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La question que cet article cherche a résoudre est de savoir si le fait d'avoir un
équilibre unique (ou un nombre donné d'équilibre) est une propriété robuste a la
perturbation des paiements. Cette question est étudiée pour des jeux sous forme
normale, et a la fois pour le concept d'équilibre de Nash et pour celui d'équibre
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n>2. Le lemme crucial est qu'un équilibre corrélé unique est un équilibre de Nash
quasi-strict. Des résultats liés sont également présentés. Nous montrons
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unique équilibre corrélé, et étudions le caractere ouvert de divers ensembles de
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quasi-strict, symétriques, etc.).

We investigate whether having a unique equilibrium (or a given number of
equilibria) is robust to perturbation of the payoffs, both for Nash equilibrium and
correlated equilibrium. We show that the set of n-player finite normal form
games with a unique correlated equilibrium is open, while this is not true of
Nash equilibrium for n>2. The crucial lemma is that a unique correlated
equilibrium is a quasi-strict Nash equilibrium. Related results are studied. For
instance, we show that generic two-person zero-sum games have a unique
correlated equilibrium and that, while the set of symmetric bimatrix games with
a unique symmetric Nash equilibrium is not open, the set of symmetric bimatrix
games with a unique and quasi-strict symmetric Nash equilibrium is.
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The relevance of a phenomenon arising in a game often hinges upon this
phenomenon being robust to perturbation of the payoffs of the game. To
establish such robustness results typically requires proving that some of the
properties of the game we initially considered are themselves robust; that
is, that the set of games having these properties is open. We investigate
here whether the set of finite normal-form games with a unique equilibrium
is open, for Nash equilibrium, correlated equilibrium, and variants of Nash
equilibrium such as symmetric Nash equilibrium in symmetric games.

For two-player games, the question has been solved by Jansen (1981),
who showed that the set of bimatrix games with a unique Nash equilibrium
is open. However, this result does not extend to three-player games nor
to symmetric equilibria of symmetric bimatrix games: counterexamples are
given in section 3. Our main result is that, by contrast, for any number of
players n, the set of n-player finite games with a unique correlated equilibrium
is open. This generalizes an earlier result of Noa Nitzan (2005).

An intuitive explanation of the discrepancy between the results on Nash
equilibrium and those on correlated equilibrium is as follows: the proof of the
openness of the set of bimatrix games with a unique Nash equilibrium uses
three ingredients : upper-semi-continuity of the equilibrium correspondence,
an element of linearity in the structure of the set of equilibria (the set of
Nash equilibria of a bimatrix game is a finite union of convex polytopes) and
the fact that in bimatrix games, a unique Nash equilibrium is quasi-strict
(Jansen, 1981); that is, for each player, no pure best response to the strategy
of the other player is outside the support of her own strategy.

For Nash equilibrium, the last two ingredients are specific to two-player
games, and the last one is also lacking for symmetric Nash equilibria of sym-
metric bimatrix games. This accounts for our negative results. By contrast,
for any number of players, there is strong element of linearity in the struc-
ture of the set of correlated equilibria (this is a polytope). Furthermore, and
this is the crucial lemma, it may be shown that for any number of players,
a unique correlated equilibrium is a quasi-strict Nash equilibrium. This fol-
lows from the strong complementary property of linear programs and dual
reduction arguments (Myerson, 1997).

The material is organized as follows: Definitions and notations are intro-
duced in section 1. Openness of the set of games with a unique correlated
equilibrium is proved in section 2. Section 3 groups remarks and related



results: We first show that generic zero-sum games have a unique correlated
equilibrium and discuss the connections of our work with Nitzan’s (2005). It
is then shown that the set of 3-player games with a unique Nash equilibrium
and the set of symmetric bimatrix games with a unique symmetric Nash equi-
librium are not open, but that the set of symmetric bimatrix games with a
unique and quasi-strict symmetric Nash equilibrium is. It is also shown that
for any n,k > 2, the set of n-player games with k equilibria (or k extreme
points to the set of correlated equilibria) is not open, though for almost ev-
ery game G, every game in a neighborhood of G has the same number of
equilibria as G. We then study the structure of the set of Nash equilib-
ria for bimatrix games at the relative boundary of the set of games with a
unique correlated equilibrium. Finally, we show that the set of two-player
zero-sum games in which one of the players has a unique optimal strategy is
not open. This explains that the openness of the set of games with a unique
correlated equilibrium cannot be deduced easily from Hart and Schmeidler’s
(1989) proof of existence of correlated equilibria.

1 Definitions and main result

Let G be a finite n-player game. I = {1,2,...,n} is the set of players, S* the
set of pure strategies of player i and S™" := X ep ;3.57. The utility function
of player i is U' : S = x;¢;18° — R. As usual, U’ is extended multilinearly to
the set of probability distributions over S. A pure strategy profile is denoted
by s = (s',s7%) and a mixed strategy profile by o = (¢%,07"). The support
of ¢ is denoted by

Supp(c') == {s' € S": o'(s") > 0}
and the set of pure best-responses to o~% by
PBR(c7"):=={s' € S",Vt' € S",U'(s",07") > U'(t',0™ ")}

Finally, for any finite set T', the simplex of probability distributions over T’
is denoted by A(T).

A correlated strategy of the players in [ is a probability distribution over
the set S of pure strategy profiles. Thus 1 = (u(s))ses is a correlated strategy
if:

u(s) >0 VvseS (1)
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S uls) =1 (2)

seSs

Henceforth, the conditions in (1) will be called nonnegativity constraints. For
sttt in S* and p in A(S), let

hsz‘ﬂ (M) — Z ,LL(S)[U%S) o Uz‘(tz" sz‘)]

s—ieS—i

where, as throughout, s = (s%, s7%).

Definition. A correlated strategy p is a correlated equilibrium (Aumann,
1974) if it satisfies the following incentive constraints:

R (u) >0, Viel Vs €S Vte s (3)

Since conditions (1), (2) and (3) are all linear in pu, it follows that the set of
correlated equilibria of any finite game is a polytope.

A n-player finite game has size mq; X mg X ... X m,, if, for every 7 in I, the
pure strategy set of player ¢ has cardinal m;. Assimilating a game and its
payoff matrices, a n-player game of size m; X mg X ... X m, may be seen as
a point in (R™™2-")" hence the notions of a neighborhood of a game and
of an open set of games. The main result of this paper is that:

Proposition 1. The set of n-player games of size my X mo X ... X m,, with
a unique correlated equilibrium is an open subset of the set of games of size
mi X mg X .... X my,. Furthermore, if a n-player finite game has a unique
correlated equilibrium o, then the (unique) correlated equilibrium of every
nearby game has the same support as o.

2 Proof

Let G be a game with a unique correlated equilibrium and (G,,) a sequence
of games converging towards GG. We need to show that, for n large enough,
the game G,, has a unique correlated equilibrium. The proof runs as follows:
Let o denote the unique correlated equilibrium of G. A dual reduction ar-
gument shows that o is a quasi-strict Nash equilibrium (lemma 3). Together
with the upper semi-continuity of the Nash equilibrium correspondence this
implies that, for n large enough, G,, has a quasi-strict Nash equilibrium with



the same support as o (lemma 5). Since two quasi-strict Nash equilibria with
the same support satisfy the same nonnegativity and incentive constraints
with equality (lemma 6), it follows that, for n large enough, G,, has a cor-
related equilibrium satisfying with equality the same constraints as . Due
to a general result on polytopes (lemma 2), this implies that, for n suffi-
ciently large, the correlated equilibrium polytope of G, is a singleton. This
completes the proof.

We begin with the result on polytopes: Let (A,) be a sequence of p x ¢
real matrices, (b,,) a sequence of column vectors of size p, and J = {1, ..., p}.
Let

C,={x€eR,A,x>Db,}

(A,x > b, means that the weak inequality holds for each coordinate). Make
the following assumptions: first, C), is uniformly bounded:

EIME]R,VnEN,VXGC’n,ma}(KAnx)H <M (4)
JE

In particular, C), is a polytope. Second, (A,) and (b,,) converge respectively
towards the matrix A and the vector b. Third, the “limit polytope”

C={xeR!Ax > Db}

is a singleton: C' = {x}. Let J' := {j € J,(AX); = b;} denote the set of
constraints binding at X, and let J” = J\J'. Finally, let b, ; denote the j
component of b,,.

Lemma 2. If there exists N € N such that, for alln > N, there exists x, in
C,, with
Vj € J/, (Anilln)] = bn,j (5)

then for n large enough, C,, is a singleton.
Proof. We begin by showing that, for n large enough, all constraints satisfied
with strict inequality by X are satisfied with strict inequality by every x in

C,:
IN" e N,Vn > N',vx € C,,,Vj € J”, (A,x); > by j (6)

For all n in N, let z,, € C,. To establish (6), it suffices to show that for n
large enough,
VielJ, (Anz,) > by (7)
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Due to (4), the sequence (z,) is bounded. Furthermore, since A, — A and
b, — b, any accumulation point z of (z,) satisfies z € C, hence z = x. It
follows that (z,) converges to X. Therefore A, z, — b,, converges to Ax — b.
Since (Ax); —b; > 0 for every j in J”, it follows that,for n large enough,
(7) is satisfied. This completes the proof of (6).

We now prove the lemma: let n > max(N, N') and let x,, satisfy (5).
If C, is not a singleton, then C), has an extreme point z, # x,. By basic
properties of extreme points, one of the constraints defining C), is binding at
z, but not at x,. Since (A,x,); = 0 for all j in J’, this implies that there
exists j in J” such that (A,z,); = b, ;. This contradicts (6). Therefore C,
is a singleton. O]

Lemma 3. If a n-player finite game has a unique correlated equilibrium o
then this correlated equilibrium is a quasi-strict Nash equilibrium.

Proof. The fact that ¢ is a Nash equilibrium follows from the existence of
Nash equilibria and the fact that Nash equilibria are correlated equilibria.
What we really need to show is that ¢ is quasi-strict.

For each player 7 in I, let o be a transition probability over the set of
pure strategies of player i:

ats St = A((SY)

s — a'xs

A mixed strategy 7¢ of player i is a‘-invariant if of x 7 = 7° where the
mixed strategy o' * 7¢ is defined by
[O/ * Ti] (t) = Z 7'(s%) ([ozi * si} (tl)) vtt e S
sieSt

It follows from (Nau and McCardle, 1990, last paragraph of section 2 and
proposition 2) that there exists a vector of transition probabilities a such
that, for every pure strategy profile s in .S,

D Ui(ax st s = U'(s)] 2 0 (8)
iel
with strict inequality if s has probability zero in all correlated equilibria. Fix
such a vector a = (a');c;. We claim that:

Claim 4. For every i in I, the mized strategy o' is o'-invariant.



This will be proved in the end. Assume that the pure strategy s does not
belong to the support of ¢* and let 7 = (s',07%). Since o is the unique
correlated equilibrium of G, it follows that every pure strategy profile s in
the support of 7 has probability zero in all correlated equilibria. Therefore,
by definition of «,

7(s) > 0= Z [U* (" % 5%, s7%) = U*(s)] >0

kel

It follows that

Z (U (" * 7%, 77F) = U*(7)] = ZT(S) Z [UF (" * 5%, s7%) = U*(s)] >0

kel ses kel
(9)

k_invariant. Therefore,

For every k # i, 7% = o* hence, by claim 4, 7% is «
(9) boils down to U'(a’ * 7, 77%) > U*(7); that is,

Ula' xs',07") > U'(s', 07"

This implies that s’ is not a best-response to o~

. Since s was an arbitrary
strategy not in the support of o, it follows that o is quasi-strict.

It only remains to prove claim 4. The proof is based on dual reduction
(Myerson, 1997). Fix « as above. Note that, due to (8), « is a dual vector in
the sense of Myerson (1997). Define the a-reduced game G/« as in (Myerson,
1997). That is, in G//«, the set of players and the payoffs are as in G, but
the mixed strategies available to player i are only those mixed strategies o
of player i in G that are a'-invariant. Myerson (1997) shows that G/« is a
finite game, hence it has a Nash equilibrium. Let ¢ be a Nash equilibrium of
G/a. By definition of G/, we may see ¢ as a mixed strategy profile of G,
with 6% a'-invariant. Since ¢ is a Nash equilibrium of G/« it follows from
theorem 1 of Myerson (1997) that & is a Nash equilibrium of G. Therefore
o = 0. Since ¢° is o/-invariant, this implies that o? is a/-invariant too. This
completes the proof. O

The following lemma is a version of lemma 4.1 of Jansen (1981).

Lemma 5. If the n-player game G has a unique Nash equilibrium o and that
this Nash equilibrium is quasi-strict, then there exists a neighbourhood Q¢ of
G such that, for every game G in Q¢ and every Nash equilibrium & of G, the
support of & is equal to the support of o and & is quasi-strict.



Proof. Let (G)nen be a sequence of games converging to G and o,, a Nash
equilibrium of GG,,. To prove lemma 5, it is enough to show that, for n large
enough, the support of o, is equal to the support of ¢ and o, is quasi-
strict. Since the Nash equilibrium correspondence is upper semi-continuous
and since G has a unique Nash equilibrium, it follows that o, converges to
o. Therefore,

N € N,Vn > N,Vi € I, Supp(c’) C Supp(c?) (10)

Furthermore, if U'(s',07%) < U'(o) then for n large enough, U!(s',0,") <
Ui(c,), where Ul denotes the utility function of player i in the game G,,.
Therefore,

AN’ € N,Vn > N',Vi € I, PBR(c,") C PBR(c™") (11)

Finally, since the Nash equilibrium ¢ is quasi-strict, it follows that PBR(c ")
Supp(c~). Together with (10) and (11), this implies that for n large enough:

Supp(o,) € PBR(0,") € PBR(0™") = Supp(o*) C Supp(ay,)

Since the beginning and the end of this chain of inclusion are equal, this is
a chain of equality. In particular, Supp(c’) = PBR(c,") = Supp(c’). The
result follows. 0

Lemma 6. Let G and G be two games with the same set of players and
strategies. Let o and 6 be Nash equilibria of, respectively, G and G. Assume
that o and 6 have the same support and are both quasi-strict. Then, among
the nonnegativity and incentive constraints defining correlated equilibria, o
and & satisfy the same constraints with equality.

Proof. Since, by assumption, ¢ and ¢ have the same support, the nonnega-
tivity constraints they satisfy with equality are the same. We now show that
the incentive constraints they satisfy with equality are also the same. Since
o is a product distribution, it follows that

B (o) = o'(s") [U'(s',0™) = U'(t 0] Vi Vs'

Let S = x;5% denote the support of both o and &. If s* ¢ S?, then o?(s') = 0
hence h*"*' (o) = 0 for every ¢/ in S°. If s' € 5% and ¢ € S*, then, since o is
a Nash equilibrium, Ui(s?,0~%) = U'(t,0~%) hence h*"* (¢) = 0. Finally, if
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s' € S"and t' ¢ S’ then o'(s') > 0 and, since o is quasi-strict, U’(s’,0~") —
Ui(t, o) > 0. Therefore, h*"*(¢) > 0. Grouping these observations we
obtain that h*"''(¢) > 0 if and only if s' € 5" and ' ¢ S. The same result
holds for & so that, letting (ﬁsi’ti)sie si ticsi denote the linear forms associated
with the correlated equilibrium incentive constraints of G, we have:

et (0) =0e b (6) =0
This completes the proof. O

We now conclude. Let G be a game with a unique correlated equilibrium
o and (G,) be a sequence of games converging towards G. Let C,, be the
correlated equilibrium polytope of GG,,. Combining lemmas 3, 5 and 6, we
obtain that, for n large enough, G,, has a correlated equilibrium o, satisfying
with equality the same constraints as . By lemma 2, this implies that for n
large enough, C,, is a singleton. This completes the proof of proposition 1.

3 Remarks and related results

1. The fact that the set of m; x my X ... X m,, games with a unique
correlated equilibrium is nonempty is obvious: any dominance solvable game
has a unique correlated equilibrium. Note also that generic two-player zero-
sum games have a unique correlated equilibrium. This follows from the
observation that: (i) a zero-sum game has a unique correlated equilibrium
if and only if it has a unique Nash equilibrium (Forges, 1990); (ii) generic
zero-sum games have a unique Nash equilibrium (Bohnenblust et al, 1950).

2. Nitzan (2005) proved independently and earlier a weaker version of
proposition 1. More precisely, she proved that if a two-player m x m game
has a unique correlated equilibrium and that this correlated equilibrium has
full support, then every nearby game has a unique correlated equilibrium
and this correlated equilibrium has full support. To prove this result with
our method, it suffices to note that if a game has a unique and completely
mixed Nash equilibrium, then every nearby game has a completely mixed
Nash equilibrium, and then to apply lemma 2. This illustrates a difference
between our arguments and Nitzan’s: while she uses a theorem of the alter-
native, we do not need any theorem of the alternative to prove her results.
(We do however use a theorem of the alternative to prove proposition 1. In-
deed, the proof of lemma 3 uses Nau and McCardle’s (1990) characterization
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of strategy profiles with positive probability in at least one correlated equi-
librium, which itself relies on a theorem of the alternative.)

3. The set of 3-player games with a unique Nash equilibrium is not open.
The following 2 x 2 x 2 counter-example is adapted from (Flesch et al, 1997)
and was provided by Eilon Solan (personal communication).

(1,1,1 o,1,1> (1,0,1—6 1,1,0) 12
1,1,0 1,0,1 0,1,1 0,0,0

Player 1 chooses a row (Top or Bottom), player 2 a column (Left or Right)
and player 3 a matrix (West or East). For e = 0, there is a unique Nash
equilibrium, in which all players play their first strategy (this will be proved
below). However, for € > 0, there is a continuum of Nash equilibria. Indeed,
every (partially) mixed strategy profile in which player 1 plays Bottom with
probability less than €/(1 + €) and player 2 and 3 stick to their first strategy
is a Nash equilibrium. Thus, in 3-player games, there are sequences of games
with a continuum of Nash equilibria converging towards a game with a unique
Nash equilibrium.

The game (12) with € = 0 also provides an example of a game with a
unique Nash equilibrium that is not quasi-strict. This calls for two remarks:
first, while it is well known that 3-player games need not have a quasi-strict
equilibrium, the counter-examples I found in the literature, e.g. (Raghavan,
2002), are of games with several Nash equilibria. Thus, up to my knowl-
edge, whether a unique Nash equilibrium is necessarily quasi-strict was still
open. Second, in two-player games, a unique Nash equilibrium is necessarily
quasi-strict, as shown by Jansen (1981), and as also follows from the fact
that every bimatrix game has a quasi-strict Nash equilibrium (Norde, 1999).

Proof that the game (12) with e = 0 has a unique Nash equilibrium: for e = 0,
the game (12) may be described as follows: player i + 1 (counted modulo 3)
wants to mismatch player i, except if all players play their first strategy.
Thus, in an hypothetical equilibrium different from Top-Left-West, if ¢ plays
in pure strategy, then ¢+ 1 must mismatch ¢, 142 mismatch :+1 and 143 =1
mismatch ¢ 4 2; therefore, ¢+ must mismatch itself, a contradiction. It follows
that the only equilibrium in which one of the players plays in pure strategy
is Top-Left-West.



It remains to show that there are no completely mixed Nash equilib-
ria. By contradiction, let = €]0,1[ (resp. y, z) be the probability of Bot-
tom (resp. Right, East) in an hypothetical completely mixed Nash equi-
librium. Since player 1 is indifferent between Top and Bottom, we have
y(l1 —2) = (1 —y)z + yz = 2, hence y > z. Since the game is cyclically
symmetric, it follows that y > 2z > & > y, which cannot be. This completes
the proof. m

4. A corollary of lemma 5 is that:

Corollary 7. The set of games with a unique and strict Nash equilibrium is
open.

Indeed, if a game has a unique and strict Nash equilibrium o, then by
lemma 5, every Nash equilibrium of every nearby game has the same support
as o, hence is equal to o as o is pure. I do not know whether the set of games
with a unique and quasi-strict Nash equilibrium is open.

5. The following example shows that, within the set of two-person sym-
metric games, the set of games with a unique symmetric Nash equilibrium is
not open:

—€, —€ 1,0 1,0
0,1 0,0 —-1,—-1
0,1 —-1,—-1 0,0

For € = 0, this game has a unique symmetric Nash equilibrium: Top-Left.
. . 1. . 1 1

For ¢ > 0, it has 3 symmetric Nash equilibria: (17, 15,0), (7=,0, 75,

(ﬁ, Fi3c> 313.)- Lhis is linked to the fact that, for ¢ = 0, the unique

symmetric Nash equilibrium is not quasi-strict. Indeed, the openness of

the set of bimatrix games with a unique Nash equilibrium has the following

analogue for symmetric games:

Proposition 8. Within the set of two-person symmetric games, the set of
two-person symmetric games with a unique symmetric Nash equilibrium and
such that this Nash equilibrium is quasi-strict is open.

Proof. Let G be a two-person game with a unique symmetric Nash equilib-
rium, with support S = 51 x 52 (To make things clear: there might be other,
asymmetric Nash equilibria). Assume that the unique symmetric equilibrium

10



is quasi-strict. It follows from a variant of lemma 5 that, within the set of
two-person symmetric games, there exists a neighborhood €2 of G such that,
for any game G’ in Qg, any symmetric Nash equilibrium of G’ has support
S and is quasi-strict.

Fix G’ in Qg. Since G’ is symmetric, it has a symmetric Nash equilib-
rium o. To establish proposition 8, it is enough to show that G’ has no
other symmetric Nash equilibrium. By contradiction, assume that G’ has a
symmetric Nash equilibrium 7 # ¢. For every A in R, define the symmetric
mixed strategy profile oy by o4 = A" + (1 — \)o*, for i = 1,2.

There are five types of incentive and nonnegativity constraints that o)
must satisfy in order to be a (symmetric) Nash equilibrium:

(i) oa(s) > 0,5 € S

(i) oa(s) > 0,5 ¢ S;

(iii) 2*"" (o)) > 0,5 € S 11 ¢ S i =1,2;

(iv) B (04) > 0,5 € St € ST i =1,2;

(v) ¥t (0y) > 0,s" ¢ St e ST i =1,2.

Using the fact that both o and 7 are Nash equilibria with support S, it is
easily checked that for every A in R, o, satisfies (with equality) all constraints
of types (ii), (iv) and (v).

Moreover, since o # 7 and since the set of Nash equilibria is compact, it
follows that there exists a maximal value of A such that o, is a (symmetric)
Nash equilibrium. Call this value \,,,,. Since all symmetric Nash equilibria
of G’ have support S and are quasi-strict, they all satisfy with strict inequal-
Therefore, there
exists A > Apqr such that oy satisfies all constraints of type (i) and (iii).

ity all constraints of types (i) and (iii), hence so does oy, .
Since, as mentioned in the previous paragraph, o, also satisfies all other con-
straints, it follows that o, is a (symmetric) Nash equilibrium, contradicting
the maximality of \,,qz- O

Finally, a variant of the proof of corollary 7 shows that the set of n-player
symmetric games with a unique symmetric Nash equilibrium and such that
this equilibrium is strict is open.

6. Until now, we focused on games with a unique equilibrium, but we
might also ask whether, for £ > 2, having k Nash equilibria, or k extreme
points to the set of correlated equilibria, is a robust property. The answer is
negative:

11



Proposition 9. For every n,k > 2, the set of n-player games with k (< k,
> k) Nash equilibria is not open; similarly, the set of n-player games with k
(< k, > k) extreme points of the set of correlated equilibria is not open.

We provide a counterexample for the case n = 2, k = 3. The counter-
example is easily generalized to any numbers n,k > 2. For simplicity, call
extreme correlated equilibria the extreme points of the set of correlated equi-
libria. Consider the following game:

L M R
T 0,0 —-1,—-1 —-1,0
M —-1,-1 €, € —-1,0
B 0,—-1 0,—-1 0,0

(13)

For ¢ = 0, both players can guarantee 0 by playing the third strategy, and
this is the highest payoff they can get. It follows that in any correlated equi-
librium, the off-diagonal strategy profiles have probability zero. Therefore,
the three pure strategy profiles on the diagonal are the only Nash equilibria
of the game and these are also the extreme correlated equilibria. For e < 0,
the Nash equilibrium (M, M) disappears, and only two Nash equilibria re-
main, which again are also the extreme correlated equilibria. For € > 0, there
are 4 Nash equilibria (resp. 6 extreme correlated equilibria): (7', L) and the
Nash equilibria (resp. extreme correlated equilibria) of the 2 x 2 coordination
game obtained by eliminating the strategies T" and L.

7. The reason why a slight perturbation of the payoffs of (13) may alter
the number of equilibria of the game is that not all equilibria are quasi-strict.
Indeed, Jansen (1981, lemma 8.3 and remark 8.8) showed that if all equilibria
of a bimatrix game are quasi-strict, then (i) the game has a finite number of
equilibria and (ii) every nearby game has the same number of equilibria.

Using the fact that a finite game has a finite number of equilibrium com-
ponents and upper-semi-continuity of the Nash equilibrium correspondence,
it is easy to generalize Jansen’s result as follows: if all equilibria of a n-player
game are strongly stable (in the sense of van Damme, 1991) then (i) and (ii)
above hold. Since for bimatrix games, all equilibria are strongly stable if and
only if all equilibria are quasi-strict, this indeed generalizes Jansen’s result.
Furthermore, since for almost all games, all equilibria are strongly stable
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(see, e.g., van Damme, 1991), it follows that (i) and (ii) hold for almost all
games.

Finally, it follows from the above discussion, and it is easy to show di-
rectly that the set of n-player games with k equilibria, all strict, is open; but
for k£ > 2, this set is actually void. Indeed, if a game has k > 2 equilibria,
all strict, then it follows from an index argument that there exists at least

k — 1 mixed Nash equilibria, a contradiction. See corollary 2 and theorem 3
of Ritzberger (1994).

8. In bimatrix games, both the set of games with a unique Nash equi-
librium and the set of games with a unique correlated equilibrium are open.
Since there are games with a unique Nash equilibrium but many correlated
equilibria, the latter set is included in the former. The following examples
show that on the relative boundary of the set of bimatrix games with a unique
correlated equilibrium, there are games with a continuum of Nash equilib-
ria, games with a finite number (> 1) of Nash equilibria, and games with a
unique Nash equilibrium:

()

The left game is a one-person game. For ¢ > 0 it has a unique correlated

0,0 2,1 1,2 | -1,z
1,1 0,0 1,2 0,0 21 -1,z
0,0 —e,—e€ 2,1 1,2 0,0 -1,z

r,—1 z,—1 =z, —1 0,0

equilibrium. For ¢ = 0 it has a continuum of Nash equilibria. The middle
game has a unique correlated equilibrium (Top-Left) for € > 0, but two Nash
equilibria for ¢ = 0. The game on the right is adapted from (Nau and Mc-
Cardle, 1990, example 4). The 3 x 3 game in the top-left corner is due to
Moulin and Vial (1978). This 3 x 3 game has a unique Nash equilibrium:
(1/3,1/3,1/3) for both players, with payoff 1; but putting probability 1/6
on every off-diagonal square yields a correlated equilibrium with payoff 3/2.
Now consider the whole 4 x 4 game. For any value of z, (4,4) is a Nash equi-
librium. For 1 < x < 3/2, this is the unique Nash equilibrium, but not the
unique correlated equilibrium (the correlated equilibrium with payoff 3/2 of
the 3 x 3 top-left game induces a correlated equilibrium of the whole game).
For x > 3/2, this is the unique correlated equilibrium.
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9. In order to prove the existence of correlated equilibria without using
a fixed point theorem, Hart and Schmeidler (1989) associate to every finite
game GG an auxiliary zero-sum game whose size depends only on the size of
G and whose payoff matrix depends continuously on the payoff matrices of
G. In this auxiliary zero-sum game, the optimal strategies of the maximizer
correspond exactly to the correlated equilibria of G, so that G has a unique
correlated equilibrium if and only if, in the auxiliary game, the maximizer
has a unique optimal strategy. Therefore, to prove the openness of the set
of games with a unique correlated equilibrium, it would have been enough
to show that: If in a two-player zero-sum game, one of the players has a
unique optimal strateqy, then in every nearby zero-sum game this player has
a unique optimal strategy.

However, this turns out to be false: let G be the two-player zero-sum
game with payoff matrix for the row player

L R
T — 0
M 0 -1
B 0 -1

For e = 0, the row player has a unique optimal strategy (playing 7'). But for
e > 0, the row player has an infinite number of optimal strategies: playing
T with probability 1/(1 + €) and playing M and B with any probabilities
summing to €/(1 + ¢€).
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