( ))w uz z w u− + +1 is the length of the set

B i( ) column , we obtain :

(8.15) y w uz z w un
12 1 0> − + + > ∀( ) / (( )( ))    n > 1.

But  equation (8.15) contradicts, by equation (8.14), the convergence of y n
11  to zero

when n approaches infinity.

We showed that there is no a stage, such that a CFP process  generates only six point

cycles from this stage on. Thus, every CFP process generates four point cycles

infinitely often. Now we will show that if a CFP generates the four point cycle at some

stage, then it will generate only four point cycles from this stage on.

A CFP process generating the four point cycle for some n > 0  , can be described by

the following  equations ((8.16)-(8.19)) :

(8.16)  zx zx zx x x xn n n n n n
11

1
12 13

1
21

1
22

1
23

1− − − − −+ + = + + (( , ) ( , ))1 2 1 3→ .

(8.17)  zx zx zx x x xn n n n n n
11

1
12 13

1
21

1
22

1
23

1− − − − −+ + = + + (( , ) ( , ))1 2 1 3→ .

(8.18)  zx zx zx x x xn n n n n n
11

1
12 13 21

1
22

1
23

− − −+ + = + +  (( , ) ( , ))2 3 2 2→ .

(8.19)  ax ax bx bx x xn n n n n n
11

1
21

1
12 22 13 23

− −+ + + = +  (( , ) ( , ))2 2 1 2→ .

The subtraction (8.19)-(8.17) yields :

(8.20)  by yn n
22 23= .

By the improvement principle, the unique escape route from the four point cycle, could

be by moving from the point (2,2) to the point (2,1). We will show that if the process

lands on (2,2) after one round through the four point cycle, then the next move will be

necessarily to (1,2) and not to (2,1). That is, the process will induce only  four point

cycles for ever.

Suppose in negation that the process induces the four point cycle in round n − 1,

n > 1 , and immediately after that the process moves from (2,2) to (2,1), that is, leaves
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the four point cycle. Then, the next move according to the improvement principle is

from (2,1) to (1,1). The route ( , ) ( , ) ( , )2 2 21 11→ →  implies :

(8.21) ay by yn n n
21 22 23+ = .

Where y n
22  is the time which is needed to move from (2,2) to (2,1), and y n

22  is the time

which is needed to move from (2,2) to (1,2). Because of the geometrical structure of

the sets B i i( ) , ,column   = 1 2 3, we obtain that,

(8.22)  y yn n
22 22> .

Equations (8.20) , (8.21), and (8.22) yield that y n
21 0= . But this is a contradiction to

our assumption about the  escape of the four point cycle, that is, the move from (2,2)

to (2,1). n
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