Properties of Dual Reduction

Yannick Viossat

Décembre 2003

Cahier n° 2003-031
Properties of Dual Reduction

Yannick Viossat1

Décembre 2003

Cahier n° 2003-031

Abstract: We study dual reduction: a technique to reduce finite games in a way that selects among correlated equilibria. We show that the reduction process is independent of the utility functions chosen to represent the agents's preferences and that generic two-player games have a unique full dual reduction. Moreover, in full dual reductions, all strategies and strategy profiles which are never played in correlated equilibria are eliminated. The additional properties of dual reduction in several classes of games are studied and dual reduction is compared to other correlated equilibrium refinement's concepts. Finally, we review and connect the linear programming proofs of existence of correlated equilibria.

Mots clés: Equilibres corrélés, réduction duale, raffinement.

Key Words: Correlated equilibria, dual reduction, refinement

Classification JEL: C72

1 Laboratoire d’Économétrie, CNRS et Ecole polytechnique
Dual reduction is a technique to reduce finite games in strategic form into games with fewer strategies. It was introduced by Myerson [9]. Its main property is to select among correlated equilibrium distributions. That is, any correlated equilibrium distribution of the reduced game induces a correlated equilibrium distribution in the original game. Dual reduction thus provides a candidate refinement concept for correlated equilibrium distributions: retaining only those correlated equilibrium distributions which are not eliminated by dual reduction, or, in a more stringent way, by iterative dual reduction. Myerson also showed that dual reduction includes elimination of weakly dominated strategies as a special case and that, by iterative dual reduction, any game is eventually reduced to an elementary game. That is, a game in which every player may be given, in some correlated equilibrium, a strict incentive to play any of his pure strategies.

Little else is known on the properties of dual reduction. Yet, to evaluate dual reduction as a refinement concept, basic information is needed: which strategies and equilibria are eliminated? In which classes of games is the reduction process unique? How does dual reduction behave in some important classes of games (e.g. zero-sum games, symmetric games)? In which precise sense does dual reduction "generalize" [9, p.202] elimination of dominated strategies? What are the links between dual reduction and other correlated equilibrium refinement concepts? These are some of the questions that this paper tries to address.

Moreover, dual reduction is based on a concept called jeopardy [9] which is very geometrical in nature (the fact that a strategy "jeopardizes" some other strategy means that the correlated equilibrium polytope is included in some hyperplane). It is thus reasonable to hope that the dual reduction technique may be useful for investigating geometrical properties of correlated equilibria; in the last section and in [14] we present evidence that this is indeed the case. But to use dual reduction as a tool, just as to evaluate its relevance as a refinement concept, we first need to know more about its properties.

The remaining of this paper is organized as follow: the main notations and definitions are introduced in the next section; we then recall, in section 3, the key-points of the direct proofs of existence of correlated equilibrium distributions, on which dual reduction is based. The existing results on dual reduction are reviewed in section 4. In sections 5 and 6, the core of the paper, new results are established. They are summed up at the beginning of section 5. In section 7, we compare dual reduction to another correlated equilibrium refinement introduced by Myerson [7]: elimination of unacceptable pure strategies. Examples of geometrical results proven via dual reduction are given in the last section. In appendix A, we review and connect the direct proofs of existence of correlated equilibria given in [3], [11] and [9]. Finally, for clarity sake, some of the proofs are gathered in appendix B.

The correlated equilibrium concept, introduced by R. Aumann [1], is a generalization of the Nash equilibrium concept to situations where players may condition their behavior in the game on payoff-irrelevant signals received before play. A formal definition of correlated equilibrium distributions will be given in the next section.
2 Notations and definitions

2.1 Basic notations

The analysis in this paper is restricted to finite games in strategic form. The notations are taken from [9]. Let \(\Gamma = \{N, (C_i)_{i \in N}, (U_i)_{i \in N}\} \) denote a finite game in strategic form: \(N \) is the nonempty finite set of players, \(C_i \) the nonempty finite set of pure strategies of player \(i \) and \(U_i : \times_{i \in N} C_i \to \mathbb{R} \) the utility function of player \(i \). The set of (pure) strategy profiles is \(C = \times_{i \in N} C_i \); the set of strategy profiles for the players other than \(i \) is \(C_{-i} = \times_{j \in N - i} C_j \). Pure strategies of player \(i \) (resp. strategy profiles; strategy profiles of the players other than \(i \)) are denoted \(c_i \) or \(d_i \) (\(c_i; c_{-i} \)). We may write \((c_{-i}, d_i) \) to denote the strategy profile that differs from \(c \) only in that its \(i \)-component is \(d_i \). For any finite set \(S \), \(\Delta(S) \) denotes the set of probability distributions over \(S \). Thus \(\Delta(C_i) \) is the set of mixed strategies of player \(i \), which we denote by \(\sigma_i \) or \(\tau_i \).

2.2 Correlated equilibrium distributions and deviation vectors

A correlated strategy of the players in \(N \) is an element of \(\Delta(C) \). Thus \(\mu = (\mu(c))_{c \in C} \) is a correlated strategy if:

\[
\begin{align*}
\mu(c) &\geq 0 \quad \forall c \in C \\
\sum_{c \in C} \mu(c) &= 1
\end{align*}
\]

A correlated strategy is a correlated equilibrium distribution [1] (abbreviated occasionally in c.e.d.) if it satisfies the following incentive constraints:

\[
\sum_{c_{-i} \in C_{-i}} \mu(c) [U_i(c) - U_i(c_{-i}, d_i)] \geq 0 \quad \forall i \in N, \forall c_i \in C_i, \forall d_i \in C_i
\]

The following interpretation and vocabulary will be useful for the next sections. Let \(\mu \in \Delta(C) \) and consider the following extended game \(\Gamma_\mu \); based on \(\Gamma \): before \(\Gamma \) is played, a strategy profile \(c \in C \) is drawn at random with probability \(\mu(c) \) by some mediator; then the mediator privately recommends \(c_i \) to player \(i \); finally, \(\Gamma \) is played.\(^2\) The players can thus condition their strategy in \(\Gamma \) on their private signal. A strategy of player \(i \) in this extended game is a mapping \(\alpha_i : C_i \to \Delta(C_i) \), which we call a deviation plan. Denoting by \(\alpha_i(d_i|c_i) \) the probability that player \(i \) will play \(d_i \) when announced \(c_i \) we have:

\[
\begin{align*}
\alpha_i(d_i|c_i) &\geq 0 \quad \forall c_i \in C_i, \forall d_i \in C_i, \forall i \in N \\
\sum_{d_i \in C_i} \alpha_i(d_i|c_i) &= 1 \quad \forall c_i \in C_i, \forall i \in N
\end{align*}
\]

\(^2\)Whether the players are aware of the game they are playing is unessential to the definition of correlated equilibrium distributions. For clarity sake however, it may be assumed that the description of the game \(\Gamma_\mu \), and in particular \(\mu \) itself, is common knowledge among the players.
A strategy profile is a deviation vector, i.e. a vector $\alpha = (\alpha_i)_{i \in N}$ of deviation plans. Such a deviation vector is trivial if, for all i in N, α_i is the identity mapping. The incentive constraints (3) mean that μ is a correlated equilibrium distribution of Γ if and only if the trivial deviation vector is a Nash equilibrium of Γ_μ.

3 Existence of correlated equilibrium distributions

This section is a variation on the elementary proofs of existence of correlated equilibria given in [3], [11] and [9]. Consider the following two-player, zero-sum auxiliary game G: the maximizer chooses a correlated strategy μ in $\Delta(C)$; the minimizer chooses a deviation vector α. The payoff is:

$$g(\mu, \alpha) = \sum_{c \in C} \mu(c) \sum_{i \in N} \sum_{d_i \in C_i} \alpha_i(d_i|c_i)[U_i(c) - U_i(c_{-i}, d_i)]$$

(6)

It is clear from section 2.2 that μ guarantees 0 if and only if μ is a correlated equilibrium distribution of Γ. Thus Γ has a correlated equilibrium distribution if and only if the value of G is nonnegative. The remaining of this section is devoted to an elementary proof of the following theorem:

Theorem 3.1 The value of G is zero. Therefore correlated equilibrium distributions exist.

A deviation plan $\alpha_i : C_i \to \Delta(C_i)$ induces a Markov chain on C_i. This Markov chain maps the distribution $\sigma_i \in \Delta(C_i)$ to the distribution $\alpha_i * \sigma_i$ given by:

$$\alpha_i * \sigma_i(d_i) = \sum_{c_i \in I} \alpha_i(d_i|c_i)\sigma_i(c_i) \forall d_i \in C_i$$

Similarly, if a mediator tries to implement μ but player i deviates unilaterally according to α_i, this generates a new distribution on strategy profiles $\alpha_i * \mu$:

$$\alpha_i * \mu(c_{-i}, d_i) = \sum_{c_i \in C_i} \alpha_i(d_i|c_i)\mu_i(c) \forall d_i \in C_i, \forall c_{-i} \in C_{-i}$$

Definition 3.2 Let $\alpha = (\alpha_i)_{i \in N}$ be a deviation vector. A mixed strategy $\sigma_i \in \Delta(C_i)$ is α_i-invariant if $\alpha_i * \sigma_i = \sigma_i$. A correlated strategy $\mu \in \Delta(C)$ is α_i-invariant (resp. α-invariant) if (resp. if for all $i \in N$) $\alpha_i * \mu = \mu$.

Note that, by the basic theory of Markov chains, there exists at least one α_i-invariant strategy.

Let $U_i(\mu) = \sum_{c \in C} \mu(c)U_i(c)$ denote the average payoff of player i if μ is implemented. Myerson [9] shows that:

$$g(\mu, \alpha) = \sum_{i \in N} [U_i(\mu) - U_i(\alpha_i * \mu)]$$

(7)

That is, if the mediator draws a strategy profile c in C with probability $\mu(c)$ and then privately recommends c_i to player i.

We can now prove theorem 3.1: first note that the minimizer can guarantee 0 by choosing the trivial deviation vector. Thus we only need to show that the maximizer can defend 0. Let \(\alpha \) denote a deviation vector; for each \(i \), let \(\sigma_i \in \Delta(C_i) \) be \(\alpha_i \)-invariant. The correlated strategy \(\sigma = \prod_{i \in N} \sigma_i \) is \(\alpha \)-invariant; hence, by (7), \(g(\sigma, \alpha) = 0 \). Therefore the maximizer can defend 0. ■

4 Dual reduction

All results of this section are proved in [9].

4.1 Definition

The Markov chain on \(C_i \) induced by \(\alpha_i \) partitions \(C_i \) into transient states and disjoint minimal absorbing sets\(^4\). For any minimal absorbing set \(B_i \), there exists a unique \(\alpha_i \)-invariant strategy with support in \(B_i \). Let \(C_i/\alpha_i \) denote the set of (randomized) \(\alpha_i \)-invariant strategies with support in some minimal \(\alpha_i \)-absorbing set. It may be shown that the set of \(\alpha_i \)-invariant strategies is the set of random mixture of the strategies in \(C_i/\alpha_i \); that is, the simplex \(\Delta(C_i/\alpha_i) \).

Let \(\alpha = (\alpha_i)_{i \in N} \) be a deviation vector. The \(\alpha \)-reduced game

\[
\Gamma/\alpha = \{ N, (C_i/\alpha_i)_{i \in N}, (U_i)_{i \in N} \}
\]

is the game obtained from \(\Gamma \) by restricting the players to \(\alpha \)-invariant strategies. That is, the set of players and the payoff functions are the same than in \(\Gamma \) but, for all \(i \) in \(N \), the pure strategy set of player \(i \) is now \(C_i/\alpha_i \).\(^5\)

Before turning to dual reduction and their properties, let us make our vocabulary precise: let \(c_i, d_i \in C_i \) (resp. \(c \in C \)). The pure strategy \(c_i \) (resp. strategy profile \(c \)) is eliminated in the \(\alpha \)-reduced game \(\Gamma/\alpha \) if \(\sigma_i(c_i) = 0 \) for all \(\sigma \) in \(C_i/\alpha_i \) (resp. if \(\sigma(c) = 0 \) for all \(\sigma \) in \(C/\alpha \)). Thus \(c_i \) (resp. \(c \)) is eliminated if and only if (resp. if and only if for some \(i \) in \(N \)) \(c_i \) is transient under \(\alpha_i \). The strategies \(c_i \) and \(d_i \) are grouped together if there exists \(\sigma_i \) in \(C_i/\alpha_i \) such that \(\sigma_i(c_i) \) and \(\sigma_i(d_i) \) are positive. Thus, \(c_i \) and \(d_i \) are grouped together if and only if they are recurrent under \(\alpha_i \) and belong to the same minimal \(\alpha_i \)-absorbing set.

Definition 4.1 A dual vector is an optimal strategy of the minimizer in the auxiliary game of section 3. Thus a deviation vector \(\alpha \) is a dual vector if for all \(c \) in \(C \):

\[
-g(c, \alpha) = \sum_{i \in N} [U_i(c_i \ast c) - U_i(c)] = \sum_{i \in N} \sum_{d_i \in C_i} \alpha_i(d_i | c_i) [U_i(c_{-i}, d_i) - U_i(c)] \geq 0
\]

(The above equalities merely repeat the definition of \(g(c, \alpha) \).)

\(^4\)A subset \(B_i \) of \(C_i \) is \(\alpha_i \)-absorbing if \(\alpha(d_i | c_i) = 0 \) for all \(c_i \) in \(B_i \) and all \(d_i \) in \(C_i - B_i \). An \(\alpha_i \)-absorbing set is minimal if it contains no proper \(\alpha_i \)-absorbing subset.

\(^5\)Actually its support is exactly \(B_i \).

\(^6\)Strictly speaking the payoff functions of the reduced game are the functions induced by the original payoff functions on the reduced strategy space.
Definition 4.2 A dual reduction of Γ is an α-reduced game Γ/α where α is a dual vector. An iterative dual reduction of Γ is a reduced game $\Gamma/\alpha^1/\alpha^2/\ldots/\alpha^m$, where m is a positive integer and, for all k in $\{1, 2, \ldots, m\}$, α^k is a dual vector of $\Gamma/\alpha^1/\alpha^2/\ldots/\alpha^{k-1}$.

Many examples can be found in [9, section 6]. Henceforth, unless stated otherwise, α is a dual vector.

4.2 Main properties

First, dual reduction generalizes elimination of weakly dominated strategies in the following sense:

Proposition 4.3 Let $c_i \in C_i$; assume that there exists $\sigma_i \in \Delta(C_i), \sigma_i \neq c_i$, such that $U_i(c_{-i}, \sigma_i) \geq U_i(c)$ for all c_{-i} in C_{-i}. Then there exists a dual vector α such that $C_i/\alpha_i = C_i - \{c_i\}$ and $C_j/\alpha_j = C_j$ for $j \neq i$.

Proof. Take for α: $\alpha_i(d_i|c_i) = \sigma_i(d_i)$ for all $d_i \in C_i$, and $\alpha_j(c_j|c_j) = 1$ if $j \neq i$ or $c_j \neq c_i$.

The main property of dual reduction is that it selects among correlated equilibrium distributions: let Γ/α denote a dual reduction of Γ; let $C/\alpha = \times_{i \in N} C_i/\alpha_i$ denote the set of strategy profiles of Γ/α. Let $\lambda \in \Delta(C/\alpha)$; the Γ-equivalent correlated strategy $\bar{\lambda}$ is the distribution on C induced by λ:

$$\bar{\lambda}(c) = \sum_{\sigma \in C/\alpha} \lambda(\sigma) \left(\prod_{i \in N} \sigma_i(c_i) \right)$$ \hspace{1cm} (9)

Theorem 4.4 If λ is a correlated equilibrium distribution of Γ/α, then $\bar{\lambda}$ is a correlated equilibrium distribution of Γ.

By induction, theorem 4.4 extends to iterative dual reductions. That is, any correlated equilibrium distribution of an iterative dual reduction of Γ induces on $\Delta(C/\alpha)$ a correlated equilibrium distribution of Γ. A side product of the proof of theorem 4.4 is that, against any strategy of the other players in the reduced game, player i is indifferent between his strategies within a minimal absorbing set:

Proposition 4.5 Let B_i denote a minimal α_i-absorbing set. For $j \neq i$, let $\sigma_j \in C_j/\alpha_j$ and let $\sigma_{-i} = \times_{j \in N - i} \sigma_j$. For any c_i, d_i in B_i, $U_i(\sigma_{-i}, c_i) = U_i(\sigma_{-i}, d_i)$.

4.3 Jeopardization and Elementary Games

Let us say that a dual vector is trivial if it is the trivial deviation vector. A game may be reduced if and only if there exists a nontrivial dual vector\footnote{This is clear from the basic theory of Markov chains. See for instance [4] and references therein.}. So we are led to the question: when do nontrivial dual vectors exist? A first step to answer this question is to introduce the notions of jeopardization and elementary games:
Definition 4.6 Let $c_i, d_i \in C_i$. The strategy d_i jeopardizes c_i if for all correlated equilibrium distributions μ:

$$
\sum_{c_{-i} \in C_{-i}} \mu(c)[U_i(c) - U_i(c_{-i}, d_i)] = 0
$$

That is, in all correlated equilibrium distributions in which c_i is played, d_i is an alternative best response to the conditional probabilities on C_{-i} given c_i. Note that if c_i has zero probability in all correlated equilibrium distributions, then any d_i in C_i jeopardizes c_i. Using complementary slackness properties allows to prove that:

Proposition 4.7 The strategy d_i jeopardizes c_i if and only if there exists a dual vector α such that $\alpha_i(d_i|c_i) > 0$.

Thus, there exists a nontrivial dual vector if and only if some strategy is jeopardized by some other strategy.

Definition 4.8 A correlated equilibrium distribution μ is strict if

$$
\mu(c_i \times C_{-i}) > 0 \Rightarrow \sum_{c_{-i} \in C_{-i}} \mu(c)[U_i(c) - U_i(c_{-i}, d_i)] > 0 \quad \forall i \in N, \forall c_i \in C_i, \forall d_i \neq c_i
$$

A game is elementary if it has a strict correlated equilibrium distribution with full support. Myerson [9] shows that a game is elementary if and only if there exists no i, c_i and $d_i \neq c_i$ such that d_i jeopardizes c_i. Thus proposition 4.7 implies:

Corollary 4.9 A game may be reduced if and only if it is not elementary. By iterative dual reduction, any game is eventually reduced to an elementary game.

4.4 Full dual reduction

Let us say that two dual reductions Γ/α and Γ/β of the same game are different if $C/\alpha \neq C/\beta$. A game may admit different dual reductions (for instance, if several strategies are weakly dominated). A tentative way to restore uniqueness is to consider only reductions by some special dual vectors, which minimize the number of pure strategies remaining in the reduced game:

Definition 4.10 A dual vector α is full if $\alpha_i(d_i|c_i) > 0$ for all i in N, and all c_i, d_i in C_i such that d_i jeopardizes c_i.

Full dual vectors always exist [9]. Actually, almost all dual vectors are full.

Definition 4.11 A full dual reduction of Γ is an α-reduced game Γ/α where α is a full dual vector. An iterative full dual reduction of depth m of Γ is a game $\Gamma/\alpha^1/\alpha^2/\ldots/\alpha^m$ where m is a positive integer and, for all k in $\{1, 2, \ldots, m\}$, α^k is a full dual vector of $\Gamma/\alpha^1/\alpha^2/\ldots/\alpha^{k-1}$.

8 The set of dual vectors is a polytope, whose relative interior is non empty if G is not elementary. All dual vectors in the relative interior of this polytope are full. If G is elementary, the only dual vector is trivially full.
All full dual vectors α define, for all i, the same minimal α_i-absorbing sets. Thus in all full dual reductions, the same strategies are eliminated and the same strategies are grouped together. A game may nonetheless admit different full dual reductions, because the way these strategies are grouped together may differ quantitatively. We will return to this point in section 6.

5 Other properties of dual reduction

A basic desirable property for a decision-theoretic concept is that it be independent of the specific utility functions chosen to represent the preferences of the agents. So we begin by showing that dual reduction meets this requirement; that is, the ways in which a game may be reduced are unaffected by positive affine transformations of the utility functions. We then extends theorem 4.4 to other equilibrium concepts, including Nash one’s, and prove its converse: if a correlated strategy λ of a reduced game induces an equilibrium distribution in the original game, then λ is an equilibrium distribution of the reduced game. We then investigate eliminations of strategies and equilibria. We show that strategies that are weakly dominated (resp. are never played in correlated equilibria; have positive probability in some strict correlated equilibrium) need not be (resp. are always; cannot be) eliminated in full dual reductions. Finally we study some specific classes of games. We show that games that are best-response equivalent to zero-sum games, as well as games with a unique correlated equilibrium distribution are reduced in games with a single strategy profile by full dual reduction. Symmetric games are shown to have symmetric full dual reductions (but possibly also asymmetric ones) and generic 2×2 games are analysed.

In section 6, we show that, even if only full dual reductions are used, there might still be multiple ways to reduce a game. This typically happens when some player is indifferent between some of his strategies: a nongeneric event. We show that generic two-players games have a unique sequence of iterative full dual reductions.

5.1 Independence from the choice of utility functions

Recall that two games with the same sets of players and strategies are *best-response equivalent* [12] if they have the same best-response correspondences. Many central concepts of game-theory are based on the best-response correspondences alone (say, Nash equilibrium, correlated equilibrium, rationalizability, to name but a few). Games which are best-response equivalent have, in particular, the same sets of Nash and correlated equilibria. It is thus reassuring to note that such games are reduced similarly by dual reduction:

Proposition 5.1 Let Γ and Γ' be best-response equivalent. Let c_i, d_i be pure strategies of player i in Γ and c'_i, d'_i the corresponding strategies of player i in Γ'. The following holds: (i) d_i jeopardizes c_i if and only if d'_i jeopardizes c'_i; (ii) the strategies grouped together (resp. eliminated) in full dual reductions of Γ correspond to the strategies grouped together (resp. eliminated) in full dual reductions of Γ'.

Proof. (i) is clear from the definitions; (ii) follows immediately from (i).
If Γ and Γ' are not only best-response equivalent, but rescalings of each other (as defined below), then there is actually a canonical, one to one correspondence between dual reductions of Γ and dual reductions of Γ':

Proposition 5.2 For each i in N, let $\phi_i : \mathbb{R} \rightarrow \mathbb{R}$ denote a positive affine transformation. That is, such that there exists real numbers $a_i > 0$ and b_i such that $\phi_i(x) = a_i x + b_i$ for all x in \mathbb{R}. Let $\phi(\Gamma)$ denote the rescaling of Γ obtained by changing the utility functions from U_i to $\phi_i \circ U_i$:

$$\phi(\Gamma) = \{ N, (C_i)_{i \in N}, (\phi_i \circ U_i)_{i \in N} \}$$

If Γ / α is a dual reduction of Γ, then $\phi(\Gamma / \alpha)$ is a dual reduction of $\phi(\Gamma)$.

The proof of proposition 5.2 will be given below. This proposition is not trivial because a game and its rescalings need not have the same dual vectors. Indeed, consider a game such as Matching-Pennies, which is nonelementary and in which all pure strategies are undominated in the following sense:

$$\forall i \in N, \forall c_i \in C_i, \forall \sigma_i \in \Delta(C_i), \sigma_i \neq c_i \Rightarrow \exists c_{-i} \in C_{-i}, U_i(c) > U_i(c_{-i}, \sigma_i)$$

Let α be a nontrivial dual vector: there exist i and c_i such that $\alpha_i * c_i \neq c_i$. In proposition 4.3 we will see that since c_i is not weakly dominated, there exists c_{-i} such that $U_i(\alpha_i * c) - U_i(c) < 0$. Multiplying the payoff of player i by $a_i > 0$ yields a rescaled game Γ' such that:

$$\sum_{j \in N} [U'_j(\alpha_j * c) - U'_j(c)] = a_i[U_i(\alpha_i * c) - U_i(c)] + \sum_{j \neq i} [U_j(\alpha_j * c) - U_j(c)]$$

If a_i is high enough, this expression is negative so that α cannot be a dual vector of Γ'. The key is that different deviation vectors may induce the same dual reductions:

Lemma 5.3 Let α_i (resp. α_i^{ed}) be a (resp. the trivial) deviation plan for player i. For any $0 \leq \epsilon \leq 1$, let $\alpha^* = \epsilon \alpha_i + (1 - \epsilon) \alpha_i^{ed}$. If ϵ is positive then $C_i / \alpha_i = C_i / \alpha_i^*$. ■

Proof. For any mixed strategy σ_i in $\Delta(C_i)$, $\alpha_i^* \times \sigma_i - \sigma_i = \epsilon (\alpha_i \times \sigma_i - \sigma_i)$. ■

Proof of proposition 5.2: Let α be a dual vector of Γ. Let $a_k = \min_{i \in N} a_i$ and, for each i in N, let $\epsilon_i = a_k / a_i$. Let $\phi(\alpha)$ denote the deviation vector whose i^{th} component is α_i^ϕ, defined in lemma 5.3. Let g and g_ϕ denote the payoff functions in the auxiliary zero-sum games associated respectively to Γ and $\phi(\Gamma)$. We have:

$$g_\phi(c, \phi(\alpha)) = a_k \times g(c, \alpha) \geq 0 \quad \forall c \in C$$

Thus $\phi(\alpha)$ is a dual vector of $\phi(\Gamma)$. Furthermore lemma 5.3 implies: $\phi(\Gamma) / \phi(\alpha) = \phi(\Gamma / \alpha)$. Thus $\phi(\Gamma / \alpha)$ is a dual reduction of $\phi(\Gamma)$. The result still holds if we allow the constants b_i to depend on c_{-i}. Indeed, if the payoff functions $(U_i^\phi)_{i \in N}$ in the rescaled game $\phi(\Gamma)$ are of the slightly more general form: $U_i^\phi(c) = a_i \times U_i(c) + b_i(c_{-i})$ with $a_i > 0$ and $b_i : C_{-i} \rightarrow \mathbb{R}$, then the same proof shows that for any dual vector α of Γ, $\phi(\Gamma / \alpha)$ is a dual reduction of $\phi(\Gamma)$. ■
5.2 Extension and converse of theorem 4.4

In this section, we first present three equilibrium concepts introduced in or related to [13]. We then show that theorem 4.4 extends to Nash equilibrium distributions\(^9\), and to these other equilibrium concepts. We illustrate this by an example. Finally, we prove a converse of theorem 4.4.

Let \(\mu \in \Delta(C) \) and \(c_i \in C_i \). If \(\mu(c_i \times C_{-i}) > 0 \), let \(\mu(.|c_i) \) denote the conditional probability on \(C_{-i} \) given \(c_i \):

\[
\mu(c_i|c_i) = \frac{\mu(c_i \times C_{-i})}{\mu(c_i \times C_{-i})}
\]

Definition 5.4 The correlated strategy \(\mu \in \Delta(C) \) is an equalizing distribution if

\[
\mu(c_i \times C_{-i}) > 0 \Rightarrow \sum_{c_{-i} \in C_{-i}} \mu(c_{-i}|c_i) U_i(c) = U_i(\mu) \quad \forall i \in N, \forall c_i \in C_i,
\]

That is, in an equalizing distribution, the expected payoff given a pure strategy is independent of this strategy.

Definition 5.5 The correlated strategy \(\mu \in \Delta(C) \) is an equalizing correlated equilibrium distribution\(^10\) (henceforth equalizing c.e.d.) if \(\mu \) is both an equalizing and a correlated equilibrium distribution\(^11\).

Definition 5.6 The correlated strategy \(\mu \in \Delta(C) \) is a stable matching distribution\(^12\) if every player \(i \) in \(N \) and all pure strategies \(c_i \) and \(d_i \) of player \(i \):

\[
\mu_i(c_i \times C_{-i}) \mu_i(d_i \times C_{-i}) > 0 \Rightarrow \sum_{c_{-i} \in C_{-i}} \left[\mu(c_{-i}|c_i) - \mu(c_{-i}|d_i) \right] U_i(c) \geq 0
\]

That is, \(c_i \) yields a (weakly) higher expected payoff against the correlated strategy \(\mu(.|c_i) \) of the players other than \(i \) than against \(\mu(.|d_i) \).

Proposition 5.7 Let \(\lambda \) be a correlated strategy of an iterative dual reduction \(\Gamma^r \) of \(\Gamma \). If \(\lambda \) is an equilibrium distribution of \(\Gamma^r \) then the \(\Gamma \)-equivalent correlated strategy is an equilibrium distribution of \(\Gamma \), where equilibrium distribution may stand for: Nash equilibrium distribution, equalizing distribution, equalizing c.e.d. or stable matching distribution.

Proof. Notations and preliminary remarks: let \(\lambda \in \Delta(C/\alpha) \) and let \(\lambda \) be \(\Gamma \)-equivalent to \(\lambda \). Let \(c_i, d_i \in C_i \) check \(\lambda(c_i \times C_{-i}) \lambda(d_i \times C_{-i}) > 0 \). There exist minimal \(\alpha_i \)-absorbing sets \(B_i \) and \(B'_i \) such that \(c_i \) belongs to \(B_i \) and \(d_i \) to \(B'_i \). Let \(\sigma_{c_i} \) (resp. \(\sigma_{d_i} \)) be the \(\alpha_i \)-invariant strategy with support in \(B_i \) (resp. \(B'_i \)). Since \(\lambda(c_i \times C_{-i}) \) (resp. \(\lambda(d_i \times C_{-i}) \)) is positive, \(\lambda(\sigma_{c_i} \times (C/\alpha)_{-i}) \) (resp. \(\lambda(\sigma_{d_i} \times (C/\alpha)_{-i}) \)) is positive

\(^9\)The extension to Nash equilibrium distributions has been independently noted by Myerson.

\(^10\)Sorin [13] uses the expression distribution equilibrium

\(^11\)Any Nash equilibrium distribution is an equalizing c.e.d. but the converse is false. See example 5.8.

\(^12\)Sorin [13] uses the expression dual correlated equilibrium
Example 5.8

Thus if \(\lambda \) is an equalizing distribution, then so is \(\lambda \). The proofs are now easy:

\[
\sum_{\sigma_{-i} \in (C/\alpha)_{-i}} \lambda(\sigma_{-i}|\sigma_{c_i}) U_i(\sigma_{-i}, \sigma_{c_i}) = U_i(\lambda) \Rightarrow \sum_{c_{-i} \in C_{-i}} \lambda(c_{-i}|c_i) U_i(c) = U_i(\lambda)
\]

Thus if \(\lambda \) is an equalizing distribution, then so is \(\lambda \). This and theorem 4.4 imply that if \(\lambda \) is both an equalizing and a correlated equilibrium distribution, then so is \(\lambda \).

Equalizing distributions and equalizing c.e.d.: Using (i) and (ii) we get:

\[
\sum_{\sigma_{-i} \in (C/\alpha)_{-i}} \lambda(\sigma_{-i}|\sigma_{c_i}) U_i(\sigma_{-i}, \sigma_{c_i}) = U_i(\lambda) \Rightarrow \sum_{c_{-i} \in C_{-i}} \lambda(c_{-i}|c_i) U_i(c) = U_i(\lambda)
\]

Stable matching distributions: Using (ii) we get:

\[
\sum_{\sigma_{-i} \in (C/\alpha)_{-i}} [\lambda(\sigma_{-i}|\sigma_{c_i}) - \lambda(\sigma_{-i}|\sigma_{d_i})] U_i(\sigma_{-i}, \sigma_{c_i}) \geq 0
\]

\[
\Rightarrow \sum_{c_{-i} \in C_{-i}} [\lambda(c_{-i}|c_i) - \lambda(c_{-i}|d_i)] U_i(c) \geq 0
\]

Thus if \(\lambda \) is a stable matching distribution, then so is \(\lambda \).]

The following example illustrates proposition 5.7:

\section*{Example 5.8}

\[
\begin{array}{ccc}
\alpha_i(x| x_i) = 2/3; & \alpha_i(y| y_i) = 1/6; & \alpha_i(z| z_i) = 1; \\
\end{array}
\]

\[
\begin{array}{cccc}
\alpha_{i-1}(x_i | x_i) = 2/3; & \alpha_{i-1}(y_i | y_i) = 1/6; & \alpha_{i-1}(z_i | z_i) = 1; & \text{and all other } \alpha_{i-1}(d_i | c_i) \text{ are zero. We let the reader check that } \alpha \text{ is a dual vector. The minimal } \alpha_i\text{-absorbing sets are } B_i = \{x_i, y_i\} \text{ and } B_i' = \{z_i\}. \text{ The } \alpha\text{-reduced game } \Gamma/\alpha \text{ is the game on the right, where the } \alpha\text{-invariant strategy } \sigma_{B_i} \text{ is } (\frac{1}{3}, \frac{2}{3}, 0). \text{ Consider the distribution } \lambda \text{ on } C/\alpha \text{ (below, right).}\]

\[\lambda(\sigma_{B_1}, z_2) = 1/8.\]
Therefore, the Γ-equivalent distribution $\bar{\lambda}$ (below, left) is an equalizing c.e.d. of Γ.

\[
\begin{array}{ccc}
1/24 & 1/12 & 1/24 \\
1/12 & 1/6 & 1/12 \\
1/24 & 1/12 & 3/8 \\
\end{array}
\]
\[
\begin{array}{cc}
3/8 & 1/8 \\
1/8 & 3/8 \\
\end{array}
\]

Theorem 4.4 states that correlated equilibrium distributions of Γ/α induce correlated equilibrium distributions in Γ. We may wonder whether a correlated strategy of Γ/α which would not be not a correlated equilibrium distribution, might nonetheless induce a correlated equilibrium distribution in Γ. We show below that the answer is negative. We first need a lemma:

Lemma 5.9 Given any deviation vector α, a distribution $\bar{\lambda} \in \Delta(C)$ is α-invariant if and only if it is Γ-equivalent to a distribution $\lambda \in \Delta(C/\alpha)$. Such a λ is then unique.

Proof. See appendix B. ■

Proposition 5.10 Let α denote a dual vector. Let $\bar{\lambda}$ denote an α-invariant distribution on C and λ the corresponding distribution on C/α. Then $\bar{\lambda}$ is an equilibrium distribution of Γ if and only if λ is an equilibrium distribution of Γ/α, where equilibrium distribution may stand for: Nash equilibrium distribution, correlated equilibrium distribution, equalizing distribution, equalizing c.e.d. or stable matching distribution.

Proof. We prove proposition 5.10 for correlated equilibrium distributions. The other proofs are similar. Let $\bar{\lambda} \in \Delta(C/\alpha)$ and assume that λ is not a c.e.d. Then there exist $i \in N$ and σ_i, τ_i in C_i/α_i such that σ_i has positive probability under λ but τ_i is a strictly better response than σ_i to $\lambda(.|\sigma_i)$. If $c_i \in C_i$ belong to the support of σ_i, player i is indifferent between c_i and σ_i against $\lambda(.|\sigma_i)$ (proposition 4.5), hence τ_i is a strictly better response than c_i to $\lambda(.|\sigma_i)$. Finally, $\bar{\lambda}(c_i \times C_{-i}) = \lambda(\sigma_i \times (C/\alpha)_{-i})\sigma_i(c_i) > 0$ and $\bar{\lambda}(\sigma_i)$ is Γ-equivalent to $\lambda(.|\sigma_i)$. Therefore τ_i is a strictly better response than c_i to $\lambda(.|\sigma_i)$ hence λ is not a c.e.d. ■

5.3 Elimination of strategies and equilibria

In this section we study classes of strategies and equilibria which are always (or never) eliminated in dual reductions (resp. full dual reductions; iterative full dual reductions). A first result is a converse of proposition 4.3:

Proposition 5.11 Let $c_i \in C_i$; assume that there exists a dual vector α such that $c_i \notin C_i/\alpha_i$ and $C_j/\alpha_j = C_j$ for all $j \in N - i$. Then there exists $\sigma_i \neq c_i$ in $\Delta(C_i)$ such that $U_i(c_{-i}, \sigma_i) \geq U_i(c)$ for all $c_{-i} \in C_{-i}$.

Proof. Let $\sigma_i = \alpha_i * c_i$. For all $j \neq i$, all strategies c_j in C_j are α_j-invariant. Thus (8) yields $U_i(c_{-i}, \sigma_i) \geq U_i(c) \forall c_{-i} \in C_{-i}$. Furthermore $c_i \notin C_i/\alpha_i$, hence c_i cannot be α_i-invariant and $\sigma_i \neq c_i$ ■

Thus, only if a strategy is dominated does there exists a dual reduction that simply consists in eliminating this strategy. Note that if a strategy is weakly dominated it is eliminated in some dual reductions (proposition 4.3), but not necessarily in full dual reductions:
Example 5.12

\[
\begin{array}{cc}
x_2 & y_2 \\
x_1 & 1, 1 \quad 1, 0 \\
y_1 & 1, 0 \quad 0, 0
\end{array}
\]

In the above game, \(\mu \) is a correlated equilibrium distribution if and only if \(y_2 \) is not played in \(\mu \). That is, \(\mu(x_1, y_2) = \mu(y_1, y_2) = 0 \). Therefore \(y_1 \) jeopardizes \(x_1 \), and reciprocally. Thus, in all full dual reductions, \(x_1 \) and \(y_1 \) must be grouped together hence \(y_1 \) is not eliminated.

This raises the following questions: except strictly dominated strategies, are there other classes of strategies that are always eliminated in full dual reductions? A partial answer is the following:

Proposition 5.13 (i) Let \(c \in C \). Assume that \(c \) has probability zero in all correlated equilibrium distributions. In full dual reductions \(c \) is eliminated; hence there exists \(i \) in \(N \) such that, in all full dual reductions, \(c_i \) is eliminated. (ii) Let \(i \in N, c_i \in C_i \). Assume that \(c_i \) has marginal probability zero in all correlated equilibrium distributions. Then \(c_i \) is eliminated in all full dual reductions.

Proof. First note that (i) implies (ii). Indeed, let \(\sigma_i \in C_i/\alpha_i \) and \(\sigma_{-i} \in (C/\alpha)_{-i} \). If \(\mu(c) = 0 \) for all correlated equilibrium distributions \(\mu \) and all \(c_{-i} \in C_{-i} \) then, by (i), \(\sigma(c) = \sigma_i(c_i)\sigma_{-i}(c_{-i}) = 0 \) for all \(c_{-i} \in C_{-i} \) implying \(\sigma_i(c_i) = 0 \). We now prove (i): first recall that the same strategies and strategy profiles are eliminated in all full dual reductions. So we only need to prove that the results hold for some full dual reduction.

Step 1: Assume that \(\mu(c) = 0 \) for all c.e.d. \(\mu \) of \(\Gamma \). Then it follows from [11, page 432 and Proposition 2] that there exists a dual vector \(\alpha \) such that \(g(c, \alpha) < 0 \). Since \(g(d, \alpha) \leq 0 \) for all \(d \in C \), this implies that if \(c \) has positive probability in some correlated strategy \(\mu \) then \(g(\mu, \alpha) < 0 \).

Step 2: we may assume \(\alpha \) full (otherwise, replace \(\alpha \) by some strictly convex combination of \(\alpha \) and some full dual vector). If \(\sigma \) belongs to \(C/\alpha \), then \(\sigma \) is \(\alpha \)-invariant thus \(g(\sigma, \alpha) = 0 \) by (7). Hence \(c \) cannot have positive probability in \(\sigma \). Since this holds for all \(\sigma \) in \(C/\alpha \), \(c \) has been eliminated in the full dual reduction \(\Gamma/\alpha \). Finally, \(c_i \) must have been eliminated for some \(i \), otherwise \(c \) would not have been eliminated. \(\blacksquare \)

Let \(\Gamma^* \) denote the game obtained from \(\Gamma \) by deleting all pure strategies that have marginal probability zero in all correlated equilibrium distributions. Proposition 5.13 suggests that \(\Gamma \) and \(\Gamma^* \) have the same full dual reductions, but this is not so:

Example 5.14

\[
\begin{array}{ccc}
x_2 & y_2 \\
x_1 & 1, 1 \quad 0, 1 \\
y_1 & 0, 1 \quad 1, 0
\end{array}
\]

Let \(\Gamma \) denote the left game. Then \(\Gamma^* \) is the game on the right. In \(\Gamma^* \) any mixed strategy profile is a Nash equilibrium. In \(\Gamma \), a mixed strategy profile \(\sigma \) is a Nash equilibrium if and only if \(\sigma_1(y_1) = 0 \) and \(\sigma_2(y_2) \leq 1/2 \). In any full dual reduction of \(\Gamma \) or \(\Gamma^* \) there is a single strategy profile. If \(\sigma \) is a Nash equilibrium of \(\Gamma \) (resp. \(\Gamma^* \)) then there
exists a full dual vector α of Γ (resp. Γ^*) such that $C/\alpha = \sigma$ (resp. $C^*/\alpha = \sigma$) if and only if $\sigma(y_2)$ and $\sigma(x_2)$ are positive. Thus the set of full dual reductions of Γ is strictly included in the set of full dual reductions of Γ^*.

We now shift our attention to elimination of equilibria. Since dual reduction includes elimination of dominated strategies as a subprocess, it is clear that dual reduction may eliminate Nash equilibria. Nash equilibria may also be eliminated as strategies are grouped together (see for instance [9, fig. 7]). We show in section 7 that completely mixed, hence perfect Nash equilibria may be eliminated in full dual reductions. In contrast:

Proposition 5.15 Strict correlated equilibrium distributions cannot be eliminated, not even in an iterative dual reduction.

Proof. If μ is a strict correlated equilibrium distribution, a strategy that has positive marginal probability in μ cannot be jeopardized by another strategy. Thus, in any dual reduction Γ/α of Γ all the strategies used in μ must be available. Furthermore, as the player’s options are more limited in Γ/α than in Γ, μ is a fortiori a strict correlated equilibrium distribution of Γ. Inductively, in any iterative dual reduction $\Gamma/\alpha^1/\ldots/\alpha^m$ of Γ, all strategies used in μ are available and μ is still a strict correlated equilibrium distribution.

The proof shows that a pure strategy that has positive marginal probability in some strict correlated equilibrium distribution can never be eliminated nor grouped with other strategies.

5.4 Some classes of games

In this section we study the additional properties of dual reduction in several classes of games.

5.4.1 Games with a unique correlated equilibrium distribution

If Γ has a unique Nash equilibrium σ, then any iterative dual reduction of Γ has a unique Nash equilibrium, which induces σ in Γ; but the strategy space need not be reducible to σ: counterexamples are [5, p.204] and [11, example 4]. In contrast,

Proposition 5.16 Assume that Γ has a unique correlated equilibrium distribution σ. Then σ is a Nash equilibrium distribution, hence it may be seen as a mixed strategy profile. Let Γ^σ be the reduced game in which the only strategy profile is σ and the payoff for player i is $U_i(\sigma)$. Any full (resp. elementary iterative) dual reduction of Γ is equal to Γ^σ. In particular, Γ has a unique full dual reduction.

Proof. Consider first an elementary iterative dual reduction Γ^e of Γ. Since Γ^e is elementary, Γ^e has a strict c.e.d. with full support σ^e. Since Γ has a unique c.e.d., Γ^e has a unique c.e.d. too, thus σ^e is actually a Nash, hence a strict Nash equilibrium. So σ^e is pure. But σ^e has full support. So σ^e is the only strategy profile. Finally, σ^e must be Γ-equivalent to σ, hence $\Gamma^e = \Gamma^\sigma$.

13
Consider now a full dual reduction Γ/α of Γ. By proposition 5.13, the strategies that are not played in σ are eliminated in Γ/α. For each i in N, the pure strategies of player i in the support of σ_i jeopardize each other and thus must be grouped in a single mixed strategy. Finally, the unique strategy profile of Γ/α must be equivalent to σ, hence $\Gamma/\alpha = \Gamma^r$. ■

5.4.2 Zero-sum games

We begin with a claim:

Claim 5.17 Any iterative dual reduction of a zero-sum game is a zero-sum game with the same value.

Proof. Conservation of the zero-sum property is immediate. Conservation of the value comes from theorem 4.4 and the fact that in a two-player zero-sum game, any correlated equilibrium payoff equals the value of the game ■

Proposition 5.18 Let Γ denote a two-player zero-sum game and α a deviation vector.
(i) If for all $i = 1, 2$ and for all c_i in C_i, $\alpha_i * c_i$ is an optimal strategy of player i, then α is a dual vector; (ii) If furthermore, $\alpha_i * c_i$ is the same optimal strategy σ_i for all c_i in C_i, then $C_i/\alpha_i = \sigma_i$ (iii) in any elementary iterative dual reduction of Γ there is a unique strategy profile, which is a product of optimal strategies of Γ.

Proof. Proof of (i): let $c \in C$. By optimality of $\alpha_i * c_i$, $U_1(\alpha_1 * c_1, c_2) \geq v$, where v is the value of the game. Similarly, $U_2(c_1, \alpha_2 * c_2) \geq -v$. Since $U_1(c) + U_2(c) = 0$, $\sum_{i=1,2}[U_i(c, \alpha_i * c_i) - U_i(c)] \geq 0$. That is, $g(c, \alpha) \geq 0$. Since this holds for all c in C, α is a dual vector.

Proof of (ii): assume that there exists $\sigma_i \in \Delta(C_i)$ such that $\alpha_i * c_i = \sigma_i$ for all c_i in C_i. Then the only α_i-invariant strategy is σ_i. Therefore, $C_i/\alpha_i = \{\sigma_i\}$.

Proof of (iii): The above implies that any two-player zero-sum game whose set of strategy profiles is not a singleton can be further reduced. Together with claim 5.17, this implies that in any elementary iterative dual reduction of Γ, there is a unique strategy profile. This strategy profile induces a Nash equilibrium in Γ. Therefore it must be (equivalent to) a product of optimal strategies of Γ. ■

Proposition 5.19 If Γ is best-response equivalent to a two-player zero-sum game then:
(i) for any i in N, any (pure) strategy c_i which has positive marginal probability under some correlated equilibrium distribution jeopardizes all other strategies of player i; (ii) in all full dual reductions of Γ all the strategies of player i that have positive probability in some correlated equilibrium distribution are grouped together and his other strategies are eliminated hence (iii) there is a unique strategy profile σ. (iv) This strategy profile corresponds to a product of optimal strategies in the underlying zero-sum game.

Proof. σ must be equivalent to a Nash equilibrium of Γ. This allows to prove (iv). Point (iii) follows from (ii) and proposition 5.13; (ii) follows from (i); (i) is proved in [14, proposition 6.1]. ■
If Γ is zero-sum with value v, then the payoffs in any full dual reduction of Γ must be $(v, -v)$. In contrast, if Γ is only best response equivalent to a zero sum game, then the payoffs in a full dual reduction of Γ may depend on the full dual reduction:

Example 5.20

\[
\begin{array}{ccc}
 x_2 & y_2 & z_2 \\
 x_1 & 0,0 & 0,0 \\
 y_1 & 0,0 & 1, -1 \\
 z_1 & 0,0 & -1,1 \\
\end{array}
\]

\[
\begin{array}{ccc}
 x_2 & y_2 & z_2 \\
 x_1 & 1,1 & 0,1 \\
 y_1 & 1,0 & 1, -1 \\
 z_1 & 1,0 & -1,1 \\
\end{array}
\]

Let Γ (resp. Γ') denote the game on the left (resp. right). Γ is zero-sum and Γ' is best response equivalent to Γ. The proof of proposition 5.2 shows that Γ and Γ' have the same dual vectors. For $0 \leq \epsilon \leq 1$, let σ^i_ϵ denote the optimal strategy of player i such that: $\sigma^1_\epsilon(x_1) = \epsilon$ and $\sigma^1_\epsilon(y_1) = \sigma^1_\epsilon(z_1) = (1-\epsilon)/2$. Let $\alpha^i_{\epsilon, \eta}$ denote the deviation vector such that: $\alpha^1_\epsilon * x_1 = \alpha^1_\epsilon * y_1 = \alpha^1_\epsilon * z_1 = \sigma^1_\epsilon$ and $\alpha^2_\epsilon * x_2 = \alpha^2_\epsilon * y_2 = \alpha^2_\epsilon * z_2 = \sigma^2_\epsilon$. By proposition 5.18, α is a dual vector of Γ, hence of Γ'. If $0 < \epsilon < 1$ and $0 < \eta < 1$, α is full, the reduced strategy space $\mathcal{C} / \alpha_{\epsilon, \eta}$ is the singleton $(\sigma^1_\epsilon, \sigma^2_\eta)$ and the associated payoff is (η, ϵ).

5.4.3 Symmetric Games

In appendix B we recall the definition of a symmetric game and prove the following:

Proposition 5.21 Let Γ be a symmetric game. There exists a full dual vector α such that Γ / α is symmetric.

Example 5.8 shows that a nonsymmetric game may also have symmetric full dual reductions, even if all strategies are undominated. The following example shows that a symmetric game may have nonsymmetric full dual reductions:

Example 5.22

\[
\begin{array}{ccc}
 x_2 & y_2 \\
 x_1 & 1,1 & 0,1 \\
 y_1 & 1,0 & 0,0 \\
\end{array}
\]

In the above symmetric game Γ, any deviation vector is a dual vector. In any full dual reduction, the reduced strategy space is a singleton. For any $0 < \epsilon < 1$, $0 < \eta < 1$, there exists a full dual reduction in which the payoff is (ϵ, η). If $\epsilon \neq \eta$, this full dual reduction is nonsymmetric.

5.4.4 Generic 2×2 games

Proposition 5.23 Let Γ be a 2×2 game such that a player is never indifferent between two different strategy profiles. That is, for all c, c' in \mathcal{C} and all $i = 1, 2$: $c \neq c' \Rightarrow U_i(c) \neq U_i(c')$. Then either Γ is elementary or Γ has a unique correlated equilibrium distribution (in which case proposition 5.16 apply).

Proof. Straightforward computations. The first case corresponds to games with three Nash equilibria: two pure and one completely mixed; the second case to games with either a dominating strategy or a unique, completely mixed Nash equilibrium. ■
6 The issue of uniqueness

As shown by example 5.22, a game may have several full dual reductions. This ambiguity arises naturally when a player is indifferent between some of his strategies:

Proposition 6.1 Assume that player \(i \) is indifferent between \(c_i \) and \(d_i \), i.e. \(U_i(c) = U_i(c_i, d_i) \) for all \(c \in C_i \) in \(C_{-i} \). Then (i) for any \(0 \leq \epsilon \leq 1 \) there exists a dual reduction that simply consists in grouping \(c_i \) and \(d_i \) in the strategy \(\sigma_i \) such that \(\sigma_i(c_i) = \epsilon \) and \(\sigma_i(d_i) = 1 - \epsilon \); (ii) if \(c_i \) is not eliminated in full dual reductions, then there exists an infinity of different full dual reductions.

Proof. To prove (i) take as dual vector \(\alpha \): \(\alpha_i(c_i|c_i) = \alpha_i(c_i|d_i) = \epsilon, \alpha_i(d_i|c_i) = \alpha_i(d_i|d_i) = 1 - \epsilon \) and all the other \(\alpha_j(d_j|c_j) \) as in the trivial deviation vector. We now prove (ii): Assume that \(c_i \) is not eliminated in full dual reductions and let \(\alpha \) be a full dual vector. For \(0 < \lambda \leq 1 \), define the dual vector \(\alpha^\lambda \) by: \(\alpha_i^\lambda(c_i|c_i) = \lambda \alpha_i(c_i|c_i), \alpha_i^\lambda(d_i|c_i) = \alpha_i(d_i|c_i) + (1 - \lambda)\alpha_i(c_i|c_i) \) and all other \(\alpha_j^\lambda(d_j|c_j) \) as in \(\alpha \). Since \(\alpha \) is full and \(\alpha^\lambda \) are positive in the same components, \(\alpha^\lambda \) is full too. Therefore, there exists an \(\alpha^\lambda \)-invariant strategy \(\sigma_i^\lambda \) such that \(\sigma_i^\lambda(c_i) > 0 \). We claim that if \(\lambda' \neq \lambda \), \(\sigma_i^\lambda \) is not \(\alpha^\lambda \)-invariant (proof below). This implies that if \(\lambda' \neq \lambda \), \(\alpha^\lambda \) and \(\alpha^\lambda' \) induce different full dual reductions. Therefore there exists an infinity of different full dual reductions. Finally, to prove the claim, note that if \(\sigma_i^\lambda \) is \(\alpha^\lambda \)-invariant, then

\[
\sum_{e_i \in C_i \setminus c_i} \alpha_i^\lambda(c_i|e_i)\sigma_i^\lambda(e_i) = \sum_{e_i \in C_i \setminus c_i} \alpha_i^\lambda(c_i|e_i)\sigma_i^\lambda(e_i) = [1 - \alpha_i^\lambda(c_i|c_i)]\sigma_i^\lambda(e_i) \neq [1 - \alpha_i^\lambda(c_i|c_i)]\sigma_i^\lambda(e_i)
\]

A similar difficulty may arise if a player is indifferent between a pure and a mixed strategy (example 5.20) or if a player becomes indifferent between some of his strategies, after strategies of some other player have been eliminated (example 5.14). These are non-generic phenomena. We prove in this section that, for any positive integer \(m \), two-player games generically have a unique iterative full dual reduction of depth \(m \). We first show that there are severe restrictions on the ways strategies may be grouped together in dual reductions:

Notation: for all \(i \) in \(N \), let \(B_i \subseteq C_i \) and let \(B = \times_{i \in N} B_i \). We denote by \(\Gamma_B = (N, (B_i)_{i \in N}, (U_i)_{i \in N}) \) the game obtained from \(\Gamma \) by reducing the pure strategy set of player \(i \) to \(B_i \), for all \(i \) in \(N \).

Proposition 6.2 Let \(\alpha \) be a dual vector. For each \(i \) in \(N \), let \(B_i \subseteq C_i \) denote a minimal \(\alpha_i \)-absorbing set and \(B = \times_{i \in N} B_i \). Let \(\sigma_{B_i} \) denote the unique \(\alpha_i \)-invariant strategy of player \(i \) with support in \(B_i \) and \(\sigma_B = (\sigma_{B_i})_{i \in N} \). We have: \(\sigma_B \) is a completely mixed Nash equilibrium of \(\Gamma_B \).

Proof. First, the support of \(\sigma_{B_i} \) is exactly \(B_i \) so \(\sigma_B \) is completely mixed. Second, let \(\sigma_{B_{-i}} = \times_{j \in N \setminus i} \sigma_{B_j} \). Against \(\sigma_{B_{-i}} \), player \(i \) is indifferent between the strategies of
the minimal absorbing set B_i (proposition 4.5). Therefore, if player i is restricted to
the strategies of B_i, σ_{B_i} is a best response to $\sigma_{B_{-i}}$.

Define α and σ_{B_i} as in the above proposition 6.2 and assume α full. If Γ_B has a unique completely mixed Nash equilibrium, then for any full dual vector β, the β_i-invariant strategy with support in B_i must be σ_{B_i}. So proposition 6.2 has the following corollary:

Corollary 6.3 If for every product $B = \times_{i \in N} B_i$ of subsets B_i of C_i, Γ_B has at most one completely mixed Nash equilibrium, then there exists a unique full dual reduction.

In the remaining of this section, Γ is a two-player (bimatrix) game. To show that, generically, two-player games have a unique sequence of iterative full dual reductions, we need to introduce some suitable notions of genericity:

Definition 6.4 Γ is generic if for all Nash equilibria σ the supports of σ_1 and σ_2 have same cardinal. Γ is locally generic if it is generic and if any game obtained from Γ by deleting some pure strategies is generic.

Definition 6.5 Γ is 2-generic if for any subset B_1 of C_1 and for any disjoint subsets B_2 and B_2' of C_2: if σ and σ' are respectively completely mixed Nash equilibria of $\Gamma_{B_1 \times B_2}$ and $\Gamma_{B_1 \times B_2'}$ then $\sigma_1 \neq \sigma'_1$. That is, the same mixed strategy cannot be a completely mixed Nash equilibrium strategy of player 1 both on $B_1 \times B_2$ and on $B_1 \times B_2'$. The notion of 1-genericity is defined similarly. A bimatrix game is \ast-generic if it is both 1-generic and 2-generic.

A bimatrix game in which players 1 and 2 have respectively p and q pure strategies is given by two $p \times q$ payoff matrices, thus it may be viewed as a point in $\mathbb{R}^{pq} \times \mathbb{R}^{pq}$. It may be shown that the set of $p \times q$ bimatrix games which are both locally generic and \ast-generic contains an open, dense subset of $\mathbb{R}^{pq} \times \mathbb{R}^{pq}$. The two next propositions follow from proposition 6.2:

Proposition 6.6 A locally generic bimatrix game has a unique full dual reduction.

Proof. Locally generic bimatrix games check the conditions of corollary 6.3.

Proposition 6.7 If Γ is both locally generic and \ast-generic, there are only three possibilities:

1. Γ is elementary

2. In all dual reductions of Γ, some strategies are eliminated, but no strategies are grouped together.

3. In any full dual reduction of Γ the reduced strategy space C/α is a singleton.

Proof. Assume that Γ is not elementary and let α be a nontrivial dual vector. Assume that some strategies of player 1 (for instance) are grouped together. That is, there exists a minimal α_1-absorbing set B_1 with at least two elements. Let B_2 and B_2' be minimal α_2-absorbing sets. Let σ_{B_1} denote the α_1-invariant strategy with support in B_1. Define the minimal absorbing set B_i (proposition 4.5). Therefore, if player i is restricted to the strategies of B_i, σ_{B_i} is a best response to $\sigma_{B_{-i}}$.

Define α and σ_{B_i} as in the above proposition 6.2 and assume α full. If Γ_B has a unique completely mixed Nash equilibrium, then for any full dual vector β, the β_i-invariant strategy with support in B_i must be σ_{B_i}. So proposition 6.2 has the following corollary:

Corollary 6.3 If for every product $B = \times_{i \in N} B_i$ of subsets B_i of C_i, Γ_B has at most one completely mixed Nash equilibrium, then there exists a unique full dual reduction.

In the remaining of this section, Γ is a two-player (bimatrix) game. To show that, generically, two-player games have a unique sequence of iterative full dual reductions, we need to introduce some suitable notions of genericity:

Definition 6.4 Γ is generic if for all Nash equilibria σ the supports of σ_1 and σ_2 have same cardinal. Γ is locally generic if it is generic and if any game obtained from Γ by deleting some pure strategies is generic.

Definition 6.5 Γ is 2-generic if for any subset B_1 of C_1 and for any disjoint subsets B_2 and B_2' of C_2: if σ and σ' are respectively completely mixed Nash equilibria of $\Gamma_{B_1 \times B_2}$ and $\Gamma_{B_1 \times B_2'}$ then $\sigma_1 \neq \sigma'_1$. That is, the same mixed strategy cannot be a completely mixed Nash equilibrium strategy of player 1 both on $B_1 \times B_2$ and on $B_1 \times B_2'$. The notion of 1-genericity is defined similarly. A bimatrix game is \ast-generic if it is both 1-generic and 2-generic.

A bimatrix game in which players 1 and 2 have respectively p and q pure strategies is given by two $p \times q$ payoff matrices, thus it may be viewed as a point in $\mathbb{R}^{pq} \times \mathbb{R}^{pq}$. It may be shown that the set of $p \times q$ bimatrix games which are both locally generic and \ast-generic contains an open, dense subset of $\mathbb{R}^{pq} \times \mathbb{R}^{pq}$. The two next propositions follow from proposition 6.2:

Proposition 6.6 A locally generic bimatrix game has a unique full dual reduction.

Proof. Locally generic bimatrix games check the conditions of corollary 6.3.

Proposition 6.7 If Γ is both locally generic and \ast-generic, there are only three possibilities:

1. Γ is elementary

2. In all dual reductions of Γ, some strategies are eliminated, but no strategies are grouped together.

3. In any full dual reduction of Γ the reduced strategy space C/α is a singleton.

Proof. Assume that Γ is not elementary and let α be a nontrivial dual vector. Assume that some strategies of player 1 (for instance) are grouped together. That is, there exists a minimal α_1-absorbing set B_1 with at least two elements. Let B_2 and B_2' be minimal α_2-absorbing sets. Let σ_{B_1} denote the α_1-invariant strategy with support in B_1. Define

\[\text{the minimal absorbing set } B_i \text{ (proposition 4.5). Therefore, if player } i \text{ is restricted to the strategies of } B_i, \sigma_{B_i} \text{ is a best response to } \sigma_{B_{-i}}. \]

Define α and σ_{B_i} as in the above proposition 6.2 and assume α full. If Γ_B has a unique completely mixed Nash equilibrium, then for any full dual vector β, the β_i-invariant strategy with support in B_i must be σ_{B_i}. So proposition 6.2 has the following corollary:

Corollary 6.3 If for every product $B = \times_{i \in N} B_i$ of subsets B_i of C_i, Γ_B has at most one completely mixed Nash equilibrium, then there exists a unique full dual reduction.

In the remaining of this section, Γ is a two-player (bimatrix) game. To show that, generically, two-player games have a unique sequence of iterative full dual reductions, we need to introduce some suitable notions of genericity:

Definition 6.4 Γ is generic if for all Nash equilibria σ the supports of σ_1 and σ_2 have same cardinal. Γ is locally generic if it is generic and if any game obtained from Γ by deleting some pure strategies is generic.

Definition 6.5 Γ is 2-generic if for any subset B_1 of C_1 and for any disjoint subsets B_2 and B_2' of C_2: if σ and σ' are respectively completely mixed Nash equilibria of $\Gamma_{B_1 \times B_2}$ and $\Gamma_{B_1 \times B_2'}$ then $\sigma_1 \neq \sigma'_1$. That is, the same mixed strategy cannot be a completely mixed Nash equilibrium strategy of player 1 both on $B_1 \times B_2$ and on $B_1 \times B_2'$. The notion of 1-genericity is defined similarly. A bimatrix game is \ast-generic if it is both 1-generic and 2-generic.

A bimatrix game in which players 1 and 2 have respectively p and q pure strategies is given by two $p \times q$ payoff matrices, thus it may be viewed as a point in $\mathbb{R}^{pq} \times \mathbb{R}^{pq}$. It may be shown that the set of $p \times q$ bimatrix games which are both locally generic and \ast-generic contains an open, dense subset of $\mathbb{R}^{pq} \times \mathbb{R}^{pq}$. The two next propositions follow from proposition 6.2:

Proposition 6.6 A locally generic bimatrix game has a unique full dual reduction.

Proof. Locally generic bimatrix games check the conditions of corollary 6.3.

Proposition 6.7 If Γ is both locally generic and \ast-generic, there are only three possibilities:

1. Γ is elementary

2. In all dual reductions of Γ, some strategies are eliminated, but no strategies are grouped together.

3. In any full dual reduction of Γ the reduced strategy space C/α is a singleton.

Proof. Assume that Γ is not elementary and let α be a nontrivial dual vector. Assume that some strategies of player 1 (for instance) are grouped together. That is, there exists a minimal α_1-absorbing set B_1 with at least two elements. Let B_2 and B_2' be minimal α_2-absorbing sets. Let σ_{B_1} denote the α_1-invariant strategy with support in B_1. Define

\[\text{the minimal absorbing set } B_i \text{ (proposition 4.5). Therefore, if player } i \text{ is restricted to the strategies of } B_i, \sigma_{B_i} \text{ is a best response to } \sigma_{B_{-i}}. \]
\(\sigma_{B_2}\) and \(\sigma_{B_2'}\) similarly. By proposition 6.2, \(\sigma_{B_1}\) is a Nash equilibrium strategy both of \(\Gamma_{B_1 \times B_2}\) and of \(\Gamma_{B_1 \times B_2'}\). Since \(\Gamma\) is \(*\)-generic, this implies \(B_2 = B_2'\). Therefore, there is a unique minimal \(\alpha_2\)-absorbing set, \(B_2\). That is, \(C_2/\alpha_2\) is a singleton. Moreover, since \(\Gamma\) is locally generic, \(B_1\) and \(B_2\) have same cardinal. Thus \(B_2\) has at least two elements. Therefore, by the above reasoning, the strategy set of player 1 in \(\Gamma/\alpha\) is also a singleton and we are done.

As an immediate corollary of proposition 6.7 and definitions 6.4 and 6.5 we get:

Corollary 6.8 If \(\Gamma\) is both locally generic and \(*\)-generic then any dual reduction of \(\Gamma\) is both locally generic and \(*\)-generic.

As an immediate corollary of proposition 6.6 and corollary 6.8 we get:

Theorem 6.9 If \(\Gamma\) is both locally generic and \(*\)-generic, then for any positive integer \(m\), \(\Gamma\) has a unique iterative full dual reduction of depth \(m\).

7 Dual reduction and elimination of unacceptable pure strategies

Dual reduction and elimination of unacceptable pure strategies [7] both include elimination of dominated strategies. Furthermore, there are similarities in the ways these concepts are defined. Comparing dual reduction and elimination of unacceptable pure strategies is thus quite natural. In this section we show by means of example that none of these refinement concepts is more stringent than the other.

We first introduce some notations and definitions (most of the phrasing is taken from [7] and [2]; see also [8]): let \(S \subseteq N\). If \(S\) is nonempty we let

\[C_S = \times_{i \in S} C_i\]

(so \(C_N = C\)), and we let \(C_{\emptyset} = \{\emptyset\}\). If \(c\) is in \(C\) and \(d_S\) in \(C_S\) then \((c_{-S}, d_S)\) denotes the strategy profile in which player \(i\) plays \(d_i\) if \(i \in S\) and \(c_i\) if \(i \notin S\).

Definition 7.1 An \(\epsilon\)-correlated strategy \(\eta\) is a lottery choosing a vector of “recommended” pure strategies (i.e. a point in \(C\)), a coalition \(S\) of trembling players, and a vector of trembles (i.e. a point in \(C_S\)) for those players (hence, formally, it is a probability distribution over \(C \times (\cup_{S \subseteq C} S)\)) such that:

(a) Given any vector of recommendations, the conditional probability of every coalition of trembling players and every vector of trembles for these players is strictly positive.

(b) Given any vector of recommendations \(c\), any subset \(S\) of players not including player \(i\) and any vector of trembles \(d_S\) for those players : given that the coalition of trembling players is either \(S\) or \(S \cup \{i\}\) and that the players of \(S\) tremble to \(d_S\), the conditional probability of \(i\) also trembling is at most \(\epsilon\).

15In particular, the aggregate incentive value of \(c\) for the set of players \(N\): \(V_N(c, \alpha)\), defined in [7, p.141, (3.3)], is exactly the payoff \(g(c, \alpha)\) defined in section 3.
Let η be an ϵ-correlated strategy. Consider the extended game in which each player is first informed of his recommended action; next the non-trembling players are asked to move - while the trembling players are forced to move using the selected trembles. The ϵ-correlated strategy η is an ϵ-correlated equilibrium if, in this extended game, the obedient strategies form a Nash equilibrium.

A correlated strategy $\mu \in \Delta(C)$ is an acceptable correlated equilibrium [7] if it is a limit ($\epsilon \to 0$) of distributions (i.e. marginal distributions on C) of ϵ-correlated equilibria. That is, if for all positive ϵ there exists some ϵ-correlated equilibrium η' such that for all $c \in C$: $\lim_{\epsilon \to 0} \eta'(c, \emptyset) = \mu(c)$, where $\eta'(c, \emptyset)$ is the probability that c is recommended and that no player trembles. Acceptable correlated equilibria are correlated equilibrium distributions [7, theorem 1].

A pure strategy c_i is acceptable [7] if, for every $\epsilon > 0$, there exists some ϵ-correlated equilibrium η such that

$$\sum_{c_{-i} \in C_{-i}} \eta(c, \emptyset) > 0$$

(that is, in Myerson terms’s, "if c_i can be rationally used when the probabilities of trembling are infinitesimal" [9]).

The acceptable residue $R(\Gamma)$ of a game Γ is the game obtained from Γ by eliminating all the unacceptable pure strategies. Myerson shows [7, theorems 2 and 4] that the acceptable correlated equilibria are exactly the correlated equilibrium distributions of $R(\Gamma)$ (technically, the c.e.d. of Γ in which only acceptable pure strategies are played and whose marginal distribution on the product of the sets of acceptable pure strategies are c.e.d. of $R(\Gamma)$). This is analogous to theorem 4.4 and proposition 5.10.

As dual reduction, elimination of unacceptable pure strategies may be iterated. A pure strategy is predominant if it remains after iterative elimination of unacceptable pure strategies, and correlated equilibrium distributions in which only predominant strategies are played are called predominant.

We now compare dual reduction and elimination of unacceptable pure strategies. We first need a lemma:

Lemma 7.2 If there exists a correlated equilibrium distribution with full support then all pure strategies are acceptable and predominant.

Lemma 7.2 is proved in appendix B. It implies that the class of games in which all pure strategies are acceptable is strictly larger than the class of elementary games. This is not only due to the fact that in a game in which all strategy profiles are played in correlated equilibria, such as Matching-Pennies, dual reduction can still group strategies together. Indeed, consider the following game of coordination where, moreover, player 2 has an outside option:

Example 7.3

$$
\begin{array}{ccc}
 x_2 & y_2 & z_2 \\
y_1 & 0, 0 & 1, 1 & -1, -1 \\
z_1 & 0, 0 & -1, -1 & 1, 1 \\
\end{array}
$$
In this game, playing each strategy with equal probability is a completely mixed Nash equilibrium. Thus, by lemma 7.2, all strategies are acceptable and predominant. However, \(x_2 \) is eliminated in any nontrivial dual reduction. (To prove this, note that \(x_2 \) is equivalent to \(\frac{1}{2}y_2 + \frac{1}{2}z_2 \); this implies that \(y_2 \) and \(z_2 \) jeopardize \(x_2 \). Furthermore \(y_i \) and \(z_i \) must be invariant under any dual vector because they have positive probability in some strict correlated equilibrium distribution. So there is a unique dual reduction, which consists in eliminating \(x_2 \).)

This example shows that dual reduction may eliminate acceptable and even predominant pure strategies. It also shows that dual reduction can eliminate completely mixed, hence perfect Nash equilibria. Since any perfect Nash equilibrium is a perfect direct correlated equilibrium \([2]\), it shows that dual reduction may eliminate perfect direct correlated equilibrium distributions.

The next example shows that there may be unacceptable pure strategies that no dual reduction eliminates: let \(\Gamma \) denote the following three-player game, where player 1 chooses the matrix \((x_1, y_1)\), player 2 the row, and player 3 the column:

Example 7.4 (taken from [7])

\[
\begin{array}{ccc|ccc}
\text{x}_1 & \text{y}_3 & \text{z}_3 & \text{x}_1 & \text{y}_3 & \text{z}_3 \\
\text{x}_2 & 2, 1, 1 & 0, 2, 0 & 0, 2, 0 & x_2 & 1, 3, 3 & 1, 3, 3 \\
\text{y}_2 & 0, 0, 2 & 0, 3, 0 & 0, 0, 3 & y_2 & 1, 3, 3 & 1, 3, 3 \\
\text{z}_2 & 0, 0, 2 & 0, 3, 0 & 0, 3, 0 & z_2 & 1, 3, 3 & 1, 3, 3 \\
\end{array}
\]

Myerson [7] shows that the only acceptable strategies for player \(i \) is \(x_i \), for all \(i \) in \(\{1, 2, 3\} \). However, \(y_1 \) cannot be eliminated by one-shot dual reduction. Indeed, let \(c = (y_1, y_2, y_3) \) and \(\alpha \) be a dual vector; by definition 4.1, \(\sum_{i \in N} [U_i(\alpha x + c) - U_i(c)] \geq 0 \); since \(c \) is a Nash equilibrium and all unilateral deviations from \(c \) by player 1 are strictly detrimental for him, this implies that \(y_1 \) is invariant under \(\alpha \).

Note that \(y_1 \) may be eliminated by iterative dual reduction. Actually, to prove that \(y_2, z_2, y_3, z_3 \) and \(y_1 \) are unacceptable, Myerson uses the codomination system\(^{16}\) \((\alpha^1, \alpha^2)\) where \(\alpha^1 \) and \(\alpha^2 \) are the deviation vectors such that:

\[
\alpha_1^i(x_i | y_i) = \alpha_1^i(x_i | z_i) = 1 \forall i \in \{2, 3\}, \quad \alpha_1^2(x_1 | y_1) = 1,
\]

and all other \(\alpha_k^i(d_i | c_i) \) are as in the corresponding trivial deviation vectors. It is easy to check that \(\alpha^1 \) is a dual vector of \(\Gamma \) and \(\alpha^2 \) a dual vector of \(\Gamma/\alpha^1 \). The only strategy profile remaining in \(\Gamma/\alpha^1/\alpha^2 \) is the strict Nash equilibrium \((x_1, x_2, x_3)\), thus \(y_1 \) has been eliminated. Whether some unacceptable (or non predominant) pure strategies cannot be eliminated by any iterative dual reduction is still an open problem.

8 Some applications of dual reduction

As a refinement concept or as a way to simplify a game, dual reduction has some nice properties: it does not depend on the (von Neumann-Morgenstern) utility functions chosen to represent the preferences of the players; strategies which are never

\(^{16}For a definition of codomination systems, see [7] or [8].\)
played in correlated equilibria are eliminated; zero-sum games are reduced to their value; symmetric games may be reduced symmetrically; strict correlated equilibria are never eliminated, and others. But it also suffers from some drawbacks: first, it is not clearly motivated; second, a game may have several full dual reductions. It is thus not clear to us that dual reduction deserves to be studied as a refinement concept or as "a powerful generalization of elimination of weakly dominated strategies" [9, p.202]. But we feel that the underlying mathematical machinery is powerful indeed and may prove useful to investigate the geometry of correlated equilibria. For instance, while working on other topics, dual reduction helped us in proving the following results:

Proposition 8.1 Assume that no pure strategy is dominated in the sense that:

$$\forall i \in I, \forall c_i \in C_i, \forall \sigma_i \in \Delta(C_i), \sigma_i \neq c_i \Rightarrow \exists c_{-i} \in C_{-i}, U_i(c) > U_i(c_{-i}, \sigma_i) \quad (10)$$

Then C does not have dimension $N - 2$.

Proof. If the game is elementary, then C has dimension $N - 1$. Otherwise, there exists i in I, c_i in C_i and d_i in C_i such that d_i jeopardizes c_i. Therefore there exists a dual vector α such that $c_i / \alpha \in C_i/\alpha$. But c_i is undominated in the sense of (10). Therefore, by proposition 5.11, there exists j in $N - i$ and c_j in C_j such that $c_j \notin C_j/\alpha$. Therefore c_j is jeopardized by some strategy $d_j \in C_j - c_j$. This implies that for all c.e.d. μ,

$$\sum_{c_{-j} \in C_{-j}} \mu(c)[U_j(c) - U_j(c_{-j}, d_j)] = 0 \quad (11)$$

Similarly, d_i jeopardizes c_i, so for all μ in C,

$$\sum_{c_{-i} \in C_{-i}} \mu(c)[U_i(c) - U_i(c_{-i}, d_i)] = 0 \quad (12)$$

Condition (10) implies that neither (11) nor (12) is checked by all points in \mathbb{R}^S and that (11) and (12) are not equivalent. As an intersection of two non identical hyperplanes, the set of points of \mathbb{R}^S checking (11) and (12) is a vector space of dimension $N - 2$. Its intersection with the simplex has at most dimension $N - 3$ and includes C. Therefore C has at most dimension $N - 3$. ■

To state the next result, we first need a definition: a game is **prebinding** [14] if for all player i in I and all pure strategies c_i in C_i : if c_i is played in some correlated equilibrium (that is, if there exists a c.e.d. μ such that $\mu(c_i \times C_{-i}) > 0$) then c_i jeopardizes all pure strategies of player i. Finally, since conditions (1), (2) and (3) are all linear the set of correlated equilibrium distributions is a polytope; we call it below the correlated equilibrium polytope.

Starting from [10] and using the dual reduction technique, I show in [14] that:

Proposition 8.2 A game is prebinding if and only if its correlated equilibrium polytope is a singleton or contains a Nash equilibrium distribution in its relative interior.

17The fact that locally generic two-player games have a unique full dual reduction hardly helps as games for which refinements are needed are typically nongeneric.
A The linear programming proofs of existence of correlated equilibria

In this appendix, we review and connect the proofs of existence of correlated equilibria given in [3], [11] and [9].

A.1 Hart & Schmeidler’s proof

Consider the following two-player, zero-sum, auxiliary game G_{HS}: the maximizer chooses a strategy profile $c = (c_1, \ldots, c_n)$ in C; the minimizer chooses a player i in N and a couple of strategy (c'_i, d_i) in $C_i \times C_i$. The payoff is $U_i(c) - U_i(c_{-i}, d_i)$ if $c'_i = c_i$ and 0 otherwise. In mixed strategies the maximizer chooses a correlated strategy $\mu \in \Delta(C)$ and the minimizer a probability distribution ν on triples $(i, c_i, d_i) \in N \times C_i \times C_i$; the expected payoff is then:

$$g_{hs}(\mu, \nu) = \sum_{c \in C} \mu(c) \sum_{i \in N} \sum_{d_i \in C_i} \nu(i, c_i, d_i)[U_i(c) - U_i(c_{-i}, d_i)]$$

As in the auxiliary game G of section 3, μ guarantees 0 if and only if μ is a correlated equilibrium distribution of the original game. Thus, to prove the existence of correlated equilibrium distributions, it is enough to show that the value of G_{HS} is nonnegative.

To do so, Hart and Schmeidler could have used the existence of invariant distributions for finite Markov chains:

Lemma A.1 Let M be a $m \times m$ stochastic matrix (i.e. nonnegative with columns summing to unity); there exists a probability vector $x = (x_j)_{j=1,\ldots,m}$ such that $Mx = x$.

Instead, they used the following lemma:

Lemma A.2 (Hart&Schmeidler) Let $(a_{jk})_{1 \leq j,k \leq m}$ be nonnegative numbers. There exists a probability vector $x = (x_j)_{j=1,\ldots,m}$ such that, for any vector $u = (u_j)_{j=1,\ldots,m}$,

$$\sum_{j=1}^m x_j \sum_{k=1}^m a_{jk} (u_j - u_k) = 0$$

Proposition A.3 Lemmas A.1 and A.2 are equivalent

Proof. (i) in (14) we may assume $\sum_j a_{jk} = 1$ without loss of generality (indeed, one may increase arbitrarily the coefficients a_{kk} to ensure that each row sums to some positive constant and then divide all coefficients by this constant to normalize); (ii) by

18 Let λ be a positive constant. If λ is small enough, any strategy of the minimizer in G can be emulated in G_{HS}, up to the scaling factor λ, by letting: $\nu(i, c_i, d_i) = \lambda \alpha_i(d_i|c_i)/n$ if $d_i \neq c_i$, and giving any value (up to normalization of ν) to $\nu(i, c_i, c_i)$. Conversely, any strategy ν of the minimizer in G_{HS} can be emulated in G by letting $\alpha_i(d_i|c_i) = \nu(i, c_i, d_i)$ if $c_i \neq d_i$ and $\alpha_i(d_i|c_i) = 1 - \sum_{d_i \neq c_i} \nu(i, c_i, d_i)$; it follows that the value of G is nonnegative if and only if the value of G_{HS} is nonnegative. Thus the proof of section 3 must go through.
linearity (14 holds for all vector u if and only if it holds for all basis vectors (i.e. with one component equal to 1 and all the others zero); (iii) (14 holds for all basis vectors iff $\sum_j x_j a_{ji} = x_i$ for all i; that is, iff $A^T x = x$ where A^T denote the $m \times m$ square matrix whose (i, j) entry is a_{ji}. (iv) Thus lemma A.2 boils down to lemma A.1 applied to $M = A^T$. Reciprocally, lemma A.1 is a special case of lemma A.2.

Incidentally, Hart&Schmeidler prove their lemma using the Minimax theorem; so proposition A.3 yields a game-theoretic proof of the existence of invariant distributions for finite Markov chains.19

A.2 Other proofs

Nau and McCardle’s proof is very similar. They also introduce (implicitly) the payoff matrix of $G_{H&S}$. A strategy profile c is defined to be jointly coherent if $g(c, \alpha) = 0$ for all dual vectors α. Nau and McCardle show through lemma A.1, and essentially as in section 3, that there exists a jointly coherent strategy profile. Finally, they prove through a variant of Farkas lemma that a strategy profile is jointly coherent if and only if it has positive probability in some correlated equilibrium distribution.20 Thus correlated equilibrium distributions exists.

Myerson’s proofs is essentially the proof of section 3. The only difference is that instead of introducing an auxiliary zero-sum game, Myerson introduces an auxiliary linear program and then uses linear duality. Deviation vectors appear as vectors of dual variables, hence the terms dual vector and dual reduction. Myerson’s linear program corresponds to the maximisation’s program of the maximizer in the auxiliary game of section 3.

B Proofs

In this appendix, we prove lemma 5.9, proposition 5.21 and lemma 7.2.

Proof of lemma 5.9: let $\bar{\lambda} \in \Delta(C)$. We only need to show that if $\bar{\lambda}$ is α-invariant then it is Γ-equivalent to a correlated strategy of Γ/α. Indeed, the converse is clear by linearity of $\lambda \rightarrow \alpha_i \circ \Lambda$. Furthermore, letting $C/\alpha_i = C_i / C_i \times C_{-i}$, it is enough to show that if $\bar{\lambda}$ is α_i-invariant then there exists λ in $\Delta(C/\alpha_i)$ such that (i) $\bar{\lambda}$ is Γ-equivalent to λ and (ii) if $\bar{\lambda}$ is α_j-invariant, then so is λ. Indeed, as the number of players is finite, a simple induction then proves the property. So let us assume that $\bar{\lambda}$ is α_i-invariant. That is,

$$\alpha_i \circ \bar{\lambda}(c_{-i}, c_i) = \sum_{d_i \in C_i} \alpha_i(c_i | d_i) \bar{\lambda}(c_{-i}, d_i) = \bar{\lambda}(c_{-i}, c_i) \quad \forall c_i \in C_i, \forall c_{-i} \in C_{-i} \quad (15)$$

19I owe this remark to B. von Stengel, who first showed me a proof of lemma A.1 based on linear duality. Such a proof can also be found in [6, ex. 9, p. 41]

20In the framework of section 3, this corresponds to the following result: in a finite, two-player zero-sum game, a pure strategy is a best-response to all optimal strategies of the other player if and only if it has positive probability in some optimal strategy. This follows from the strong complementarity property of linear programs
(The first equality merely repeats the definition of $\alpha_i \ast \bar{\lambda}$.) Equation (15) means that, for all c_{-i} in C_{-i}, the vector $[\lambda(c_{-i}, c_i)]_{c_i \in C_i}$ is α_i-invariant. Therefore: (a) $\bar{\lambda}(c_i \times C_{-i}) = 0$ if c_i is α_i-transient and (b) for any minimal α_i-absorbing set B_i, $[\lambda(c_{-i}, c_i)]_{c_i \in B_i}$ is proportional to $[\sigma_{B_i}(c_i)]_{c_i \in B_i}$, where σ_{B_i} is the unique α_i-invariant strategy with support in B_i. More precisely, define $\lambda \in \Delta(C/\alpha_i)$ by: $\lambda(c_{-i}, \sigma_{B_i}) = \sum_{c_i \in B_i} \bar{\lambda}(c_{-i}, c_i)$, we have:

$$\bar{\lambda}(c_{-i}, c_i) = \lambda(c_{-i}, \sigma_{B_i}) \times \sigma_{B_i}(c_i) \quad \forall c_i \in B_i, \forall c_{-i} \in C_{-i}$$

The above equality means that $\bar{\lambda}$ is Γ-equivalent to λ. Finally it is straightforward to check that if $\bar{\lambda}$ is α_j-invariant, then so is λ. This completes the proof.

Definition of symmetric games and proof of proposition 5.21: Let Γ be a game in which all players have the same number m of pure strategies. Let $c_{i,k}$ denote the k^{th} strategy of player i. Thus $C_i = \{c_{i,1},...,c_{i,m}\}$. For all i in N, let k_i be an integer in $\{1,...,m\}$. Let $(c_{i,k_i})_{i \in N}$ denote the profile of strategy in which, for all i, player i plays his k_i^{th} strategy. Γ is a symmetric game if for all permutations p of the set of players,

$$U_i((c_{j,k_i})_{j \in N}) = U_{p(i)}((c_{j,k_i})_{j \in N})$$

This means that if, for all i, player i plays as player $p(i)$ used to play, then the payoff of player i in the new configuration is the payoff of player $p(i)$ in the old configuration. We now prove the proposition:

Step 1: let us say that a deviation vector α of a symmetric game is symmetric if

$$\alpha_i(c_{i,k'},|c_{i,k}) = \alpha_j(c_{j,k'}|c_{j,k}) \quad \text{for all } i,j \in N \text{ and all } k,k' \in \{1,...,m\}.$$

It is clear that if Γ is a symmetric game and α a symmetric dual vector, then Γ/α is a symmetric game. So it is enough to show that there exists a symmetric full dual vector.

Step 2: let α denote a deviation vector. For all permutations p of the set of players, let α^p denote the deviation vector such that:

$$\alpha^p_{p(i)}(c_{p(i),k'}|c_{p(i),k}) = \alpha_i(c_{i,k'}|c_{i,k}) \quad \forall i \in N$$

Let $\bar{\alpha}$ denote the symmetrized deviation vector given by:

$$\bar{\alpha} = \frac{\sum_p \alpha^p}{n!}$$

where n is the number of players and the summation is taken over all permutations p of the set of players.

It is easy to check that $\bar{\alpha}$ is symmetric and that if α is a dual vector then so are all the α^p, hence so is $\bar{\alpha}$. Furthermore if $\alpha_i(d_i|c_i)$ is positive then so is $\bar{\alpha}_i(d_i|c_i)$ (since in the summation defining $\bar{\alpha}$, $\alpha^p = \alpha$ when p is the identity permutation). Thus if α is a full dual vector then $\bar{\alpha}$ is a symmetric full dual vector.

Proof of lemma 7.2 : Assume that there exists a c.e.d. μ with full support. By [7, theorem 2], if μ is acceptable, then any pure strategy is acceptable, hence any pure strategy is predominant. Thus, it is enough to show that μ is acceptable. The trick is that, because μ has full support, it is possible to find trembles that will mimic μ, so that whoever the players trembling, a nontrembling player always faces the same conditional probabilities given his signal than in μ.

24
More precisely, assume that there exists some ϵ-correlated strategy η such that:

$$\forall S \subseteq C, \forall d_S \in C_S, \forall c \in C, \eta(c, d_S) = K(S, \epsilon) \mu(c_{-S}, d_S)$$ \hspace{1cm} (16)$$

where K is a positive constant that depends only on S and on ϵ (but not on c_{-S}). That is, given any coalition S of trembling players, any vector d_S of trembles assigned to S, and any strategy profile c, the probability in η that (c_{-S}, d_S) will be played as a result of the players being recommended c, the players of $C - S$ not trembling, and the players of S trembling to d_S, is proportional to the probability of (c_{-S}, d_S) in μ. The total probability in η that S and only S trembles and that (c_{-S}, d_S) is played is then:

$$\sum_{e_S \in C_S} \eta((c_{-S}, e_S), d_S) = K'(S, \epsilon) \mu(c_{-S}, d_S)$$

where K' is a positive constant which depends only on S and on ϵ. It follows that, if $i \notin S$ and $c_i \in C_i$, the expected strategy of the other players in η, given c_i and given that S and only S trembles, is the same that the expected strategy of the other players in μ given c_i. A fortiori, the expected strategy in η given c_i and given that player i does not tremble is the same that the expected strategy in μ given c_i, to which c_i is a best response. Thus, η is an ϵ-equilibrium.

It remains to show that it is possible to find a sequence of ϵ-correlated strategy checking (16) and such that $\eta(c, \emptyset)$ tends to $\mu(c)$ as ϵ goes to zero. Such a sequence may be build by taking for all c in C and for some suitable positive normalization constant A:

$$\eta(c, \emptyset) = A \times \mu(c)$$

and, inductively, if the cardinal of $S \subseteq C$ is $m + 1$:

$$\eta(c, e_S) = \frac{\epsilon}{1 - \epsilon} A_m \times \mu(c_{-S}, e_S)$$

with

$$A_m = \min_{d \in C} \min_{T \in S: \text{Card } T = m} \min_{e_T \in C_T} \eta(d, e_T)$$

References

