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Résumé: Nous étudions les propriétés de la réduction duale : une technique de 
réduction des jeux 
finis qui permet d'opérer une sélection entre les équilibres corrélés. Nous 
montrons que le processus de réduction est indépendant des fonctions d'utilités 
choisies pour représenter les préférences des agents et que les jeux à deux 
joueurs ont génériquement une unique réduction duale pleine. De plus, dans 
une réduction duale pleine, toutes les stratégies et tous les profils de stratégie 
qui ne sont jamais jouées dans des équilibres corrélés sont éliminées. Nous 
étudions les propriétés supplémentaires qu'a la réduction duale dans plusieurs 
classes de jeux et nous comparons la réduction duale à d'autres concepts de 
raffinement des équilibre corrélés. Enfin, nous passons en revue et relions les 
différentes preuves d'existence des équilibres corrélés fondées sur la 
programmation linéaire. 

 
Abstract: We study dual reduction: a technique to reduce finite games in a way that 

selects among correlated equilibria. We show that the reduction process is 
independent of the utility functions chosen to represent the agents's 
preferences and that generic two-player games have a unique full dual 
reduction. Moreover, in full dual reductions, all strategies and strategy profiles 
which are never played in correlated equilibria are eliminated. The additional 
properties of dual reduction in several classes of games are studied and dual 
reduction is compared to other correlated equilibrium refinement's concepts. 
Finally, we review and connect the linear programming proofs of existence of 
correlated equilibria. 
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1 Introduction

Dual reduction is a technique to reduce finite games in strategic form into games with
fewer strategies. It was introduced by Myerson [9]. Its main property is to select among
correlated equilibrium distributions1. That is, any correlated equilibrium distribution
of the reduced game induces a correlated equilibrium distribution in the original game.
Dual reduction thus provides a candidate refinement concept for correlated equilibrium
distributions: retaining only those correlated equilibrium distributions which are not
eliminated by dual reduction, or, in a more stringent way, by iterative dual reduction.
Myerson also showed that dual reduction includes elimination of weakly dominated
strategies as a special case and that, by iterative dual reduction, any game is eventually
reduced to anelementary game. That is, a game in which every player may be given,
in some correlated equilibrium, a strict incentive to play any of his pure strategies.

Little else is known on the properties of dual reduction. Yet, to evaluate dual re-
duction as a refinement concept, basic information is needed: which strategies and
equilibria are eliminated ? In which classes of games is the reduction process unique
? How does dual reduction behave in some important classes of games (e.g. zero-sum
games, symmetric games) ? In which precise sense does dual reduction ”generalize”
[9, p.202] elimination of dominated strategies ? What are the links between dual re-
duction and other correlated equilibrium refinement concepts ? These are some of the
questions that this paper tries to address.

Moreover, dual reduction is based on a concept calledjeopardization[9] which is
very geometrical in nature (the fact that a strategy ”jeopardizes” some other strategy
means that the correlated equilibrium polytope is included in some hyperplane). It is
thus reasonable to hope that the dual reduction technique may be useful for investigat-
ing geometrical properties of correlated equilibria; in the last section and in [14] we
present evidence that this is indeed the case. But to use dual reduction as a tool, just as
to evaluate its relevance as a refinement concept, we first need to know more about its
properties.

The remaining of this paper is organized as follow: the main notations and defi-
nitions are introduced in the next section; we then recall, in section 3, the key-points
of the direct proofs of existence of correlated equilibrium distributions, on which dual
reduction is based. The existing results on dual reduction are reviewed in section 4. In
sections 5 and 6, the core of the paper, new results are established. They are summed up
at the beginning of section 5. In section 7, we compare dual reduction to another corre-
lated equilibrium refinement introduced by Myerson [7]: elimination of unacceptable
pure strategies. Examples of geometrical results proven via dual reduction are given in
the last section. In appendix A, we review and connect the direct proofs of existence
of correlated equilibria given in [3], [11] and [9]. Finally, for clarity sake, some of the
proofs are gathered in appendix B

1The correlated equilibrium concept, introduced by R. Aumann [1], is a generalization of the Nash equi-
librium concept to situations where players may condition their behavior in the game on payoff-irrelevant
signals received before play. A formal definition of correlated equilibrium distributions will be given in the
next section.
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2 Notations and definitions

2.1 Basic notations

The analysis in this paper is restricted to finite games in strategic form. The notations
are taken from [9]. LetΓ = {N, (Ci)i∈N , (Ui)i∈N} denote a finite game in strate-
gic form: N is the nonempty finite set of players,Ci the nonempty finite set of pure
strategies of playeri andUi : ×i∈NCi → R the utility function of playeri. The set
of (pure) strategy profiles isC = ×i∈NCi; the set of strategy profiles for the players
other thani is C−i = ×j∈N−iCj . Pure strategies of playeri (resp. strategy profiles;
strategy profiles of the players other thani) are denotedci or di (c; c−i). We may write
(c−i, di) to denote the strategy profile that differs fromc only in that itsi−component
is di. For any finite setS, ∆(S) denotes the set of probability distributions overS.
Thus∆(Ci) is the set of mixed strategies of playeri, which we denote byσi or τi.

2.2 Correlated equilibrium distributions and deviation vectors

A correlated strategyof the players inN is an element of∆(C). Thusµ = (µ(c))c∈C

is a correlated strategy if:

µ(c) ≥ 0 ∀c ∈ C (1)
∑

c∈C

µ(c) = 1 (2)

A correlated strategy is acorrelated equilibrium distribution[1] (abbreviated occasion-
ally in c.e.d.) if it satisfies the followingincentive constraints:

∑

c−i∈C−i

µ(c)[Ui(c)− Ui(c−i, di)] ≥ 0 ∀i ∈ N, ∀ci ∈ Ci, ∀di ∈ Ci (3)

The following interpretation and vocabulary will be useful for the next sections. Let
µ ∈ ∆(C) and consider the following extended gameΓµ, based onΓ: beforeΓ is
played, a strategy profilec ∈ C is drawn at random with probabilityµ(c) by some
mediator; then the mediator privately recommendsci to playeri; finally, Γ is played.2

The players can thus condition their strategy inΓ on their private signal. A strategy
of player i in this extended game is a mappingαi : Ci → ∆(Ci), which we call a
deviation plan. Denoting byαi(di|ci) the probability that playeri will play di when
announcedci we have:

αi(di|ci) ≥ 0 ∀ci ∈ Ci, ∀di ∈ Ci,∀i ∈ N (4)

∑

di∈Ci

αi(di|ci) = 1 ∀ci ∈ Ci, ∀i ∈ N (5)

2Whether the players are aware of the game they are playing is unessential to the definition of correlated
equilibrium distributions. For clarity sake however, it may be assumed that the description of the gameΓµ,
and in particularµ itself, is common knowledge among the players.
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A strategy profile is adeviation vector, i.e. a vectorα = (αi)i∈N of deviation plans.
Such a deviation vector istrivial if, for all i in N , αi is the identity mapping. The
incentive constraints (3) mean thatµ is a correlated equilibrium distribution ofΓ if and
only if the trivial deviation vector is a Nash equilibrium ofΓµ.

3 Existence of correlated equilibrium distributions

This section is a variation on the elementary proofs of existence of correlated equilibria
given in [3], [11] and [9]. Consider the following two-player, zero-sum auxiliary game
G: the maximizer chooses a correlated strategyµ in ∆(C); the minimizer chooses a
deviation vectorα. The payoff is:

g(µ, α) =
∑

c∈C

µ(c)
∑

i∈N

∑

di∈Ci

αi(di|ci)[Ui(c)− Ui(c−i, di)] (6)

It is clear from section 2.2 thatµ guarantees0 if and only if µ is a correlated
equilibrium distribution ofΓ. ThusΓ has a correlated equilibrium distribution if and
only if the value ofG is nonnegative. The remaining of this section is devoted to an
elementary proof of the following theorem:

Theorem 3.1 The value ofG is zero. Therefore correlated equilibrium distributions
exists.

A deviation planαi : Ci → ∆(Ci) induces a Markov chain onCi. This Markov
chain maps the distributionσi ∈ ∆(Ci) to the distributionαi ∗ σi given by:

αi ∗ σi(di) =
∑

ci∈I

αi(di|ci)σi(ci)∀di ∈ Ci

Similarly, if a mediator tries to implementµ but3 playeri deviates unilaterally accord-
ing toαi, this generates a new distribution on strategy profilesαi ∗ µ:

αi ∗ µ(c−i, di) =
∑

ci∈Ci

αi(di|ci)µi(c) ∀di ∈ Ci,∀c−i ∈ C−i

Definition 3.2 Let α = (αi)i∈N be a deviation vector. A mixed strategyσi ∈ ∆(Ci)
is αi-invariantif αi ∗ σi = σi. A correlated strategyµ ∈ ∆(C) is αi-invariant(resp.
α-invariant) if (resp. if for all i ∈ N ) αi ∗ µ = µ.

Note that, by the basic theory of Markov chains, there exists at least oneαi-invariant
strategy.

Let Ui(µ) =
∑

c∈C µ(c)Ui(c) denote the average payoff of playeri if µ is imple-
mented. Myerson [9] shows that:

g(µ, α) =
∑

i∈N

[Ui(µ)− Ui(αi ∗ µ)] (7)

3That is, if the mediator draws a strategy profilec in C with probabilityµ(c) and then privately recom-
mendsci to playeri.
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We can now prove theorem 3.1: first note that the minimizer can guarantee 0 by choos-
ing the trivial deviation vector. Thus we only need to show that the maximizer can
defend 0. Letα denote a deviation vector; for eachi, let σi ∈ ∆(Ci) beαi-invariant.
The correlated strategyσ =

∏
i∈N σi isα-invariant; hence, by (7),g(σ, α) = 0. There-

fore the maximizer can defend 0.

4 Dual reduction

All results of this section are proved in [9].

4.1 Definition

The Markov chain onCi induced byαi partitionsCi into transient states and disjoint
minimal absorbing sets4. For any minimal absorbing setBi, there exists a uniqueαi-
invariant strategy with support inBi

5. Let Ci/αi denote the set of (randomized)αi-
invariant strategies with support in some minimalαi-absorbing set. It may be shown
that the set ofαi-invariant strategies is the set of random mixture of the strategies in
Ci/αi; that is, the simplex∆(Ci/αi).

Let α = (αi)i∈N be a deviation vector. Theα-reduced game

Γ/α = {N, (Ci/αi)i∈N , (Ui)i∈N}

is the game obtained fromΓ by restricting the players toα-invariant strategies. That
is, the set of players and the payoff functions are the same than inΓ but, for all i in N ,
the pure strategy set of playeri is nowCi/αi.6

Before turning to dual reduction and their properties, let us make our vocabulary
precise: letci, di ∈ Ci (resp. c ∈ C). The pure strategyci (resp. strategy profilec)
is eliminatedin the α-reduced gameΓ/α if σi(ci) = 0 for all σi in Ci/αi (resp. if
σ(c) = 0 for all σ in C/α). Thusci (resp.c) is eliminated if and only if (resp. if and
only if for somei in N ) ci is transient underαi. The strategiesci anddi aregrouped
togetherif there existsσi in Ci/αi such thatσi(ci) andσi(di) are positive. Thus,ci

anddi are grouped together if and only if they are recurrent underαi and belong to the
same minimalαi-absorbing set.

Definition 4.1 A dual vectoris an optimal strategy of the minimizer in the auxiliary
game of section 3. Thus a deviation vectorα is a dual vector if for allc in C:

−g(c, α) =
∑

i∈N

[Ui(αi ∗ c)− Ui(c)] =
∑

i∈N

∑

di∈Ci

αi(di|ci)[Ui(c−i, di)− Ui(c)] ≥ 0

(8)
(The above equalities merely repeat the definition ofg(c, α).)

4A subsetBi of Ci is αi-absorbing ifα(di|ci) = 0 for all ci in Bi and all di in Ci − Bi. An
αi-absorbing set is minimal if it contains no properαi-absorbing subset.

5Actually its support is exactlyBi.
6Strictly speaking the payoff functions of the reduced game are the functionsinducedby the original

payoff functions on the reduced strategy space.
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Definition 4.2 A dual reductionof Γ is anα-reduced gameΓ/α whereα is a dual vec-
tor. An iterative dual reductionof Γ is a reduced gameΓ/α1/α2/.../αm, wherem is a
positive integer and, for allk in {1, 2, ...,m}, αk is a dual vector ofΓ/α1/α2/.../αk−1.

Many examples can be found in [9, section 6]. Henceforth, unless stated otherwise,α
is a dual vector.

4.2 Main properties

First, dual reduction generalizes elimination of weakly dominated strategies in the fol-
lowing sense:

Proposition 4.3 Let ci ∈ Ci; assume that there existsσi ∈ ∆(Ci), σi 6= ci, such that
Ui(c−i, σi) ≥ Ui(c) for all c−i in C−i. Then there exists a dual vectorα such that
Ci/αi = Ci − {ci} andCj/αj = Cj for j 6= i.

Proof. Take forα: αi(di|ci) = σi(di) for all di ∈ Ci, andαj(cj |cj) = 1 if j 6= i or
cj 6= ci

The main property of dual reduction is that it selects among correlated equilibrium
distributions: letΓ/α denote a dual reduction ofΓ; let C/α = ×i∈NCi/αi denote the
set of strategy profiles ofΓ/α. Let λ ∈ ∆(C/α); theΓ-equivalent correlated strategy
λ̄ is the distribution onC induced byλ:

λ̄(c) =
∑

σ∈C/α

λ(σ)

(∏

i∈N

σi(ci)

)
(9)

Theorem 4.4 If λ is a correlated equilibrium distribution ofΓ/α, thenλ̄ is a corre-
lated equilibrium distribution ofΓ.

By induction, theorem 4.4 extends to iterative dual reductions. That is, any correlated
equilibrium distribution of an iterative dual reduction ofΓ induces on∆(C) a corre-
lated equilibrium distribution ofΓ. A side product of the proof of theorem 4.4 is that,
against any strategy of the other players in the reduced game, playeri is indifferent
between his strategies within a minimal absorbing set:

Proposition 4.5 LetBi denote a minimalαi-absorbing set. Forj 6= i, letσj ∈ Cj/αj

and letσ−i = ×j∈N−iσj . For anyci, di in Bi, Ui(σ−i, ci) = Ui(σ−i, di).

4.3 Jeopardization and Elementary Games

Let us say that a dual vector is trivial if it is the trivial deviation vector. A game may
be reduced if and only if there exists a nontrivial dual vector7. So we are led to the
question: when do nontrivial dual vectors exist ? A first step to answer this question is
to introduce the notions of jeopardization and elementary games:

7This is clear from the basic theory of Markov chains. See for instance [4] and references therein.
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Definition 4.6 Let ci, di ∈ Ci. The strategydi jeopardizesci if for all correlated
equilibrium distributionsµ:

∑

c−i∈C−i

µ(c)[Ui(c)− Ui(c−i, di)] = 0

That is, in all correlated equilibrium distributions in whichci is played,di is an al-
ternative best response to the conditional probabilities onC−i given ci. Note that if
ci has zero probability in all correlated equilibrium distributions, then anydi in Ci

jeopardizesci. Using complementary slackness properties allows to prove that:

Proposition 4.7 The strategydi jeopardizesci if and only if there exists a dual vector
α such thatαi(di|ci) > 0.

Thus, there exists a nontrivial dual vector if and only if some strategy is jeopardized by
some other strategy.

Definition 4.8 A correlated equilibrium distributionµ is strict if

µ(ci×C−i) > 0 ⇒
∑

c−i∈C−i

µ(c)[Ui(c)−Ui(c−i, di)] > 0 ∀i ∈ N, ∀ci ∈ Ci, ∀di 6= ci

A game iselementaryif it has a strict correlated equilibrium distribution with full
support. Myerson [9] shows that a game is elementary if and only if there exists no
i, ci anddi 6= ci such thatdi jeopardizesci. Thus proposition 4.7 implies:

Corollary 4.9 A game may be reduced if and only if it is not elementary. By iterative
dual reduction, any game is eventually reduced to an elementary game.

4.4 Full dual reduction

Let us say that two dual reductionsΓ/α andΓ/β of the same game are different if
C/α 6= C/β. A game may admit different dual reductions (for instance, if several
strategies are weakly dominated). A tentative way to restore uniqueness is to consider
only reductions by some special dual vectors, which minimize the number of pure
strategies remaining in the reduced game:

Definition 4.10 A dual vectorα is full if α(di|ci) > 0 for all i in N , and all ci, di in
Ci such thatdi jeopardizesci.

Full dual vectors always exist [9]. Actually, almost all dual vectors are full8.

Definition 4.11 A full dual reductionof Γ is anα-reduced gameΓ/α whereα is a full
dual vector. Aniterative full dual reductionof depthm ofΓ is a gameΓ/α1/α2/.../αm

wherem is a positive integer and, for allk in {1, 2, ..., m}, αk is a full dual vector of
Γ/α1/α2/.../αk−1.

8The set of dual vectors is a polytope, whose relative interior is non empty ifG is not elementary. All dual
vectors in the relative interior of this polytope are full. IfG is elementary, the only dual vector is trivially
full.
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All full dual vectorsα define, for alli, the same minimalαi-absorbing sets. Thus
in all full dual reductions, the same strategies are eliminated and the same strategies
are grouped together. A game may nonetheless admit different full dual reductions,
because the way these strategies are grouped together may differ quantitatively. We
will return to this point in section 6.

5 Other properties of dual reduction

A basic desirable property for a decision-theoretic concept is that it be independent of
the specific utility functions chosen to represent the preferences of the agents. So we
begin by showing that dual reduction meets this requirement; that is, the ways in which
a game may be reduced are unaffected by positive affine transformations of the utility
functions. We then extends theorem 4.4 to other equilibrium concepts, including Nash
one’s, and prove its converse: if a correlated strategyλ of a reduced game induces an
equilibrium distribution in the original game, thenλ is an equilibrium distribution of
the reduced game. We then investigate eliminations of strategies and equilibria. We
show that strategies that are weakly dominated (resp. are never played in correlated
equilibria; have positive probability in some strict correlated equilibrium) need not be
(resp. are always; cannot be) eliminated in full dual reductions. Finally we study some
specific classes of games. We show that games that are best-response equivalent to
zero-sum games, as well as games with a unique correlated equilibrium distribution
are reduced in games with a single strategy profile by full dual reduction. Symmetric
games are shown to have symmetric full dual reductions (but possibly also asymmetric
ones) and generic2× 2 games are analysed.

In section 6, we show that, even if only full dual reductions are used, there might
still be multiple ways to reduce a game. This typically happens when some player is
indifferent between some of his strategies: a nongeneric event. We show that generic
two-players games have a unique sequence of iterative full dual reductions.

5.1 Independence from the choice of utility functions

Recall that two games with the same sets of players and strategies arebest-response
equivalent[12] if they have the same best-response correspondences. Many central
concepts of game-theory are based on the best-response correspondences alone (say,
Nash equilibrium, correlated equilibrium, rationalizability, to name but a few). Games
which are best-response equivalent have, in particular, the same sets of Nash and cor-
related equilibria. It is thus reassuring to note that such games are reduced similarly by
dual reduction:

Proposition 5.1 LetΓ andΓ′ be best-response equivalent. Letci, di be pure strategies
of playeri in Γ andc′i, d

′
i the corresponding strategies of playeri in Γ′. The following

holds: (i) di jeopardizesci if and only ifd′i jeopardizesc′i; (ii) the strategies grouped
together (resp. eliminated) in full dual reductions ofΓ correspond to the strategies
grouped together (resp. eliminated) in full dual reductions ofΓ′.

Proof. (i) is clear from the definitions; (ii) follows immediately from (i)
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If Γ and Γ′ are not only best-response equivalent, but rescalings of each other (as
defined below), then there is actually a canonical, one to one correspondence between
dual reductions ofΓ and dual reductions ofΓ′:

Proposition 5.2 For each i in N , let φi : R → R denote a positive affine trans-
formation. That is, such that there exists real numbersai > 0 and bi such that
φi(x) = aix + bi for all x in R. Let φ(Γ) denote the rescaling ofΓ obtained by
changing the utility functions fromUi to φi ◦ Ui:

φ(Γ) = {N, (Ci)i∈N , (φi ◦ Ui)i∈N )

If Γ/α is a dual reduction ofΓ, thenφ(Γ/α) is a dual reduction ofφ(Γ).

The proof of proposition 5.2 will be given below. This proposition is not trivial because
a game and its rescalings need not have the same dual vectors. Indeed, consider a game
such as Matching-Pennies, which is nonelementary and in which all pure strategies are
undominated in the following sense:

∀i ∈ N, ∀ci ∈ Ci, ∀σi ∈ ∆(Ci), σi 6= ci ⇒ ∃c−i ∈ C−i, Ui(c) > Ui(c−i, σi)

Let α be a nontrivial dual vector: there existi and ci such thatαi ∗ ci 6= ci. In
proposition 4.3 we will see that sinceci is not weakly dominated, there existsc−i such
that Ui(αi ∗ c) − Ui(c) < 0. Multiplying the payoff of playeri by ai > 0 yields a
rescaled gameΓ′ such that:

∑

j∈N

[U ′
j(αj ∗ c)− U ′

j(c)] = ai[Ui(αi ∗ c)− Ui(c)] +
∑

j 6=i

[Uj(αj ∗ c)− Uj(c)]

If ai is high enough, this expression is negative so thatα cannot be a dual vector ofΓ′.
The key is that different deviation vectors may induce the same dual reductions:

Lemma 5.3 Let αi (resp.αid
i ) be a (resp. the trivial) deviation plan for playeri. For

any0 ≤ ε ≤ 1, let αε = εαi + (1− ε)αid
i . If ε is positive thenCi/αi = Ci/αε

i .

Proof. For any mixed strategyσi in ∆(Ci), αε
i ∗ σi − σi = ε(αi ∗ σi − σi).

Proof of proposition 5.2: Let α be a dual vector ofΓ. Let ak = mini∈N ai and, for
eachi in N , let εi = ak/ai. Letφ(α) denote the deviation vector whoseith component
is αεi

i , defined in lemma 5.3. Letg andgφ denote the payoff functions in the auxiliary
zero-sum games associated respectively toΓ andφ(Γ). We have:

gφ(c, φ(α)) = ak × g(c, α) ≥ 0 ∀c ∈ C

Thusφ(α) is a dual vector ofφ(Γ). Furthermore lemma 5.3 implies:φ(Γ)/φ(α) =
φ(Γ/α). Thusφ(Γ/α) is a dual reduction ofφ(Γ). The result still holds if we allow the
constantsbi to depend onc−i. Indeed, if the payoff functions(Uφ

i )i∈N in the rescaled
gameφ(Γ) are of the slightly more general form:Uφ

i (c) = ai × Ui(c) + bi(c−i) with
ai > 0 andbi : C−i → R, then the same proof shows that for any dual vectorα of Γ,
φ(Γ/α) is a dual reduction ofφ(Γ).
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5.2 Extension and converse of theorem 4.4

In this section, we first present three equilibrium concepts introduced in or related to
[13]. We then show that theorem 4.4 extends to Nash equilibrium distributions9, and to
these other equilibrium concepts. We illustrate this by an example. Finally, we prove a
converse of theorem 4.4.

Let µ ∈ ∆(C) andci ∈ Ci. If µ(ci × C−i) > 0, let µ(.|ci) denote the conditional
probability onC−i givenci:

µ(c−i|ci) = µ(c−i, ci)/µ(ci × C−i)

Definition 5.4 The correlated strategyµ ∈ ∆(C) is an equalizing distribution if

µ(ci × C−i) > 0 ⇒
∑

c−i∈C−i

µ(c−i|ci)Ui(c) = Ui(µ) ∀i ∈ N, ∀ci ∈ Ci,

That is, in an equalizing distribution, the expected payoff given a pure strategy is inde-
pendent of this strategy.

Definition 5.5 The correlated strategyµ ∈ ∆(C) is an equalizing correlated equi-
librium distribution10 (henceforthequalizing c.e.d.) if µ is both an equalizing and a
correlated equilibrium distribution11.

Definition 5.6 The correlated strategyµ ∈ ∆(C) is astable matching distribution12 if
every playeri in N and all pure strategiesci anddi of playeri:

µi(ci × C−i)µi(di × C−i) > 0 ⇒
∑

c−i∈C−i

[µ(c−i|ci)− µ(c−i|di)]Ui(c) ≥ 0

That is, ci yields a (weakly) higher expected payoff against the correlated strategy
µ(.|ci) of the players other thani than againstµ(.|di).

Proposition 5.7 Let λ be a correlated strategy of an iterative dual reductionΓr of Γ.
If λ is an equilibrium distributionof Γr then theΓ-equivalent correlated strategy is
an equilibrium distributionof Γ, whereequilibrium distributionmay stand for: Nash
equilibrium distribution, equalizing distribution, equalizing c.e.d. or stable matching
distribution.

Proof. Notations and preliminary remarks: letλ ∈ ∆(C/α) and letλ ∈ ∆(C) be
Γ-equivalent toλ. Let ci, di ∈ Ci checkλ(ci × C−i)λ(di × C−i) > 0. There exist
minimal αi-absorbing setsBi andB′

i such thatci belongs toBi anddi to B′
i. Let σci

(resp.σdi ) be theαi-invariant strategy with support inBi (resp.B′
i). Sinceλ(ci×C−i)

(resp.λ(di×C−i)) is positive,λ(σci×(C/α)−i) (resp.λ(σdi×(C/α)−i)) is positive

9The extension to Nash equilibrium distributions has been independently noted by Myerson.
10Sorin [13] uses the expressiondistribution equilibrium
11Any Nash equilibrium distribution is an equalizing c.e.d. but the converse is false. See example 5.8.
12Sorin [13] uses the expressiondual correlated equilibrium
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too. Note that:(i) Ui(λ) = Ui(λ) and(ii) λ(.|ci) is the conditional probability induced
onC−i by λ(.|σci). That is, ifcj is αj-recurrent for allj in N − i, then:

λ(c−i|ci) = λ(σc−i
|σci

)


 ∏

j∈N−i

σcj (cj)


 whereσc−i = ×j∈N−iσcj

Otherwise,̄λ(c−i|ci) = 0. The proofs are now easy:

Nash equilibrium: it follows from (9) that ifλ is an independent distribution, then so
is λ. This and theorem 4.4 imply that ifλ is both an independent and a correlated
equilibrium distribution, i.e. a Nash equilibrium distribution, then so isλ.

Equalizing distributions and equalizing c.e.d.: Using (i) and (ii) we get:
∑

σ−i∈(C/α)−i

λ(σ−i|σci)Ui(σ−i, σci) = Ui(λ) ⇒
∑

c−i∈C−i

λ(c−i|ci)Ui(c) = Ui(λ)

Thus ifλ is an equalizing distribution, then so isλ. This and theorem 4.4 imply that if
λ is an both an equalizing and a correlated equilibrium distribution, then so isλ.

Stable matching distributions: Using (ii) we get:
∑

σ−i∈(C/α)−i

[λ(σ−i|σci)− λ(σ−i|σdi)]Ui(σ−i, σci) ≥ 0

=⇒
∑

c−i∈C−i

[λ(c−i|ci)− λ(c−i|di)]Ui(c) ≥ 0

Thus ifλ is a stable matching distribution, then so isλ.

The following example illustrates proposition 5.7:

Example 5.8

x2 y2 z2

x1 2, 0 0, 2 0,−3
y1 0, 1 1, 0 0, 0
z1 −3, 0 0, 0 1, 1

σB2 z2

σB1 2/3, 2/3 0,−1
z1 −1, 0 1, 1

Let Γ denote the game on the left. Consider the deviation vectorα such that fori =
1, 2 :

αi(xi|xi) = 2/3, αi(yi|xi) = 1/3; αi(xi|yi) = 1/6, αi(yi|yi) = 5/6; αi(zi|zi) = 1,

and all otherαi(di|ci) are zero. We let the reader check thatα is a dual vector. The
minimal αi-absorbing sets areBi = {xi, yi} and B′

i = {zi}. Theα-reduced game
Γ/α is the game on the right, where theαi-invariant strategyσBi is ( 1

3 ; 2
3 ; 0). Con-

sider the distributionλ on C/α (below, right).13 This is an equalizing c.e.d. ofΓ/α.

13We represent correlated strategies in tables. For instance,λ(σB1 , z2) = 1/8.
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Therefore, theΓ-equivalent distribution̄λ (below, left) is an equalizing c.e.d. ofΓ.

λ̄ =
1/24 1/12 1/24
1/12 1/6 1/12
1/24 1/12 3/8

λ =
3/8 1/8
1/8 3/8

Theorem 4.4 states that correlated equilibrium distributions ofΓ/α induce correlated
equilibrium distributions inΓ. We may wonder whether a correlated strategy ofΓ/α
which would not be not a correlated equilibrium distribution, might nonetheless induce
a correlated equilibrium distribution inΓ. We show below that the answer is negative.
We first need a lemma:

Lemma 5.9 Given any deviation vectorα, a distributionλ̄ ∈ ∆(C) is α-invariant if
and only if it isΓ-equivalentto a distributionλ ∈ ∆(C/α). Such aλ is then unique.

Proof. See appendix B.

Proposition 5.10 Let α denote a dual vector. Let̄λ denote anα-invariant distribu-
tion on C and λ the corresponding distribution onC/α. Thenλ̄ is an equilibrium
distributionof Γ if and only ifλ is anequilibrium distributionof Γ/α, whereequilib-
rium distributionmay stand for: Nash equilibrium distribution, correlated equilibrium
distribution, equalizing distribution, equalizing c.e.d. or stable matching distribution.

Proof. We prove proposition 5.10 for correlated equilibrium distributions. The other
proofs are similar. Let̄λ ∈ ∆(C/α) and assume thatλ is not a c.e.d.. Then there
existi in N andσi, τi in Ci/αi such thatσi has positive probability underλ but τi is a
strictly better response thanσi to λ(.|σi). If ci ∈ Ci belong to the support ofσi, player
i is indifferent betweenci andσi againstλ(.|σi) (proposition 4.5), henceτi is a strictly
better response thanci to λ(.|σi). Finally, λ̄(ci ×C−i) = λ(σi × (C/α)−i)σi(ci) > 0
andλ(.|ci) is Γ-equivalent toλ(.|σi). Thereforeτi is a strictly better response thanci

to λ̄(.|ci) hencēλ is not a c.e.d.

5.3 Elimination of strategies and equilibria

In this section we study classes of strategies and equilibria which are always (or never)
eliminated in dual reductions (resp. full dual reductions; iterative full dual reductions).
A first result is a converse of proposition 4.3:

Proposition 5.11 Let ci ∈ Ci; assume that there exists a dual vectorα such that
ci /∈ Ci/αi andCj/αj = Cj for all j in N − i. Then there existsσi 6= ci in ∆(Ci)
such thatUi(c−i, σi) ≥ Ui(c) for all c−i in C−i.

Proof. Let σi = αi ∗ ci. For allj 6= i, all strategiescj in Cj areαj-invariant. Thus (8)
yieldsUi(c−i, σi) ≥ Ui(c) ∀c−i ∈ C−i. Furthermoreci /∈ Ci/αi henceci cannot be
αi-invariant andσi 6= ci

Thus, only if a strategy is dominated does there exists a dual reduction that simply
consists in eliminating this strategy. Note that if a strategy is weakly dominated it is
eliminated in some dual reductions (proposition 4.3), but not necessarily in full dual
reductions:
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Example 5.12
x2 y2

x1 1, 1 1, 0
y1 1, 0 0, 0

In the above game,µ is a correlated equilibrium distribution if and only ify2 is not
played inµ. That is,µ(x1, y2) = µ(y1, y2) = 0. Thereforey1 jeopardizesx1, and
reciprocally. Thus, in all full dual reductions,x1 and y1 must be grouped together
hencey1 is not eliminated.

This raises the following questions: except strictly dominated strategies, are there other
classes of strategies that are always eliminated in full dual reductions ? A partial answer
is the following:

Proposition 5.13 (i) Let c ∈ C. Assume thatc has probability zero in all correlated
equilibrium distributions. In full dual reductionsc is eliminated; hence there existsi in
N such that, in all full dual reductions,ci is eliminated. (ii) Leti ∈ N, ci ∈ Ci. Assume
that ci has marginal probability zero in all correlated equilibrium distributions. Then
ci is eliminated in all full dual reductions.

Proof. First note that (i) implies (ii). Indeed, letσi ∈ Ci/αi andσ−i ∈ (C/α)−i. If
µ(c) = 0 for all correlated equilibrium distributionsµ and allc−i in C−i then, by (i),
σ(c) = σi(ci)σ−i(c−i) = 0 for all c−i ∈ C−i implying σi(ci) = 0. We now prove (i):
first recall that the same strategies and strategy profiles are eliminated in all full dual
reductions. So we only need to prove that the results hold for some full dual reduction.

Step 1: Assume thatµ(c) = 0 for all c.e.d. µ of Γ. Then it follows from [11,
page 432 and Proposition 2] that there exists a dual vectorα such thatg(c, α) < 0.
Sinceg(d, α) ≤ 0 for all d in C, this implies that ifc has positive probability in some
correlated strategyµ theng(µ, α) < 0.

Step 2: we may assumeα full (otherwise, replaceα by some strictly convex combi-
nation ofα and some full dual vector). Ifσ belongs toC/α, thenσ is α-invariant thus
g(σ, α) = 0 by (7). Hencec cannot have positive probability inσ. Since this holds
for all σ in C/α, c has been eliminated in the full dual reductionΓ/α. Finally, ci must
have been eliminated for somei, otherwisec would not have been eliminated.

Let Γ∗ denote the game obtained fromΓ by deleting all pure strategies that have
marginal probability zero in all correlated equilibrium distributions. Proposition 5.13
suggests thatΓ andΓ∗ have the same full dual reductions, but this is not so:

Example 5.14

x2 y2

x1 1, 1 0, 1
y1 0, 1 1, 0

x2 y2

x1 1, 1 0, 1

LetΓ denote the left game. ThenΓ∗ is the game on the right. InΓ∗ any mixed strategy
profile is a Nash equilibrium. InΓ, a mixed strategy profileσ is a Nash equilibrium
if and only if σ1(y1) = 0 and σ2(y2) ≤ 1/2. In any full dual reduction ofΓ or Γ∗

there is a single strategy profile. Ifσ is a Nash equilibrium ofΓ (resp.Γ∗) then there
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exists a full dual vectorα of Γ (resp.Γ∗) such thatC/α = σ (resp.C∗/α = σ) if and
only if σ(y2) andσ(x2) are positive. Thus the set of full dual reductions ofΓ is strictly
included in the set of full dual reductions ofΓ∗.

We now shift our attention to elimination of equilibria. Since dual reduction includes
elimination of dominated strategies as a subprocess, it is clear that dual reduction may
eliminate Nash equilibria. Nash equilibria may also be eliminated as strategies are
grouped together (see for instance [9, fig. 7]). We show in section 7 that completely
mixed, hence perfect Nash equilibria may be eliminated in full dual reductions. In
contrast:

Proposition 5.15 Strict correlated equilibrium distributions cannot be eliminated, not
even in an iterative dual reduction.

Proof. If µ is a strict correlated equilibrium distribution, a strategy that has positive
marginal probability inµ cannot be jeopardized by another strategy. Thus, in any dual
reductionΓ/α of Γ all the strategies used inµ must be available. Furthermore, as the
player’s options are more limited inΓ/α than inΓ, µ is a fortiori a strict correlated
equilibrium distribution ofΓ. Inductively, in any iterative dual reductionΓ/α1/.../αm

of Γ, all strategies used inµ are available andµ is still a strict correlated equilibrium
distribution

The proof shows that a pure strategy that has positive marginal probability in some
strict correlated equilibrium distribution can never be eliminated nor grouped with
other strategies.

5.4 Some classes of games

In this section we study the additional properties of dual reduction in several classes of
games.

5.4.1 Games with a unique correlated equilibrium distribution

If Γ has a unique Nash equilibriumσ, then any iterative dual reduction ofΓ has a
unique Nash equilibrium, which inducesσ in Γ; but the strategy space need not be
reducible toσ: counterexamples are [5, p.204] and [11, example 4]. In contrast,

Proposition 5.16 Assume thatΓ has a unique correlated equilibrium distributionσ.
Thenσ is a Nash equilibrium distribution, hence it may be seen as a mixed strategy
profile. LetΓr be the reduced game in which the only strategy profile isσ and the
payoff for playeri is Ui(σ). Any full (resp. elementary iterative) dual reduction ofΓ is
equal toΓr. In particular,Γ has a unique full dual reduction.

Proof. Consider first an elementary iterative dual reductionΓe of Γ. SinceΓe is
elementary,Γe has a strict c.e.d. with full supportσe. SinceΓ has a unique c.e.d.,Γe

has a unique c.e.d. too, thusσe is actually a Nash, hence a strict Nash equilibrium. So
σe is pure. Butσe has full support. Soσe is the only strategy profile. Finally,σe must
beΓ-equivalent toσ, henceΓe = Γr.
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Consider now a full dual reductionΓ/α of Γ. By proposition 5.13, the strategies
that are not played inσ are eliminated inΓ/α. For eachi in N , the pure strategies of
playeri in the support ofσi jeopardize each other and thus must be grouped in a single
mixed strategy. Finally, the unique strategy profile ofΓ/α must be equivalent toσ,
henceΓ/α = Γr.

5.4.2 Zero-sum games

We begin with a claim:

Claim 5.17 Any iterative dual reduction of a zero-sum game is a zero-sum game with
the same value.

Proof. Conservation of the zero-sum property is immediate. Conservation of the value
comes from theorem 4.4 and the fact that in a two-player zero-sum game, any correlated
equilibrium payoff equals the value of the game

Proposition 5.18 LetΓ denote a two-player zero-sum game andα a deviation vector.
(i) If for all i = 1, 2 and for all ci in Ci, αi ∗ ci is an optimal strategy of playeri, then
α is a dual vector; (ii) If furthermore,αi ∗ ci is the same optimal strategyσi for all ci

in Ci, thenCi/αi = σi (iii) in any elementary iterative dual reduction ofΓ there is a
unique strategy profile, which is a product of optimal strategies ofΓ.

Proof. Proof of (i): letc ∈ C. By optimality ofα1 ∗ c1, U1(α1 ∗ c1, c2) ≥ v, wherev
is the value of the game. Similarly,U2(c1, α2 ∗ c2) ≥ −v. SinceU1(c) + U2(c) = 0,∑

i=1,2[Ui(c−i, αi ∗ ci) − Ui(c)] ≥ 0. That is,g(c, α) ≥ 0. Since this holds for allc
in C, α is a dual vector.

Proof of (ii): assume that there existsσi in ∆(Ci) such thatαi ∗ ci = σi for all ci

in Ci. Then the onlyαi-invariant strategy isσi. Therefore,Ci/αi = {σi}.
Proof of (iii): The above implies that any two-player zero-sum game whose set of

strategy profiles is not a singleton can be further reduced. Together with claim 5.17, this
implies that in any elementary iterative dual reduction ofΓ, there is a unique strategy
profile. This strategy profile induces a Nash equilibrium inΓ. Therefore it must be
(equivalent to) a product of optimal strategies ofΓ.

Proposition 5.19 If Γ is best-response equivalent to a two-player zero-sum game then:
(i) for any i in N , any (pure) strategyci which has positive marginal probability under
some correlated equilibrium distribution jeopardizes all other strategies of playeri;
(ii) in all full dual reductions ofΓ all the strategies of playeri that have positive
probability in some correlated equilibrium distribution are grouped together and his
other strategies are eliminated hence (iii) there is a unique strategy profileσ. (iv)
This strategy profile corresponds to a product of optimal strategies in the underlying
zero-sum game.

Proof. σ must be equivalent to a Nash equilibrium ofΓ. This allows to prove (iv).
Point (iii) follows from (ii) and proposition 5.13; (ii) follows from (i); (i) is proved in
[14, proposition 6.1].
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If Γ is zero-sum with valuev, then the payoffs in any full dual reduction ofΓ must
be(v,−v). In contrast, ifΓ is only best response equivalent to a zero sum game, then
the payoffs in a full dual reduction ofΓ may depend on the full dual reduction:

Example 5.20

x2 y2 z2

x1 0, 0 0, 0 0, 0
y1 0, 0 1,−1 −1, 1
z1 0, 0 −1, 1 1,−1

x2 y2 z2

x1 1, 1 0, 1 0, 1
y1 1, 0 1,−1 −1, 1
z1 1, 0 −1, 1 1,−1

Let Γ (resp.Γ′) denote the game on the left (resp. right).Γ is zero-sum andΓ′ is best
response equivalent toΓ. The proof of proposition 5.2 shows thatΓ andΓ′ have the
same dual vectors. For0 ≤ ε ≤ 1, let σε

i denote the optimal strategy of playeri such
that: σε

i (xi) = ε andσε
i (yi) = σε

i (zi) = (1−ε)/2. Letαε,η denote the deviation vector
such that:α1 ∗x1 = α1 ∗y1 = α1 ∗z1 = σε

1 andα2 ∗x2 = α2 ∗y2 = α2 ∗z2 = ση
2 . By

proposition 5.18,α is a dual vector ofΓ, hence ofΓ′. If 0 < ε < 1 and0 < η < 1, α
is full, the reduced strategy spaceC ′/αε,η is the singleton(σε

1, σ
η
2 ) and the associated

payoff is(η, ε).

5.4.3 Symmetric Games

In appendix B we recall the definition of a symmetric game and prove the following:

Proposition 5.21 Let Γ be a symmetric game. There exists a full dual vectorα such
thatΓ/α is symmetric.

Example 5.8 shows that a nonsymmetric game may also have symmetric full dual re-
ductions, even if all strategies are undominated. The following example shows that a
symmetric game may have nonsymmetric full dual reductions:

Example 5.22
x2 y2

x1 1, 1 0, 1
y1 1, 0 0, 0

In the above symmetric gameΓ, any deviation vector is a dual vector. In any full dual
reduction, the reduced strategy space is a singleton. For any0 < ε < 1, 0 < η < 1,
there exists a full dual reduction in which the payoff is(ε, η). If ε 6= η, this full dual
reduction is nonsymmetric.

5.4.4 Generic2× 2 games

Proposition 5.23 LetΓ be a2×2 game such that a player is never indifferent between
two different strategy profiles. That is, for allc, c′ in C and all i = 1, 2: c 6= c′ ⇒
Ui(c) 6= Ui(c′). Then eitherΓ is elementary orΓ has a unique correlated equilibrium
distribution (in which case proposition 5.16 apply).

Proof. Straightforward computations. The first case corresponds to games with three
Nash equilibria: two pure and one completely mixed; the second case to games with
either a dominating strategy or a unique, completely mixed Nash equilibrium.
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6 The issue of uniqueness

As shown by example 5.22, a game may have several full dual reductions. This ambi-
guity arises naturally when a player is indifferent between some of his strategies:

Proposition 6.1 Assume that playeri is indifferent betweenci and di, i.e. Ui(c) =
Ui(c−i, di) for all c−i in C−i. Then (i) for any0 ≤ ε ≤ 1 there exists a dual reduction
that simply consists in groupingci anddi in the strategyσi such thatσi(ci) = ε and
σi(di) = 1 − ε; (ii) if ci is not eliminated in full dual reductions, then there exists an
infinity of full dual reductions.

Proof. To prove (i) take as dual vectorα: αi(ci|ci) = αi(ci|di) = ε, αi(di|ci) =
αi(di|di) = 1− ε and all the otherαj(dj |cj) as in the trivial deviation vector. We now
prove (ii): Assume thatci is not eliminated in full dual reductions and letα be a full
dual vector. For0 < λ ≤ 1, define the dual vectorαλ by: αλ

i (ci|ci) = λαi(ci|ci),
αλ

i (di|ci) = αi(di|ci) + (1 − λ)αi(ci|ci) and all otherαλ
j (dj |cj) as inα. Sinceα

is full andα andαλ are positive in the same components,αλ is full too. Therefore,
there exists anαλ

i -invariant strategyσλ
i such thatσλ

i (ci) > 0. We claim that ifλ′ 6=
λ, σλ

i is not αλ′
i -invariant (proof below). This implies that ifλ′ 6= λ, αλ andαλ′

induce different full dual reductions. Therefore there exists an infinity of different
full dual reductions. Finally, to prove the claim, note that ifσλ

i is αλ′
i -invariant, then∑

ei∈Ci−ci
αλ′

i (ci|ei)σλ
i (ei) = [1− αλ′

i (ci|ci)]σλ
i (ci). But if λ′ 6= λ:

∑

ei∈Ci−ci

αλ′
i (ci|ei)σλ

i (ei) =
∑

ei∈Ci−ci

αλ
i (ci|ei)σλ

i (ei)

= [1− αλ
i (ci|ci)]σλ

i (ci) 6= [1− αλ′
i (ci|ci)]σλ

i (ci)

A similar difficulty may arise if a player is indifferent between a pure and a mixed
strategy (example 5.20) or if a playerbecomesindifferent between some of his strate-
gies, after strategies of some other player have been eliminated (example 5.14). These
are non-generic phenomena. We prove in this section that, for any positive integerm,
two-player games generically have a unique iterative full dual reduction of depthm.
We first show that there are severe restrictions on the ways strategies may be grouped
together in dual reductions:
Notation: for all i in N , let Bi ⊆ Ci and letB = ×i∈NBi. We denote byΓB =
(N, (Bi)i∈N , (Ui)i∈N ) the game obtained fromΓ by reducing the pure strategy set of
playeri to Bi, for all i in N .

Proposition 6.2 Letα be a dual vector. For eachi in N , letBi ⊆ Ci denote a minimal
αi-absorbing set andB = ×i∈NBi. LetσBi denote the uniqueαi-invariant strategy
of playeri with support inBi andσB = (σBi)i∈N . We have:σB is a completely mixed
Nash equilibrium ofΓB .

Proof. First, the support ofσBi is exactlyBi soσB is completely mixed. Second, let
σB−i = ×j∈N−iσBj . AgainstσB−i , playeri is indifferent between the strategies of
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the minimal absorbing setBi (proposition 4.5). Therefore, if playeri is restricted to
the strategies ofBi, σBi is a best response toσB−i

Defineα andσBi as in the above proposition 6.2 and assumeα full. If ΓB has a unique
completely mixed Nash equilibrium, then for any full dual vectorβ, theβi-invariant
strategy with support inBi must beσBi

. So proposition 6.2 has the following corollary:

Corollary 6.3 If for every productB = ×i∈NBi of subsetsBi of Ci, ΓB has at most
one completely mixed Nash equilibrium, then there exists a unique full dual reduction.

In the remaining of this section,Γ is a two-player (bimatrix) game. To show that,
generically, two-player games have a unique sequence of iterative full dual reductions,
we need to introduce some suitable notions of genericity:

Definition 6.4 Γ is genericif for all Nash equilibriaσ the supports ofσ1 andσ2 have
same cardinal14. Γ is locally generic if it is generic and if any game obtained fromΓ
by deleting some pure strategies is generic.

Definition 6.5 Γ is 2-generic if for any subsetB1 of C1 and for any disjoint subsetsB2

andB′
2 ofC2: if σ andσ′ are respectively completely mixed Nash equilibria ofΓB1×B2

andΓB1×B′2 thenσ1 6= σ′1. That is, the same mixed strategy cannot be a completely
mixed Nash equilibrium strategy of player1 both onB1 × B2 and onB1 × B′

2. The
notion of 1-genericity is defined similarly. A bimatrix game is∗-generic if it is both
1-generic and 2-generic.

A bimatrix game in which players 1 and 2 have respectivelyp andq pure strategies is
given by twop × q payoff matrices, thus it may be viewed as a point inRpq × Rpq.
It may be shown that the set ofp × q bimatrix games which are both locally generic
and∗-generic contains an open, dense subset ofRpq ×Rpq. The two next propositions
follow from proposition 6.2:

Proposition 6.6 A locally generic bimatrix game has a unique full dual reduction.

Proof. Locally generic bimatrix games check the conditions of corollary6.3

Proposition 6.7 If Γ is both locally generic and∗-generic, there are only three possi-
bilities:

1 Γ is elementary

2 In all dual reductions ofΓ, some strategies are eliminated, but no strategies are
grouped together.

3 In any full dual reduction ofΓ the reduced strategy spaceC/α is a singleton.

Proof. Assume thatΓ is not elementary and letα be a nontrivial dual vector. Assume
that some strategies of player 1 (for instance) are grouped together. That is, there exists
a minimalα1-absorbing setB1 with at least two elements. LetB2 andB′

2 be minimal
α2-absorbing sets. LetσB1 denote theα1-invariant strategy with support inB1. Define

14Any game which is nondegenerate in the sense of [15, def. 2.6 and thm 2.10] is generic in this sense.
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σB2 andσB′2 similarly. By proposition 6.2,σB1 is a Nash equilibrium strategy both of
ΓB1×B2 and ofΓB1×B′2 . SinceΓ is ∗-generic, this impliesB2 = B′

2. Therefore, there
is a unique minimalα2-absorbing set,B2. That is,C2/α2 is a singleton. Moreover,
sinceΓ is locally generic,B1 andB2 have same cardinal. ThusB2 has at least two
elements. Therefore, by the above reasoning, the strategy set of player1 in Γ/α is also
a singleton and we are done.

As an immediate corollary of proposition 6.7 and definitions 6.4 and 6.5 we get:

Corollary 6.8 If Γ is both locally generic and∗-generic then any dual reduction ofΓ
is both locally generic and∗-generic.

As an immediate corollary of proposition 6.6 and corollary 6.8 we get:

Theorem 6.9 If Γ is both locally generic and∗-generic, then for any positive integer
m, Γ has a unique iterative full dual reduction of depthm.

7 Dual reduction and elimination of unacceptable pure
strategies

Dual reduction and elimination of unacceptable pure strategies [7] both include elim-
ination of dominated strategies. Furthermore, there are similarities in the ways these
concepts are defined.15 Comparing dual reduction and elimination of unacceptable
pure strategies is thus quite natural. In this section we show by means of example that
none of these refinement concepts is more stringent than the other.

We first introduce some notations and definitions (most of the phrasing is taken
from [7] and [2]; see also [8]): letS ⊆ N . If S is nonempty we let

CS = ×i∈SCi

(soCN = C), and we letC∅ = {∅}. If c is in C anddS in CS then(c−S , dS) denotes
the strategy profile in which playeri playsdi if i ∈ S andci if i /∈ S.

Definition 7.1 An ε-correlated strategyη is a lottery choosing a vector of ”recom-
mended” pure strategies (i.e. a point inC), a coalitionS of trembling players, and
a vector of trembles (i.e. a point inCS) for those players (hence, formally, it is a
probability distribution overC × (∪S⊆CS)) such that:

(a) Given any vector of recommendations, the conditional probability of every
coalition of trembling players and every vector of trembles for these players is strictly
positive.

(b) Given any vector of recommendationsc, any subsetS of players not including
player i and any vector of tremblesdS for those players : given that the coalition of
trembling players is eitherS or S ∪ {i} and that the players ofS tremble todS , the
conditional probability ofi also trembling is at mostε.

15In particular, theaggregate incentive valueof c for the set of playersN : VN (c, α), defined in [7, p.141,
(3.3)], is exactly the payoffg(c, α) defined in section 3.
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Let η be anε-correlated strategy. Consider the extended game in which each player
is first informed of his recommended action; next the non-trembling players are asked
to move - while the trembling players are forced to move using the selected trembles.
Theε-correlated strategyη is anε-correlated equilibrium if, in this extended game, the
obedient strategies form a Nash equilibrium.

A correlated strategyµ ∈ ∆(C) is anacceptable correlated equilibrium[7] if it
is a limit (ε → 0) of distributions (i.e. marginal distributions onC) of ε-correlated
equilibria. That is, if for all positiveε there exists someε-correlated equilibriumηε

such that for allc in C: limε→0 ηε(c, ∅) = µ(c), whereηε(c, ∅) is the probability that
c is recommended and that no player trembles. Acceptable correlated equilibria are
correlated equilibrium distributions [7, theorem 1].

A pure strategyci is acceptable[7] if, for every ε > 0, there exists someε-
correlated equilibriumη such that

∑

c−i∈C−i

η(c, ∅) > 0

(that is, in Myerson terms’s, ”ifci can be rationally used when the probabilities of
trembling are infinitesimal” [9]).

Theacceptable residueR(Γ) of a gameΓ is the game obtained fromΓ by eliminat-
ing all the unacceptable pure strategies. Myerson shows [7, theorems 2 and 4] that the
acceptable correlated equilibria are exactly the correlated equilibrium distributions of
R(Γ) (technically, the c.e.d. ofΓ in which only acceptable pure strategies are played
and whose marginal distribution on the product of the sets of acceptable pure strategies
are c.e.d. ofR(Γ)). This is analogous to theorem 4.4 and proposition 5.10.

As dual reduction, elimination of unacceptable pure strategies may be iterated. A
pure strategy ispredominantif it remains after iterative elimination of unacceptable
pure strategies, and correlated equilibrium distributions in which only predominant
strategies are played are called predominant.

We now compare dual reduction and elimination of unacceptable pure strategies.
We first need a lemma:

Lemma 7.2 If there exists a correlated equilibrium distribution with full support then
all pure strategies are acceptable and predominant.

Lemma 7.2 is proved in appendix B. It implies that the class of games in which all pure
strategies are acceptable is strictly larger than the class of elementary games. This is not
only due to the fact that in a game in which all strategy profiles are played in correlated
equilibria, such as Matching-Pennies, dual reduction can still group strategies together.
Indeed, consider the following game of coordination where, moreover, player2 has an
outside option:

Example 7.3
x2 y2 z2

y1 0, 0 1, 1 −1,−1
z1 0, 0 −1,−1 1, 1
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In this game, playing each strategy with equal probability is a completely mixed Nash
equilibrium. Thus, by lemma 7.2, all strategies are acceptable and predominant. How-
ever,x2 is eliminated in any nontrivial dual reduction. (To prove this, note thatx2 is
equivalent to1

2y2 + 1
2z2; this implies thaty2 andz2 jeopardizex2. Furthermoreyi

andzi must be invariant under any dual vector because they have positive probability
in some strict correlated equilibrium distribution. So there is a unique dual reduction,
which consists in eliminatingx2.)

This example shows that dual reduction may eliminate acceptable and even pre-
dominant pure strategies. It also shows that dual reduction can eliminate completely
mixed, hence perfect Nash equilibria. Since any perfect Nash equilibrium is a perfect
direct correlated equilibrium [2], it shows that dual reduction may eliminate perfect
direct correlated equilibrium distributions.

The next example shows that there may be unacceptable pure strategies that no
dual reduction eliminates: letΓ denote the following three-player game, where player
1 chooses the matrix (x1 or y1), player 2 the row, and player 3 the column:

Example 7.4 (taken from [7])

x1

x3 y3 z3

x2 2, 1, 1 0, 2, 0 0, 2, 0
y2 0, 0, 2 0, 3, 0 0, 0, 3
z2 0, 0, 2 0, 0, 3 0, 3, 0

y1

x3 y3 z3

x2 1, 3, 3 1, 3, 3 1, 3, 3
y2 1, 3, 3 1, 3, 3 1, 3, 3
z2 1, 3, 3 1, 3, 3 1, 3, 3

Myerson [7] shows that the only acceptable strategies for playeri is xi, for all i in
{1, 2, 3}. However,y1 cannot be eliminated by one-shot dual reduction. Indeed, let
c = (y1, y2, y3) andα be a dual vector; by definition 4.1,

∑
i∈N [Ui(αi∗c)−Ui(c)] ≥ 0;

sincec is a Nash equilibrium and all unilateral deviations fromc by player1 are strictly
detrimental for him, this implies thaty1 is invariant underα.

Note thaty1 may be eliminated byiterative dual reduction. Actually, to prove
thaty2, z2, y3, z3 andy1 are unacceptable, Myerson uses thecodomination system16

(α1, α2) whereα1 andα2 are the deviation vectors such that:

α1
i (xi|yi) = α1

i (xi|zi) = 1 ∀i ∈ {2, 3}, α2
1(x1|y1) = 1,

and all otherαk
i (di|ci) are as in the corresponding trivial deviation vectors. It is easy

to check thatα1 is a dual vector ofΓ andα2 a dual vector ofΓ/α1. The only strategy
profile remaining inΓ/α1/α2 is the strict Nash equilibrium(x1, x2, x3), thusy1 has
been eliminated. Whether some unacceptable (or non predominant) pure strategies
cannot be eliminated by any iterative dual reduction is still an open problem.

8 Some applications of dual reduction

As a refinement concept or as a way to simplify a game, dual reduction has some
nice properties: it does not depend on the (von Neumann-Morgenstern) utility func-
tions chosen to represent the preferences of the players; strategies which are never

16For a definition of codomination systems, see [7] or [8].
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played in correlated equilibria are eliminated; zero-sum games are reduced to their
value; symmetric games may be reduced symmetrically; strict correlated equilibria are
never eliminated, and others. But it also suffers from some drawbacks: first, it is not
clearly motivated; second, a game may have several full dual reductions.17 It is thus
not clear to us that dual reduction deserves to be studied as a refinement concept or as
”a powerful generalization of elimination of weakly dominated strategies” [9, p.202].
But we feel that the underlying mathematical machinery is powerful indeed and may
prove useful to investigate the geometry of correlated equilibria. For instance, while
working on other topics, dual reduction helped us in proving the following results:

Proposition 8.1 Assume that no pure strategy is dominated in the sense that:

∀i ∈ I,∀ci ∈ Ci, ∀σi ∈ ∆(Ci), σi 6= ci ⇒ ∃c−i ∈ C−i, Ui(c) > Ui(c−i, σi) (10)

ThenC does not have dimensionN − 2.

Proof. If the game is elementary, thenC has dimensionN − 1. Otherwise, there exists
i in I, ci in Ci anddi in Ci such thatdi jeopardizesci. Therefore there exists a dual
vectorα such thatci /∈ Ci/αi. Butci is undominated in the sense of (10). Therefore, by
proposition 5.11, there existsj in N − i andcj in Cj such thatcj /∈ Cj/αj . Therefore
cj is jeopardized by some strategydj ∈ Cj − cj . This implies that for all c.e.d.µ,

∑

c−j∈C−j

µ(c)[Uj(c)− Uj(c−j , dj)] = 0 (11)

Similarly, di jeopardizesci, so for allµ in C,

∑

c−i∈C−i

µ(c)[Ui(c)− Ui(c−i, di)] = 0 (12)

Condition (10) implies that neither (11) nor (12) is checked by all points inRS and that
(11) and (12) are not equivalent. As an intersection of two non identical hyperplanes,
the set of points ofRS checking (11) and (12) is a vector space of dimensionN−2. Its
intersection with the simplex has at most dimensionN − 3 and includesC. Therefore
C has at most dimensionN − 3.

To state the next result, we first need a definition: a game isprebinding[14] if for
all player i in I and all pure strategiesci in Ci : if ci is played in some correlated
equilibrium (that is, if there exists a c.e.d.µ such thatµ(ci × C−i) > 0) then ci

jeopardizes all pure strategies of playeri. Finally, since conditions (1), (2) and (3) are
all linear the set of correlated equilibrium distributions is a polytope; we call it below
the correlated equilibrium polytope.

Starting from [10] and using the dual reduction technique, I show in [14] that:

Proposition 8.2 A game is prebinding if and only if its correlated equilibrium polytope
is a singleton or contains a Nash equilibrium distribution in its relative interior.

17The fact that locally generic two-player games have a unique full dual reduction hardly helps as games
for which refinements are needed are typically nongeneric.
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A The linear programming proofs of existence of cor-
related equilibria

In this appendix, we review and connect the proofs of existence of correlated equilibria
given in [3], [11] and [9].

A.1 Hart & Schmeidler’s proof

Consider the following two-player, zero-sum, auxiliary gameGHS : the maximizer
chooses a strategy profilec = (c1, .., cn) in C; the minimizer chooses a playeri in N
and a couple of strategy(c′i, di) in Ci×Ci. The payoff isUi(c)−Ui(c−i, di) if c′i = ci

and0 otherwise. In mixed strategies the maximizer chooses a correlated strategyµ in
∆(C) and the minimizer a probability distributionν on triples(i, ci, di) ∈ N×Ci×Ci;
the expected payoff is then:

ghs(µ, ν) =
∑

c∈C

µ(c)
∑

i∈N

∑

di∈Ci

ν(i, ci, di)[Ui(c)− Ui(c−i, di)] (13)

As in the auxiliary gameG of section 3,µ guarantees 0 if and only ifµ is a correlated
equilibrium distribution of the original game. Thus, to prove the existence of correlated
equilibrium distributions, it is enough to show that the value ofGHS is nonnegative.
To do so, Hart and Schmeidler could have used the existence of invariant distributions
for finite Markov chains:18

Lemma A.1 Let M be am × m stochastic matrix (i.e. nonnegative with columns
summing to unity); there exists a probability vectorx = (xj)j=1,...,m such thatMx =
x.

Instead, they used the following lemma:

Lemma A.2 (Hart&Schmeidler) Let (ajk)1≤j,k≤m be nonnegative numbers. There
exists a probability vectorx = (xj)j=1,...,m such that, for any vectoru = (uj)j=1,...,m

,
m∑

j=1

xj

m∑

k=1

ajk(uj − uk) = 0 (14)

Proposition A.3 Lemmas A.1 and A.2 are equivalent

Proof. (i) in (14 we may assume
∑

j ajk = 1 without loss of generality (indeed, one
may increase arbitrarily the coefficientsakk to ensure that each row sums to some pos-
itive constant and then divide all coefficients by this constant to normalize); (ii) by

18Let λ be a positive constant. Ifλ is small enough, any strategy of the minimizer inG can be emulated
in GHS , up to the scaling factorλ, by letting: ν(i, ci, di) = λαi(di|ci)/n if di 6= ci, and giving any
value (up to normalization ofν) to ν(i, ci, ci). Conversely, any strategyν of the minimizer inGHS can be
emulated inG by lettingαi(di|ci) = ν(i, ci, di) if ci 6= di andαi(di|ci) = 1−Pdi 6=ci

ν(i, ci, di); it
follows that the value ofG is nonnegative if and only if the value ofGHS is nonnegative. Thus the proof of
section 3 must go through.
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linearity (14 holds for all vectoru if and only if it holds for all basis vectors (i.e. with
one component equal to 1 and all the others zero); (iii) (14 holds for all basis vectors
iff

∑
j xjaji = xi (=

∑
j ajixi) for all i; that is, iff AT x = x whereAT denote the

m × m square matrix whose(i, j) entry isaji. (iv) Thus lemma A.2 boils down to
lemma A.1 applied toM = AT . Reciprocally, lemma A.1 is a special case of lemma
A.2

Incidentally, Hart&Schmeidler prove their lemma using the Minimax theorem; so propo-
sition A.3 yields a game-theoretic proof of the existence of invariant distributions for
finite Markov chains.19

A.2 Other proofs

Nau and McCardle’s proof is very similar. They also introduce (implicitly) the payoff
matrix of GHS . A strategy profilec is defined to bejointly coherentif g(c, α) = 0
for all dual vectorsα. Nau and McCardle show through lemma A.1, and essentially
as in section 3, that there exists a jointly coherent strategy profile. Finally, they prove
through a variant of Farkas lemma that a strategy profile is jointly coherent if and
only if it has positive probability in some correlated equilibrium distribution.20 Thus
correlated equilibrium distributions exists.

Myerson’s proofs is essentially the proof of section 3. The only difference is that
instead of introducing an auxiliary zero-sum game, Myerson introduces an auxiliary
linear program and then uses linear duality. Deviation vectors appear as vectors of dual
variables, hence the terms dual vector and dual reduction. Myerson’s linear program
corresponds to the maximisation’s program of the maximizer in the auxiliary game of
section 3.

B Proofs

In this appendix, we prove lemma 5.9, proposition 5.21 and lemma 7.2.

Proof of lemma 5.9: let λ ∈ ∆(C). We only need to show that ifλ is α-invariant
then it isΓ-equivalent to a correlated strategy ofΓ/α. Indeed, the converse is clear by
linearity ofλ → αi∗λ. Furthermore, lettingC/αi = Ci/αi×C−i, it is enough to show
that if λ is αi-invariant then there existsλ in ∆(C/αi) such that(i) λ is Γ-equivalent to
λ and(ii) if λ is αj-invariant, then so isλ. Indeed, as the number of players is finite, a
simple induction then proves the property. So let us assume thatλ is αi-invariant. That
is,

αi ∗λ(c−i, ci) =
∑

di∈Ci

αi(ci|di)λ(c−i, di) = λ(c−i, ci) ∀ci ∈ Ci, ∀c−i ∈ C−i (15)

19I owe this remark to B. von Stengel, who first showed me a proof of lemma A.1 based on linear duality.
Such a proof can also be found in [6, ex. 9, p. 41]

20In the framework of section 3, this corresponds to the following result: in a finite, two-player zero-sum
game, a pure strategy is a best-response to all optimal strategies of the other player if and only if it has
positive probability in some optimal strategy. This follows from the strong complementarity property of
linear programs
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(The first equality merely repeats the definition ofαi∗λ.) Equation (15) means that, for
all c−i in C−i, the vector[λ(c−i, ci)]ci∈Ci isαi-invariant. Therefore: (a)λ(ci×C−i) =
0 if ci is αi-transient and (b) for any minimalαi-absorbing setBi, [λ(c−i, ci)]ci∈Bi

is
proportional to[σBi(ci)]ci∈Bi , whereσBi is the uniqueαi-invariant strategy with sup-
port inBi. More precisely, defineλ ∈ ∆(C/αi) by: λ(c−i, σBi

) =
∑

ci∈Bi
λ(c−i, ci),

we have:

λ(c−i, ci) = λ(c−i, σBi
)× σBi

(ci) ∀ci ∈ Bi,∀c−i ∈ C−i

The above equality means thatλ is Γ-equivalent toλ. Finally it is straightforward to
check that ifλ is αj-invariant, then so isλ. This completes the proof.

Definition of symmetric games and proof of proposition 5.21: let Γ be a game in
which all players have the same numberm of pure strategies. Letci,k denote thekth

strategy of playeri. ThusCi = {ci,1, ..., ci,m}. For all i in N , let ki be an integer in
{1,...,m}. Let (ci,ki)i∈N denote the profile of strategy in which, for alli, playeri plays
hiskth

i strategy.Γ is asymmetric gameif for all permutationsp of the set of players,

Ui((cj,kp(j))j∈N ) = Up(i)((cj,kj )j∈N )

This means that if, for alli, playeri plays as playerp(i) used to play, then the payoff of
playeri in the new configuration is the payoff of playerp(i) in the old configuration.
We now prove the proposition:

Step 1: let us say that a deviation vectorα of a symmetric game is symmetric if
αi(ci,k′ |ci,k) = αj(cj,k′ |cj,k) for all i, j in N and allk, k′ in {1, 2,.., m}. It is clear
that if Γ is a symmetric game andα a symmetric dual vector, thenΓ/α is a symmetric
game. So it is enough to show that there exists a symmetric full dual vector.

Step 2: letα denote a deviation vector. For all permutationsp of the set of players,
let αp denote the deviation vector such that:

αp
p(i)(cp(i),k′ |cp(i),k) = αi(ci,k′ |ci,k) ∀i ∈ N

Let ᾱ denote the symmetrized deviation vector given by:

ᾱ =

∑
p αp

n!

wheren is the number of players and the summation is taken over all permutationsp
of the set of players.
It is easy to check that̄α is symmetric and that ifα is a dual vector then so are all the
αp, hence so is̄α. Furthermore ifαi(di|ci) is positive then so is̄αi(di|ci) (since in the
summation defininḡα, αp = α whenp is the identity permutation). Thus ifα is a full
dual vector then̄α is a symmetric full dual vector.

Proof of lemma 7.2 : Assume that there exists a c.e.d.µ with full support. By [7,
theorem 2], ifµ is acceptable, then any pure strategy is acceptable, hence any pure
strategy is predominant. Thus, it is enough to show thatµ is acceptable. The trick
is that, becauseµ has full support, it is possible to find trembles that will mimickµ,
so that whoever the players trembling, a nontrembling player always faces the same
conditional probabilities given his signal than inµ.
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More precisely, assume that there exists someε-correlated strategyη such that:

∀S ⊆ C, ∀dS ∈ CS , ∀c ∈ C, η(c, dS) = K(S, ε)µ(c−S , dS) (16)

whereK is a positive constant that depends only onS and onε (but not onc−S). That
is, given any coalitionS of trembling players, any vectordS of trembles assigned to
S, and any strategy profilec, the probability inη that (c−S , dS) will be played as a
result of the players being recommendedc, the players ofC−S not trembling, and the
players ofS trembling todS , is proportional to the probability of(c−S , dS) in µ. The
total probability inη thatS and onlyS trembles and that(c−S , dS) is played is then:

∑

eS∈CS

η((c−S , eS), dS) = K ′(S, ε)µ(c−S , dS)

whereK ′ is a positive constant which depends only onS and onε. It follows that, if
i /∈ S andci ∈ Ci, the expected strategy of the other players inη, givenci and given
thatS and onlyS trembles, is the same that the expected strategy of the other players
in µ givenci. A fortiori, the expected strategy inη givenci and given that playeri does
not tremble is the same that the expected strategy inµ given ci, to whichci is a best
response. Thus,η is anε-equilibrium.

It remains to show that it is possible to find a sequence ofε-correlated strategy
checking (16) and such thatη(c, ∅) tends toµ(c) asε goes to zero. Such a sequence
may be build by taking for allc in C and for some suitable positive normalization
constantA:

η(c, ∅) = A× µ(c)

and, inductively, if the cardinal ofS ⊆ C is m + 1:

η(c, eS) =
ε

1− ε
Am × µ(c−S , eS)

with
Am = min

d∈C
min

T∈S: Card T=m
min

eT∈CT

η(d, eT )
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