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Abstract

It is shown that, under the replicator dynamics, all strategies played in correlated equilibrium may be
eliminated, so that only strategies with zero marginal probability in all correlated equilibria survive. This
occurs in particular in a family of 4 × 4 games built by adding a strategy to a Rock-Paper-Scissors game.
 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For a fairly wide class of evolutionary dynamics, if all strategies are initially played with
positive probability and if the solution of the dynamics converges to a point, then this point is
a Nash equilibrium (Weibull, 1995). Weak dynamic stability (Lyapunov stability) also implies
Nash equilibrium behavior, and solutions of prominent evolutionary dynamics have been shown
to converge to the set of Nash equilibria in important classes of games (e.g. potential games, zero-
sum games, supermodular games). However, in general, solutions of evolutionary dynamics need
not converge to the set of Nash equilibria (Hofbauer and Sigmund, 1998, Section 8.6).

Whether there is nonetheless a general connection between the outcome of evolutionary dy-
namics and equilibrium concepts is not clear. First, even though the solution of a dynamics does
not converge to the set of Nash equilibria, its time-average might. For instance, provided that no
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pure strategy comes close to being eliminated,1 the time-average of the single or two-population
replicator dynamics converges to the set of Nash equilibria (Hofbauer and Sigmund, 1998).

Second, a number of recent articles, surveyed by Hart (2005), show that there exist adaptive
processes converging, in a time-average sense, towards the set of correlated equilibria. Though
these processes are different from standard evolutionary dynamics, this suggests that the outcome
of evolutionary dynamics might be more strongly connected to correlated equilibrium than to
Nash equilibrium.

Third, convergence is not all that matters. Of great importance to our understanding of an evo-
lutionary process are the strategies that survive and those that are eliminated under this process.
Even if evolutionary dynamics do not always converge to the set of correlated equilibria, there
might still be a link between strategies that survive and strategies that belong to the support of
correlated equilibria.

This note shows, however, that this is not the case, at least for the replicator dynamics. Specifi-
cally, we present a family of 4 × 4 symmetric games for which, under the replicator dynamics and
from a large set of initial conditions, all strategies used in correlated equilibrium are eliminated
(hence only strategies that are not used in equilibrium remain). In particular, no kind of time-
average of the replicator dynamics can converge to the set of correlated equilibria. The same
results actually hold for an open set of games and for wide classes of dynamics (Viossat, 2005).

The remainder of this note is organized as follows. First, we introduce the notations and basic
definitions, and recall some known results on Rock-Paper-Scissors (RPS) games. In addition, we
prove that these games have a unique correlated equilibrium. We then introduce a family of 4 × 4
symmetric games built by adding a strategy to a RPS game. We describe in details the orbits of
the replicator dynamics in these games and show that, from an open set of initial conditions, all
strategies used in correlated equilibrium are eliminated. We conclude by discussing a variety of
related results.

2. Notations and basic definitions

We consider finite, two-player symmetric games played within a single population. Such a
game is given by a set I = {1, . . . ,N} of pure strategies and a payoff matrix U = (uij )1!i,j!N .
Here uij is the payoff of a player playing strategy i against a player playing strategy j . We use
bold characters for vectors and matrices and normal characters for numbers.

The proportion of the population playing strategy i at time t is denoted by xi(t). Thus, the
vector x(t) = (x1(t), . . . , xN(t))T denotes the population profile (or mean strategy) at time t . It
belongs to the N − 1 dimensional simplex over I

SN :=
{

x ∈ RI
+:

∑

i∈I

xi = 1
}

(henceforth, “the simplex”) whose vertices e1, e2, . . . , eN correspond to the pure strategies of the
game. We study the evolution of the population profile x under the single-population replicator
dynamics (Taylor and Jonker, 1978):

ẋi (t) = xi(t)
[(

Ux(t)
)
i
− x(t) · Ux(t)

]
. (1)

1 That is, provided that there exists ε > 0 such that, at each time t ! 0, the frequency of each pure strategy is greater
than ε.
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Remark. For notational simplicity, we often write xi and x instead of xi(t) and x(t).

We now define correlated equilibrium distributions. Consider a (not necessarily symmetric)
bimatrix game with strategy set I (respectively J ) for player 1 (respectively 2). Let gk(i, j)

denote the payoff of player k when player 1 plays i and player 2 plays j . A correlated equilibrium
distribution (Aumann, 1974) is a probability distribution µ on the set I × J of pure strategy
profiles which satisfies the following inequalities:

∑

j∈J

µ(i, j)
[
g1(i, j) − g1(i

′, j)
]
! 0 ∀i ∈ I, ∀i′ ∈ I (2)

and
∑

i∈I

µ(i, j)
[
g2(i, j) − g2(i, j

′)
]
! 0 ∀j ∈ J, ∀j ′ ∈ J. (3)

With some abuse of terminology, we may write “correlated equilibrium” for “correlated equilib-
rium distribution.” Though the above definition applies to general bimatrix games, from now on,
we only consider symmetric bimatrix games.

Definition. The pure strategy i is used in correlated equilibrium if there exists a correlated equi-
librium µ and a pure strategy j such that µ(i, j) > 0.2

Definition. The pure strategy i is eliminated (for some initial condition x(0)) if xi(t) goes to zero
as t → +∞.

3. A reminder on Rock-Paper-Scissors games

A RPS (Rock-Paper-Scissors) game is a 3 × 3 symmetric game in which the second strategy
(Paper) beats the first (Rock), the third (Scissors) beats the second, and the first beats the third.
Up to normalization (i.e. putting zeros on the diagonal) the payoff matrix is of the form:

1 2 3
1
2
3




0 −a2 b3
b1 0 −a3

−a1 b2 0



 with ai > 0, bi > 0 for all i = 1,2,3. (4)

Any RPS game has a unique Nash equilibrium: (p,p) where

p = 1
Σ

(a2a3 + a3b2 + b2b3, a1a3 + a1b3 + b3b1, a1a2 + a2b1 + b1b2) (5)

with Σ > 0 such that p ∈ S4 (see Zeeman, 1980; Gaunersdorfer and Hofbauer, 1995, or Hofbauer
and Sigmund, 1998). Actually, as essentially noted by Martin Cripps (1991, Example 2, p. 433)3:

2 Note that if µ is a correlated equilibrium of a two-player symmetric game, then so is µT (defined by µT (i, j) =
µ(j, i)), hence so is (µ + µT )/2. Thus, if a strategy is used in a correlated equilibrium, it is also used in a symmetric
correlated equilibrium.

3 Cripps (1991) mentions that, in a subclass of the class of RPS games (4), all games have a unique correlated equilib-
rium.
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Proposition 1. Any RPS game has a unique correlated equilibrium: p ⊗ p.

(For x ∈ SN , x ⊗ x denotes the probability distribution on SN induced by x.)

Proof. Let µ be a correlated equilibrium of (4). For i = 1 and, respectively, i′ = 2 and i′ = 3,
the incentive constraint (2) reads:

µ(1,1)(−b1) + µ(1,2)(−a2) + µ(1,3)(a3 + b3) ! 0, (6)

µ(1,1)a1 + µ(1,2)(−a2 − b2) + µ(1,3)b3 ! 0. (7)

Add (6) multiplied by a1 to (7) multiplied by b1. This gives

−µ(1,2)(a1a2 + a2b1 + b1b2) + µ(1,3)(a1a3 + a1b3 + b3b1) ! 0.

That is, recalling (5):

p2µ(1,3) ! p3µ(1,2).

Every choice of a player and a strategy i yields a similar inequality. So we get six inequalities
which together read:

p2µ(1,3) ! p3µ(1,2) ! p1µ(3,2) ! p2µ(3,1) ! p3µ(2,1) ! p1µ(2,3) ! p2µ(1,3).

Therefore all the above inequalities hold as equalities. Letting λ be such that the common value of
the above expressions is λp1p2p3, we have: µ(i, j) = λpipj for every j )= i. Together with (6)
and (7), this implies that we also have µ(1,1) = λp2

1 (and similarly µ(i, i) = λp2
i for all i).

Therefore λ= 1 and µ = p ⊗ p. !

The behavior of the replicator dynamics in RPS games has been totally analyzed by Zeeman
(1980). In particular, letting ∂S3 := {x ∈ S3: x1x2x3 = 0} denote the boundary of the simplex:

Proposition 2. (Zeeman, 1980) If a1a2a3 > b1b2b3, then for every initial condition x(0) )= p, the
solution x(t) converges to the boundary of the simplex ∂S3 as t → +∞.

In the case of cyclic symmetry (i.e. a1 = a2 = a3 and b1 = b2 = b3) then the unique Nash
equilibrium is p = ( 1

3 , 1
3 , 1

3 ). Furthermore, up to division of all payoffs by the common value of
the ai , the payoff matrix may be taken of the form:

Û =
( 0 −1 ε

ε 0 −1
−1 ε 0

)

with ε > 0. (8)

The condition a1a2a3 > b1b2b3 then reduces to ε < 1 and in this case Proposition 2 may be
proved as follows: for ε < 1, the Nash equilibrium p is globally inferior in the sense that:

∀x ∈ S3, x )= p ⇒ p · Ûx < x · Ûx.

More precisely,

p · Ûx − x · Ûx = −(p − x) · Û(p − x) = −
(

1 − ε

2

) ∑

1!i!3

(pi − xi)
2 (9)

where the first equality follows from the fact that (p,p) is a completely mixed equilibrium, hence
(Ûp)i − p · Ûp = 0 for all i. Now, let V̂ (x) := (x1x2x3)

1/3. Note that the function V̂ takes its
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minimal value 0 on the boundary of the simplex ∂S3 and its maximal value 1/3 at p. Letting
v̂(t) := V̂ (x(t)) we get:

˙̂v(t) =
(
p · Ûx − x · Ûx

)
v̂(t) = −v̂(t)

(
1 − ε

2

) ∑

1!i!3

(pi − xi)
2. (10)

The above expression is negative whenever v̂(t) )= 0 and x )= p. It follows that for every initial
condition x(0) )= p, v̂(t) decreases to zero hence x(t) converges to the boundary.

4. A family of 4 × 4 games

Fix ε in ]0,1[, α ! 0, and consider the following 4 × 4 symmetric game which is built by
adding a strategy to a RPS game:

Uα =





0 −1 ε −α

ε 0 −1 −α

−1 ε 0 −α
−1+ε

3 + α −1+ε
3 + α −1+ε

3 + α 0



 . (11)

For 0 < α < (1 − ε)/3, the interesting case, this game is very similar to the example used by
Dekel and Scotchmer (1992) to show that a discrete-time version of the replicator dynamics
need not eliminate all strictly dominated strategies.4 We now describe the main features of the
above game.

Let n123 = ( 1
3 , 1

3 , 1
3 ,0) denote the rest-point of the replicator dynamics corresponding to the

Nash equilibrium of the underlying RPS game.

The case α = 0. The strategies n123 and e4 always earn the same payoff:

n123 · U0x = e4 · U0x ∀x ∈ S4. (12)

Furthermore, all strategies earn the same payoff against strategy 4:

x · U0e4 = x′ · U0e4 ∀x ∈ S4, ∀x′ ∈ S4. (13)

The set of symmetric Nash equilibria is the segment E0 = [n123, e4], i.e. the set of convex combi-
nations of n123 and e4. This shall be clear from the proof of Proposition 3 below. A key property
is that whenever the population profile x does not belong to the segment of equilibria E0, every
strategy in E0 earns less than the mean payoff. Formally,

∀x /∈ E0,∀p ∈ E0, p · U0x < x · U0x.

More precisely, for x )= e4, define x̂i as the share of the population that plays i relative to the
share of the population that plays 1, 2 or 3. Formally,

x̂i = xi/(x1 + x2 + x3). (14)

4 More precisely, the game obtained from (11) by multiplying all payoffs by −1 belongs to the family of games à la
Dekel and Scotchmer considered by Hofbauer and Weibull (1996). In particular, Fig. 1 of Hofbauer and Weibull (1996,
p. 570) describes the dynamics on the boundary of the simplex in game (11), up to reversal of all arrows and permutation
of strategies 2 and 3.
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Lemma 4.1. For every p in E0 and every x )= e4,

p · U0x − x · U0x = − (1 − ε)

2
(1 − x4)

2
∑

1!i!3

(x̂i − 1/3)2. (15)

Proof. Let K = p · U0x − x · U0x = (p − x) · U0x. It follows from (12) that p · U0x =
(p4e4 +(1 − p4)n123) ·U0x = n123 ·U0x so that K = (n123 −x) ·U0x. Now let y = (x̂1, x̂2, x̂3,0).
Using (13) we get:

K = (n123 − x) · U0
[
(1 − x4)y + x4e4

]
= (1 − x4)(n123 − x) · U0y.

Noting that n123 − x = (1 − x4)(n123 − y) + x4(n123 − e4) and using (12), we get: K =
(1 − x4)

2(n123 − y) · U0y. Now apply (9). This gives (15) and concludes the proof. !

The case α > 0. The mixed strategy n123 is no longer an equilibrium. Actually:

Proposition 3. If α > 0, then the game with payoffs (11) has a unique correlated equilibrium:
e4 ⊗ e4.

Proof. Assume, by contradiction, that there exists a correlated equilibrium µ different from
e4 ⊗ e4. Since e4 is a strict Nash equilibrium, there exists 1 " i, j " 3 such that µ(i, j) > 0.
Define the correlated distribution of the underlying RPS game Ĝ by:

µ̂(i, j) = µ(i, j)

K
1 " i, j " 3

with K = ∑
1!i,j!3 µ(i, j) > 0. For 1 " i, i′ " 3, we have ui4 = ui′4(= −α), so that:

3∑

j=1

µ̂(i, j)[uij − ui′j ] =
3∑

j=1

µ(i, j)

K
[uij − ui′j ] = 1

K

4∑

j=1

µ(i, j)[uij − ui′j ] ! 0.

(The latter inequality holds because µ is a correlated equilibrium.)
Together with symmetric inequalities, this implies that µ̂ is a correlated equilibrium of Ĝ. By

Proposition 1, this implies that for every 1 " i, j " 3, we have µ̂(i, j) = 1/9 hence µ(i, j) =
K/9. From this and the fact that strategy 4 is a best-response to itself, it follows that for any
1 " i, j " 3,

∑

1!j!4

µ(i, j)[uij − u4j ] "
∑

1!j!3

µ(i, j)[uij − u4j ] = −Kα

3
< 0.

This contradicts the fact that µ is a correlated equilibrium. !

Nevertheless, for α < (1 + 2ε)/3, the above game has a best-response cycle: e1 → e2 →
e3 → e1. We will show that for α > 0 small enough, the corresponding set

Γ := {x ∈ S4, x4 = 0 and x1x2x3 = 0} (16)

attracts all nearby orbits. We first show that the (replicator) dynamics in the interior of S4 may
be decomposed in two parts: an increase or decrease in x4, and an outward spiraling movement
around the segment E0 = [n123, e4].
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5. Decomposition of the dynamics

First, note that for every x in E0, we have: (Uαx)1 = (Uαx)2 = (Uαx)3. This implies that
the segment E0 is globally invariant.5 Second, recall the definition (14) of x̂i . For x )= e4,
let x̂ = (x̂1, x̂2, x̂3). Recall that Û denotes the payoff matrix (8) of the underlying RPS
game.

Lemma 5.1. Let x(·) be a solution of the replicator dynamics (1) with x(0) )= e4. For every i

in {1,2,3},
˙̂xi = (1 − x4)x̂i

[(
Ûx̂

)
i
− x̂ · Ûx̂

]
. (17)

Proof. Let i in {1,2,3}. If xi = 0, then (17) holds trivially. Otherwise, for every j in {1,2,3}
such that xj is positive,

˙̂xi

x̂i
−

˙̂xj

x̂j
= d

dt
ln

(
x̂i

x̂j

)
= d

dt
ln

(
xi

xj

)
= (Uαx)i − (Uαx)j = (1 − x4)

[(
Ûx̂

)
i
−

(
Ûx̂

)
j

]
.

Multiplying the above equality by x̂j and summing over all j such that xj > 0 yields (17). !

The lemma means that, up to a change of velocity, x̂ follows the replicator dynamics for the
game with payoff matrix Û (and thus spirals towards the boundary).6 Now, recall that for y ∈ S3,
V̂ (y) = (y1y2y3)

1/3. For x ∈ S4\{e4}, let V (x) := V̂ (x̂). That is,

V (x) = (x̂1x̂2x̂3)
1/3 = (x1x2x3)

1/3

x1 + x2 + x3
.

Corollary 5.2. Let x(·) be a solution of (1) with x(0) )= e4. The function v(t) := V (x(t)) satis-
fies:

v̇(t) = −v(t)f
(
x(t)

)
with f (x) = (1 − x4)

(
1 − ε

2

) ∑

1!i!3

(x̂i − 1/3)2. (18)

Proof. By definition of the function v, we have v(t) = V (x(t)) = V̂ (x̂(t)). Let τ ∈ R and let y(·)
be a solution of (1) in the RPS game (8), with initial condition y(0) = x̂(τ ). Let v̂(t) = V̂ (y(t)).
It follows from Lemma 5.1 that

˙̂x(τ ) =
[
1 − x4(τ )

]
ẏ(0)

hence

v̇(τ ) = dV̂ (x̂(t))

dt

∣∣∣∣
t=τ

=
[
1 − x4(τ )

]dV̂ (y(t))

dt

∣∣∣∣
t=0

=
[
1 − x4(τ )

] ˙̂v(0),

5 That is, denoting by φ(x, t) the solution at time t of the replicator dynamics with initial condition x and letting
φ(E0, t) = {φ(x, t),x ∈ E0}, we have: ∀t ∈ R,φ(E0, t) = E0.

6 The fact that when the N − 1 first strategies earn the same payoff against the N th (and last) strategy, the dynamics
may be decomposed as in Lemma 5.1 was known to Josef Hofbauer (personal communication). This results from a
combination of Theorem 7.5.1 and of Exercise 7.5.2 in (Hofbauer and Sigmund, 1998). I rediscovered it independently.
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but by (10),

˙̂v(0) = −v̂(0)

(
1 − ε

2

) ∑

1!i!3

(
yi(0) − 1/3

)2
.

Substituting v(τ ) for v̂(0) and x̂i (τ ) for yi(0) yields the result. !

Note that v(t) is nonnegative and that the function f is positive everywhere but on the in-
terval [n123, e4[, where V attains its maximal value 1/3. Therefore, it follows from (18) that V

decreases along all interior trajectories, except the ones starting (hence remaining) in the interval
]n123, e4[. We now exploit this fact to build a Lyapunov function for the set Γ defined in (16).7

6. Main result

Let W(x) = max(x4,3V (x)) for x )= e4 and W(e4) = 1, so that W is continuous. Note that
W takes its maximal value 1 on the segment E0 = [n123, e4] and its minimal value 0 on Γ . The
former follows from the fact that the function V , defined on S4\{e4}, takes its maximal value 1/3
on E0\{e4}. For δ ! 0, let Kδ denote the compact set:

Kδ :=
{
x ∈ S4,W(x) " δ

}

so that K0 = Γ and K1 = S4.

Proposition 4. Let 0 < δ < 1. There exists γ > 0 such that for every game (11) with 0 < α < γ

and for every initial condition x(0) in Kδ ,

W
(
x(t)

)
" W

(
x(0)

)
exp(−γ t) ∀t ! 0.

In particular, the set Γ attracts all solutions starting in Kδ .

Proof. Fix ε in ]0,1[ and recall that Uα denotes the payoff matrix (11) with parameters ε,α.
Since E0 = {x :W(x) = 1}, Kδ = {x :W(x) " δ}, and δ < 1, it follows that Kδ is disjoint from E0.
By (15) applied to p = e4, this implies that for every x in Kδ , the quantity (U0x)4 − x · U0x is
negative. Similarly, it follows from the definition of the function f in (18) that for every x in Kδ ,
f (x) is positive. Therefore, by compactness of Kδ , there exists a positive constant γ such that

max
x∈Kδ

(
(U0x)4 − x · U0x,−f (x)

)
" −3γ < 0. (19)

We now fix α in ]0,γ [ and consider the replicator dynamics in the game with payoff matrix Uα .
For every x in S4 and every i in I , |[(Uα − U0)x]i | " α. Therefore, it follows from (19) that

∀x ∈ Kδ, (Uαx)4 − x · Uαx " −3γ + 2α " −γ .

Since (Uαx)4 − x · Uαx is the growth rate of strategy 4, this implies that

x(t) ∈ Kδ ⇒ ẋ4(t) " −γ x4(t). (20)

Now, recall the definition of v(t) in Corollary 5.2. It follows from (18) that v̇(t) = −v(t)f (x(t))

and from (19) that if x(t) ∈ Kδ then −f (x(t)) " −3γ . Therefore,

x(t) ∈ Kδ ⇒ v̇(t) " −3γ v(t) " −γ v(t). (21)

7 For an introduction to Lyapunov functions, see, e.g., Bhatia and Szegö, 1970.
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Let w(t) := W(x(t)) = max(x4(t),3v(t)). Equations (20) and (21) imply that if x(t) is in Kδ

(i.e. w(t) " δ) then w decreases weakly. This implies that Kδ is forward invariant. Therefore, for
every initial condition x(0) in Kδ , Eqs. (20) and (21) apply for all t ! 0. It follows that for all
t ! 0, x4(t) " x4(0) exp(−γ t) and v(t) " v(0) exp(−γ t). The result follows. !

It follows from Proposition 3 and Proposition 4 that if α > 0 is small enough, then in the
game (11) the unique strategy used in correlated equilibrium is strategy 4, but x4(t) → 0 from an
open set of initial conditions.

7. Discussion

This note analyzed the behavior of the single population replicator dynamics in a family of
4 × 4 symmetric games, built by adding a strategy to a Rock-Paper-Scissors game. The added
strategy is equivalent to the Nash equilibrium of the underlying RPS game, but for a fixed ad-
ditional gain. It was shown that, provided that this fixed additional gain is small enough and for
an open set of initial conditions, the unique strategy in the support of a correlated equilibrium is
eliminated. We conclude with a few remarks.

(1) The results of this note also show that the two-population replicator dynamics may elimi-
nate all strategies used in correlated equilibrium along interior solutions, though maybe not from
an open set of initial conditions. See the remark in (Hofbauer and Weibull, 1996, p. 571).

(2) The basic idea of the proof is that if an attractor is disjoint from the set of equilibria, then
it is likely that we may add a strategy in a way that strongly affects the set of equilibria but does
not perturb much the dynamics in the neighborhood of the attractor.

(3) As mentioned in the introduction, elimination of all strategies used in correlated equilib-
rium actually occurs on an open set of games and for vast classes of dynamics (Viossat, 2005,
Chapter 10, part B). This robustness is crucial for the relevance of our results. Indeed, in many sit-
uations, we are unlikely to have an exact knowledge of the payoffs or of the population dynamics
of individual behaviors.

(4) Elimination of all strategies used in correlated equilibrium does not occur in 2 × 2 games
nor in 3 × 3 symmetric games. Actually, in every 3 × 3 symmetric game, from any interior initial
condition, and under any convex monotonic dynamics (Hofbauer and Weibull, 1996), all pure
strategies that have probability zero in all correlated equilibria are eliminated (Viossat, 2005,
Chapter 9, part B).

(5) Let µ(t) = x(t) ⊗ x(t) denote the joint distribution of play at time t . Since µ(t) is a
product distribution, it follows that it converges to the set of correlated equilibria if and only if
x(t) converges to the set of Nash equilibria. The same is not true for time-averages: convergence
of µ̄(T ) = 1

T

∫ T
0 µ(t)dt to the set of correlated equilibria does not imply convergence of x̄(T ) =

1
T

∫ T
0 x(t)dt to the set of Nash equilibria. Nevertheless, our results imply that there are games

for which neither µ̄, nor any generalized time-average of the joint distribution of play, converges
to the set of correlated equilibria.8

8 We say that ν(·) is a generalized time-average of the joint distribution of play if there exists an absolutely continuous,
strictly increasing function τ :R → R, with τ (0) = 0 and τ (t) → +∞ as t → +∞ such that, for all T > 0, ν(T ) =

1
τ (T )

∫ T
0 τ̇ (t)µ(t)dt . (τ is a rescaled time and the standard time-average corresponds to τ (t) = t for all t .)
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(6) Consider a bimatrix game with pure strategy sets I and J , and payoff function gk for player
k = 1,2. A weak correlated equilibrium (Moulin and Vial, 1978) is a probability distribution µ

on I × J such that:
∑

(i,j)∈I×J

µ(i, j)
[
g1(i, j) − g1(i

′, j)
]
! 0 ∀i′ ∈ I (22)

and such that the corresponding inequalities for player 2 are satisfied.9 The definition can be
extended to n-player games. The set of weak correlated equilibria is also called the Hannan
set, after Hannan (1957). Recent interest for this notion arose from the construction of simple
adaptive processes converging to the Hannan set, and such that more sophisticated versions of
these processes converge to the set of correlated equilibria (Hart and Mas-Colell, 2001; Young,
2004; Hart, 2005).10

In contrast with our results, Hofbauer (2005) shows that under the standard version of the
n-population replicator dynamics, for any n-player game and any interior initial condition, the
average joint distribution of play converges to the Hannan set. This indicates that, for evolution-
ary dynamics, there is a sharp difference between converging to the Hannan set and to the set of
correlated equilibria; or equivalently, between having “no regret” and “no conditional regret” (for
definitions of these concepts see, e.g., Hart and Mas-Colell, 2003 or the book of Young, 2004).
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