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Nous étudions les propriétés de la réduction duale : une technique de
réduction des jeux

finis qui permet d'opérer une sélection entre les équilibres corrélés. Nous
montrons que le processus de réduction est indépendant des fonctions d'utilités
choisies pour représenter les préférences des agents et que les jeux a deux
joueurs ont génériquement une unique réduction duale pleine. De plus, dans
une réduction duale pleine, toutes les stratégies et tous les profils de stratégie
qui ne sont jamais jouées dans des équilibres corrélés sont ¢liminées. Nous
¢tudions les propriétés supplémentaires qu'a la réduction duale dans plusieurs
classes de jeux et nous comparons la réduction duale a d'autres concepts de
raffinement des équilibre corrélés. Enfin, nous passons en revue et relions les
différentes preuves d'existence des équilibres corrélés fondées sur la
programmation linéaire.

We study dual reduction: a technique to reduce finite games in a way that
selects among correlated equilibria. We show that the reduction process is
independent of the utility functions chosen to represent the agents's
preferences and that generic two-player games have a unique full dual
reduction. Moreover, in full dual reductions, all strategies and strategy profiles
which are never played in correlated equilibria are eliminated. The additional
properties of dual reduction in several classes of games are studied and dual
reduction is compared to other correlated equilibrium refinement's concepts.
Finally, we review and connect the linear programming proofs of existence of
correlated equilibria.
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1 Introduction

Dual reduction is a technique to reduce finite games in strategic form into games with
fewer strategies. It was introduced by Myerson [9]. Its main property is to select among
correlated equilibrium distributiods That is, any correlated equilibrium distribution

of the reduced game induces a correlated equilibrium distribution in the original game.
Dual reduction thus provides a candidate refinement concept for correlated equilibrium
distributions: retaining only those correlated equilibrium distributions which are not
eliminated by dual reduction, or, in a more stringent way, by iterative dual reduction.
Myerson also showed that dual reduction includes elimination of weakly dominated
strategies as a special case and that, by iterative dual reduction, any game is eventually
reduced to arlementary gameThat is, a game in which every player may be given,

in some correlated equilibrium, a strict incentive to play any of his pure strategies.

Little else is known on the properties of dual reduction. Yet, to evaluate dual re-
duction as a refinement concept, basic information is needed: which strategies and
equilibria are eliminated ? In which classes of games is the reduction process unique
? How does dual reduction behave in some important classes of games (e.g. zero-sum
games, symmetric games) ? In which precise sense does dual reduction "generalize”
[9, p.202] elimination of dominated strategies ? What are the links between dual re-
duction and other correlated equilibrium refinement concepts ? These are some of the
guestions that this paper tries to address.

Moreover, dual reduction is based on a concept cafledardization[9] which is
very geometrical in nature (the fact that a strategy "jeopardizes” some other strategy
means that the correlated equilibrium polytope is included in some hyperplane). It is
thus reasonable to hope that the dual reduction technique may be useful for investigat-
ing geometrical properties of correlated equilibria; in the last section and in [14] we
present evidence that this is indeed the case. But to use dual reduction as a tool, just as
to evaluate its relevance as a refinement concept, we first need to know more about its
properties.

The remaining of this paper is organized as follow: the main notations and defi-
nitions are introduced in the next section; we then recall, in section 3, the key-points
of the direct proofs of existence of correlated equilibrium distributions, on which dual
reduction is based. The existing results on dual reduction are reviewed in section 4. In
sections 5 and 6, the core of the paper, new results are established. They are summed up
at the beginning of section 5. In section 7, we compare dual reduction to another corre-
lated equilibrium refinement introduced by Myerson [7]: elimination of unacceptable
pure strategies. Examples of geometrical results proven via dual reduction are given in
the last section. In appendix A, we review and connect the direct proofs of existence
of correlated equilibria given in [3], [11] and [9]. Finally, for clarity sake, some of the
proofs are gathered in appendix B

1The correlated equilibrium concept, introduced by R. Aumann [1], is a generalization of the Nash equi-
librium concept to situations where players may condition their behavior in the game on payoff-irrelevant
signals received before play. A formal definition of correlated equilibrium distributions will be given in the
next section.



2 Notations and definitions

2.1 Basic notations

The analysis in this paper is restricted to finite games in strategic form. The notations
are taken from [9]. Lel’ = {N,(C)):en, (U;)icn} denote a finite game in strate-

gic form: N is the nonempty finite set of playerS; the nonempty finite set of pure
strategies of playerandU; : x;cnC; — R the utility function of playeri. The set

of (pure) strategy profiles i€' = x;cnC;; the set of strategy profiles for the players
other thani is C_; = x;cn—;C;. Pure strategies of player(resp. strategy profiles;
strategy profiles of the players other thaiare denoted; or d; (c; c_;). We may write
(c—;,d;) to denote the strategy profile that differs freronly in that itsi—component

is d;. For any finite setS, A(S) denotes the set of probability distributions over
ThusA(C;) is the set of mixed strategies of playewhich we denote by; or ;.

2.2 Correlated equilibrium distributions and deviation vectors

A correlated strategyf the players inV is an element oA (C). Thusy = ((¢))cco
is a correlated strategy if:

u(e) >0 VYeel 1)
Z pe) =1 (2)
ceC

A correlated strategy is@orrelated equilibrium distributiofil] (abbreviated occasion-
ally in c.e.d.) if it satisfies the followin@ghcentive constraints

Z ,u(c)[Ul(c) — Ui<C,i,di)] >0 Vi € N,V¢; € Cl,VdZ e C; (3)
c_;€C_;

The following interpretation and vocabulary will be useful for the next sections. Let
1 € A(C) and consider the following extended gaiig, based ori™: beforel is
played, a strategy profile € C' is drawn at random with probability(c) by some
mediator; then the mediator privately recommend® playeri; finally, I is played?

The players can thus condition their strategylion their private signal. A strategy

of playeri in this extended game is a mapping : C; — A(C;), which we call a
deviation plan Denoting by«;(d;|c;) the probability that playei will play d; when
announced; we have:

al(dl\cl) >0 Ve; € C“le c CZ,V’L eN (4)
Z ai(di\ci) =1 Ve; € C“VZ e N (5)
d;€C;

2Whether the players are aware of the game they are playing is unessential to the definition of correlated
equilibrium distributions. For clarity sake however, it may be assumed that the description of th& game
and in particulay itself, is common knowledge among the players.



A strategy profile is aleviation vectori.e. a vectolx = («;),en Of deviation plans.
Such a deviation vector isivial if, for all 7 in N, «; is the identity mapping. The
incentive constraints (3) mean thats a correlated equilibrium distribution ofif and
only if the trivial deviation vector is a Nash equilibrium Bf,.

3 Existence of correlated equilibrium distributions

This section is a variation on the elementary proofs of existence of correlated equilibria
given in [3], [11] and [9]. Consider the following two-player, zero-sum auxiliary game
G: the maximizer chooses a correlated strategg A(C); the minimizer chooses a
deviation vectorv. The payoff is:

9(1a) =3 u@) Y 3 auldile)[Ui(e)  Usle—dy)] (6)

ceC €N d; €C;

It is clear from section 2.2 that guarantee$) if and only if i is a correlated
equilibrium distribution ofl’. ThusT" has a correlated equilibrium distribution if and
only if the value ofG is nonnegative. The remaining of this section is devoted to an
elementary proof of the following theorem:

Theorem 3.1 The value ofG is zero. Therefore correlated equilibrium distributions
exists.

A deviation plana; : C; — A(C;) induces a Markov chain oft;. This Markov
chain maps the distributios; € A(C;) to the distributiony; * o; given by:

Q; * Uz(d,) = Z ai(di\ci)ai(ci)Vdi S Cl
€1

s}

Similarly, if a mediator tries to implement but® player: deviates unilaterally accord-
ing to ay;, this generates a new distribution on strategy profilgs y:

a; x pi(c_i, di) = Z a;(dilci)pi(c)  Vd; € Cy,Ve_y € O
c;€C;

Definition 3.2 Leta = (a;);en be a deviation vector. A mixed strategy € A(C;)
is a;-invariantif «; * o; = o0;. A correlated strategy: € A(C) is a;-invariant(resp.
a-invarian) if (resp. ifforalli € N) a; * p = p.

Note that, by the basic theory of Markov chains, there exists at least gmwariant
strategy.

LetU;(u) = > .cc (c)Ui(c) denote the average payoff of playef . is imple-
mented. Myerson [9] shows that:

g(ms @) =Y [Ui(p) = Ui(ai + )] (7)

i€EN

3That is, if the mediator draws a strategy profilen C with probability 11(c) and then privately recom-
mendsc; to playeri.



We can now prove theorem 3.1: first note that the minimizer can guarantee 0 by choos-
ing the trivial deviation vector. Thus we only need to show that the maximizer can
defend 0. Letx denote a deviation vector; for eaghet o; € A(C;) be o;-invariant.

The correlated strategy = [ [, y o: is a-invariant; hence, by (7)(o, o) = 0. There-

fore the maximizer can defend @

4 Dual reduction

All results of this section are proved in [9].

4.1 Definition

The Markov chain or(C; induced bya; partitionsC; into transient states and disjoint
minimal absorbing sets For any minimal absorbing sé;, there exists a unique;-
invariant strategy with support iB3;°. Let C;/«; denote the set of (randomized)-
invariant strategies with support in some minimgtabsorbing set. It may be shown
that the set ofy;-invariant strategies is the set of random mixture of the strategies in
C;/ay; thatis, the simplexXA (C; /«;).

Let o = (o;)ien be a deviation vector. The-reduced game

I'Ja={N,(Ci/ai)ien, (Ui)ien}

is the game obtained froi by restricting the players ta-invariant strategies. That
is, the set of players and the payoff functions are the same tHabun, for alli in N,
the pure strategy set of playgis nowC; /.8

Before turning to dual reduction and their properties, let us make our vocabulary
precise: let;,d; € C; (resp.c € C). The pure strategy; (resp. strategy profile)
is eliminatedin the a-reduced gamé&'/« if o;(¢;) = 0 for all o; in C;/«; (resp. if
o(c) =0forall oin C/a). Thuse; (resp.c) is eliminated if and only if (resp. if and
only if for somei in N) ¢; is transient undedy;. The strategies; andd; aregrouped
togetherif there existss; in C;/«; such thatr;(¢;) ando;(d;) are positive. Thusg;
andd; are grouped together if and only if they are recurrent uademnd belong to the
same minimak;-absorbing set.

Definition 4.1 A dual vectoris an optimal strategy of the minimizer in the auxiliary
game of section 3. Thus a deviation vecids a dual vector if for allc in C":

—glc,) =Y [Uilaixc) = Us(e)] = Y Y aildile)[Uile—i, di) = Us(c)] = 0

iEN i€N d; €C;
(8)

(The above equalities merely repeat the definition(of «).)

4A subsetB; of C; is a;-absorbing ifa(d;|c;) = 0 for all ¢; in B; and alld; in C; — B;. An
a;-absorbing set is minimal if it contains no propef-absorbing subset.

SActually its support is exactlys;.

6Strictly speaking the payoff functions of the reduced game are the fundtidosedby the original
payoff functions on the reduced strategy space.



Definition 4.2 Adual reductiorof I' is ana-reduced gamé&/« wherea is a dual vec-
tor. Aniterative dual reductionfI' is a reduced gamg/a!/a?/.../a™, wherem is a
positive integer and, forak in {1, 2, ..., m}, o* isadual vector of'/a' /a2 /... /aF L.

Many examples can be found in [9, section 6]. Henceforth, unless stated otherwise,
is a dual vector.

4.2 Main properties

First, dual reduction generalizes elimination of weakly dominated strategies in the fol-
lowing sense:

Proposition 4.3 Let¢; € C;; assume that there exists € A(C;), 0; # ¢, such that
Ui(c—i,0;) > U;i(c) for all c_; in C_;. Then there exists a dual vectarsuch that
Ci/Oéi =C; — {Ci} ande/aj = Cj fij 75 1.

Proof. Take fora: ai(di\ci) = O‘i(di) for all d; € C;, andaj(cj|cj) =1if j 75 1 or

Cj 7é c; m

The main property of dual reduction is that it selects among correlated equilibrium
distributions: lefl’/a denote a dual reduction &F, let C/a = x ;e nC;/c; denote the

set of strategy profiles df/a. Let A € A(C/«); theT-equivalent correlated strategy

X is the distribution orC' induced byA:

Me)= ) Ao (H Uz'(cz')) (9)

ceC/a 1EN

Theorem 4.4 If X is a correlated equilibrium distribution df /«, then X is a corre-
lated equilibrium distribution of".

By induction, theorem 4.4 extends to iterative dual reductions. That is, any correlated
equilibrium distribution of an iterative dual reduction Bfinduces onA(C') a corre-

lated equilibrium distribution of. A side product of the proof of theorem 4.4 is that,
against any strategy of the other players in the reduced game, pléyérdifferent
between his strategies within a minimal absorbing set:

Proposition 4.5 Let B; denote a minimady;-absorbing set. Foy # i, leto; € C; /o
and leto_; = Xi;eN—i0j. For anyc;, d; in B;, Ui(O',i, Ci) = UZ'(O',hdi).

4.3 Jeopardization and Elementary Games

Let us say that a dual vector is trivial if it is the trivial deviation vector. A game may
be reduced if and only if there exists a nontrivial dual vettdo we are led to the
question: when do nontrivial dual vectors exist ? A first step to answer this question is
to introduce the notions of jeopardization and elementary games:

"This is clear from the basic theory of Markov chains. See for instance [4] and references therein.



Definition 4.6 Let ¢;,d; € C;. The strategyl; jeopardizes; if for all correlated
equilibrium distributions:

> w©Uile) = Us(e—i,di)] = 0

c_;€C_;

That is, in all correlated equilibrium distributions in whiehis played,d; is an al-
ternative best response to the conditional probabilitie€’ap given ¢;. Note that if
¢; has zero probability in all correlated equilibrium distributions, then énin C;
jeopardizes;. Using complementary slackness properties allows to prove that:

Proposition 4.7 The strategyl; jeopardizes:; if and only if there exists a dual vector
« such thaty; (dz|Cl) > 0.

Thus, there exists a nontrivial dual vector if and only if some strategy is jeopardized by
some other strategy.

Definition 4.8 A correlated equilibrium distribution is strict if

/L(Cixc_i) >0= Z M(C)[Ui(c)—Ui(C_i,di)} >0 Vie N, Ve; € Ct,th 7é C;
c_;€C_;

A game iselementanyif it has a strict correlated equilibrium distribution with full
support. Myerson [9] shows that a game is elementary if and only if there exists no
i, ¢; andd; # ¢; such thati; jeopardizes:;. Thus proposition 4.7 implies:

Corollary 4.9 A game may be reduced if and only if it is not elementary. By iterative
dual reduction, any game is eventually reduced to an elementary game.

4.4 Full dual reduction

Let us say that two dual reductiofy« andI'/3 of the same game are different if
C/a # C/B. A game may admit different dual reductions (for instance, if several
strategies are weakly dominated). A tentative way to restore uniqueness is to consider
only reductions by some special dual vectors, which minimize the number of pure
strategies remaining in the reduced game:

Definition 4.10 A dual vectora is full if a(d;|c;) > 0 for all ¢ in N, and all¢;, d; in
C; such thatd; jeopardizes:;.

Full dual vectors always exist [9]. Actually, almost all dual vectors aré full

Definition 4.11 Afull dual reductiorof I is ana-reduced gamé'/« wherea is a full
dual vector. Ariterative full dual reductiof depthm of I' is a gamd’/a! /a?/.../a™
wherem is a positive integer and, for alt in {1,2,...,m}, o* is a full dual vector of
L/at/a?/.../a*~ L.

8The set of dual vectors is a polytope, whose relative interior is non em@tisihot elementary. All dual
vectors in the relative interior of this polytope are full. dfis elementary, the only dual vector is trivially
full.




All full dual vectors o define, for alli, the same minimady;-absorbing sets. Thus

in all full dual reductions, the same strategies are eliminated and the same strategies
are grouped together. A game may nonetheless admit different full dual reductions,
because the way these strategies are grouped together may differ quantitatively. We
will return to this point in section 6.

5 Other properties of dual reduction

A basic desirable property for a decision-theoretic concept is that it be independent of
the specific utility functions chosen to represent the preferences of the agents. So we
begin by showing that dual reduction meets this requirement; that is, the ways in which
a game may be reduced are unaffected by positive affine transformations of the utility
functions. We then extends theorem 4.4 to other equilibrium concepts, including Nash
one’s, and prove its converse: if a correlated strategy a reduced game induces an
equilibrium distribution in the original game, thenis an equilibrium distribution of

the reduced game. We then investigate eliminations of strategies and equilibria. We
show that strategies that are weakly dominated (resp. are never played in correlated
equilibria; have positive probability in some strict correlated equilibrium) need not be
(resp. are always; cannot be) eliminated in full dual reductions. Finally we study some
specific classes of games. We show that games that are best-response equivalent to
zero-sum games, as well as games with a unique correlated equilibrium distribution
are reduced in games with a single strategy profile by full dual reduction. Symmetric
games are shown to have symmetric full dual reductions (but possibly also asymmetric
ones) and generiz x 2 games are analysed.

In section 6, we show that, even if only full dual reductions are used, there might
still be multiple ways to reduce a game. This typically happens when some player is
indifferent between some of his strategies: a nongeneric event. We show that generic
two-players games have a unique sequence of iterative full dual reductions.

5.1 Independence from the choice of utility functions

Recall that two games with the same sets of players and strategibssireesponse
equivalent[12] if they have the same best-response correspondences. Many central
concepts of game-theory are based on the best-response correspondences alone (say,
Nash equilibrium, correlated equilibrium, rationalizability, to name but a few). Games
which are best-response equivalent have, in particular, the same sets of Nash and cor-
related equilibria. It is thus reassuring to note that such games are reduced similarly by
dual reduction:

Proposition 5.1 LetI’ andI” be best-response equivalent. kgtd; be pure strategies
of playeri in " andc}, d; the corresponding strategies of playien I'". The following
holds: (i) d; jeopardizes:; if and only ifd; jeopardizes?; (ii) the strategies grouped
together (resp. eliminated) in full dual reductionsIofcorrespond to the strategies
grouped together (resp. eliminated) in full dual reduction$ of

Proof. (i) is clear from the definitions; (ii) follows immediately from (%



If T" andI” are not only best-response equivalent, but rescalings of each other (as
defined below), then there is actually a canonical, one to one correspondence between
dual reductions of' and dual reductions df’:

Proposition 5.2 For eachi in N, let ¢; : R — R denote a positive affine trans-
formation. That is, such that there exists real numbers> 0 and b; such that
¢i(x) = a;x + b; for all z in R. Let ¢(I") denote the rescaling df obtained by
changing the utility functions fro; to ¢; o Us;:

( ) - {N ( L)ZENv (¢l o U1)1€N)
If I' /v is a dual reduction of’, theng(T"/«) is a dual reduction of(T").

The proof of proposition 5.2 will be given below. This proposition is not trivial because

a game and its rescalings need not have the same dual vectors. Indeed, consider a game
such as Matching-Pennies, which is nonelementary and in which all pure strategies are
undominated in the following sense:

Vi € N,Ve¢; € C;, Vo, € A(Cy), 04 # ¢; = Je—; € C_;, Ui (¢) > Ui(c—y, 04)

Let o be a nontrivial dual vector: there existand ¢; such thata; * ¢; # ¢;. In
proposition 4.3 we will see that sinegis not weakly dominated, there exigts; such
thatU;(«; x ¢) — U;(¢) < 0. Multiplying the payoff of player by a; > 0 yields a
rescaled gamg’ such that:

Z[U]’-(aj*c)—U]’-(c)]za[U(ozL*(* —I—Z (% ¢) — Uj(0)]

JEN J#i

If a; is high enough, this expression is negative so ¢he@nnot be a dual vector df.
The key is that different deviation vectors may induce the same dual reductions:

Lemma 5.3 Leta; (resp.ai?) be a (resp. the trivial) deviation plan for playér For
any0 < e < 1, letac = ea; + (1 — €)ai?. If ¢ is positive therC; /a; = C;/as.

Proof. For any mixed strategy; in A(C;), a$ * 0, — 0; = €(a; x 0; — 0;). W

Proof of proposition 5.2: Let « be a dual vector of. Leta; = min;cy a; and, for
eachiin IV, lete; = ay/a;. Let(a) denote the deviation vector whodé component
is a;*, defined in lemma 5.3. Letandg, denote the payoff functions in the auxiliary
zero-sum games associated respectively &md¢(T"). We have:

gs(c,p(a)) = ar x g(c,a) >0 VeeC

Thus¢(«) is a dual vector ofp(T"). Furthermore lemma 5.3 impliegi(T") /¢(a) =
¢('/a). Thusg(I'/«) is a dual reduction af(T"). The result still holds if we allow the
constant$; to depend or_;. Indeed, if the payoff functionsU.qs)ieN in the rescaled

gameg(T") are of the slightly more general form:’ (c) = a; x Uj(c) + bi(c_;) with
a; > 0andb; : C_; — R, then the same proof shows that for any dual veatof T,
¢(T'/«) is a dual reduction of(T"). m



5.2 Extension and converse of theorem 4.4

In this section, we first present three equilibrium concepts introduced in or related to
[13]. We then show that theorem 4.4 extends to Nash equilibrium distrib8fiand to
these other equilibrium concepts. We illustrate this by an example. Finally, we prove a
converse of theorem 4.4,

Letp € A(C) andc; € C;. If p(c; x C—;) > 0, let u(.|¢;) denote the conditional
probability onC_; givenc;:

ple—ilei) = ple—i,ci) /(e x C—y)

Definition 5.4 The correlated strategy € A(C) is an equalizing distribution if

ple; x C—i) > 0= Z p(c—ilci)Us(c) = Us(p) Vi € N,Ve; € Ci,
c_;€C_;

That is, in an equalizing distribution, the expected payoff given a pure strategy is inde-
pendent of this strategy.

Definition 5.5 The correlated strategy. € A(C) is an equalizing correlated equi-
librium distributiont® (henceforthequalizing c.e.d. if ; is both an equalizing and a
correlated equilibrium distributioht.

Definition 5.6 The correlated strategy € A(C) is astable matching distributidif
every player in N and all pure strategies; andd; of playeri:

pici x Coi)pi(di x Ci) > 0= Y~ [u(esler) — pleldi)]Ui(e) > 0
c_;€C_;

That is, ¢; yields a (weakly) higher expected payoff against the correlated strategy
1(.]e;) of the players other thainthan against(.|d;).

Proposition 5.7 Let A be a correlated strategy of an iterative dual reductiohof I.

If X is anequilibrium distributionof I'” then thel-equivalent correlated strategy is
an equilibrium distributionof T', whereequilibrium distributionmay stand for: Nash
equilibrium distribution, equalizing distribution, equalizing c.e.d. or stable matching
distribution.

Proof. Notations and preliminary remarks: late A(C/a) and letA € A(C) be
I'-equivalent to\. Letc;,d; € C; checkA(e; x C_;)A(d; x C_;) > 0. There exist
minimal o;-absorbing set®; and B; such that; belongs taB; andd; to B]. Leto,
(resp.ay,) be thea;-invariant strategy with support i; (resp.B’). Since\(c; x C_;)
(resp.\(d; x C_;)) is positive A(o,., x (C/a)_;) (resp.A(og, x (C/a)_;)) is positive

9The extension to Nash equilibrium distributions has been independently noted by Myerson.

1050rin [13] uses the expressidistribution equilibrium

11Any Nash equilibrium distribution is an equalizing c.e.d. but the converse is false. See example 5.8.
1250rin [13] uses the expressidoal correlated equilibrium



too. Note that{i) U;()\) = U;(\) and(ii) A(.|¢;) is the conditional probability induced
onC_; by A(.|o.,). Thatis, ifc; is a;-recurrent for allj in N — ¢, then:

( H o, (¢ ) whereo._, = Xjen—io¢;

JEN—1

)‘(C—7|CZ)

Otherwise \(c_;|c;) = 0. The proofs are now easy:

Nash equilibrium it follows from (9) that if A is an independent distribution, then so
is A. This and theorem 4.4 imply that X is both an independent and a correlated
equilibrium distribution, i.e. a Nash equilibrium distribution, then sa.is

Equalizing distributions and equalizing c.e.tlsing (i) and (ii) we get:

> Moiloe)Uilo—i,o0) =Ui(N) = > Meile:)Us(e) = Us(N)

o_;€(C/a)_; c_i€C_;

Thus if \ is an equalizing distribution, then soJs This and theorem 4.4 imply that if
A is an both an equalizing and a correlated equilibrium distribution, then’so is

Stable matching distributiongJsing (ii) we get:

> Mosiloe) = Mo—iloa)Ui(o—i,00,) >0
o,ie(C/a) i

= > [Mewile) = Xe—ildi)|Ui(c) > 0
c_;€C_;

Thus if \ is a stable matching distribution, then so\ism

The following example illustrates proposition 5.7:

Example 5.8
€2 Y2 %) ox Z
zn 2,000,203 op, 2/3,2/3 0,—1
yp 0,1 1,0 0,0 . 00
2 =3,0 0,0 1,1 ! ' '

LetT" denote the game on the left. Consider the deviation vectsuch that fori =
1,2:

ai(wilrs) = 2/3, ai(yile:) = 1/3; aqs(xily:) = 1/6, aiyilys) = 5/6; aq(zilzi) = 1,

and all othero;(d;|c;) are zero. We let the reader check thats a dual vector. The
minimal o;-absorbing sets ard3; = {z;,y;} and B, = {z;}. Thea- reduced game
I'/a is the game on the right, where thg-invariant strategyo s, |s( ; ; 0). Con-
sider the distribution\ on C'/a (below, right)*® This is an equahzmg c e d. of/a.

13we represent correlated strategies in tables. For instariees, , z2) = 1/8.

10



Therefore, thd -equivalent distribution\ (below, left) is an equalizing c.e.d. Bf

1/24 [ 1/12 | 1/24
1/12 [1/6 | 1/12 A=
1/24 [ 1/12 | 3/8

3/8 ] 1/8
1/8 | 3/8

>
Il

Theorem 4.4 states that correlated equilibrium distributionB /ef induce correlated
equilibrium distributions i". We may wonder whether a correlated strateg¥’ o
which would not be not a correlated equilibrium distribution, might nonetheless induce
a correlated equilibrium distribution in. We show below that the answer is negative.
We first need a lemma:

Lemma 5.9 Given any deviation vectar, a distribution\ € A(C) is a-invariant if
and only if it isT-equivalento a distribution\ € A(C'/«). Such aX is then unique.

Proof. See appendix Ba

Proposition 5.10 Let o denote a dual vector. Let denote am-invariant distribu-
tion on C and X the corresponding distribution 06’/ Then is an equilibrium
distributionof T if and only if A is anequilibrium distributionof I/, whereequilib-
rium distributionmay stand for: Nash equilibrium distribution, correlated equilibrium
distribution, equalizing distribution, equalizing c.e.d. or stable matching distribution.

Proof. We prove proposition 5.10 for correlated equilibrium distributions. The other
proofs are similar. Lef € A(C/a) and assume that is not a c.e.d.. Then there
existi in N ando;, 7; in C; /a; such that; has positive probability undexbut7; is a
strictly better response than to A(.|o;). If ¢; € C; belong to the support ef;, player

i is indifferent betweemwr; ando; against\(.|o;) (proposition 4.5), hence is a strictly
better response thanto \(.|o;). Finally, A\(c; x C_;) = A(o; x (C/a)_;)o(c;) > 0
and\(.|c;) is T-equivalent to\(.|o;). Thereforer; is a strictly better response than

to A\(.|c;) hence\ is not a c.e.cm

5.3 Elimination of strategies and equilibria

In this section we study classes of strategies and equilibria which are always (or never)
eliminated in dual reductions (resp. full dual reductions; iterative full dual reductions).
A first result is a converse of proposition 4.3:

Proposition 5.11 Let ¢; € C;; assume that there exists a dual vectorsuch that
¢ ¢ Ci/a; andCj/a; = Cj for all jin N — 4. Then there exists; # c; in A(C))
such that/;(c_;,0;) > U;(c) forall c_; in C_;.

Proof. Leto; = o * ¢;. Forallj # ¢, all strategies; in C; area;-invariant. Thus (8)
yieldsU;(c_;,0;) > U;(c) Ve—; € C_;. Furthermore:; ¢ C;/a; hencec; cannot be
a;-invariantands; # ¢; m

Thus, only if a strategy is dominated does there exists a dual reduction that simply
consists in eliminating this strategy. Note that if a strategy is weakly dominated it is
eliminated in some dual reductions (proposition 4.3), but not necessarily in full dual
reductions:
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Example 5.12

Z2 Y2
z1 1,1 1,0
Y1 170 070

In the above gamey is a correlated equilibrium distribution if and only if; is not
played inu. Thatis,p(z1,y2) = p(yi,y2) = 0. Thereforey, jeopardizest;, and
reciprocally. Thus, in all full dual reductions;; and y; must be grouped together
hencey; is not eliminated.

This raises the following questions: except strictly dominated strategies, are there other
classes of strategies that are always eliminated in full dual reductions ? A partial answer
is the following:

Proposition 5.13 (i) Let ¢ € C. Assume that has probability zero in all correlated
equilibrium distributions. In full dual reductionsis eliminated; hence there existi

N such that, in all full dual reductions; is eliminated. (ii) Let € N, ¢; € C;. Assume
that ¢; has marginal probability zero in all correlated equilibrium distributions. Then
¢c; is eliminated in all full dual reductions.

Proof. First note that (i) implies (ii). Indeed, let; € C;/«; ando_; € (C/a)_;. If

wu(c) = 0 for all correlated equilibrium distributions and allc_; in C_; then, by (i),

o(c) = 0i(c;)o—i(c—;) = 0forall c_; € C_; implying o;(c;) = 0. We now prove (i):

first recall that the same strategies and strategy profiles are eliminated in all full dual
reductions. So we only need to prove that the results hold for some full dual reduction.

Step 1 Assume thaf(c) = 0 for all c.e.d.  of . Then it follows from [11,
page 432 and Proposition 2] that there exists a dual vectuch thaty(c,«) < 0.
Sinceg(d, @) < 0 for all din C, this implies that ifc has positive probability in some
correlated strategy theng(u, ) < 0.

Step 2 we may assume full (otherwise, replace: by some strictly convex combi-
nation ofa. and some full dual vector). ¥ belongs taC'/«, thene is a-invariant thus
g(o,a) = 0 by (7). Hencec cannot have positive probability in. Since this holds
for all o in C/a, ¢ has been eliminated in the full dual reductibyx. Finally, c; must
have been eliminated for someotherwise: would not have been eliminateds

Let I'* denote the game obtained frofhby deleting all pure strategies that have
marginal probability zero in all correlated equilibrium distributions. Proposition 5.13
suggests thdf andI™ have the same full dual reductions, but this is not so:

Example 5.14

T2
Tl 1, 1
Y1 07 1

Y2
0,1
1,0
LetT" denote the left game. ThéH is the game on the right. [f* any mixed strategy
profile is a Nash equilibrium. 1", a mixed strategy profile is a Nash equilibrium

if and only ifo;(y1) = 0 andos(y2) < 1/2. In any full dual reduction of® or I'*
there is a single strategy profile. 4f is a Nash equilibrium of" (resp.I'*) then there

12



exists a full dual vectow of T" (resp.T*) such thatC'/a = o (resp.C*/a = o) if and
only ifo(y2) ando(x5) are positive. Thus the set of full dual reductiong’a$ strictly
included in the set of full dual reductions Bf.

We now shift our attention to elimination of equilibria. Since dual reduction includes
elimination of dominated strategies as a subprocess, it is clear that dual reduction may
eliminate Nash equilibria. Nash equilibria may also be eliminated as strategies are
grouped together (see for instance [9, fig. 7]). We show in section 7 that completely
mixed, hence perfect Nash equilibria may be eliminated in full dual reductions. In
contrast:

Proposition 5.15 Strict correlated equilibrium distributions cannot be eliminated, not
even in an iterative dual reduction.

Proof. If p is a strict correlated equilibrium distribution, a strategy that has positive
marginal probability in: cannot be jeopardized by another strategy. Thus, in any dual
reductionl’/« of T" all the strategies used jnmust be available. Furthermore, as the
player’s options are more limited ifi/« than inT', p is a fortiori a strict correlated
equilibrium distribution ofl". Inductively, in any iterative dual reductidrya!/.../a™

of I, all strategies used in are available ang is still a strict correlated equilibrium
distribution m

The proof shows that a pure strategy that has positive marginal probability in some
strict correlated equilibrium distribution can never be eliminated nor grouped with
other strategies.

5.4 Some classes of games

In this section we study the additional properties of dual reduction in several classes of
games.

5.4.1 Games with a unique correlated equilibrium distribution

If ' has a unique Nash equilibrium, then any iterative dual reduction ©f has a
unigue Nash equilibrium, which inducesin I'; but the strategy space need not be
reducible tos: counterexamples are [5, p.204] and [11, example 4]. In contrast,

Proposition 5.16 Assume thaf’ has a unique correlated equilibrium distribution
Theno is a Nash equilibrium distribution, hence it may be seen as a mixed strategy
profile. LetI'" be the reduced game in which the only strategy profile snd the
payoff for playeri is U;(c). Any full (resp. elementary iterative) dual reductiorfof
equal toI'". In particular, I" has a unique full dual reduction.

Proof. Consider first an elementary iterative dual reductithof I'. SinceI® is
elementary]'¢ has a strict c.e.d. with full suppost. Sincel’ has a unique c.e.dl®

has a unique c.e.d. too, tha$ is actually a Nash, hence a strict Nash equilibrium. So
o€ is pure. Butz¢ has full support. Se is the only strategy profile. Finallyg;® must
bel-equivalent tar, hencel™ =T'".
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Consider now a full dual reductioh/« of . By proposition 5.13, the strategies
that are not played iar are eliminated il"/«. For eachi in N, the pure strategies of
playeri in the support of; jeopardize each other and thus must be grouped in a single
mixed strategy. Finally, the unique strategy profilelofv must be equivalent te,
hencel'/a =T". m

5.4.2 Zero-sum games
We begin with a claim:

Claim 5.17 Any iterative dual reduction of a zero-sum game is a zero-sum game with
the same value.

Proof. Conservation of the zero-sum property is immediate. Conservation of the value
comes from theorem 4.4 and the fact that in a two-player zero-sum game, any correlated
equilibrium payoff equals the value of the game

Proposition 5.18 LetT" denote a two-player zero-sum game and deviation vector.
(@) If forall 7 = 1,2 and for all¢; in C;, «; * ¢; is an optimal strategy of player then
« is a dual vector; (ii) If furthermoreg; * ¢; is the same optimal strategy for all ¢;
in C;, thenC;/«; = oy (iii) in any elementary iterative dual reduction dfthere is a
unique strategy profile, which is a product of optimal strategieB.of

Proof. Proof of (i): letc € C. By optimality of oy * ¢1, U (e * ¢1,c2) > v, wherev
is the value of the game. Similarly(cy, s * c2) > —v. SinceU; (c) + Us(c) = 0,
> iz 2lUi(c—iy @i % ¢;) — Us(c)] > 0. Thatis,g(c, ) > 0. Since this holds for alt
in C, ais a dual vector.

Proof of (ii): assume that there existsin A(C;) such thaty; * ¢; = o; for all ¢;
in C;. Then the onlyy;-invariant strategy is;. Therefore(C;/a; = {o;}.

Proof of (iii): The above implies that any two-player zero-sum game whose set of
strategy profiles is not a singleton can be further reduced. Together with claim 5.17, this
implies that in any elementary iterative dual reductioi’othere is a unique strategy
profile. This strategy profile induces a Nash equilibriuni'in Therefore it must be
(equivalent to) a product of optimal strategied ofm

Proposition 5.19 If I" is best-response equivalent to a two-player zero-sum game then:
(i) for any in NV, any (pure) strategy; which has positive marginal probability under
some correlated equilibrium distribution jeopardizes all other strategies of plgyer
(i) in all full dual reductions ofI" all the strategies of playef that have positive
probability in some correlated equilibrium distribution are grouped together and his
other strategies are eliminated hence (iii) there is a unique strategy profil€iv)

This strategy profile corresponds to a product of optimal strategies in the underlying
zero-sum game.

Proof. ¢ must be equivalent to a Nash equilibriumIof This allows to prove (iv).
Point (iii) follows from (ii) and proposition 5.13; (ii) follows from (i); (i) is proved in
[14, proposition 6.1].m
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If T" is zero-sum with value, then the payoffs in any full dual reduction Bfmust
be (v, —v). In contrast, ifl" is only best response equivalent to a zero sum game, then
the payoffs in a full dual reduction @f may depend on the full dual reduction:

Example 5.20
T2 Y2 Z2 T2 Y2 Z2
1 0,0 0,0 0,0 z 1,1 0,1 0,1
y1 0,0 1,—-1 —1,1 y1 1,0 1,—-1 —1,1
2 0,0 —1,1 1,—1 2 1,0 —1,1 1,—1

LetT (resp.I”) denote the game on the left (resp. righf)is zero-sum and” is best
response equivalent 6. The proof of proposition 5.2 shows tHatandI” have the
same dual vectors. Far < € < 1, let o§ denote the optimal strategy of playesuch
that: o (z;) = eando{(y;) = 05(2;) = (1—¢)/2. Leta®" denote the deviation vector
such thatiay xz1 = ay *y1 = a1 %21 = of andag * o = Qo *x Y2 = A% 20 = 0g. By
proposition 5.18¢ is a dual vector of", henceof”. If 0 < e < 1and0 < n < 1, «
is full, the reduced strategy spacg&/ac" is the singletor{s$, o) and the associated

payoff is(n, €).

5.4.3 Symmetric Games

In appendix B we recall the definition of a symmetric game and prove the following:

Proposition 5.21 LetI" be a symmetric game. There exists a full dual veetsuch
thatT'/« is symmetric.

Example 5.8 shows that a nonsymmetric game may also have symmetric full dual re-
ductions, even if all strategies are undominated. The following example shows that a
symmetric game may have nonsymmetric full dual reductions:

Example 5.22
T2 Y2
ry 1,1 0,1
vy 1,0 0,0

In the above symmetric ganiie any deviation vector is a dual vector. In any full dual
reduction, the reduced strategy space is a singleton. Forlarye < 1,0 < n < 1,
there exists a full dual reduction in which the payoffdsn). If e # 7, this full dual
reduction is nonsymmetric.

5.4.4 Generic2 x 2 games

Proposition 5.23 LetI" be a2 x 2 game such that a player is never indifferent between
two different strategy profiles. That is, for all¢’ in C and alli = 1,2: ¢ # ¢ =
U;(c) # U;(). Then eithet is elementary of" has a unique correlated equilibrium
distribution (in which case proposition 5.16 apply).

Proof. Straightforward computations. The first case corresponds to games with three
Nash equilibria: two pure and one completely mixed; the second case to games with
either a dominating strategy or a unique, completely mixed Nash equilibnum.
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6 The issue of uniqueness

As shown by example 5.22, a game may have several full dual reductions. This ambi-
guity arises naturally when a player is indifferent between some of his strategies:

Proposition 6.1 Assume that player is indifferent betweew; and d;, i.e. U;(¢c) =
Ui(c—;,d;) forall c_; in C_;. Then (i) for any0 < e < 1 there exists a dual reduction
that simply consists in grouping andd; in the strategy; such thats;(¢;) = ¢ and
oi(d;) = 1 — ¢ (i) if ¢; is not eliminated in full dual reductions, then there exists an
infinity of full dual reductions.

Proof. To prove (i) take as dual vectar: «;(ci|c;) = ai(cild;) = €, a;(d;le;) =
a;(d;|d;) = 1 — e and all the othety; (d,|c;) as in the trivial deviation vector. We now
prove (ii): Assume that; is not eliminated in full dual reductions and letbe a full
dual vector. Fo < A < 1, define the dual vectar* by: a(cile;) = Aai(ciles),
a}(dile;) = aq(dile;) + (1 — Aoy (cile;) and all othera) (d;c;) as ina. Sincea

is full and o and o are positive in the same components, is full too. Therefore,
there exists am-invariant strategy?* such thatr (c;) > 0. We claim that if\’ #

A, o is not o -invariant (proof below). This implies that ' # X, o* anda?
induce different full dual reductions. Therefore there exists an infinity of different
full dual reductions. Finally, to prove the claim, note thatjf is o) -invariant, then

2eieCimci a (cilen)o (i) = [1— a (ciles)]o (es). Butif X # \:

> o (cilei)ole) > adeieaie:)

e; €Ci—cy e;€Ci—c;
= [1-a}ale)oMe) # [1—a (cile)]odMe)

A similar difficulty may arise if a player is indifferent between a pure and a mixed
strategy (example 5.20) or if a playeecomesndifferent between some of his strate-
gies, after strategies of some other player have been eliminated (example 5.14). These
are non-generic phenomena. We prove in this section that, for any positive integer
two-player games generically have a unique iterative full dual reduction of depth
We first show that there are severe restrictions on the ways strategies may be grouped
together in dual reductions:

Notation: for all 7 in NV, let B; C C; and letB = x;,cnyB;. We denote b’z =
(N, (Bi)ien, (Us)icen) the game obtained frofi by reducing the pure strategy set of
playeri to B;, for all i in V.

Proposition 6.2 Leta be a dual vector. For eachin N, let B; C C; denote a minimal
a;-absorbing set andB = x,cn B;. Letop, denote the unique;-invariant strategy
of player: with supportinB; ando s = (o, ):cn. We haver g is a completely mixed
Nash equilibrium of 5.

Proof. First, the support of s, is exactlyB; soop is completely mixed. Second, let
op_, = Xjen—-iop;. Againstop_,, playeri is indifferent between the strategies of
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the minimal absorbing sd®; (proposition 4.5). Therefore, if playéris restricted to
the strategies aB;, o, is a bestresponsetg;_, m

Definea ando s, as in the above proposition 6.2 and assuniell. If 'z has a unique
completely mixed Nash equilibrium, then for any full dual vecfyrthe 3;-invariant
strategy with support if?; must ber z,. So proposition 6.2 has the following corollary:

Corollary 6.3 If for every productB = x;cn B; of subsets3; of C;, I'g has at most
one completely mixed Nash equilibrium, then there exists a unique full dual reduction.

In the remaining of this sectior, is a two-player (bimatrix) game. To show that,
generically, two-player games have a unique sequence of iterative full dual reductions,
we need to introduce some suitable notions of genericity:

Definition 6.4 T is genericif for all Nash equilibriac the supports of; ando have
same cardindt. T is locally generic if it is generic and if any game obtained frbm
by deleting some pure strategies is generic.

Definition 6.5 I' is 2-generic if for any subsé?; of C; and for any disjoint subsets,
and B} of Cy: if o ando”’ are respectively completely mixed Nash equilibri& f « 5,
andTl'p, » , theno; # o1. Thatis, the same mixed strategy cannot be a completely
mixed Nash equilibrium strategy of playkeiboth onB; x By and onB; x Bj. The
notion of 1-genericity is defined similarly. A bimatrix gamexigeneric if it is both
1-generic and 2-generic.

A bimatrix game in which players 1 and 2 have respectiyeindq pure strategies is
given by twop x ¢ payoff matrices, thus it may be viewed as a poinRiff x RPY,

It may be shown that the set pfx ¢ bimatrix games which are both locally generic
andx-generic contains an open, dense subs@&’8fx RP4. The two next propositions
follow from proposition 6.2:

Proposition 6.6 A locally generic bimatrix game has a unique full dual reduction.

Proof. Locally generic bimatrix games check the conditions of coroltaym

Proposition 6.7 If T" is both locally generic and-generic, there are only three possi-
bilities:

1 T"is elementary

2 In all dual reductions of’, some strategies are eliminated, but no strategies are
grouped together.

3 In any full dual reduction of the reduced strategy spac# « is a singleton.

Proof. Assume that is not elementary and let be a nontrivial dual vector. Assume

that some strategies of player 1 (for instance) are grouped together. That is, there exists
a minimala; -absorbing seB; with at least two elements. L&}, and Bj be minimal
a-absorbing sets. Leis, denote they; -invariant strategy with support iB,. Define

14Any game which is nondegenerate in the sense of [15, def. 2.6 and thm 2.10] is generic in this sense.
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o, andog, similarly. By proposition 6.2¢, is a Nash equilibrium strategy both of
I'p, x5, and ofl'p, « p;. Sincel’ is x-generic, this implied3; = B} Therefore, there
is a unique minimak;-absorbing setB,. That is,Cy /a5 is a singleton. Moreover,
sinceT is locally generic,B; and B; have same cardinal. Thus, has at least two
elements. Therefore, by the above reasoning, the strategy set of piayef« is also

a singleton and we are dona.

As an immediate corollary of proposition 6.7 and definitions 6.4 and 6.5 we get:

Corollary 6.8 If " is both locally generic ané-generic then any dual reduction bf
is both locally generic ane-generic.

As an immediate corollary of proposition 6.6 and corollary 6.8 we get:

Theorem 6.9 If T" is both locally generic and-generic, then for any positive integer
m, I' has a unique iterative full dual reduction of depth

7 Dual reduction and elimination of unacceptable pure
strategies

Dual reduction and elimination of unacceptable pure strategies [7] both include elim-
ination of dominated strategies. Furthermore, there are similarities in the ways these
concepts are definéd. Comparing dual reduction and elimination of unacceptable
pure strategies is thus quite natural. In this section we show by means of example that
none of these refinement concepts is more stringent than the other.

We first introduce some notations and definitions (most of the phrasing is taken
from [7] and [2]; see also [8]): lef C N. If S is nonempty we let

Cs = XiesC;

(soCn = C), and we letCy = {0}. If cisin C anddgs in Cs then(c_g, ds) denotes
the strategy profile in which playémplaysd; if i € S andc; if i ¢ S.

Definition 7.1 An e-correlated strategy, is a lottery choosing a vector of "recom-
mended” pure strategies (i.e. a point (i), a coalition S of trembling players, and

a vector of trembles (i.e. a point i@s) for those players (hence, formally, it is a
probability distribution ovelC' x (Usc¢S)) such that:

(a) Given any vector of recommendations, the conditional probability of every
coalition of trembling players and every vector of trembles for these players is strictly
positive.

(b) Given any vector of recommendatiansny subsef of players not including
player: and any vector of trembles#s for those players : given that the coalition of
trembling players is eithef or S U {i} and that the players of tremble todgs, the
conditional probability ofi also trembling is at most

151n particular, theaggregate incentive valugf c for the set of playersV: Vi (c, ), defined in [7, p.141,
(3.3)], is exactly the payoff(c, ) defined in section 3.
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Letn be ane-correlated strategy. Consider the extended game in which each player
is first informed of his recommended action; next the non-trembling players are asked
to move - while the trembling players are forced to move using the selected trembles.
Thee-correlated strategy is ane-correlated equilibrium if, in this extended game, the
obedient strategies form a Nash equilibrium.

A correlated strategy, € A(C) is anacceptable correlated equilibriuif¥] if it
is a limit (¢ — 0) of distributions (i.e. marginal distributions aff) of e-correlated
equilibria. That is, if for all positive: there exists some-correlated equilibriurm®
such that for alk in C: lim._.q (¢, 0) = u(c), wheren©(c, 0) is the probability that
c is recommended and that no player trembles. Acceptable correlated equilibria are
correlated equilibrium distributions [7, theorem 1].

A pure strategyc; is acceptable[7] if, for every e > 0, there exists some-
correlated equilibriurm such that

Z n(c,0) >0

c_,€C_;

(that is, in Myerson terms’s, "it; can be rationally used when the probabilities of
trembling are infinitesimal” [9]).

Theacceptable residu&(I") of a gamd’ is the game obtained froinby eliminat-
ing all the unacceptable pure strategies. Myerson shows [7, theorems 2 and 4] that the
acceptable correlated equilibria are exactly the correlated equilibrium distributions of
R(T) (technically, the c.e.d. df in which only acceptable pure strategies are played
and whose marginal distribution on the product of the sets of acceptable pure strategies
are c.e.d. oR(I")). This is analogous to theorem 4.4 and proposition 5.10.

As dual reduction, elimination of unacceptable pure strategies may be iterated. A
pure strategy igpredominantf it remains after iterative elimination of unacceptable
pure strategies, and correlated equilibrium distributions in which only predominant
strategies are played are called predominant.

We now compare dual reduction and elimination of unacceptable pure strategies.
We first need a lemma:

Lemma 7.2 If there exists a correlated equilibrium distribution with full support then
all pure strategies are acceptable and predominant.

Lemma 7.2 is proved in appendix B. Itimplies that the class of games in which all pure
strategies are acceptable is strictly larger than the class of elementary games. This is not
only due to the fact that in a game in which all strategy profiles are played in correlated
equilibria, such as Matching-Pennies, dual reduction can still group strategies together.
Indeed, consider the following game of coordination where, moreover, pldyas an
outside option:

Example 7.3
T2 Y2 22
y1 0,0 1,1 -1,-1
z7 0,0 —1,-1 1,1
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In this game, playing each strategy with equal probability is a completely mixed Nash
equilibrium. Thus, by lemma 7.2, all strategies are acceptable and predominant. How-
ever,z, is eliminated in any nontrivial dual reduction. (To prove this, note thais
equivalent to%yg + 522; this implies thaty, and z, jeopardizer,. Furthermorey;

andz; must be invariant under any dual vector because they have positive probability
in some strict correlated equilibrium distribution. So there is a unique dual reduction,
which consists in eliminatings.)

This example shows that dual reduction may eliminate acceptable and even pre-
dominant pure strategies. It also shows that dual reduction can eliminate completely
mixed, hence perfect Nash equilibria. Since any perfect Nash equilibrium is a perfect
direct correlated equilibrium [2], it shows that dual reduction may eliminate perfect
direct correlated equilibrium distributions.

The next example shows that there may be unacceptable pure strategies that no
dual reduction eliminates: 1&t denote the following three-player game, where player
1 chooses the matrix:( or y1), player 2 the row, and player 3 the column:

Example 7.4 (taken from [7])

T Y1
T3 Y3 z3 T3 Ys z3
ro 2,1,1 0,2,0 0,2,0 z2 1,3,3 1,3,3 1,3,3
¥2 0,0,2 0,3,0 0,0,3 ¥ 1,3,3 1,3,3 1,3,3
z 0,0,2 0,0,3 0,3,0 z 1,3,3 1,3,3 1,3,3

Myerson [7] shows that the only acceptable strategies for player:;, for all i in
{1,2,3}. However,y; cannot be eliminated by one-shot dual reduction. Indeed, let
¢ = (y1,¥2,y3) anda be a dual vector; by definition 4.},  [Ui(a;xc)—U;(c)] > 0;
sincec is a Nash equilibrium and all unilateral deviations fretoy playerl are strictly
detrimental for him, this implies that, is invariant under.

Note thaty; may be eliminated byterative dual reduction. Actually, to prove
thatys, 2o, y3, 23 andy; are unacceptable, Myerson uses todomination systeth
(al, a?) wherea! anda? are the deviation vectors such that:

azl<xl|y2) = O‘zl(xl|zl) =1Vie {273}7 O‘%(xlkl/l) =1,

and all othera®(d;|c;) are as in the corresponding trivial deviation vectors. It is easy

to check thaty! is a dual vector of” anda? a dual vector of"/a!. The only strategy
profile remaining inl' /ot /a? is the strict Nash equilibriunizy, 2, 23), thusy; has

been eliminated. Whether some unacceptable (or non predominant) pure strategies
cannot be eliminated by any iterative dual reduction is still an open problem.

8 Some applications of dual reduction

As a refinement concept or as a way to simplify a game, dual reduction has some
nice properties: it does not depend on the (von Neumann-Morgenstern) utility func-
tions chosen to represent the preferences of the players; strategies which are never

18For a definition of codomination systems, see [7] or [8].
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played in correlated equilibria are eliminated; zero-sum games are reduced to their
value; symmetric games may be reduced symmetrically; strict correlated equilibria are
never eliminated, and others. But it also suffers from some drawbacks: first, it is not
clearly motivated; second, a game may have several full dual reduéfidnss thus

not clear to us that dual reduction deserves to be studied as a refinement concept or as
"a powerful generalization of elimination of weakly dominated strategies” [9, p.202].
But we feel that the underlying mathematical machinery is powerful indeed and may
prove useful to investigate the geometry of correlated equilibria. For instance, while
working on other topics, dual reduction helped us in proving the following results:

Proposition 8.1 Assume that no pure strategy is dominated in the sense that:
Vi € I,Ve; € CZ‘,VO'Z‘ € A(CZ‘),O'Z‘ 7é ¢ = de_; € C,i, Ul(C) > Ui(C,i,O'i) (10)
ThenC' does not have dimensiay — 2.

Proof. If the game is elementary, théhhas dimensioV — 1. Otherwise, there exists
iin I, ¢; in C; andd; in C; such thatd; jeopardizes:;. Therefore there exists a dual
vectora such that; ¢ C;/«;. Bute; is undominated in the sense of (10). Therefore, by
proposition 5.11, there exisfsn N — i andc; in C; such that; ¢ C;/a;. Therefore

¢; is jeopardized by some stratedy € C; — ¢;. This implies that for all c.e.du,

> wOU;(e) = Us(e—y,d;)] = 0 (11)

ijecfj

Similarly, d; jeopardizes;, so for allp in C,

> w(©Uile) = Us(e—i,di)] = 0 12)

c_;€C_;

Condition (10) implies that neither (11) nor (12) is checked by all poini&irand that

(11) and (12) are not equivalent. As an intersection of two non identical hyperplanes,
the set of points aR“ checking (11) and (12) is a vector space of dimengion 2. Its
intersection with the simplex has at most dimensdnr- 3 and includeg”. Therefore

C has at most dimensioN — 3. m

To state the next result, we first need a definition: a ganpeekinding[14] if for
all playeri in I and all pure strategies in C; : if ¢; is played in some correlated
equilibrium (that is, if there exists a c.e.qi such thatu(c; x C_;) > 0) theng;
jeopardizes all pure strategies of playeFinally, since conditions (1), (2) and (3) are
all linear the set of correlated equilibrium distributions is a polytope; we call it below
the correlated equilibrium polytope.

Starting from [10] and using the dual reduction technique, | show in [14] that:

Proposition 8.2 A game is prebinding if and only if its correlated equilibrium polytope
is a singleton or contains a Nash equilibrium distribution in its relative interior.

1"The fact that locally generic two-player games have a unique full dual reduction hardly helps as games
for which refinements are needed are typically nongeneric.
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A The linear programming proofs of existence of cor-
related equilibria

In this appendix, we review and connect the proofs of existence of correlated equilibria
given in [3], [11] and [9].

A.1 Hart & Schmeidler’s proof

Consider the following two-player, zero-sum, auxiliary gafigs: the maximizer
chooses a strategy profite= (c1, .., ¢,) in C; the minimizer chooses a playein N
and a couple of stratedy;, d;) in C; x C;. The payoffisU;(c) — U;(c_;, d;) if ¢, = ¢;
and0 otherwise. In mixed strategies the maximizer chooses a correlated strategy
A(C) and the minimizer a probability distributianon triples(i, ¢;, d;) € N xC; xC;;
the expected payoff is then:

ns(msv) =Y ple) Y > vlises di)[Uie) = Uile—s, di)] (13)

ceC €N d; €C;

As in the auxiliary gamé& of section 3, guarantees O if and only jf is a correlated
equilibrium distribution of the original game. Thus, to prove the existence of correlated
equilibrium distributions, it is enough to show that the valuesgfs is nonnegative.

To do so, Hart and Schmeidler could have used the existence of invariant distributions
for finite Markov chains?®

LemmaA.1 Let M be am x m stochastic matrix (i.e. nonnegative with columns
summing to unity); there exists a probability vecio= (x;) =1, such thatMxz =
Z.

Instead, they used the following lemma:

Lemma A.2 (Hart&Schmeidler) Let (a;x)1<;x<m b€ nonnegative numbers. There
exists a probability vectat = (z;),=1,...» such that, for any vectar = (u;);=1,...m

.....

Zx]Za]k (uj —ur) =0 (14)

j=1 k=1

Proposition A.3 Lemmas A.1 and A.2 are equivalent

Proof. (i) in (14 we may assumgjj a;r = 1 without loss of generality (indeed, one
may increase arbitrarily the coefficientg;, to ensure that each row sums to some pos-
itive constant and then divide all coefficients by this constant to normalize); (ii) by

18 et \ be a positive constant. X is small enough, any strategy of the minimizeiGincan be emulated
in Gus, up to the scaling factok, by letting: v (%, ¢;, d;i) = Aai(di|e;)/n if di # ¢;, and giving any
value (up to normalization of) to v (7, c;, ;). Conversely, any strategyof the miginizer inG i s can be
emulated inG by Iettingai(di\ci) = V(i, Ci, dl) if C; 75 d; andai(di\c,-) =1- d;#c; l/(i, Ci s dz), it
follows that the value of~ is nonnegative if and only if the value 6f s is nonnegative. Thus the proof of
section 3 must go through.
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linearity (14 holds for all vector if and only if it holds for all basis vectors (i.e. with
one component equal to 1 and all the others zero); (iii) (14 holds for all basis vectors
iff 32, 505 = x; (= 3, ajix;) for all 4; that is, iff ATz = z whereA” denote the

m x m square matrix whoséi, j) entry isa;;. (iv) Thus lemma A.2 boils down to
lemma A.1 applied td/ = A”. Reciprocally, lemma A.1 is a special case of lemma
A2 nm

Incidentally, Hart&Schmeidler prove their lemma using the Minimax theorem; so propo-
sition A.3 yields a game-theoretic proof of the existence of invariant distributions for
finite Markov chaing?

A.2 Other proofs

Nau and McCardle’s proof is very similar. They also introduce (implicitly) the payoff
matrix of Gg. A strategy profilec is defined to bgointly coherentif g(c,a) = 0

for all dual vectorsn. Nau and McCardle show through lemma A.1, and essentially
as in section 3, that there exists a jointly coherent strategy profile. Finally, they prove
through a variant of Farkas lemma that a strategy profile is jointly coherent if and
only if it has positive probability in some correlated equilibrium distribu®nlhus
correlated equilibrium distributions exists.

Myerson’s proofs is essentially the proof of section 3. The only difference is that
instead of introducing an auxiliary zero-sum game, Myerson introduces an auxiliary
linear program and then uses linear duality. Deviation vectors appear as vectors of dual
variables, hence the terms dual vector and dual reduction. Myerson’s linear program
corresponds to the maximisation’s program of the maximizer in the auxiliary game of
section 3.

B Proofs

In this appendix, we prove lemma 5.9, proposition 5.21 and lemma 7.2.

Proof of lemma 5.9 let A\ € A(C). We only need to show that X is a-invariant
then it isT-equivalent to a correlated strategyltfa. Indeed, the converse is clear by
linearity of A — a;*\. Furthermore, letting’/«; = C; /a; x C_;, itis enough to show
that if X is a;-invariant then there existsin A(C/«;) such thati) X is T-equivalent to
A and(ii) if X is aj-invariant, then so 8. Indeed, as the number of players is finite, a
simple induction then proves the property. So let us assume tBai;-invariant. That
is,

aix Me_i, ) = Z a;(cild)N(c_i, di) = Nc_i,¢;) Ve; € Cy,¥e_; € C_; (15)
d;€C;

191 owe this remark to B. von Stengel, who first showed me a proof of lemma A.1 based on linear duality.
Such a proof can also be found in [6, ex. 9, p. 41]

20In the framework of section 3, this corresponds to the following result: in a finite, two-player zero-sum
game, a pure strategy is a best-response to all optimal strategies of the other player if and only if it has
positive probability in some optimal strategy. This follows from the strong complementarity property of
linear programs
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(The first equality merely repeats the definitiorngf \.) Equation (15) means that, for
allc_;in C_;, the vectof\(c_, ¢;)]e, ec, is a;-invariant. Therefore: (a)(c;xC_;) =

0 if ¢; is a;-transient and (b) for any minimal;-absorbing seB;, [\ (c_;, ¢;)]e, B, IS
proportional too g, (¢;)]; e B, » Whereo g, is the uniquey;-invariant strategy with sup-
portin B;. More precisely, defing € A(C/a;) by: A(c—i,0B,) = A

cien, Meis i),
we have:

)\(C_i,Ci) = )\(C_i,O'Bi) X 0B, (Ci) Ve; € BZ‘,VC_i eC_;

The above equality means thais I'-equivalent to). Finally it is straightforward to
check that if\ is o;-invariant, then so is\.. This completes the proof.

Definition of symmetric games and proof of proposition 5.21 let I" be a game in
which all players have the same numbef pure strategies. Let; ;, denote the:!"
strategy of playet. ThusC; = {¢; 1,...,cim }. Foralliin N, letk; be an integer in
{1,....m}. Let (¢; 1, )ien denote the profile of strategy in which, for aliplayeri plays
his k" strategyI is asymmetric gamé for all permutations of the set of players,

Ui((¢j ey ;) ien) = Upiy((¢jk;)jen)

This means that if, for all, player: plays as playep(i) used to play, then the payoff of
player: in the new configuration is the payoff of playgfi) in the old configuration.
We now prove the proposition:

Step 1: let us say that a deviation vectobf a symmetric game is symmetric if
a; (i leik) = aj(cjw|cir) foralli, jin N and allk, " in {1, 2,.., n}. Itis clear
that if " is a symmetric game anda symmetric dual vector, thery« is a symmetric
game. So it is enough to show that there exists a symmetric full dual vector.

Step 2: leto denote a deviation vector. For all permutatipnsf the set of players,
let o denote the deviation vector such that:

ag(i)(cp(i)7k/|cp(i)7k) = oci(ci7k/|ci,k) Vie N
Let @ denote the symmetrized deviation vector given by:

2,

a:
n!

wheren is the number of players and the summation is taken over all permutations
of the set of players.

It is easy to check that is symmetric and that i is a dual vector then so are all the
aP, hence so is.. Furthermore ify; (d;|c;) is positive then so is; (d;|c;) (since in the
summation definingy, o? = o whenp is the identity permutation). Thusf is a full
dual vector them is a symmetric full dual vector.

Proof of lemma 7.2: Assume that there exists a c.e.d.with full support. By [7,
theorem 2], ifu is acceptable, then any pure strategy is acceptable, hence any pure
strategy is predominant. Thus, it is enough to show th#& acceptable. The trick

is that, becausg has full support, it is possible to find trembles that will mimijek

so that whoever the players trembling, a nontrembling player always faces the same
conditional probabilities given his signal thangin
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More precisely, assume that there exists sernerrelated strategy such that:
VS C C,Vds € Cg,Ve € C,n(c,ds) = K(S, €)u(c-s, ds) (16)

whereK is a positive constant that depends only$and one (but not onc_g). That
is, given any coalitionS of trembling players, any vectals of trembles assigned to
S, and any strategy profile, the probability inn that (c_g, ds) will be played as a
result of the players being recommendgthe players o — S not trembling, and the
players ofS trembling tods, is proportional to the probability dfc_s, ds) in u. The
total probability inn thatS and onlyS trembles and thaic_ s, ds) is played is then:

> nl(c-s,es),ds) = K'(S,€)u(c_s, ds)

es€Cs

where K’ is a positive constant which depends only.$@and one. It follows that, if

i ¢ S and¢; € C, the expected strategy of the other players,igivenc; and given
that.S and onlyS trembles, is the same that the expected strategy of the other players
in 1 givene;. A fortiori, the expected strategy ipgivenc; and given that playerdoes

not tremble is the same that the expected strategydiven ¢;, to which¢; is a best
response. Thus, is ane-equilibrium.

It remains to show that it is possible to find a sequence-abrrelated strategy
checking (16) and such thatc, ) tends tou(c) ase goes to zero. Such a sequence
may be build by taking for alt in C' and for some suitable positive normalization
constantA:

(e, 0) = A x p(c)
and, inductively, if the cardinal o§ C C'ism + 1:

€
n(c es) = :Am x p(c-s, es)

with

Am = min 77(d7 eT)

min min
deC TeS:CardT=m ereCr
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