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nard, bien sûr, mais aussi Mme Mascarello, M. Bastianelli, et surtout Pierre

Puchol, dont je n’oublie ni les cours ni qu’il nous traitait en adultes. Karl
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Jean-François Laslier, Vincent Renard, Michel Balinski, et Damien, souvent

providentiel.
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débattu pour me trouver une salle de soutenance, et Marie-Hélène, dont j’ai
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pattes sur le clavier.
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Présentation de la thèse

Les deux premières parties de la thèse se rattachent à la théorie des jeux

et la troisième partie à la biologie théorique. La première partie étudie la

notion d’équilibre corrélé : un des concepts centraux d’équilibre en théorie

des jeux (Aumann, 1974, 1987); la deuxième partie relève de la théorie des

jeux évolutionistes et étudie le lien entre l’issue de dynamiques d’évolution

et les concepts stratégiques statiques; la troisième partie, co-écrite, étudie

les déterminants de la séparation entre lignée germinale et lignée somatique

chez les algues vertes volvocales.

Notions de théorie des jeux. La théorie des jeux cherche à modéliser

et analyser les situations d’interaction stratégique. Elle a de nombreuses

applications, en sciences sociales, en écologie et en biologie de l’évolution,

ainsi qu’en informatique théorique.

Jeu. Un jeu est donné par un triplet

G = {I, (Si)i∈I , (Ui)i∈I}

où I est l’ensemble des joueurs (les agents qui interagissent), Si l’ensemble des

stratégies pures du joueur i ∈ I (ce qu’il peut faire) et Ui : S = ×i∈ISi → R
la fonction de paiement du joueur i. Cette dernière associe à chaque profil

de stratégies pure s = (si)i∈I ∈ S un paiement, qui est une mesure du gain

ou de la perte que le joueur i tire de l’interaction. Dans le cadre de la thèse,

l’ensemble des joueurs et les ensembles de stratégies pures de chacun des

joueurs sont supposés finis.

Les agents peuvent avoir intérêt à agir de manière aléatoire, c’est à dire à

choisir une probabilité sur leur ensemble de stratégies pure, appelé stratégie

mixte. Lorsque les joueurs utilisent des stratégies mixtes, les fonctions de

paiements sont étendues multi-linéairement. Enfin, la description du jeu

peut être complété par l’introduction d’une structure d’information.

1



Equilibres. Un équilibre de Nash d’un jeu est un profil de stratégies

mixtes tel que la stratégie de chaque joueur maximise son paiement, étant

donné son information et la stratégie des autres joueurs. N’importe quel jeu

fini à au moins un équilibre de Nash.

Un équilibre corrélé du jeu G est un équilibre de Nash d’un jeu où, avant

de jouer le jeu G, les joueurs observent de manière privée des réalisations

d’événement aléatoires sur lesquels ils peuvent conditionner leurs actions.

Les observations des joueurs pouvant être corrélées entre elles, les joueurs

peuvent ainsi corréler leurs actions sans communication directe. Une distri-

bution d’équilibre corrélé est une distribution de probabilité sur l’ensemble

des profils de stratégies pures fdu jeu G induite par un équilibre corrélé. On

peut montrer que l’ensemble des distributions d’équilibre corrélés d’un jeu

est un polytope qui contient l’enveloppe convexe des équilibres de Nash.

Partie I : réduction duale et équilibre corrélé

La première partie de la thèse étudie les propriétés des équilibres corrélés

ainsi que des techniques et classes de jeux liées. Par souci de concision, on

appelera par la suite “équilibres corrélés” les distributions d’équilibre corrélé.

Chapitre 1 : Why Study Correlated Equilibria?

Cette introduction à la partie I rappelle quelques définitions et résultats

fondamentaux sur les équilibres corrélés, explique l’intérêt de ce concept

d’équilibre, et présente les contributions de la première partie de la thèse.

Chapitre 2 : Properties and Application of Dual Reduc-

tion

Cet article étudie la technique de réduction duale (Myerson, 1997) et en

montre l’utilité pour l’étude des équilibres corrélés et des équilibres de Nash.

La technique de réduction duale permet de réduire un jeu en un jeu plus

petit, dont les stratégies pures correspondent à des stratégies mixtes du jeu

initial, invariantes sous certaines châınes de Markov1. Myerson (1997) a

1Ces châınes de Markov sont engendrées par les solutions du dual d’un programme
linéaire dont les solutions sont les équilibres corrélés.



montré que tout équilibre corrélé du jeu réduit2 induit un équilibre corrélé

du jeu initial, et a caractérisé la classe des jeux qui ne peuvent être réduits

strictement par réduction duale. Les autres propriétes de la réduction duale

étaient pour l’essentiel inconnues.

L’article étudie ces propriétés. Il montre, par exemple, que le proces-

sus de réduction est invariant sous toute transformation affine positive des

paiements, que les stratégies qui n’appartiennent au support d’aucun équilibre

corrélé sont toujours éliminées, et que, pour les jeux à deux joueurs génériques,

le processus de réduction est défini de manière unique. Il étudie également les

propriétés de la réduction duale dans des classes particulières de jeux (jeux

à somme nulle, symétriques, avec un seul équilibre, etc.) ainsi que le lien

entre la réduction duale et des concepts de raffinement d’équilibre corrélé

(Myerson, 1986; Dhillon et Mertens, 1996).

L’article s’attache d’autre part à montrer l’utilité et la puissance de la

réduction duale. La réduction duale permet notamment de prouver qu’un

équilibre corrélé unique est un équilibre de Nash quasi-strict3; l’existence

dans certaine classes de jeux d’un équilibre de Nash à support plein; ou

encore, sous des hypothèses supplémentaires, d’obtenir des informations sur

la dimensionalité du polytope des équilibres corrélés.

Chapitre 3 : Openness of the Set of Games with a

Unique Correlated Equilibrium

Cette note montre notamment que l’ensemble des jeux ayant un unique

équilibre corrélé est ouvert et que l’ensemble des jeux ayant un unique équilibre

de Nash ne l’est pas.

Jansen (1981) a montré que l’ensemble des jeux à deux joueurs ayant un

unique équilibre de Nash est ouvert. Il n’était pas su si ce résultat s’étendait

aux jeux à plus de deux joueurs où à des variantes de l’équilibre de Nash,

comme les équilibres symétriques. De plus, pour la notion d’équilibre corrélé,

aucun résultat n’avait été obtenu.

Le résultat principal de cette note est que, pour n’importe quel nombre

2En fait, un jeu peut admettre plusieurs réductions, et il faudrait donc dire : tout
équilibre corrélé de n’importe quel jeu réduit...

3Un équilibre est quasi-strict si, pour tout joueur i ∈ I, le support de la stratégie mixte
du joueur i est égal à l’ensemble des stratégie pures qui maximisent son paiement (face à
la stratégie des autres joueurs).



de joueurs, l’ensemble des jeux ayant un unique équilibre corrélé est ouvert.

De plus, un contre-exemple montre que pour les jeux à trois joueurs ou plus,

l’ensemble des jeux avec un unique équilibre de Nash n’est pas ouvert.4

Il est montré également que, dans l’ensemble des jeux symétriques à deux

joueurs, l’ensemble des jeux avec un unique équilibre de Nash symétrique5

n’est pas ouvert, mais que l’ensemble des jeux avec un unique équilibre de

Nash symétrique et qui est quasi-strict est ouvert.

Les preuves utilisent des techniques de dualité linéaire, un résultat sur les

polytopes, et la semi-continuité supérieure de la correspondance des équilibres.

Chapitre 4 : Correlated Equilibrium in Generic Zero-

Sum Games

Cette très brève note montre que, pour les jeux à deux joueurs et à somme

nulle génériques, tous les équilibres corrélés sont des équilibres de Nash et

que, pour une notion plus forte de généricité, il y a un unique équilibre

corrélé. La preuve apparâıt à postériori comme la réunion d’arguments de

Forges (1990) et de Bonhenblust et al (1950), les résultats obtenus étant

toutefois plus précis.

Chapitre 5 : Elementary Games and Games whose Cor-

related Equilibrium has Full Dimension

Cette note relie et caractérise deux classes de jeux. Un jeu est élémentaire

(Myerson, 1997) s’il ne peut être réduit strictement par réduction duale. Un

jeu est plein si le polytope des équilibres corrélés est de dimension maximale

(N−1 où N est le nombre de profils de stratégies pures du jeu). Les équilibres

de Nash se trouvent alors sur la frontière de ce polytope (Nau et al, 2004).

Il est montré qu’un jeu élémentaire est plein si et seulement si aucune

des contraintes définissant les équilibres corrélés n’est vide. De plus des

caractérisations des jeux élémentaires et des jeux pleins sont obtenues, à

l’aide notamment de jeux auxiliaires similaires à celui utilisé par Hart et

Schmeidler (1989) dans leur preuve d’existence des équilibres corrélés.

4En outre, j’ai montré récemment que pour tout entier k ≥ 2 et n’importe quel nombre
de joueurs, l’ensemble des jeux avec k équilibres n’est pas ouvert.

5Il peut y avoir plusieurs équilibres, mais un seul est symétrique.



Chapitre 6 : Geometry, Correlated Equilibrium and

Zero-Sum Games

Cet article caractérise la classe des jeux dont le polytope des équilibres

corrélés contient un équilibre de Nash dans son intérieur relatif (lorsque celui-

ci est non vide) et montre que cette classe de jeux contient et généralise celle

des jeux à somme nulle.

Comme expliqué plus haut, le polytope des équilibres corrélés contient

l’enveloppe convexe des équilibres de Nash. Comprendre où sont situés les

équilibres de Nash dans le polytope des équilibres corrélés permet de préciser

la relation entre ces deux notions d’équilibre et pourrait déboucher sur de

meilleurs algorithmes de calcul des équilibres de Nash (problème NP-dur

même pour les jeux à deux joueurs; voir (Gilboa et Zemel, 1989)).

Comme indiqué précédemment, Nau et al (2004) ont montré que si le poly-

tope des équilibres corrélés est de dimension maximale, alors les équilibres de

Nash se trouvent sur la frontière de ce polytope. En revanche, si ce polytope

n’est pas de dimension maximale, des équilibres de Nash peuvent se trouver

dans son intérieur relatif. Nau et al (2004) donnent des conditions nécessaires

pour que cela se produise, mais pas de conditions suffisantes.

Grâce à l’utilisation de la réduction duale, l’article montre que l’une

des conditions nécessaires de Nau et al (2004) est en fait suffisante (le fait

que, dans n’importe quel équilibre corrélé, un sous-ensemble des inégalités

définissant les équilibres corrélés soient satisfaites avec égalité). De plus, il

montre que la classe des jeux satisfaisant cette condition est conceptuelle-

ment importante. En particulier, dans le cas des jeux à deux joueurs, elle

contient la classe des jeux à somme nulle, et la généralise, au sens ou de

nombreuses propriétés des jeux à somme nulle y sont vérifiées (les équilibres

de Nash sont échangeables, les paiements d’équilibre corrélé coincident avec

les paiements d’équilibre de Nash, les marginales de tout équilibre corrélé

induisent un équilibre de Nash, etc.)

Les preuves utilisent des propriétés de complémentarité forte ainsi que

des arguments (élémentaires) d’analyse convexe.



Partie II : jeux d’évolution

Domaine de recherche

La deuxième partie de la thèse se rattache à la théorie des jeux évolutionniste

(Maynard Smith, 1982; Hofbauer et Sigmund, 1998). Cette branche de la

théorie des jeux analyse l’évolution de la fréquence des comportements au

sein de populations d’agents interagissant stratégiquement et dotés d’une

rationalité nulle ou limitée. En biologie, le paradigme le plus simple est

celui d’interactions au sein d’une population infinie, entre individus dont

les comportements sont codés dans les gènes, qui se reproduisent clonale-

ment, et d’autant plus, en moyenne, que leur comportement obtient de bons

paiements.

L’évolution de la fréquence des comportements dans la population est

modélisée par une équation aux différences ou une équation différentielle

comme la dynamique des réplicateurs:6

ẋi(t) = xi(t) [Ax(t)− x(t) ·Ax(t)]

Ici, xi(t) est la fréquence de la stratégie i ∈ {1, ..., N} à l’instant t, x(t) =

(x1(t), ..., xN(t)) le vecteur des fréquences des stratégies (qu’on peut voir aussi

comme la stratégie moyenne au sein de la population), et A = (aij)1≤i,j≤N

la matrice des paiements. I.e., aij est le paiement d’un individu jouant la

stratégie i face à un individu jouant la stratégie j. Sous la dynamique des

réplicateurs, le taux de croissance d’une stratégie est donc égal à la différence

entre le paiement qu’elle obtient et le paiement moyen. La variable d’état est

la stratégie moyenne, x(t), qui évolue dans un simplexe de dimension N − 1.

D’autres dynamiques sont très étudiées, comme la dynamique de meilleure

réponse, d’inspiration économique :

ẋ(t) ∈ BR(x(t))− x(t)

Ici, BR(x(t)) est l’ensemble des stratégie mixtes qui sont des meilleures

réponses à la stratégie moyenne courante x(t). Notons que la dynamique

6Les dynamiques présentées ci-dessous décrivent l’évolution des comportements au sein
d’une seule population, dont les membres interagissent. Pour représenter la co-évolution
de plusieurs populations, on fait appel à des dynamiques analogues, mais où l’évolution
de la fréquence des comportements dans une populations dépend de la fréquence des
comportements courante dans les autres populations. Les chapitres 10 et 12 sont consacrés
à l’étude de dynamiques à une population et les chapitres 8, 9 et 11 à l’étude de dynamiques
à une ou plusieurs populations.



de meilleure réponse n’est pas donnée par une équation différentielle, mais

par une inclusion différentielle : ẋ peut prendre plusieurs valeurs.

Une des questions centrales, dans la littérature comme dans la thèse,

est de préciser le lien entre l’issue de ce type de dynamiques et les con-

cepts stratégiques statiques, comme l’équilibre de Nash, l’équilibre corrélé, les

stratégies évolutivement stables (un raffinement de l’équilibre de Nash due‘à

Maynard-Smith et Price (1973)), ou l’élimination des stratégies dominées.7

Les dynamiques d’évolution ne convergent pas toujours (Hofbauer et Sig-

mund, 1998, section 8.6). Toutefois, cela ne signifie pars forcément qu’il n’y

ait pas de lien entre l’issue de ces dynamiques et les équilibres. Ainsi, sous

la dynamique des réplicateurs à une ou deux populations, il suffit qu’il existe

un seuil ε > 0 tel que toutes les stratégies soient toujours présentes en pro-

portion au moins ε pour que la solution converge en moyenne temporelle vers

l’ensemble des équilibre de Nash - même si la solution elle-même ne converge

pas vers les équilibres (Hofbauer et Sigmund, 1998, theorem 7.6.4).

De plus, de nombreux résultats récent montrent qu’une classe de proces-

sus adaptatifs, appelés dynamiques de non-regret, convergent en moyenne

temporelle vers l’ensemble des équilibres corrélés (voir Hart, 2005, pour une

revue). Ces processus sont distincts des dynamiques d’évolution classiques,

mais amènent à se demander s’il existe un lien général entre les dynamiques

d’évolution et les équilibres corrélés.

L’apport majeur de la deuxième partie de la thèse est de montrer que

ce n’est pas le cas, sauf en petite dimension : pour de grandes classes

de dynamiques, toutes les stratégies appartenant au support d’au moins

un équilibre corrélé peuvent être éliminés, si bien que seules les stratégies

n’appartenant au support d’aucun équilibre survivent (voir le résumé du

chapitre 10 ci-dessous). Pour les équilibres de Nash, les résultats sont en-

core plus forts : l’élimination de toutes les stratégies appartenant au support

des équilibres de Nash peut se produire sous n’importe quelle dynamique

d’adaptation myope régulière8 (chapitre 11) et, sous la dynamique des réplicateurs

et la dynamique de meilleure réponse, à partir de presque toutes les condi-

7Une stratégie est (strictement) dominée s’il existe une stratégie qui obtient toujours
(strictement) de meilleurs paiements, quelque soit le comportement de l’adversaire.

8Les dynamique d’adaptation myopes sont celles dont le champ de vecteurs vérifie
ẋ·Ax > 0 pour tout x qui n’est ni un équilibre ni un équilibre d’un des “sous-jeux” obtenus
par élimination de certaines stratégies. Cela signifie intuitivement que la population évolue
vers de meilleures réponses à la stratégie courante : une condition minimale d’adaptativité.



tions initiales (chapitre 12).

Contributions de la deuxième partie de la thèse

Chapitre 7 : Evolutionary Dynamics and Strategic Con-

cepts

Cette introduction à la deuxième partie de la thèse donne un apercu des ques-

tions, modèles et résultats essentiels de la théorie des jeux évolutionnistes, et

présente les contributions de la thèse.

Chapitre 8 : Evolutionary Dynamics and Dominated

Strategies

Cet article est essentiellement une revue de la littérature sur l’élimination - ou

non - des stratégies dominées par les dynamiques d’évolution. Il traite tout

d’abord des résultats positifs et négatifs concernant les dynamique continues,

puis de la manière dont ces résultats se transposent - ou non - pour les

dynamiques discrètes. Quelques résultats nouveaux sont obtenus, comme le

fait que, parmi une classe de dynamiques monotones, seules les dynamiques

”concaves” éliminent les stratégies mixtes dominées par une stratégie pure.

Chapitre 9, partie A : Replicator Dynamics and Nash

Equilibrium in Low Dimension

Cette note montre que, dans les jeux symétriques à trois stratégies, la dy-

namique des réplicateurs à une population élimine toutes les stratégies pures

qui n’appartiennent au support d’aucun équilibre de Nash. Le même résultat

est obtenu pour la dynamique de meilleure réponse. Les preuves exploitent

le fait que les systèmes dynamiques correspondant évoluent dans une région

compacte du plan.

Chapitre 9, partie B : Replicator Dynamics and Corre-

lated Equilibrium

Cette note étudie toujours les jeux symétriques à trois stratégies, mais cette

fois pour des dynamiques à deux populations, si bien que l’espace d’état a



maintenant dimension 4. Il est montré que la dynamique des réplicateurs,

la dynamique de meilleure réponse, ainsi que n’importe quelle dynamique

monotone convexe (Hofbauer et Weibull, 1996) élimine toutes les stratégies

qui n’appartiennent au support d’aucun équilibre corrélé. La preuve repose

sur la caractérisation des profils de stratégies non jouées en équilibre corrélé

de Nau et McCardle (1990) et sur des arguments de réduction duale.

Chapitre 10, partie A : Replicator Dynamics do not

Lead to Correlated Equilibrium

Cet article montre que pour la dynamique des réplicateurs à une population,

il existe un ensemble ouvert de jeux tel que, pour un ensemble ouvert de

conditions initiales, toutes les stratégies qui appartiennent au support des

équilibres corrélés sont éliminées. Les mêmes résultats sont établis pour des

versions perturbées ou discrétisées de la dynamique des réplicateurs. La

preuve repose sur une méthode de construction de jeux ayant un unique

équilibre, un principe de décomposition de la dynamique des réplicateurs dans

les jeux considérés, qui permet d’analyser très précisément cette dynamique,

et sur la construction d’une fonction de Lyapunov.

Chapitre 10, partie B : Evolutionary Dynamics do not

Lead to Correlated Equilibrium

Cet article montre que les résultats obtenus dans la note précédente sont

robustes, au sens où ils sont valables pour un grand nombre de dynamiques.

En particulier, pour les dynamiques de meilleure réponse, de Brown-von

Neumann-Nash, et pour n’importe quelle dynamique monotone9 qui dépend

continûment des paiements, il existe un ensemble ouvert de jeux pour lesquels,

pour un ensemble ouvert de condition initiales, toutes les stratégies appar-

tenant au support d’au moins un équilibre corrélé sont éliminées. De plus,

pour la dynamique des réplicateurs et la dynamique de meilleure réponse,

les résultats sont robustes à l’addition de stratégies mixtes comme nouvelles

stratégies pures des jeux considérés.

9Une dynamique est monotone si le taux de croissance au temps t d’une stratégie est
(strictement) plus grand que celui d’une autre stratégie si et seulement si son paiement au
temps t est (strictement) plus élevé.



Les preuves utilisent notamment des fonctions de Lyapunov et les condi-

tions de stabilité des cycles hétérocliniques sur le simplexe dues à Hofbauer

(1994) et Brannath (1994).

Chapitre 11 : Elimination of All Strategies in the Sup-

port of Nash Equilibrium: a Universal Example

Cette note généralise les résultats obtenus dans l’article précédent à la (très

grande) classe des dynamique d’adaptation myope (Swinkels, 1993) et aux

cas des dynamiques à plusieurs populations, mais pour la notion d’équilibre

de Nash et non d’équilibre corrélé. Il est montré que pour n’importe quelle

dynamique d’adaptation myope dépendant continûment des paiements, et à

1, 2 ou 3 populations, il existe un ensemble ouvert de jeux tels que, pour

un ensemble ouvert de conditions initiales, toutes les stratégies jouées en

équilibre de Nash sont éliminées. Ceci bien que les jeux considérés, comme

ceux considérés au chapitre 10, aient un seul équilibre de Nash, qui est strict,

et est donc évolutivement stable. La preuve repose notamment sur une ver-

sion du théorème fondamental de la sélection naturelle de Fisher (1930).

Chapitre 12. Elimination of All Strategies in the Sup-

port of Nash Equilibrium from Almost All Initial Con-

ditions

Cet article montre que, sous la dynamique des réplicateurs et la dynamique de

meilleure réponse, toutes les stratégies appartenant au support des équilibres

de Nash peuvent être éliminées non seulement pour un ensemble ouvert

de conditions initiales, mais pour presque toutes les conditions initiales.

Ceci pour un ensemble ouvert de jeux, tout du moins pour la dynamique

de meilleure réponse. Les systèmes dynamiques considérés sont de dimen-

sion 5 ou 6, mais ils peuvent être précisément analysés grace au principe

d’amélioration (”Improvement Principle”) de Monderer et Sela (1997), pour

la dynamique de meilleure réponse, et à une décomposition de la dynamique,

pour la dynamique des réplicateurs. Les preuves utilisent également des fonc-

tions de Lyapunov et l’analyse du comportement de la moyenne temporelle

de solutions convergeant vers un cycle hétéroclinique (Gaunersdorfer, 1992).



Partie III: différentiation germ-soma

La troisième partie de la thèse relève de la biologie théorique et comprend

deux chapitre, comprend une unique contribution :

Chapitre 13 : Transition from Unicellular to Multicellular-

Organisms and Gem-Soma Differentiation

Ce chapitre introduit et résume, à l’intention de non-biologistes, les questions

abordées et les contributions apportées au chapitre 14.

14. Life-History Evolution and the Origin of Multicel-

lularity, par R.E. Michod, Y. Viossat, C.A. Solari, M. Hurand et

A. Nedelcu, à parâıtre dans Journal of Theoretical Biology

Cet article étudie les déterminants de la différentiation cellulaire, et plus

particulièrement de la séparation entre lignée germinale et lignée somatique

chez les algues vertes volvocales. Cette famille d’algues comprend de nom-

breuses espèces, qui varient en taille (de 1 à 50.000 cellules) et en degré de

différentiation (absence de différentiation pour les colonies de petite taille,

présence de cellules somatiques pour les colonies de taille intermédiaire,

différentiation complète germ-soma pour les colonies de grande taille).

Nous proposons des modèles théoriques fondés sur le trade-off entre con-

tribution à la fécondité et contribution à la viabilité de la colonie auxquels

font face les cellules individuelles. Nous montrons que la différentiation germ-

soma est favorisée si ce trade-off est convexe ou s’il existe un coût fixe à la

reproduction (i.e. si les cellules qui se reproduisent, même rarement, con-

tribuent nettement moins à la viabilité de la colonie que les cellules soma-

tiques).

L’analogue d’un coût fixe de reproduction existe chez les algues vertes

volvocales, à cause notamment d’un mode particulier de reproduction (pal-

intomie) et de phénomènes hydrodynamiques. Compte tenu du fait que ce

coût crôıt avec la taille de la colonie, les prédictions de nos modèles corre-

spondent aux données biologiques rappelées ci-dessus (premier paragraphe).





General Introduction

This dissertation is divided in three parts. The first part groups contribu-

tions to the study of correlated equilibria. We focus on the properties and

applications of the dual reduction (Myerson, 1997) and the geometry of Nash

equilibria and correlated equilibria. The second part deals with evolutionary

dynamics. We investigate the link between strategies belonging to the sup-

port of Nash or correlated equilibria and strategies surviving in the long-run.

We find that many dynamics, including the replicator and best-response dy-

namics may eliminate all strategies in the support of correlated equilibria.

Elimination of all strategies in the support of Nash equilibria is found to be

even more universal, and may occur from almost all initial conditions. The

third part consists of a single co-written article, which belongs to the field

of theoretical biology. We study aspects of the transition from unicellular to

multi-cellular organisms, in particular factors driving germ-soma specializa-

tion in volvocine green algae.

Lengthier introductions are given at the beginning of each part. The

bibliography of part I and part II is disjoint from the bibliography of part

III, and is given at the end of part II. Though interconnected, the chapters are

essentially self-contained. In particular, the notations and some definitions

are recalled each time. This accounts for some repetitions.
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Part I

Dual Reduction and Correlated

Equilibria
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Chapitre 1

Introduction to Part I: Why

Study Correlated Equilibria?

We first recall the definition of correlated equilibria and the canonical rep-

resentation theorem (any correlated equilibrium distribution is a canonical

correlated equilibrium distribution). We then motivate the study of corre-

lated equilibria (section 1.2) and present the contribution of this dissertation

(section 1.3).

1.1 Definition and canonical representation

Correlated equilibrium. A correlated equilibrium (Aumann, 1974) is a

Nash equilibrium of a game in which players can condition their action on

payoff-irrelevant signals received before play. These signals may be correlated

across players. Thus, even though players choose their action independently,

they may correlate their actions through the signals. Formally, let

G = {I, (Si)i∈I , (Ui)∈I}

be a finite game. I is the set of players, Si the set of pure strategies (or

actions) of player i and Ui : ×i∈ISi → R the payoff function of player i. For

every i in I, let Mi be a nonempty finite set and let M := ×i∈IMi. Let ρ be

a probability distribution over M . Consider the game Γ played as follows:

first a profile m = (mi)i∈I ∈ M is drawn at random according to the prob-

ability distribution ρ and player i privately observes mi; then G is played.

That is, each player i chooses an action si in Si and receives the payoff Ui(s),

17



18 CHAPITRE 1. INTRODUCTION TO PART I

where s = (si)i∈I . We say that Γ is a game based on G and extended by the

correlation device (M, ρ).

Definition. A correlated equilibrium of G is a Nash equilibrium of a game

based on G and extended by a correlation device.

For any finite set Σ, let ∆(Σ) denote the set of probability distribution

over Σ. A (behavioral) strategy of player i in the extended game Γ is a

mapping

φi : Mi → ∆(Si)

mi → φi(·|mi)

from the set of messages that player i can receive to the set of mixed strategies

of player i in G. In particular, Γ is a finite game. It follows that Γ has at least

a Nash equilibrium hence G has at least a correlated equilibrium.1 Direct

proofs of existence of correlated equilibria (i.e. proofs that do not use the

existence of Nash equilibria nor a fixed point theorem) have been given by

Hart and Schmeidler (1989) and Nau and McCardle (1990). See chapter 2.

Let S := ×i∈ISi. A strategy profile φ = (φi)i∈I of a game extended by the

correlation device (M, ρ) induces a probability distribution µ ∈ ∆(S) given

by:

∀s ∈ S, µ(s) =
∑
m∈M

ρ(m)
∏
i∈I

φi(si|mi)

Definition. A correlated equilibrium distribution is a probability distribution

over the set S of pure strategy profiles of G induced by a correlated equilib-

rium.

Canonical representation. Assimilate a correlated equilibrium with a

triplet (M, ρ, φ), where M =
∏

i Mi and ρ ∈ ∆(M) define the extended game

Γ and φ = (φi)i∈I is a Nash equilibrium of Γ.

Definition. A correlated equilibrium (M, ρ, φ) is canonical if for every player

i, Mi = Si and φi is the identity mapping2.

1Of course, existence of correlated equilibria follows also from existence of Nash equi-
libria in G; see the end of section 1.1.

2That is, φi(si|si) = 1 for every i in I and every si in Si.
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Definition. A canonical correlated equilibrium distribution is a correlated

equilibrium distribution induced by a canonical correlated equilibrium.

The importance of canonical correlated equilibria stems from the follow-

ing canonical representation theorem:

Theorem. Any correlated equilibrium distribution is a canonical correlated

equilibrium distribution.

The proof is an instance of the revelation principle (see, e.g., (Myerson,

1994)).

Aumann’s (1974) original approach to correlated equilibria is descriptive.

The issue is to clarify the type of behaviour compatible with the assumption

that the agents are rational (and with or without additional assumptions,

such that the assumption that the agents have a common prior on the states

of the world; see Aumann (1974, 1987)). The signals mi received by the

agents are then interpreted as realizations of any kind of random events on

which the agents could condition their behaviour (e.g., the fact that it rained

the day before or not). Another approach is in term of mechanism-design.

The focus is now on the behaviour that rational agents may be induced to

have, and in particular on the improvement of equilibrium payoffs which may

result from the intervention of a referee (other correlation mechanism are also

of interest, see, e.g., Forges (1986)). The signals are then sent by this referee,

and the canonical representation theorem then means that the referee may

restrict himself to send recommendations of pure strategies without loss of

generality.

More precisely, let µ ∈ ∆(S). Assume that a mediator draws at random

a strategy profile s in S according to µ and then privately recommends the

pure strategy si (the ith component of s) to player i. In light of the canonical

representation theorem, µ is a correlated equilibrium distribution if and only

if, assuming that all the other players obey the mediator’s recommendation,

player i has no incentive to “deviate” from the mediator’s recommendation.

This is equivalent to:

∀i ∈ I, ∀si, ti ∈ Si,
∑

s−i∈S−i

µ(si, s−i) [Ui(ti, s−i)− Ui(si, s−i)] ≤ 0 (1.1.1)

where S−i :=
∏

j 6=i Si. Note that these inequalities, which we call incen-

tive constraints, are linear in µ. Since the conditions defining probability
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distributions over S:

∀s ∈ S, µ(s) ≥ 0

∑
s∈S

µ(s) = 1

are also linear, it follows that the set of correlated equilibrium distributions

is a convex polytope in ∆(S). In sharp contrast, the set of Nash equilibria of

a finite game may be disconnected and its connected components need not

be convex.

Nash Equilibria as Correlated Equilibria: we assimilate throughout

×i∈I∆(Si) to a subset of ∆(S) = ∆(×i∈I)Si. That is, we identify a mixed

strategy profile σ in ×i∈I∆(Si) with the product distribution in ∆(S), de-

noted also σ, and given by:

∀s ∈ S, σ(s) =
∏
i∈I

σi(si)

Nash equilibria correspond exactly to the correlated equilibrium distribu-

tions with a product distribution.

Abuse of vocabulary: in the remainder of this dissertation, we often write

correlated equilibrium for correlated equilibrium distribution. This is lighter

and without ambiguity since we focused throughout on correlated equilibrium

distributions and never consider actual correlated equilibria (Nash equilibria

of extended games) unless explicitly mentioned otherwise. In particular, the

difference between correlated equilibria and canonical correlated equilibria

will not appear.

However, this difference is conceptually important. For instance, Dhillon

and Mertens (1996) call a correlated equilibrium (M, ρ, φ) perfect if φ is a

perfect Nash equilibrium of the game extended by the correlation device

(M, ρ), and perfect direct if furthermore, for all i, Mi = Si and φi is the

identity. They show that for this notion, the revelation principle fails. That

is, the set of perfect correlated equilibrium distributions is in general larger

than the set of perfect direct correlated equilibrium distributions. See also

Chatterji and Govindan (2006, to appear).
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1.2 Why study correlated equilibria?

In many situations it is difficult to exclude that agents condition their be-

haviours on (essentially) payoff-irrelevant signals. Furthermore it may be

difficult to determine the signals available to each agent (in modelling terms,

it may be difficult to determine the extended game being played). In such

situations, correlated equilibrium seems a more natural solution concept than

Nash equilibrium. This is the original and most straightforward argument

to motivate the study of correlated equilibria. There is more however:

1. Aumann (1987) shows that correlated equilibrium is the natural out-

come of common knowledge of bayesian rationality.

2. Nau and McCardle (1990) show that strategy profiles that have zero

probability in all correlated equilibrium distributions are precisely those

that expose the players as a group to arbitrage from an outside observer.

See chapter 2, proposition 2.5.5 and section 2.11.2 for the mathematical

expression of this characterization.

3. The set of correlated equilibrium distributions is mathematically sim-

pler than the set of Nash equilibria. While this does not imply that

correlated equilibrium is a more interesting concept than Nash equi-

librium, this is nonetheless an argument to study correlated equilibria,

as whenever two concepts are as interesting, we should first investigate

the simpler one.

4. Correlated equilibria are better related than Nash equilibria to the

long-run behavior generated by classes of learning processes such as

no-regret procedures. See (Hart, 2005) for a recent survey.

5. In ecology and evolutionary biology, the correlated equilibrium con-

cept proved useful to interpret the outcome of asymmetric conflicts.3.

Similarly, the correlated equilibrium concept is useful to interpret the

outcome of games with local interactions. See Mailath et al (1997).

3For instance, in an animal contest for a territory, the fact that one of the animals is
the owner of the territory is typically payoff-irrelevant but may act as a cue to settle the
conflict. This results in a correlated equilibrium. See Maynard Smith and Parker (1976)
and Selten (1980) for the introduction and study of such conditional strategies; see Cripps
(1991) and Shmida and Peleg (1997) for the link with the correlated equilibrium concept.
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6. Understanding the location of Nash equilibria within the polytope of

correlated equilibrium distributions may lead to better algorithms to

compute Nash equilibria.

7. More generally, studying correlated equilibria may lead to a better

understanding of Nash equilibria. Examples will be given in the next

section and in chapters 2 to 6.

1.3 Contribution of this dissertation

Properties and Applications of Dual Reduction. We begin by studying dual

reduction (Myerson, 1997): a technique to reduce finite games into games

with fewer strategies while selecting among correlated equilibria. More pre-

cisely, chapter 2 serves three purposes: first, we survey and unify the ele-

mentary proofs of existence of correlated equilibria (Hart and Schmeidler,

1989; Nau and McCardle, 1990), which form the mathematical foundations

of dual reduction. Second, we argue that dual reduction is a useful tool to

investigate properties of correlated equilibria and of Nash equilibria, and il-

lustrate this point by a few examples. For instance, we give a direct proof

of the fact that if a game has a unique correlated equilibrium, then this is a

Nash equilibrium4, and a quasi-strict one. Third, we investigate systemati-

cally the properties of dual reduction (Is the reduction process sensitive to

rescalings of the utility functions ? Is it uniquely defined ? Which strategies

and equilibria are eliminated, which are not ? How does the reduction pro-

cess operates in some important classes of games such as zero-sum games or

symmetric games ? Etc.).

The geometry and topology of Nash equilibria and correlated equilibria. In

the next four chapters, we focus on the geometry and the topology of cor-

related equilibria, and on geometrical relations between Nash equilibria and

correlated equilibria.

The central result of chapter 3 is that the set of finite games with a

unique correlated equilibrium is open. This generalizes a result of Nitzan

(2005) and will prove crucial in part II, to show that certain properties of

evolutionary dynamics are robust to perturbation of the game. Related re-

sults are also discussed (for instance, we show that the set of games with a

4The proof is direct in that it does not use the existence of a Nash equilibrium.
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unique Nash equilibrium and the set of symmetric bimatrix games with a

unique symmetric Nash equilibrium are not open, etc.)

Chapter 4 is a very brief note showing that in generic zero-sum games

all correlated equilibria are Nash equilibria and that actually, still in generic

zero-sum games but with a slightly more demanding notion of genericity,

there is a unique correlated equilibrium distribution.5

The last two chapters are related to a result of Nau et al (2004). They

show that when the correlated equilibrium distribution polytope has full

dimension (i.e. the same dimension as the simplex of pure strategy profiles),

then all Nash equilibria belong to the boundary of this polytope. In contrast,

when the correlated equilibrium polytope does not have full dimension, then

Nash equilibria may lie in its relative interior (Nau et al, 2004, section 6).

This brings attention to the class of games whose correlated equilibrium

has full dimension. In chapter 5, we characterize this class of games and

relate it to the class of elementary games (Myerson, 1997). In chapter 6,

improving on Nau et al (2004), we characterize the class of games for which

there exists a Nash equilibrium in the relative interior of the correlated equi-

librium polytope (unless this polytope is a singleton). It is defined by re-

quiring that, in every correlated equilibrium, all incentives constraints that

stipulate not to deviate to a strategy that has positive probability in some

correlated equilibrium be tight. We call these games “pre-tight”, consistent

with Nitzan’s (2005) definition of tight games (which are pre-tight games

in which all strategies have positive marginal probability in some correlated

equilibrium).

Our initial motivation to study pre-tight games was the hope that a bet-

ter understanding of the location of Nash equilibria within the correlated

equilibrium polytope would eventually help improving existing algorithm for

computing Nash equilibria. It turns out that pre-tight games are interesting

in some other respect too. Indeed, we show that, in the two-player case, they

include and generalize games that are best-response equivalent to a zero-

sum game. In particular, Nash equilibria are exchangeable, any correlated

equilibrium payoff is a Nash equilibrium payoff, the marginals of correlated

equilibria yield Nash equilibria, and there are no good correlated equilibria

in the sense of Rosenthal (1974). This is, up to our knowledge, the largest

known class of two-person games in which Nash equilibria are exchangeable.

5As further discussed in chapter 4, this follows from a simple combination of arguments
of Forges (1990) and of Bonhenblust et al (1950).





Chapitre 2

Dual Reduction

Abstract

Dual reduction (Myerson, 1997) is a technique to reduce finite
games in a way that selects among correlated equilibria. This tech-
nique is shown to be a useful tool to study Nash equilibria and corre-
lated equilibria and its properties are investigated.

2.1 Introduction

This chapter deals with dual reduction: a technique introduced by Myerson

(1997), which allows to reduce finite games into games with fewer strategies,

while selecting among correlated equilibria. The reduction operates by elim-

ination of some pure strategies (e.g. dominated strategies) and replacement

of sets of pure strategies by mixed strategies with support in these sets. The

pure strategies of a reduced game are pure or mixed strategies of the original

game.1 It follows that any probability distribution on the set of strategy

profiles of a reduced game induces a probability distribution on the set of

strategy profiles of the initial game. In this sense, any correlated equilib-

rium of a reduced game induces a correlated equilibrium of the original game

(Myerson, 1997). As we will see, the same result holds for Nash equilibria.

The material is organized as follows: we first survey the linear duality

proofs of existence of correlated equilibria (Hart and Schmeidler, 1989; Nau

and McCardle, 1990, Myerson, 1997), which form the mathematical founda-

tion of dual reduction, and we recall Myerson’s (1997) main results (sections

1Some games may be reduced in several ways, hence the expression a reduced game
instead of the reduced game.

25
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2.3, 2.4 and appendix). We try throughout to synthesize the approaches of

Hart and Schmeidler, Nau and McCardle and Myerson.

Second (sections 2.5 and 2.6), dual reduction is shown to be a useful tool

to study properties of Nash equilibria and correlated equilibria. For instance,

it allows to give a direct proof (not using the existence of a Nash equilibrium)

of the fact that if a correlated equilibrium is the unique correlated equilibrium

of a game, then it is a Nash equilibrium, and a quasi-strict one.2 It also allows

to show that if all pure strategies of a game are undominated, then there are

certain dimensions that the correlated equilibrium polytope cannot have or

that if in every correlated equilibrium, all incentive constraints are tight, then

the game has a completely mixed Nash equilibrium.

Third, properties of dual reduction are investigated: Section 2.7 presents

general properties (which strategies and equilibria are eliminated, which are

not? If we rescale the payoffs of the game, how does it affect the reduction?

Etc.). Section 2.8 deals with properties in specific classes of games, zero-

sum games and symmetric games in particular. Section 2.9 shows that in

almost all two-player games, the reduction process is uniquely defined. In

section 2.10, equilibria remaining after reduction of the game are compared

to acceptable correlated equilibria (Myerson, 1986) and to perfect correlated

equilibrium distributions (Dhillon and Mertens, 1996); finally, the relevance

of dual reduction as inducing a refinement concept is discussed.

2.2 Notations and definitions

We recall notations and definitions introduced in chapter 1, and introduce

some new vocabulary.

2.2.1 Notations

Let

G = {I, (Si)i∈I , (Ui)i∈I}

denote a finite game in strategic form: I is the nonempty finite set of players,

Si the nonempty finite set of pure strategies of player i and Ui : S = ×i∈ISi →
R the utility function of player i. As usual, −i refers to the players other than

i and we let S−i := ×j∈I\{i} Sj. Pure strategies of player i (resp. strategy

2Quasi-strict equilibria are defined in definition 2.5.6.
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profiles; strategy profiles of the players other than i) are denoted si or ti (resp.

s ; s−i). We write (s−i, ti) to denote the strategy profile that differs from s

only in that its ith component is ti. Finally, for any finite set Σ, ∆(Σ) denotes

the set of probability distributions over Σ. In particular, ∆(Si) denotes the

set of mixed strategies of player i.

2.2.2 Correlated equilibria and deviation vectors

A correlated strategy of the players in I is a probability distribution over the

set S of pure strategy profiles. Thus µ = (µ(s))s∈S is a correlated strategy

if:

µ(s) ≥ 0 ∀s ∈ S (2.2.1)∑
s∈S

µ(s) = 1 (2.2.2)

A correlated strategy is a correlated equilibrium (Aumann, 1974) if it satisfies

the following incentive constraints:∑
s−i∈S−i

µ(s)[Ui(s)− Ui(s−i, ti)] ≥ 0 ∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si (2.2.3)

The following interpretation and vocabulary will be useful for the next sec-

tions. Let µ be a correlated strategy and consider the following extended

game Gµ, based on G: before G is played, a strategy profile s in S is drawn

at random with probability µ(s) by some mediator; then the mediator pri-

vately recommends si to player i; finally, G is played. The players can thus

condition their strategy in G on their private signal. A strategy of player i in

this extended game is a mapping αi : Si → ∆(Si) (a transition probability),

which we call a deviation plan. Denoting by αi(ti|si) the probability that

player i will play ti when recommended si, we have:

αi(ti|si) ≥ 0 ∀si ∈ Si,∀ti ∈ Si,∀i ∈ I (2.2.4)∑
ti∈Si

αi(ti|si) = 1 ∀si ∈ Si,∀i ∈ I (2.2.5)

A strategy profile is a deviation vector, i.e. a vector α = (αi)i∈I of deviation

plans. Such a deviation vector is trivial if, for all i in I, αi is the identity.
3 The incentive constraints (2.2.3) mean that µ is a correlated equilibrium

3That is, αi(si|si) = 1 for all i and all si.
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of G if and only if the trivial deviation vector (i.e. following the mediator’s

recommendations) is a Nash equilibrium of Gµ.

2.3 Existence of correlated equilibria

This section presents a direct proof of existence of correlated equilibria, based

on those given by Hart and Schmeidler (1989), Nau and McCardle (1990) and

Myerson (1997). These proofs are the mathematical roots of dual reduction

and the notions introduced below will be used throughout the chapter.

Consider the following two-player, zero-sum auxiliary game Γ: the max-

imizer chooses a correlated strategy µ in ∆(S); the minimizer chooses a

deviation vector α. The payoff is:

g(µ, α) :=
∑
i∈I

[Ui(µ)− Ui(αi ∗ µ)] (2.3.1)

where

Ui(µ) :=
∑
s∈S

µ(s)Ui(s)

is the average payoff of player i if µ is implemented, and αi ∗ µ is the dis-

tribution on S that results if a mediator tries to implement µ but player i

deviates according to αi:

αi ∗ µ(s−i, ti) =
∑
si∈Si

αi(ti|si)µi(s) ∀ti ∈ Si,∀s−i ∈ S−i

Thus, the quantity [Ui(µ)− Ui(αi ∗ µ)] is the relative gain for player i that

results from sticking to µ instead of deviating according to the deviation

plan αi. The payoff g(µ, α) is the sum of these gains. It follows from the

definition of correlated equilibria that the correlated strategy µ guarantees

0 to the maximizer (i.e. g(µ, α) ≥ 0 for every deviation vector α) if and

only if µ is a correlated equilibrium of G. It follows that G has a correlated

equilibrium if and only if the value of the auxiliary game Γ is nonnegative.

We have:

Theorem 2.3.1. The value of the auxiliary game Γ is zero.4

4The fact that the value is not only nonnegative but exactly 0 will be used later on.
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We first need a definition: A deviation plan αi : Si → ∆(Si) induces a

Markov chain on Si. This Markov chain maps the probability distribution

σi ∈ ∆(Si) to the probability distribution αi ∗ σi given by:

αi ∗ σi(ti) =
∑
si∈Si

αi(ti|si)σi(si) ∀ti ∈ Si

Definition 2.3.2. Let α = (αi)i∈I be a deviation vector. A mixed strategy

σi ∈ ∆(Si) is αi-invariant if αi ∗ σi = σi. A correlated strategy µ ∈ ∆(S) is

α-invariant if αi ∗ µ = µ for all i in I.

We now prove the theorem:

Proof. Let α denote a deviation vector. It follows from the basic theory of

Markov chains that, for each i in I, there exists at least one αi-invariant strat-

egy σi ∈ ∆(Si). As is easily checked, the product distribution σ :=
∏

i∈I σi

is α-invariant. This implies that g(σ, α) = 0. Therefore the maximizer can

defend 0. This shows that the value of the auxiliary game is nonnegative.

Furthermore, the minimizer can guarantee 0 by choosing the trivial deviation

vector. Therefore the value is actually 0.

2.4 Dual reduction: definition and known re-

sults

Unless stated otherwise, all definitions and results of this section are due to

Myerson (1997).

2.4.1 Definition

The Markov chain on Si induced by the deviation plan αi partitions Si into

transient states and disjoint minimal absorbing sets5. For any minimal ab-

sorbing set Bi, there exists a unique αi-invariant strategy with support in

Bi (actually its support is exactly Bi). Let Si/αi denote the set of (random-

ized) αi-invariant strategies with support in some minimal αi-absorbing set.

It may be shown that the set of αi-invariant strategies is the set of random

mixture of the strategies in Si/αi; that is, the simplex ∆(Si/αi).

5A subset Bi of Si is αi-absorbing if α(ti|si) = 0 for all si in Bi and all ti in Si\Bi.
An αi-absorbing set is minimal if it contains no proper αi-absorbing subset.
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Let α = (αi)i∈I be a deviation vector. The α-reduced game

G/α = {I, (Si/αi)i∈I , (Ui)i∈I}

is the game obtained from G by restricting the players to α-invariant strate-

gies. That is, the set of players and the payoff functions are the same as in

G but, for all i in I, the pure strategy set of player i is now Si/αi.
6

Before turning to dual reduction and its properties, let us specify our

vocabulary: let si, ti ∈ Si and s ∈ S. The pure strategy si (resp. pure

strategy profile s) is eliminated by the reduction process if σi(si) = 0 for all

σi in Si/αi (resp. if σ(s) = 0 for all σ in S/α). Thus si (resp. s) is eliminated

if and only if (resp. if and only if for some i in I) si is transient under αi.

The strategies si and ti are grouped together if there exists σi in Si/αi such

that both si and ti belong to the support of σi. Thus, si and ti are grouped

together if and only if they are recurrent under αi and belong to the same

minimal αi-absorbing set.7

Definition 2.4.1. A dual vector is an optimal strategy of the minimizer in

the auxiliary game of section 2.3. Since the value of this auxiliary game is

zero, a deviation vector α is a dual vector if

∀s ∈ S,−g(s, α) ≥ 0 (2.4.1)

where

−g(s, α) =
∑
i∈I

[Ui(αi ∗ s)− Ui(s)] =
∑
i∈I

∑
ti∈Si

αi(ti|si)[Ui(s−i, ti)− Ui(s)]

(2.4.2)

Remark 2.4.2. If s has positive probability in some correlated equilibrium,

then for every dual vector α, equation (2.4.1) holds with equality (g(s, α) =

0).

Indeed, if µ is a correlated equilibrium and α a dual vector, then (µ, α)

is a profile of optimal strategies of the auxiliary game of section 2.3, hence

for every strategy profile s in the support of µ, g(s, α) is equal to the value

of this auxiliary game, i.e. to 0.

6Strictly speaking the payoff functions of the reduced game are the functions induced
by the original payoff functions on the reduced strategy space.

7A pure strategy is αi-recurrent, or recurrent under αi, if it belongs to a minimal
absorbing set, and transient otherwise.
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Definition 2.4.3. A dual reduction of G is an α-reduced game G/α where

α is a dual vector. An iterative dual reduction of G is a reduced game

G/α1/α2/.../αm, where m is a positive integer and, for all k in {1, 2, ...,m},
αk is a dual vector of G/α1/α2/.../αk−1.

Note that, depending on the context, “dual reduction” may refer either

to the reduction process or to a game obtained by applying this reduction

process. Myerson (1997, section 6) provides many instructive examples of

dual vectors and dual reductions. Henceforth, unless stated otherwise, α is

a dual vector.

2.4.2 Some intuition on dual vectors

This section aims at providing some intuition on the peculiarities of dual

vectors and α-invariant strategies. The main point is that if α is a dual

vector and if every player j other than i uses an αj-invariant strategy, then

there exists a best-response to the strategies of the players other than i which

is αi-invariant. More precisely, assume that for every j in I\{i} the mixed

strategy σj is αj-invariant and let σi be any mixed strategy of player i. As-

similate throughout a mixed strategy profile and the probability distribution

it induces on ∆(S). It follows from (2.3.1) and the definition of dual vectors

that

−g(σ, α) =
∑
j∈I

[Uj(σ−j, αj ∗ σj)− Uj(σ)] ≥ 0 (2.4.3)

Since for every j in I, αj ∗ σ = (σ−j, αj ∗ σj) and since for every j 6= i,

αj ∗ σj = σj, (2.4.3) boils down to:

Ui(σ−i, αi ∗ σi) ≥ Ui(σ) (2.4.4)

As a particular case, we obtain:

Ui(σ−i, αi ∗ si) ≥ Ui(σ−i, si), ∀si ∈ Si (2.4.5)

Now fix si in Si and let αk
i ∗si denote the mixed strategy αi ∗ (αi ∗ ...(αi ∗si)),

where αi appears k times. It may be shown that the Cesaro average of the

sequence (αk
i ∗ si)k∈N converges and that its limit, which we denote by σsi

, is
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αi-invariant.8 Furthermore, repeated applications of (2.4.5) yield

Ui(σ−i, σsi
) ≥ Ui(σ−i, si)

9 (2.4.6)

In particular, if si is a best-response to σ−i, then so is σsi
, which shows that

there exists an αi-invariant best-response to σ−i.

2.4.3 Main properties

First, dual reduction generalizes elimination of weakly dominated strategies

in the following sense:

Proposition 2.4.4. Let si ∈ Si; assume that there exists a mixed strategy

σi in ∆(Si), σi 6= si, such that Ui(s−i, σi) ≥ Ui(s) for every s−i in S−i. Then

there exists a dual vector α such that Si/αi = Si\{si} and Sj/αj = Sj for

every j in I\{i}.

Proof. Take for α: αi ∗ si = σi, αi ∗ ti = ti if ti ∈ Si\{si}, and αj ∗ sj = sj

for every sj in Sj if j 6= i.

The main property of dual reduction is that it selects among correlated

equilibria: let G/α denote a dual reduction of G; let S/α = ×i∈ISi/αi denote

the set of pure strategy profiles of G/α. Let µ ∈ ∆(S/α) be a correlated

strategy of the reduced game G/α; the G-equivalent correlated strategy µ̄ is

the distribution on S induced by µ:

µ̄(s) =
∑

σ∈S/α

µ(σ)

(∏
i∈I

σi(si)

)
, ∀s ∈ S (2.4.7)

Theorem 2.4.5. If µ is a correlated equilibrium of G/α, then µ̄ is a corre-

lated equilibrium of G.

It follows from (2.4.7) that if µ is a product distribution, then so is µ̄.

Therefore we also have:

8The proof relies on the fact that every limit point of the Cesaro average of (αk
i ∗si)k∈N

is αi-invariant, and on the decomposition of Si in transient states and minimal absorbing
sets.

9Note that σsi
does not depend on σ−i; therefore, provided that every player j other

than i uses only αj-invariant strategies, then, whatever the precise choice of strategies
players other than i, player i is always (weakly) better off playing the αi-invariant strategy
σsi than playing si.
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Corollary 2.4.6. If µ is a Nash equilibrium of G/α, then µ̄ is a Nash equi-

librium of G.10,11

Let σ and τ be two pure strategy profile of the reduced game G/α. By

definition of S/α, if σ 6= τ , then σ and τ correspond to mixed strategy profiles

of the original game with disjoint support. It follows that the application

µ → µ̄ defined by (2.4.7) is injective, hence that distinct correlated equilibria

of G/α induce distinct correlated equilibria of G. Thus, if G has a unique

correlated equilibrium, then G/α has a unique correlated equilibrium too: a

fact which will be used in section 2.5.

By induction, theorem 2.4.5 extends to iterative dual reductions. That

is, any correlated equilibrium of an iterative dual reduction of G induces on

∆(S) a correlated equilibrium of G. Finally, as a corollary of theorem 2.4.5,

Myerson shows that against any strategy of the other players in the reduced

game, player i is indifferent between strategies belonging to the same minimal

absorbing set:

Proposition 2.4.7. Let Bi denote a minimal αi-absorbing set. For every

j 6= i, let σj ∈ Sj/αj and let σ−i := ×j∈I\{i}σj. For any pure strategies si

and ti in Bi, Ui(σ−i, si) = Ui(σ−i, ti).

2.4.4 Jeopardization and Elementary Games

Let us call a dual vector trivial if this is the trivial deviation vector. It follows

from the basic theory of Markov chains (see for instance Karr, 1990) that a

game may be (strictly) reduced if and only if there exists a nontrivial dual

vector. This leads to the question: when do nontrivial dual vectors exist? A

first step to answer this question is to introduce the notions of jeopardization

and elementary games:

Definition 2.4.8. Let si, ti ∈ Si. The strategy ti jeopardizes si if for all

correlated equilibria µ:∑
s−i∈S−i

µ(s)[Ui(s)− Ui(s−i, ti)] = 0

That is, in all correlated equilibria in which si is played, ti is an alternative

best response to the conditional probabilities on S−i given si. Note that if

10We assimilate throughout a Nash equilibrium and its (product) distribution.
11This property is not stated in (Myerson, 1997) but in (Myerson, 2003).
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the pure strategy si has zero probability in all correlated equilibria, then any

pure strategy ti of player i jeopardizes si. Using complementary slackness

properties allows to prove that:

Proposition 2.4.9. The strategy ti jeopardizes si if and only if there exists

a dual vector α such that αi(ti|si) > 0.

Thus, there exists a nontrivial dual vector if and only if some strategy is

jeopardized by some other strategy.

Definition 2.4.10. A correlated equilibrium µ is strict if

µ(si×S−i) > 0 ⇒
∑

s−i∈S−i

µ(s)[Ui(s)−Ui(s−i, ti)] > 0 ∀i ∈ I,∀si ∈ Si,∀ti 6= si

A game is elementary if it has a strict correlated equilibrium with full

support, or equivalently, if it has a correlated equilibrium µ satisfying with

strict inequality all incentives constraints in the sense that:∑
s−i∈S−i

µ(s)[Ui(s)− Ui(s−i, ti)] > 0 ∀i ∈ I, ∀si ∈ Si,∀ti 6= si (2.4.8)

Since12 the set of correlated equilibria is convex, it follows from definition

2.4.8 that a game is elementary if and only if there exist no i, si and ti 6= si

such that ti jeopardizes si. Thus proposition 2.4.9 implies that:

Corollary 2.4.11. A game may be reduced if and only if it is not elementary.

By iterative dual reduction, any game is eventually reduced to an elementary

game.

2.4.5 Full dual reduction

Let us say that two dual reductions G/α and G/β of the same game are

different if S/α 6= S/β. A game may admit different dual reductions (for

instance, if several strategies are weakly dominated). A tentative way to

restore uniqueness is to consider only reductions by some special dual vectors,

which minimize the number of pure strategies remaining in the reduced game:

12A strict correlated equilibrium with full support satisfies (2.4.8). Conversely, if µ

satisfies (2.4.8), then every pure strategy has positive marginal probability in µ and, by
perturbing µ, one obtains a correlated equilibrium with full support.
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Definition 2.4.12. A dual vector α is full if αi(ti|si) > 0 for all i in I, and

all pure strategies si and ti in Si such that ti jeopardizes si.

Full dual vectors always exist. This follows from proposition 2.4.9 and

from the convexity of the set of dual vectors.

Definition 2.4.13. A full dual reduction of G is an α-reduced game G/α

where α is a full dual vector. An iterative full dual reduction of depth m of

G is a game G/α1/α2/.../αm where m is a positive integer and, for all k in

{1, 2, ...,m}, αk is a full dual vector of G/α1/α2/.../αk−1.

All full dual vectors α define the same minimal αi-absorbing sets. Thus

in all full dual reductions, the same strategies are eliminated and the same

strategies are grouped together. A game may nonetheless admit different full

dual reductions, because the way strategies are grouped together may differ

quantitatively. We will return to this point in section 2.9.

2.5 Some applications of dual reduction

This section and the next illustrate the usefulness of dual reduction to study

the sets of Nash equilibria and correlated equilibria. First, consider the

following well-known fact:

Proposition 2.5.1. If a (finite) game has a unique correlated equilibrium,

then this correlated equilibrium is a Nash equilibrium.

The standard proof invokes the existence of Nash equilibrium in finite

games, hence relies implicitly on a powerful fixed point theorem such as

Brouwer’s or Kakutani’s. Dual reduction yields an alternate proof relying

solely on linear duality:

Proof. Let G be a game with a unique correlated equilibrium. By corollary

2.4.11, G has (at least one) elementary iterative reduction Ge. Since Ge

is elementary (i.e. has a strict correlated equilibrium with full support),

it follows that either Ge has an infinity of correlated equilibria, or Ge has

a unique strategy profile. Since G has a unique correlated equilibrium and

since different correlated equilibria of Ge induce different correlated equilibria

of G, the first case is ruled out. Therefore, Ge has a unique strategy profile,

hence trivially a Nash equilibrium. By corollary 2.4.6, this implies that G
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has a Nash equilibrium hence that the unique correlated equilibrium of G is

a Nash equilibrium.

Note that the above proof relies on: a) the definition of dual reduction,

which requires the Minimax theorem and existence of invariant distributions

for finite Markov chains; and b) corollary 2.4.11, which is proved by Myer-

son (1997) through the strong complementary property of linear programs.

Since the existence of invariant distributions for finite Markov chains can be

deduced from the Minimax theorem (see appendix A.1), it follows that our

proof of proposition 2.5.1 relies solely on linear duality. In particular no fixed

point theorem is used.

Dual13 reduction is also useful to prove existence of Nash equilibria with

special properties:

Proposition 2.5.2. In any finite game, there exists a Nash equilibrium σ

such that, for every player i and every pure strategy si of player i that has

marginal probability zero in all correlated equilibria, si is not a best response

to σ−i.

To prove proposition 2.5.2, we first need to introduce some special dual

vectors. Note that the set of dual vectors of a game is bounded and defined

by linear inequalities, hence is a polytope.

Definition 2.5.3. A dual vector α is interior if it is the unique dual vector

of the game or if it belongs to the relative interior of the set of dual vectors.

It follows from the definitions of dual vectors and full dual vectors that

a strictly convex combination of a full dual vector with any dual vector is a

full dual vector. This implies that:

Remark 2.5.4. Any interior dual vector is full.

Furthermore,

13The above proof relies on: a) the definition of dual reduction, which requires the
Minimax theorem and existence of invariant distributions for finite Markov chains; and b)
corollary 2.4.11, which is proved by Myerson (1997) through the strong complementary
property of linear programs. Since the existence of invariant distributions for finite Markov
chains can be deduced from the Minimax theorem (see appendix A.1), it follows that the
above proof relies solely on linear duality.
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Proposition 2.5.5. If α is an interior dual vector, then for every strategy

profile s that has probability zero in all correlated equilibria,

−g(s, α) =
∑
i∈I

[Ui(αi ∗ s)− Ui(s)] > 0

(The above equality merely repeats the definition of g(s, α).)

Proof. Call strong the dual vectors satisfying the above property. Existence

of strong dual vectors follows from Nau and McCardle’s (1990) proof of exis-

tence of correlated equilibria (see section 2.11.2 for details).14 Furthermore,

any strictly convex combination of a dual vector with a strong dual vector is

a strong dual vector. The result follows.

We are now in a position to prove proposition 2.5.2:

Proof. Let α be an interior dual vector. Let σ be a mixed strategy profile

of G and let µ denote the product distribution induced by (σ−i, si). If si

has marginal probability zero in all correlated equilibria, then it follows from

proposition 2.5.5 that g(µ, α) < 0. Proceeding as in the derivation of 2.4.5,

we obtain that if for every j 6= i, the mixed strategy σj is αj-invariant, then

Ui(σ−i, αi ∗ si)− Ui(σ−i, si) > 0

Therefore, si is not a best-response to σ−i. It follows that if σ is a Nash

equilibrium of the reduced game G/α (hence also a Nash equilibrium of G)

then, for every player i and every pure strategy si that has probability zero

in all correlated equilibria, si is not a best-response to σ−i

Definition 2.5.6. A Nash equilibrium σ is quasi-strict if for every player i

in I any pure best-response to σ−i belongs to the support of σi.

14Existence of strong dual vectors can also be shown by applying the “equalizer theorem”
to the auxiliary game Γ of section 2.3 (the equalizer theorem (see Raghavan, 1994) states
that in a zero-sum game, a pure strategy of the maximizer belongs to the support of
an optimal strategy if and only if it is a best-response to all optimal strategies of the
minimizer; this is a version of the strong complementary property of linear programs).
Indeed, in the auxiliary game Γ the optimal strategies of the maximizer (resp. minimizer)
are the correlated equilibria (resp. dual vectors) of G. Thus, if the strategy profile s has
probability zero in all correlated equilibria, then there exists a dual vector α such that
g(s, α) is negative. Since the set of dual vectors is convex, this implies that there exists a
dual vector such that g(s, α) is negative for every s with probability zero in all correlated
equilibria.
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It follows from proposition 2.5.2 that:

Corollary 2.5.7. For any finite game, if a Nash equilibrium is the unique

correlated equilibrium of the game, then it is quasi-strict.

Proof. Let σ be a Nash equilibrium and the unique correlated equilibrium of

a finite game. If the pure strategy si does not belong to the support of σi then

it has marginal probability zero in all correlated equilibria; by proposition

2.5.2 (and because σ is the unique Nash equilibrium), this implies that si is

not a best-response to σ−i.

Recall that the set of correlated equilibria is a convex polytope (i.e. it

is bounded and defined by a finite number of linear inequalities). Call it

the correlated equilibrium polytope. The next proposition shows that if all

pure strategies are undominated, then there are certain dimensions that this

polytope cannot have:

Proposition 2.5.8. Let |S| denote the cardinal of the set of pure strategy

profiles S. If no pure strategy is dominated in the sense that:

∀i ∈ I, ∀si ∈ Si,∀σi ∈ ∆(Si), σi 6= si ⇒ ∃s−i ∈ S−i, Ui(s) > Ui(s−i, σi)

(2.5.1)

then the correlated equilibrium polytope does not have dimension |S| − 2.

(This shows for instance that, as is well known, the set of correlated

equilibria of a 2×2 game cannot have dimension 2, unless some pure strategy

is dominated.)

Proof. We first need a lemma:

Lemma 2.5.9. Let si ∈ Si; assume that there exists a dual vector α such

that si /∈ Si/αi and Sj/αj = Sj for all j in I\{i}. Then there exists a mixed

strategy σi in ∆(Si) such that σi 6= si and Ui(s−i, σi) ≥ Ui(s) for all s−i in

S−i.

Proof. Let σi = αi∗si. For all j 6= i, every pure strategy in Sj is αj-invariant.

Therefore (2.4.1) yields:

Ui(s−i, σi) ≥ Ui(s) ∀s−i ∈ S−i

Furthermore si /∈ Si/αi hence si cannot be αi-invariant. Therefore σi 6=
si
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We15 now prove the proposition: if the game is elementary, then the

correlated equilibrium polytope has dimension |S| − 1. Otherwise, there

exists i in I, si in Si and ti in Si such that ti jeopardizes si. That is, for

every correlated equilibrium µ,∑
s−i∈S−i

µ(s)[Ui(s)− Ui(s−i, ti)] = 0 (2.5.2)

Therefore, by proposition 2.4.9, there exists a dual vector α such that si /∈
Si/αi. Since by assumption si is undominated in the sense of (2.5.1), it

follows from lemma 2.5.9 that there exists j in I\{i} and sj in Sj such that

sj /∈ Sj/αj. This implies that sj is jeopardized by some strategy tj ∈ Sj\{sj}.
That is, for every correlated equilibrium µ,∑

s−j∈S−j

µ(s)[Uj(s)− Uj(s−j, tj)] = 0 (2.5.3)

Condition (2.5.1) implies that neither (2.5.2) nor (2.5.3) is satisfied by all µ

in RS and that (2.5.2) and (2.5.3) are not equivalent. As an intersection of

two non identical hyperplanes, the set of points of RS satisfying (2.5.2) and

(2.5.3) is a vector space of dimension |S|−2. Its intersection with the simplex

∆(S) has at most dimension |S| − 3 and includes the correlated equilibrium

polytope. Therefore, this polytope has at most dimension |S| − 3.

2.6 Some results used in chapter 6

This section groups results which will be used in chapter 6. It is more con-

venient to derive these results here as they rely on dual reduction. Some

definitions are needed:

Definition 2.6.1. A game is tight (Nitzan, 2005) if in every correlated

equilibrium µ, all incentives constraints are tight:∑
s−i∈S−i

µ(s)[Ui(s)− Ui(s−i, ti)] = 0 ∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si

15As a side remark, lemma 2.5.9 implies the converse of proposition 2.4.4. That is, if
a dual reduction simply consists in eliminating a pure strategy, then this pure strategy is
dominated (in the sense of proposition 2.5.8, i.e. allowing for the “dominating” and the
“dominated” strategies to always yield the same payoff).
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Definition 2.6.2. A pure strategy is coherent if it has positive marginal

probability in at least one correlated equilibrium.

Notation: Sc
i denotes the set of coherent pure strategies of player i.

Definition 2.6.3. A game is pre-tight if in every correlated equilibrium µ all

incentive constraints that stipulate not to deviate to a coherent pure strategy

are tight:∑
s−i∈S−i

µ(s)[Ui(s)− Ui(s−i, ti)] = 0 ∀i ∈ I, ∀si ∈ Si,∀ti ∈ Sc
i

The classes of tight and pre-tight games will be studied in chapter 6. The

reason why dual reduction is useful to study these classes of games is that

the definitions of tight and pre-tight games may be rephrased in terms of

jeopardization:

Remark 2.6.4. A game is tight (resp. pre-tight) if and only if for every

player i, every pure strategy si of player i, any (resp. any coherent) pure

strategy of player i jeopardizes si.

The following proposition provides a criterion allowing to show that a

game is tight (or pre-tight) without computing its correlated equilibria:

Proposition 2.6.5. (1). A game is tight if and only if there exists a dual

vector α such that, for every player i in I and every pure strategy si in Si,

the mixed strategy αi ∗ si is completely mixed.

(2). A game is pre-tight if and only if there exists a dual vector α, and,

for every player i in I, a subset S ′i ⊆ Si of pure strategies such that:

(a) For every player i in I and every pure strategy si in S ′i, the mixed strategy

αi ∗ si has support S ′i.

(b) For every pure strategy profile s in S that does not belong to S ′ := ×i∈IS
′
i,

we have g(α, s) < 0

In that case, S ′i is the set of coherent pure strategies of player i. That is,

S ′i = Sc
i .

Proof. We first prove point (1): If the game is tight, then it follows from the

definition 2.4.12 of dual vectors and remark 2.6.4 that any full dual vector

satisfies the desired property. Conversely, if there exists a dual vector α such
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that, for all i and all si, αi ∗ si is completely mixed, then it follows from

proposition 2.4.9 and remark 2.6.4 that the game is tight.

The proof of point (2) is more involved and requires two additional lem-

mas:

Lemma 2.6.6. Let α be a dual vector.

(i) Let s ∈ S. If g(s, α) < 0 then for every σ in S/α we have σ(s) = 0.

(ii) Let si ∈ Si. If for every s−i ∈ S−i we have g(s, α) < 0 (with s =

(s−i, si)), then for every σi in Si/αi we have σi(si) = 0.

Proof. Proof of (i): Assume that g(s, α) < 0. Since g(t, α) ≤ 0 for all t in

S, it follows that if s has positive probability in some correlated strategy µ

then g(µ, α) < 0. Moreover, if σ belongs to S/α, then σ is α-invariant, hence

g(σ, α) = 0 by (2.3.1). Therefore s cannot have positive probability in σ.

Proof of (ii): Let si ∈ Si. It follows from (i) that if for every s−i ∈ S−i,

g(s, α) < 0, then for every s−i ∈ S−i and every σ in S/α, σ(s) = 0. This

implies that σi(si) = 0 for every σi in Si/αi.

Lemma 2.6.7. Let α be a dual vector. For every i in I, there exists a

coherent pure strategy si which is recurrent under αi.

Proof. Let σ be a Nash equilibrium of G/α, hence also of G. Any pure

strategy si ∈ Si in the support of σi is both coherent and recurrent under

αi.

We now prove point (2) of proposition 2.6.5: consider a pre-tight game.

Let S ′i = Sc
i and let α be an interior dual vector. It follows from proposition

2.5.5 that condition (b) is satisfied. We now prove that condition (a) is

satisfied. Let si ∈ Sc
i . The dual vector α is interior hence full. Therefore,

since every coherent pure strategy of player i jeopardizes si, it follows that the

support of αi ∗ si contains Sc
i . It follows that the coherent pure strategies of

player i are either all transient or all recurrent under αi. The former is ruled

out by lemma 2.6.7 hence all coherent strategies of player i are recurrent,

in particular si is recurrent. Therefore if αi(ti|si) > 0 then ti is recurrent

too. But it follows from lemma 2.6.6, condition (b) and S ′i = Sc
i , that every

ti /∈ Sc
i is transient. Therefore, αi∗si has exactly support Sc

i , hence condition

(a) is satisfied .

Conversely, assume that there exists a dual vector α and, for every player

i in I, a subset S ′i of Si such that conditions (a) and (b) are checked. Assume
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first that S ′i = Sc
i for every i in I. In view of proposition 2.4.9, condition

(a) then implies that the game is pre-tight. Thus, it suffices to prove that

S ′i = Sc
i .

If si ∈ Si\S ′i, then for every strategy profile s−i of the players other than

i, the pure strategy profile s = (si, s−i) does not belong to ×i∈IS
′
i. Therefore,

g(s, α) < 0 by condition (b). By remark 2.4.2, this implies that the strategy

profile s has probability zero in every correlated equilibrium. Since this holds

for every s−i in S−i, it follows that the strategy si is not coherent. Hence,

Sc
i ⊆ S ′i (2.6.1)

It remains to prove the reverse inclusion. Condition (a) implies that S ′i is

a minimal αi-absorbing set. Furthermore, it follows from lemma 2.6.6 and

condition (b) that the pure strategies of player i that do not belong to S ′i
are transient under αi. Therefore, S ′i is the unique minimal αi-absorbing set.

This implies that there exists a unique αi-invariant strategy σi and that its

support is S ′i. In the reduced game G/α, the corresponding strategy profile

σ = (σi)i∈I is the unique strategy profile, hence, trivially, a Nash equilibrium.

This implies that σ is a Nash equilibrium of G. Therefore, any pure strategy

in the support of σi is also coherent, i.e. S ′i ⊆ Sc
i . Together with (2.6.1), this

shows that S ′i = Sc
i .

We now show that tight and pre-tight games have special Nash equilibria:

Proposition 2.6.8. (i) Every tight game has a completely mixed Nash equi-

librium. (ii) Every pre-tight game has a quasi-strict Nash equilibrium with

support Sc = ×iS
c
i .

Proof. It follows from proposition 2.6.5 that if a game is tight then it is pre-

tight and Sc
i = Si. Therefore, (ii) implies (i). We now prove (ii): Let G be

a pre-tight game and let α be an interior dual vector. It follows from the

proof of proposition 2.6.5, point (2), that in the reduced game G/α there is a

unique strategy profile σ and that σ is a Nash equilibrium of G with support

Sc. Furthermore, the proof of proposition 2.5.2 shows that if si /∈ Sc
i then si

is not a best-response to σ−i, hence that σ is quasi-strict.

We conclude this section by mentioning applications of dual reduction

in later chapters: in chapter 3, corollary 2.5.7 is used to show that, for any

number of players, the set of games with a unique correlated equilibrium
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is open. In chapter 6, proposition 2.6.8 is used to characterize the set of

games whose correlated equilibrium polytope contains a Nash equilibrium

in its relative interior. In chapter 9, dual reduction is used to classify 3 × 3

symmetric games, and to prove that in every 3×3 symmetric game, every pure

strategy that has probability zero in all correlated equilibria is eliminated by

any convex monotonic dynamics (Hofbauer and Weibull, 1996) and by the

two-population best-response dynamics. Finally, in chapter 10, our proof of

the fact that general Rock-Paper-Scissors games have a unique correlated

equilibrium relies implicitly on a dual reduction argument.

These applications of dual reduction suggests that this technique has

great potentialities as a tool to study correlated equilibria. This leads us to

investigate its properties.

2.7 General properties of dual reduction

A basic desirable property for a decision-theoretic concept is to be indepen-

dent of the specific (von Neumann-Morgenstern) utility functions chosen to

represent the preferences of the agents. We begin by showing that dual re-

duction meets this requirement; that is, the ways in which a game may be

reduced are unaffected by positive affine transformations of the utility func-

tions. We then show that theorem 2.4.5 extends to the equalizing correlated

equilibrium concept, introduced by Sorin (1998)16 and point out that its

converse holds: if a correlated strategy µ of a reduced game induces an equi-

librium in the original game, then µ is an equilibrium of the reduced game.

Elimination of strategies and equilibria is then investigated. We show that

strategies that are weakly dominated (resp. are never played in correlated

equilibria; have positive probability in some strict correlated equilibrium)

need not be (resp. are always; are never) eliminated in full dual reductions.

Finally, we show that if a pure strategy is redundant (in a sense to be made

precise), then in a full dual reduction, it is either eliminated or grouped with

the strategies making it redundant.

16Sorin uses the name “distribution equilibrium”.
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2.7.1 Independence from the choice of utility functions

In this section G and G′ are two games with the same sets of players and

strategies and U ′
i is the utility function of player i in G′.

Definition 2.7.1. The games G and G′ are best-response equivalent if for

every player i in I, for every pure strategy si in Si, and every correlated

strategy µ−i in ∆(S−i) the pure strategy si is a best-response to µ−i in G if

and only it is a best-response to µ−i in G′. 17

Since the fact that a strategy jeopardizes another strategy depends only

on the best-response correspondence, it follows that games which are best-

response equivalent are reduced similarly by dual reduction:

Proposition 2.7.2. Let G and G′ be best-response equivalent. Let si and ti
be pure strategies of player i. (i) The pure strategy ti jeopardizes si in G if and

only if it jeopardizes si in G′. (ii) The same strategies are grouped together

(resp. eliminated) in full dual reductions of G and in full dual reductions of

G′.

Proof. Point (i) follows from definitions 2.7.1 and 2.4.8. Point (ii) follows

from (i) and the definition of dual vectors (definition 2.4.12).

Definition 2.7.3. The game G′ is a rescaling of G if for every player i in

I, there exists a positive constant ai and a function fi : S−i → R such that:

U ′
i(s) = ai.Ui(s) + fi(s−i), ∀s ∈ S

A game and its rescalings need not have the same dual vectors, as the

following example demonstrates:

Example 2.7.4.

x2 y2

x1 1,−1 0, 0

y1 0, 0 1,−1

x2 y2

x1 2,−1 0, 0

y1 0, 0 2,−1

17In games with three or more players, there is another reasonable notion of best-
response equivalence. It is obtained by requiring only that the best-responses to products
of mixed strategies of the other players be the same in G and in G′, i.e. by replacing
µ−i ∈ ∆(S−i) by σ−i ∈ ×j∈I\{i}∆(Si) in definition 2.7.1. Originally, i.e. in the article of
Rosenthal (1974), best-response equivalence was defined for two-player games, where the
two notions coincide. The notion of definition 2.7.1 is more appropriate when dealing with
correlated equilibria.
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Let G denote the game on the left (a version of Matching Pennies) and G′

its rescaling on the right. Define the deviation vector α by αi ∗ xi = αi ∗ yi =
1
2
xi + 1

2
yi for every i in {1, 2}. The deviation vector α is a dual vector for G

but not for G′.

The next proposition shows however that a game and its rescalings have

the same dual reductions. We first need a lemma, which shows that different

deviation vectors may induce the same reduced game:

Lemma 2.7.5. Let αi (resp. αid
i ) be a (resp. the trivial) deviation plan for

player i. For any 0 ≤ ε ≤ 1, let αε
i = εαi + (1 − ε)αid

i . If ε is positive then

Si/αi = Si/α
ε
i .

Proof. For any mixed strategy σi in ∆(Si), αε
i ∗ σi − σi = ε(αi ∗ σi − σi).

Therefore, αi and αε
i induce the same invariant strategies.

Proposition 2.7.6. Let G′ be a rescaling of G. If α is a dual vector of G

then there exists a dual vector α′ of G′ such that G′/α′ = G/α.

Proof. The proof consists in showing that dual vectors of G may be “rescaled”

into dual vectors of G′: Let α be a dual vector of G. Let ak = mini∈I ai and,

for each i in I, let εi = ak/ai (the constants ai are those of definition 2.7.3).

Let α′ denote the deviation vector whose ith component is αεi
i , (defined in

lemma 2.7.5), for every i in I. Let g and g′ denote the payoff functions in

the auxiliary zero-sum games associated respectively to G and G′. We have:

g′(s, α′) = ak × g(s, α) ∀s ∈ S (2.7.1)

Since α is a dual vector of G, it follows from 2.7.1 that α′ is a dual vector

of G′. Furthermore lemma 2.7.5 implies that G′/α′ = G′/α. This completes

the proof.

2.7.2 An extension of theorem 2.4.5

In this section, we present an equilibrium concept due to Sorin (1998) and

show that theorem 2.4.5 extends to this concept. We then point out a con-

verse of theorem 2.4.5.

Consider a correlated strategy µ in ∆(S) and a pure strategy si of player

i. If µ(si × S−i) > 0, let µ(.|si) denote the conditional probability on S−i

given si:

µ(s−i|si) = µ(s−i, si)/µ(si × S−i)
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Definition 2.7.7. The correlated strategy µ in ∆(S) is an equalizing distri-

bution if

µ(si × S−i) > 0 ⇒
∑

s−i∈S−i

µ(s−i|si)Ui(s) = Ui(µ) ∀i ∈ I, ∀si ∈ Si,

That is, in an equalizing distribution, the expected payoff given the rec-

ommendation of a pure strategy is independent of this strategy.

Definition 2.7.8. The correlated strategy µ in ∆(S) is an equalizing corre-

lated equilibrium (Sorin18, 1998) if µ is both an equalizing distribution and

a correlated equilibrium.

Clearly, any Nash equilibrium is an equalizing correlated equilibrium, but

the converse is false (see example 2.7.10).

Proposition 2.7.9. Let µ be a correlated strategy of an iterative dual reduc-

tion Gr of G. If µ is an equalizing distribution (resp. equalizing correlated

equilibrium) of Gr then the G-equivalent correlated strategy µ̄ is an equalizing

distribution (resp. equalizing correlated equilibrium) of G.

Proof. Let si be a pure strategy of player i that has positive marginal prob-

ability in µ. There exists a minimal αi-absorbing set Bi such that si belongs

to Bi. Let σsi
be the αi-invariant strategy with support Bi. Since µ(si×S−i)

is positive, it follows that µ(σsi
× (S/α)−i) is positive too. Furthermore,

(i) Ui(µ) = Ui(µ);

(ii) the conditional probability µ(.|si) ∈ ∆((S/α)−i) is the conditional

probability induced on S−i by µ(.|σsi
). That is, if sj is αj-recurrent for all j

in I\{i}, then:

µ(s−i|si) = µ(σs−i
|σsi

)

 ∏
j∈I\{i}

σsj
(sj)

 where σs−i
= ×j∈I\{i}σsj

Otherwise, i.e. if sj is αj-transient for some j in I\{i}, then µ̄(s−i|si) = 0.

Using (i) and (ii) we get:∑
σ−i∈(S/α)−i

µ(σ−i|σsi
)Ui(σ−i, σsi

) = Ui(µ) ⇒
∑

s−i∈S−i

µ(s−i|si)Ui(s) = Ui(µ)

Thus if µ is an equalizing distribution, then so is µ. Together with theorem

2.4.5, this implies that if µ is both an equalizing distribution and a correlated

equilibrium, then so is µ.

18Sorin uses the expression distribution equilibrium.
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The following example illustrates proposition 2.7.9:

Example 2.7.10.

x2 y2 z2

x1 2, 0 0, 2 0,−3

y1 0, 1 1, 0 0, 0

z1 −3, 0 0, 0 1, 1

σB2 z2

σB1 2/3, 2/3 0,−1

z1 −1, 0 1, 1

Let G denote the game on the left. Consider the deviation vector α such that

for i = 1, 2 :

αi(xi|xi) = 2/3, αi(yi|xi) = 1/3; αi(xi|yi) = 1/6, αi(yi|yi) = 5/6; αi(zi|zi) = 1,

and all other αi(ti|si) are zero. It is easily checked that α is a dual vector.

The minimal αi-absorbing sets are Bi = {xi, yi} and B′
i = {zi}. The α-

reduced game G/α is the game on the right, where the αi-invariant strategy

σBi
is (1

3
; 2

3
; 0). Consider the distribution µ on S/α (below, right)19. This

is an equalizing correlated equilibrium of G/α. Therefore, the G-equivalent

distribution µ̄ (below, left) is an equalizing correlated equilibrium of G.

µ̄ =

1/24 1/12 1/24

1/12 1/6 1/12

1/24 1/12 3/8

µ =
3/8 1/8

1/8 3/8

We conclude this section by noting that theorem 2.4.5 has the following

converse: Let α be a dual vector and µ ∈ ∆(S/α). If µ is not a correlated

(resp. Nash) equilibrium of G/α, then the distribution on S induced by

µ is not a correlated (resp. Nash) equilibrium of G. This is because the

players have more options for deviating in G than in G/α. Similarly, it is

easy to show that if µ is not an equalizing distribution (resp. equalizing

correlated equilibrium) of G/α, then the distribution on S induced by µ is

not an equalizing distribution (resp. equalizing correlated equilibrium) of G.

2.7.3 Elimination of strategies and equilibria

This section identifies classes of strategies or of equilibria which are always

(or never) eliminated in full dual reductions.

19We represent correlated strategies in tables. For instance, µ(σB1 , z2) = 1/8.
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First, note that if a strategy is weakly dominated, it is eliminated in

some dual reductions (proposition 2.4.4), but not necessarily in full dual

reductions:

Example 2.7.11.

x2 y2

x1 1, 1 1, 0

y1 1, 0 0, 0

In the above game, µ is a correlated equilibrium if and only if y2 is not played

in µ. That is, µ(x1, y2) = µ(y1, y2) = 0. Therefore y1 jeopardizes x1, and

reciprocally. It follows that, in all full dual reductions, x1 and y1 are grouped

together hence y1 is not eliminated.

This raises the following question: except strictly dominated strategies,

are there other classes of strategies that are always eliminated in full dual

reductions or in iterative dual reductions? The answer is positive: strategies

that are not played in correlated equilibrium are eliminated. Formally,

Proposition 2.7.12. (i) Assume that the strategy profile s ∈ S has proba-

bility zero in all correlated equilibria. Then s is eliminated in all full (resp.

elementary iterative) dual reductions.

(ii) Assume that the pure strategy si of player i has marginal probabil-

ity zero in all correlated equilibria. Then si is eliminated in all full (resp.

elementary iterative) dual reductions.

Proof. First, let α be an interior dual vector of the game G. It follows from

proposition 2.5.5 and lemma 2.6.6 that in G/α all strategies and strategy

profiles with probability zero in all correlated equilibria have been eliminated.

Since an interior dual vector is full, and since in all full dual reductions the

same strategies and strategy profiles are eliminated, the result for full dual

reductions follows.

Second, if Ge is an elementary iterative dual reduction of G, it has a cor-

related equilibrium with full support, which induces a correlated equilibrium

of G. Therefore all pure strategy profiles (resp. pure strategies) of G that

belong to the support of a pure strategy profile (resp. pure strategy) of Ge

have positive probability in some correlated equilibrium20.

20I owe my understanding of this point to Roger Myerson.
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Let G∗ denote the game obtained from G by deleting all pure strategies

that have marginal probability zero in all correlated equilibria. Proposition

2.7.12 suggests that G and G∗ have the same full dual reductions, but this is

not so:

Example 2.7.13.

x2 y2

x1 1, 1 0, 1

y1 0, 1 1, 0

x2 y2

x1 1, 1 0, 1

Let G denote the left game. Then G∗ is the game on the right. In G∗ any

mixed strategy profile is a Nash equilibrium. In G, a mixed strategy profile σ

is a Nash equilibrium if and only if σ1(y1) = 0 and σ2(y2) ≤ 1/2. Thus G∗

has more Nash equilibria than G.

In any full dual reduction of G or G∗ there is a single strategy profile,

which corresponds to a Nash equilibrium σ such that σ2(x2) and σ2(y2) are

both positive. Conversely, if σ is a Nash equilibrium of G (resp. G∗) such

that σ2(x2) and σ2(y2) are both positive, then there exists a full dual vector

α of G (resp. G∗) such that S/α = {σ} (resp. S∗/α = {σ}). The set of full

dual reductions of G is thus strictly included in the set of full dual reductions

of G∗.

The following proposition shows that if a pure strategy of player i is

redundant (from the point of view of player i) then it is either eliminated or

grouped with the strategies making it redundant:

Proposition 2.7.14. Assume that there exist i in I, si in Si and σi in ∆(Si)

such that

Ui(si, s−i) ≤ Ui(σi, s−i) ∀s−i ∈ S−i (2.7.2)

Then in any full dual reduction, either si is eliminated or it is grouped with

the strategies in the support of σi.

Proof. Equation (2.7.2) implies that every pure strategy in the support of σi

jeopardizes si. The result follows.

Now consider elimination of equilibria. It is shown in section 2.10 that

even completely mixed, hence proper Nash equilibria may be eliminated in

full dual reductions. By contrast:
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Proposition 2.7.15. Strict correlated equilibria cannot be eliminated, not

even in an iterative dual reduction.

Proof. If µ is a strict correlated equilibrium, a strategy that has positive

marginal probability in µ cannot be jeopardized by another strategy. It

follows that in any dual reduction of G, all pure strategies of G used in µ

remain as pure strategies. Furthermore, as the player’s options for deviating

are more limited in the reduced game than in G, µ is a fortiori a strict

correlated equilibrium of the reduced game. Inductively, in any iterative

dual reduction G/α1/.../αm of G, all strategies used in µ are available and µ

is still a strict correlated equilibrium.

The proof shows that a pure strategy that has positive marginal probabil-

ity in some strict correlated equilibrium can never be eliminated nor grouped

with other strategies. This generalizes the fact that elementary games cannot

be reduced.

2.8 Properties in specific classes of games

In this section the additional properties of dual reduction in several classes of

games ar studied. It is shown that games that are best-response equivalent to

zero-sum games and games with a unique correlated equilibrium are reduced

in games with a single strategy profile by full dual reduction. We also show

that if a game has some symmetry (e.g. cyclic symmetry), then there exist

full dual reductions which preserve this symmetry. Finally, generic 2 × 2

games are analysed.

2.8.1 Two-player zero-sum games

It is easy to show that any dual reduction of a zero-sum game is a zero-sum

game with the same value. Furthermore, dual vectors may be built easily

from optimal strategies:

Proposition 2.8.1. Let G denote a two-player zero-sum game and α a de-

viation vector. If for all i = 1, 2 and for all si in Si, the mixed strategy αi ∗si

is an optimal strategy, then α is a dual vector.

Proof. Let s be a pure strategy profile. Since α1∗s1 is optimal, it follows that

U1(α1∗s1, s2) ≥ v, where v is the value of the game. Similarly, U2(s1, α2∗s2) ≥
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−v. Therefore, U1(α1 ∗ s1, s2) + U2(s1, α2 ∗ s2) ≥ 0 = U1(s) + U2(s). Since

this holds for all s in S, it follows that α is a dual vector.

This implies that:

Corollary 2.8.2. For every Nash equilibrium σ of a zero-sum game, there

exists a dual reduction in which the reduced set of strategy profiles is the

singleton {σ}.

Proof. In the particular case of proposition 2.8.1 where αi ∗ si = σi for every

player i and every si in Si, the only αi-invariant strategy is σi. Therefore,

the reduced set Si/αi of pure strategies of player i is the singleton {σi}.

If we restrict attention to full dual reduction, then we also obtain that in

the reduced game there is a unique strategy profile; but this strategy profile

now corresponds to a profile of optimal strategies with maximal support :21

Proposition 2.8.3. If G is best-response equivalent to a two-player zero-sum

game then in all full dual reductions of G all the strategies of player i with

positive probability in some correlated equilibrium are grouped together, and

his other pure strategies are eliminated.

Proof. It is shown in chapter 6 that a game best-response equivalent to a

two-player zero-sum game is pre-tight. Therefore it suffices to prove that the

result holds for pre-tight games, which we now do: It follows from proposition

2.7.12 that, in a full dual reduction, all strategies with probability zero in all

correlated equilibria must be eliminated. Furthermore, in a pre-tight game,

all other pure strategies (of a given player) jeopardize each other; therefore, in

a full dual reduction, they are all grouped together in a single mixed strategy.

The result follows.

The following example shows that if G is best-response equivalent to a

zero sum game, then the payoffs in a full dual reduction may depend on the

reduction:

Example 2.8.4.

x2 y2 z2

x1 0, 0 0, 0 0, 0

y1 0, 0 1,−1 −1, 1

z1 0, 0 −1, 1 1,−1

x2 y2 z2

x1 1, 1 0, 1 0, 1

y1 1, 0 1,−1 −1, 1

z1 1, 0 −1, 1 1,−1

21Conversely, it is easily checked that any profile of optimal strategies with maximal
support may be obtained as a result of a full dual reduction.
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Let G (resp. G′) denote the game on the left (resp. right). G is zero-sum and

G′ is best-response equivalent to G. For 0 ≤ ε ≤ 1, let σε
i denote the optimal

strategy of player i such that: σε
i (xi) = ε and σε

i (yi) = σε
i (zi) = (1− ε)/2. Let

αε,η denote the deviation vector such that: α1 ∗ x1 = α1 ∗ y1 = α1 ∗ z1 = σε
1

and α2 ∗x2 = α2 ∗y2 = α2 ∗z2 = ση
2 . It is easy to check that α is a dual vector

of both G and G′. If 0 < ε < 1 and 0 < η < 1, then α is full, the reduced

strategy space S ′/αε,η is the singleton (σε
1, σ

η
2) and the associated payoff is

(η, ε).

To conclude this section, we show that, within the set of games with a

completely mixed Nash equilibrium, some rescalings of zero-sum games are

characterized by their dual vectors. We first need a definition: let G and G′

be two games with the same sets of players and strategies.

Definition 2.8.5. G′ is a partial rescaling of G if for every player i in I,

there exists a function fi : S−i → R such that:

U ′
i(s) = Ui(s) + fi(s−i), ∀s ∈ S

(The difference with definition 2.7.3 is that we require ai = 1 for all i in I.)

Let G be a two-player game with a completely mixed Nash equilibrium

σ. Define the deviation vector α by αi ∗ si = σi for every player i in {1, 2}
and every pure strategy si in Si.

Proposition 2.8.6. The deviation vector α is a dual vector if and only if G

is a partially rescaled zero-sum game.

Proof. If G is a partial rescaling of G̃, then G and G̃ have the same dual

vectors. Therefore, it follows from proposition 2.8.1 that if G is a partially

rescaled zero-sum game, then α is a dual vector.

Conversely, assume that α is a dual vector. This implies that for every

mixed strategy profile τ ,

[U1(σ1, τ2)− U1(τ)] + [U2(τ1, σ2)− U2(τ)] ≥ 0

Therefore (σ1, σ2) is a Nash-Pareto pair in the sense of Hofbauer and Sigmund

(1998, section 11.4, page 135). By theorem 11.4.2 of Hofbauer and Sigmund

(1998), this implies that G is a rescaled zero-sum game.

That is, there exists a zero-sum game G̃, and, for every player i in {1, 2}
a positive constant ai and a function hi : S−i → R such that:

Ui(s) = ai.Ũi(s) + hi(s−i), ∀s ∈ S
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Without loss of generality, assume a2 = 1 and a1 ≥ 1. If furthermore a1 = 1,

then G is a partially rescaled zero-sum game. So we may also assume a1 6= 1.

Let s be a pure strategy profile. Since G has a completely mixed Nash

equilibrium, it follows that

g(s, α) = g̃(s, α) = 0 (2.8.1)

(where g̃ is the payoff function in the auxiliary game associated to G̃)

Moreover, since αi ∗ si = σi for every i in {1, 2}, it follows that g(s, α) =

[U1(s)− U1(σ1, s2)] + [U2(s)− U1(s1, σ2)] = a1[Ũ1(s)− Ũ1(σ1, s2)] + [Ũ2(s)−
Ũ1(s1, σ2)]. Since g̃(s, α) = 0 this yields:

g(s, α) = (a1 − 1)[Ũ1(s)− Ũ1(σ1, s2)] (2.8.2)

Since σ is a Nash equilibrium of G, hence of G̃, and since s2 belongs to the

support of σ2, it follows that Ũ1(σ1, s2) = v where v is the value of G̃. Since,

by assumption, a1 6= 1, it follows from (2.8.1) and (2.8.2) that Ũ1(s) = v.

Since this holds for every s in S, it follows that:

U1(s) = Ũ1(s) + [h1(s2) + (a1 − 1).v] ∀s ∈ S

Therefore, G is a partial rescaling of G̃. This completes the proof.

2.8.2 Games with a unique correlated equilibrium

If G has a unique Nash equilibrium σ, then any iterative dual reduction of G

has a unique Nash equilibrium, which induces σ in G; but the strategy space

need not be reducible to σ. In particular, it may be that a (nontrivial) game

has a unique, pure Nash equilibrium but is nevertheless elementary, hence

cannot be reduced. See (Nau and McCardle, 1990, example 4). By contrast,

Proposition 2.8.7. Assume that G has a unique correlated equilibrium σ.

Then σ is a Nash equilibrium, hence it may be seen as a mixed strategy

profile. Let Gr be the reduced game in which the only strategy profile is σ

and the payoff for player i is Ui(σ). Any full (resp. elementary iterative)

dual reduction of G is equal to Gr. In particular, G has a unique full dual

reduction.

Proof. The part of the proposition concerning elementary iterative dual re-

ductions follows from the proof of proposition 2.5.1. The part of the proposi-

tion concerning full dual reduction follows from the fact that a game with a

unique correlated equilibrium is pre-tight, and from the proof of proposition

2.8.3.
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2.8.3 Symmetric Games

This section shows that if a game is symmetric with respect to some permu-

tations of the set of players, then it may be reduced in a way respecting these

symmetries. Some definitions are needed. Let P be a set of permutations of

the set of players. Let G be a game for which, for every player i in I and

every permutation p in P , player i and player p(i) have the same number

of pure strategies. Label the strategies of each player with integers so that

the set of pure strategies of player i is Si = {1, 2, ...,mi}, where mi = ]Si

(cardinal of Si).

If s = (k1, k2, ..., kn) and p a permutation of the set of players, let p(s) =

(k′1, k
′
2, ..., k

′
n) denote the strategy profile such that, for all i in I, k′p(i) = ki.

Definition 2.8.8. The game is p-symmetric if

∀i ∈ I, Up(i)(p(s)) = Ui(s)

The22 game is P -symmetric if it is p-symmetric for every p in P .

Proposition 2.8.9. If the game G is P -symmetric then there exists an in-

terior dual vector α such that G/α is P -symmetric.

Proof. Without loss of generality, assume that P is the largest set of permu-

tations such that G is P -symmetric. This implies that P is stable by internal

permutation.23 That is,

∀p ∈ P, {p ◦ p̃, p̃ ∈ P} = P (2.8.3)

Let24 α be a dual vector. For every permutation p in P , let αp denote the

deviation vector such that:

∀i ∈ I,∀j ∈ Si,∀k ∈ Si, α
p
p(i)(k|j) = αi(k|j)

Define a deviation vector α to be p-symmetric if α = αp and to be P -

symmetric if it is p-symmetric for every p in P . Let ]P denote the cardinal

22This means that if for every i in I, player p(i) plays tomorrow as player i played today,
then the payoff of player p(i) tomorrow is the same as the payoff of player i today.

23P is a subgroup of the group of permutations of I.
24To prove (2.8.3)The point is that if a game is both p-symmetric and p̃-symmetric then

it is p ◦ p̃-symmetric.
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of P . It follows from (2.8.3) that for any deviation vector α, the deviation

vector

ᾱ =

∑
p∈P αp

]P

is P -symmetric. Furthermore, if α is an (interior) dual vector then so is

αp for every p in P , hence so is ᾱ. Finally, it is easily checked that if α is

P -symmetric then G/α is P -symmetric too. The result follows.

Note that nonsymmetric25 games may also have symmetric full dual re-

ductions, even if all strategies are undominated (take any nonsymmetric

zero-sum game with value 0; see also example 2.7.10). Moreover, a symmet-

ric game may have nonsymmetric full dual reductions (take any symmetric

game in which every player is a dummy, i.e. has no influence on its own

payoffs).

2.8.4 Generic 2× 2 games

Proposition 2.8.10. Let G be a 2 × 2 game such that a player is never

indifferent between two different strategy profiles. That is,

s 6= s′ ⇒ Ui(s) 6= Ui(s
′), ∀s ∈ S,∀s′ ∈ S,∀i ∈ {1, 2}

Then either G is elementary or G has a unique correlated equilibrium (in

which case proposition 2.8.7 apply).

Proof. This follows from straightforward computations. The first case cor-

responds to games with three Nash equilibria: two pure and one completely

mixed; the second case to games with either a strictly dominant strategy

(for at least one of the players) or a unique, completely mixed Nash equilib-

rium.

2.9 The issue of uniqueness

In this section, we first show that, even if only full dual reductions are used,

there might be multiple ways to reduce a game. We then show that generic

two-player games have a unique sequence of iterative full dual reductions.

25A game is symmetric if it is p-symmetric for any permutation p, and nonsymmetric
otherwise.
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Example 2.8.4 shows that a game may have several full dual reductions.

This arises systematically when a player is indifferent between some of his

strategies, and when these strategies are not eliminated:

Proposition 2.9.1. Assume that player i is indifferent between si and ti, i.e.

Ui(s) = Ui(s−i, ti) for all s−i in S−i. Then (i) for any 0 ≤ ε ≤ 1 there exists

a dual reduction that simply consists in grouping si and ti in the strategy σi

such that σi(si) = ε and σi(ti) = 1− ε; (ii) if si is not eliminated in full dual

reductions, then there exists an infinity of full dual reductions.

Proof. To prove (i) take as dual vector α: αi(si|si) = αi(si|ti) = ε, αi(ti|si) =

αi(ti|ti) = 1− ε and all the other αj(tj|sj) as in the trivial deviation vector.

We now prove (ii): Assume that si is not eliminated in full dual reductions

and let α be a full dual vector. For 0 < λ ≤ 1, define the dual vector αλ

by: αλ
i (si|si) = λαi(si|si), αλ

i (ti|si) = αi(ti|si)+ (1−λ)αi(si|si) and all other

αλ
j (tj|sj) as in α. Since α is full and α and αλ are positive in the same

components, αλ is full too. Therefore, there exists an αλ
i -invariant strategy

σλ
i such that σλ

i (si) > 0. We claim that if λ′ 6= λ, σλ
i is not αλ′

i -invariant

(proof below). This implies that if λ′ 6= λ, αλ and αλ′ induce different

full dual reductions. Therefore there exists an infinity of different full dual

reductions.

To prove the claim, note that if σλ
i is αλ′

i -invariant, then∑
ri∈Si\{si}

αλ′

i (si|ri)σ
λ
i (ri) = [1− αλ′

i (si|si)]σ
λ
i (si)

But if λ′ 6= λ:∑
ri∈Si\{si}

αλ′

i (si|ri)σ
λ
i (ri) =

∑
ri∈Si\{si}

αλ
i (si|ri)σ

λ
i (ri)

= [1− αλ
i (si|si)]σ

λ
i (si) 6= [1− αλ′

i (si|si)]σ
λ
i (si)

Multiplicity of dual reductions may also arise if a player is indifferent

between a pure and a mixed strategy (example 2.8.4) or if a player becomes

indifferent between some of his strategies, after strategies of some other player

have been eliminated (example 2.7.13). These are non-generic phenomena.

We prove in this section that, for any positive integer m, two-player games

generically have a unique iterative full dual reduction of depth m. We first
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show that there are severe restrictions on the ways strategies may be grouped

together in dual reductions:

Notation: for all i in I, let Bi ⊆ Si and let B = ×i∈IBi. We denote by

GB = (I, (Bi)i∈I , (Ui)i∈I) the game obtained from G by reducing the pure

strategy set of player i to Bi, for all i in I.

Proposition 2.9.2. Let α be a dual vector. For each i in I, let Bi ⊆ Si

denote a minimal αi-absorbing set and B = ×i∈IBi. Let σBi
denote the

unique αi-invariant strategy of player i with support in Bi and σB = (σBi
)i∈I .

We have: σB is a completely mixed Nash equilibrium of GB.

Proof. By minimality of Bi, the support of σBi
is exactly Bi so σB is com-

pletely mixed. Moreover, let σB−i
= ×j∈I\{i}σBj

. Against σB−i
, player i is

indifferent between the strategies of the minimal absorbing set Bi (proposi-

tion 2.4.7). Therefore, if player i is restricted to the strategies in Bi, σBi
is a

best response to σB−i

Define α and σBi
as in proposition 2.9.2 and assume α full. If GB has

a unique completely mixed Nash equilibrium, then for any full dual vector

β, the βi-invariant strategy with support in Bi must be σBi
. So proposition

2.9.2 has the following corollary:

Corollary 2.9.3. If for every product B = ×i∈IBi of subsets Bi of Si, GB

has at most one completely mixed Nash equilibrium, then there exists a unique

full dual reduction.

In the remainder of this section, G is a two-player game. To show that,

generically, two-player games have a unique sequence of iterative full dual

reductions, some suitable notions of genericity are needed:26

Definition 2.9.4. G is generic if for all Nash equilibria σ the supports of σ1

and σ2 have same cardinal27. G is locally generic if G is generic and if any

game obtained from G by deleting some pure strategies is generic.

The following notion is quite ad hoc:

26A property is sometimes called generic when it occurs for an open set of games. What
we mean here by a generic property, is that it holds for a set of games with Lebesgue
measure 1.

27Any game which is nondegenerate in the sense of von Stengel (2002, def. 2.6 and thm
2.10) is generic in this sense.
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Definition 2.9.5. G is 2-generic if for any subset B1 of S1 of cardinal two

or more, and for any disjoint subsets B2 and B′
2 of S2, the following holds:

if σ and σ′ are completely mixed Nash equilibria of, respectively, GB1×B2 and

GB1×B′
2

then σ1 6= σ′1 (the same mixed strategy cannot be a completely mixed

Nash equilibrium strategy of player 1 both on B1×B2 and on B1×B′
2). The

notion of 1-genericity is defined similarly. A bimatrix game is ∗-generic if it

is both 1-generic and 2-generic.

A bimatrix game in which players 1 and 2 have respectively p and q pure

strategies is given by two p × q payoff matrices, thus it may be viewed as a

point in Rpq×Rpq. It may be shown that the set of p×q bimatrix games which

are both locally generic and ∗-generic contains an open and dense subset of

Rpq × Rpq. The two next propositions follow from proposition 2.9.2:

Proposition 2.9.6. A locally generic bimatrix game has a unique full dual

reduction.

Proof. Locally generic bimatrix games check the conditions of corollary 2.9.3

Proposition 2.9.7. If G is both locally generic and ∗-generic, there are only

three possibilities:

1. G is elementary

2. In all dual reductions of G, some strategies are eliminated, but no

strategies are grouped together.

3. In any full dual reduction of G the reduced strategy space S/α is a

singleton.

Proof. Assume that G is not elementary and let α be a nontrivial dual vector.

Assume that some strategies of player 1 (for instance) are grouped together.

That is, there exists a minimal α1-absorbing set B1 with at least two elements.

Let B2 and B′
2 be minimal α2-absorbing sets. Let σB1 denote the α1-invariant

strategy with support in B1. Define σB2 and σB′
2

similarly. By proposition

2.9.2, σB1 is a Nash equilibrium strategy both of GB1×B2 and of GB1×B′
2
.

Since G is ∗-generic, this implies B2 = B′
2. Therefore, there is a unique

minimal α2-absorbing set, B2. That is, S2/α2 is a singleton. Moreover, since

G is locally generic, B1 and B2 have same cardinal. Thus B2 has at least two

elements. Therefore, by the above reasoning, the strategy set of player 1 in

G/α is also a singleton. This completes the proof.
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As an immediate corollary of proposition 2.9.7 and definitions 2.9.4 and

2.9.5 we get:

Corollary 2.9.8. If G is both locally generic and ∗-generic then any dual

reduction of G is both locally generic and ∗-generic.

As an immediate corollary of proposition 2.9.6 and corollary 2.9.8 we

obtain:

Theorem 2.9.9. If G is both locally generic and ∗-generic, then for any

positive integer m, G has a unique iterative full dual reduction of depth m.

2.10 Dual reduction as a refinement concept

When a game is reduced by dual reduction, not all equilibria of the original

game remain (in the sense of being induced by an equilibrium of the reduced

game), and in available examples of dual reduction, those equilibria that re-

main tend to have better stability properties than those that are eliminated.

This suggests a refinement concept, both for correlated equilibria and Nash

equilibria: retaining as solutions of the game only those equilibria that re-

main after dual reduction or iterative dual reduction of the game. In this

section, correlated equilibria remaining after dual reduction are compared to

acceptable correlated equilibria (Myerson, 1986) and also to perfect corre-

lated equilibrium distributions (Dhillon and Mertens, 1996). The relevance

of the refinement concept induced by dual reduction is then discussed.

2.10.1 Dual reduction and elimination of unacceptable

pure strategies

There are similarities in the ways dual reduction and elimination of accept-

able pure strategies are defined: in particular, the aggregate incentive value

of s for the set of players I defined in (Myerson, 1986, p.141, equation (3.3))

is exactly the payoff g(s, α) defined in section 2.3. This motivates our com-

parison between the two concepts. We show by means of example that none

of these refinement concepts is more stringent than the other and discuss

further some of the differences between these concepts in the next section.

Some notations and definitions are needed [unless stated otherwise, all defini-

tions are from Myerson (1986); most of the phrasing is borrowed to Myerson

(1986) and Dhillon and Mertens (1996); see also (Myerson, 1991)]:
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Let J ⊆ I. If J is nonempty we let

SJ = ×i∈JSi

(so SI = S), and we let S∅ = {∅}. If s is in S and tJ in SJ then (s−J , tJ)

denotes the strategy profile in which player i plays ti if i is in J and si

otherwise.

Definition 2.10.1. An ε-correlated strategy η is a lottery choosing a vector

of “recommended” pure strategies (i.e. a point in S), a coalition J of trem-

bling players, and a vector of trembles (i.e. a point in SJ) for those players

(hence, formally, it is a probability distribution over S× (∪J⊆IJ)) such that:

(a) Given any vector of recommendations, the conditional probability of

every coalition of trembling players and every vector of trembles for these

players is strictly positive.

(b) Given any vector of recommendations s, any subset J of players not

including player i and any vector of trembles tJ for those players: given that

the coalition of trembling players is either J or J ∪ {i} and that the players

of J tremble to tJ , the conditional probability of i also trembling is at most ε.

Let η be an ε-correlated strategy. Consider the extended game in which

each player is first informed of his recommended action; next the non-trembling

players are asked to move - while the trembling players are forced to move

using the selected trembles. The ε-correlated strategy η is an ε-correlated

equilibrium if, in this extended game, the obedient strategies form a Nash

equilibrium.

A correlated strategy µ ∈ ∆(S) is an acceptable correlated equilibrium

if it is a limit (ε → 0) of distributions (i.e. marginal distributions on S)

of ε-correlated equilibria. That is, if for all positive ε there exists some ε-

correlated equilibrium ηε such that for all s in S: limε→0 ηε(s, ∅) = µ(s),

where ηε(s, ∅) is the probability that s is recommended and that no player

trembles. Acceptable correlated equilibria are correlated equilibria (Myerson,

1986, thm 1).

A pure strategy si is acceptable if, for every ε > 0, there exists some

ε-correlated equilibrium η such that∑
s−i∈S−i

η(s, ∅) > 0

(that is, in Myerson’s (1986) terms, “if si can be rationally used when the

probabilities of trembling are infinitesimal”).
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The acceptable residue R(G) of a game G is the game obtained from G

by eliminating all the unacceptable pure strategies. Myerson (1986, theo-

rems 2 and 4) shows that the acceptable correlated equilibria are exactly the

correlated equilibria of the acceptable residue R(G).

As dual reduction, elimination of unacceptable pure strategies may be

iterated. A pure strategy is predominant if it remains after iterative elimina-

tion of unacceptable pure strategies, and correlated equilibria in which only

predominant strategies are played are called predominant.

We now compare dual reduction and elimination of unacceptable pure

strategies. We first need a lemma:

Lemma 2.10.2. If there exists a correlated equilibrium with full support then

all pure strategies are acceptable and predominant.

Proof. Assume that there exists a correlated equilibrium µ with full support.

By theorem 2 of Myerson (1986), if µ is acceptable, then any pure strategy is

acceptable, hence any pure strategy is predominant. Therefore, it suffices to

show that µ is acceptable. The trick is that, because µ has full support, it is

possible to find trembles mimicking µ, so that whoever the players trembling,

a non-trembling player always faces the same conditional probabilities given

his signal as in µ.

More precisely, assume that there exists some ε-correlated strategy η such

that:

∀J ⊆ I, ∀tJ ∈ SJ ,∀s ∈ S, η(s, tJ) = K(J, ε)µ(s−J , tJ) (2.10.1)

where K is a positive constant that depends only on J and on ε (but not

on s−J). Thus, given any coalition J of trembling players, any vector tJ
of trembles assigned to J , and any strategy profile s, the probability in η

that (s−J , tJ) will be played as a result of the players being recommended

s, the players of I\J not trembling, and the players of J trembling to tJ , is

proportional to the probability of (s−J , tJ) in µ. The total probability in η

that J and only J trembles and that (s−J , tJ) is played is:∑
rJ∈SJ

η((s−J , rJ), tJ) = K ′(J, ε)µ(s−J , tJ)

where K ′ is a positive constant which depends only on J and on ε. It follows

that for every player i /∈ J and every pure strategy si in Si, the expected

strategy of the other players in η, given si and given that J and only J
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trembles, is equal to µ(·|si) (the expected strategy of the other players in

µ, given si). A fortiori, the expected strategy in η given si and given that

player i does not tremble is equal to µ(·|si), to which si is a best response.

It follows that η is an ε-correlated equilibrium.

It remains to show that it is possible to find a sequence of ε-correlated

strategy checking (2.10.1) and such that η(s, ∅) tends to µ(s) as ε goes to

zero. Such a sequence may be built by letting, for all s in S and for some

suitable positive normalization constant A,

η(s, ∅) = A× µ(s)

and, inductively, if the cardinal of J ⊆ I is m + 1:

η(s, rJ) =
ε

1− ε
Am × µ(s−J , rJ)

with

Am = min
t∈S

min
L∈J : Card L=m

min
rL∈SL

η(t, rL)

Lemma 2.10.2 implies that the class of games in which all pure strategies

are acceptable is strictly larger than the class of elementary games. Consider

for instance the following game of coordination where, moreover, player 2

has an outside option:

Example 2.10.3.
x2 y2 z2

y1 0, 0 1, 1 −1,−1

z1 0, 0 −1,−1 1, 1

In this game, playing each strategy with equal probability is a completely

mixed Nash equilibrium. Therefore, by lemma 2.10.2, all strategies are ac-

ceptable and predominant. However, x2 is eliminated in any nontrivial dual

reduction. (To prove this, note that x2 is equivalent to 1
2
y2 + 1

2
z2; this im-

plies that y2 and z2 jeopardize x2. Furthermore yi and zi must be invariant

under any dual vector because they have positive probability in some strict

correlated equilibrium. So there is a unique dual reduction, which consists

in eliminating x2.)

This example shows that dual reduction may eliminate acceptable and

even predominant pure strategies. It also shows that dual reduction can
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eliminate completely mixed, hence perfect Nash equilibria. Since any per-

fect Nash equilibrium is a perfect direct correlated equilibrium (Dhillon and

Mertens, 1996), it shows that dual reduction may eliminate perfect direct

correlated equilibria.

The next example shows that there may be unacceptable pure strategies

that no dual reduction eliminates: let G denote the following three-player

game, where player 1 chooses the matrix (x1 or y1), player 2 the row, and

player 3 the column:

Example 2.10.4 (taken from (Myerson, 1986)).

x1

x3 y3 z3

x2 2, 1, 1 0, 2, 0 0, 2, 0

y2 0, 0, 2 0, 3, 0 0, 0, 3

z2 0, 0, 2 0, 0, 3 0, 3, 0

y1

x3 y3 z3

x2 1, 3, 3 1, 3, 3 1, 3, 3

y2 1, 3, 3 1, 3, 3 1, 3, 3

z2 1, 3, 3 1, 3, 3 1, 3, 3

Myerson (1986) shows that for every player i in {1, 2, 3}, the only ac-

ceptable strategy is xi. However, y1 cannot be eliminated by dual reduc-

tion. Indeed, let s = (y1, y2, y3) and α be a dual vector; by definition 2.4.1,∑
i∈I [Ui(αi ∗ s)− Ui(s)] ≥ 0; since s is a Nash equilibrium and all unilateral

deviations from s by player 1 are strictly detrimental for him, this implies

that y1 is invariant under α.

Note that y1 may be eliminated by iterative dual reduction. Indeed, to

prove that y2, z2, y3, z3 and y1 are unacceptable, Myerson uses the codom-

ination system28 (α1, α2) where α1 and α2 are the deviation vectors such

that:

α1
i (xi|yi) = α1

i (xi|zi) = 1 ∀i ∈ {2, 3},

α2
1(x1|y1) = 1, and all other αk

i (ti|si) are as in the corresponding trivial devi-

ation vectors. It is easy to check that α1 is a dual vector of G and α2 a dual

vector of G/α1. The only strategy profile remaining in G/α1/α2 is the strict

Nash equilibrium (x1, x2, x3), thus y1 has been eliminated. Whether some

unacceptable (or non predominant) pure strategies cannot be eliminated by

any iterative dual reduction is open.

28For a definition of codomination systems, see (Myerson, 1986).
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2.10.2 Discussion

Dual reduction, as inducing a refinement concept, has a number of satisfac-

tory properties: the reduction process is unaffected by positive affine transfor-

mations of the utility functions; iteratively strictly dominated strategies are

eliminated (since they are not played in correlated equilibrium); redundant

strategies are either eliminated or grouped with the strategies making them

redundant, strict correlated equilibria are never eliminated; etc. Other prop-

erties may seem less satisfactory; for instance, the fact that weakly dominated

strategies need not be eliminated in full dual reductions or that different full

dual reductions may select different outcomes. But these properties need not

be weaknesses, as they are in accordance with the behaviour of evolutionary

dynamics. Consider for instance the following two-player symmetric game:

x2 y2 z2

x1 1, 1 1, 1 1, 0

y1 1, 1 1, 1 0, 0

z1 0, 1 0, 0 0, 0

(2.10.2)

The Nash equilibria of this game are exactly the strategy profiles σ such that

σi(zi) = 0 for i = 1, 2. The Nash equilibria which are limit of an interior

solution of the two-population replicator dynamics are the Nash equilibria

σ such that, for i = 1, 2, both σi(xi) and σi(yi) are positive29. These are

exactly the Nash equilibria which are selected by full dual reduction, while

standard refinement concepts would select the equilibrium (x1, x2). In this

example, the outcomes selected by dual reduction could not coincide with the

outcomes selected by the replicator dynamics if weakly dominated strategies

were eliminated by dual reduction30 or if dual reduction was to pinpoint a

single equilibrium. Similarly, the fact that, contrary to most refinement con-

cepts, dual reduction may eliminate completely mixed Nash equilibria need

not be a weakness: in example 2.10.3, eliminating strategy x2 seems more

reasonable than keeping it in the game, since it is redundant and since the

completely mixed Nash equilibria in which strategy x2 has positive probabil-

ity are unstable under most evolutionary dynamics.

29The behaviour of the single-population replicator dynamics in this game is described by
Weibull (1995); the extension to the two-population replicator dynamics is straightforward.

30Note also that, after full dual reduction, only those weakly dominated strategies with
positive probability in some correlated equilibrium may remain in the game. This follows
from proposition 2.7.12. In this sense, dual reduction selects between “good” and “bad”
weakly dominated strategies.
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Dual reduction as a refinement concept suffers however from a severe

drawback: it not clearly motivated. For this reason, we believe that dual

reduction is primarily interesting as a tool to study correlated equilibria,

and not as inducing a refinement concept. If dual reduction is seen, not

as inducing a refinement concept, but as a way to simplify a game while

retaining its most important elements, then another aspect emerges: dual

reduction is too centered on equilibria to capture important out of equilib-

rium features of some games, such as best-response cycles. For instance, in

chapter 10, we study a game in which a unique pure strategy is played in

correlated equilibrium but a best-response cycle exists, which corresponds

to a robust attractor for the replicator dynamics and many other dynamics.

In this game, any nontrivial dual reduction eliminates all strategies that are

not played in correlated equilibrium, missing the best-response cycle and the

corresponding attractor as a solution of the game.

2.11 Appendix: Direct proofs of existence of

correlated equilibria

In this appendix, we review and connect the proofs of existence of correlated

equilibria given by Hart and Schmeidler (1989), Nau and McCardle (1990)

and Myerson (1997), on which section 2.3 is based.

2.11.1 Hart and Schmeidler’s proof

Consider the following two-player, zero-sum, auxiliary game ΓHS (HS is for

Hart and Schmeidler): the maximizer chooses a strategy profile s = (s1, .., sn)

in S; the minimizer chooses a player i in I and a couple of pure strategies

(s′i, ti) in Si×Si. The payoff is Ui(s)−Ui(s−i, ti) if s′i = si and 0 otherwise. In

mixed strategies the maximizer chooses a correlated strategy µ in ∆(S) and

the minimizer a probability distribution ν on triples (i, si, ti) ∈ I × Si × Si;

the expected payoff is then:

ghs(µ, ν) =
∑
s∈S

µ(s)
∑
i∈I

∑
ti∈Si

ν(i, si, ti)[Ui(s)− Ui(s−i, ti)] (2.11.1)

Note that the payoff of the auxiliary game of section 2.3 may be written:

g(µ, α) =
∑
s∈S

µ(s)
∑
i∈I

∑
ti∈Si

αi(ti|si)[Ui(s)− Ui(s−i, ti)]
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The only difference is that the normalization constraint for ν is:∑
i∈I

∑
si∈Si

∑
ti∈Si

ν(i, si, ti) = 1

while the normalization constraint for α is:∑
ti∈Si

αi(ti|si) = 1, ∀i ∈ I, ∀si ∈ Si

In ΓHS, as in the auxiliary game of section 2.3, the correlated strategy µ

guarantees 0 if and only if µ is a correlated equilibrium of the original game.

Thus, to prove existence of correlated equilibria, it suffices to show that the

value of ΓHS is nonnegative. To do so, Hart and Schmeidler could have used

the existence of invariant distributions for finite Markov chains (as we did in

section 2.3): 31

Lemma 2.11.1. Let M be a m×m stochastic matrix (i.e. nonnegative with

columns summing to unity); there exists a probability vector x = (xj)j=1,...,m

such that Mx = x.

Instead, they used the following lemma:

Lemma 2.11.2 (Hart and Schmeidler). Let (ajk)1≤j,k≤m be nonnegative num-

bers. There exists a probability vector x = (xj)j=1,...,m such that, for any

vector u = (uj)j=1,...,m,

m∑
j=1

xj

m∑
k=1

ajk(uj − uk) = 0 (2.11.2)

It turns out that:

Proposition 2.11.3. Lemmas 2.11.1 and 2.11.2 are equivalent (in the sense

that one is easily deduced from the other).

31Indeed, let Γ denote the auxiliary game of section 2.3, λ a positive constant and n

the number of players. If λ is small enough, any strategy of the minimizer in Γ can be
emulated in ΓHS , up to the scaling factor λ, by letting: ν(i, si, ti) = λαi(ti|si)/n if ti 6= si,
and giving any value (up to normalization of ν) to ν(i, si, si). Conversely, any strategy ν

of the minimizer in ΓHS can be emulated in Γ by letting αi(ti|si) = ν(i, si, ti) if si 6= ti and
αi(si|si) be the complement to 1; it follows that the value of Γ is nonnegative if and only
if the value of ΓHS is nonnegative. Therefore the fact that the value of ΓHS is nonnegative
may be proved by the method of section 2.3.
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Proof. First, in (2.11.2) we may assume
∑

j ajk = 1 without loss of generality

(indeed, one may increase arbitrarily the coefficients akk to ensure that each

row sums to some positive constant and then divide all coefficients by this

constant to normalize); second, by linearity, (2.11.2) holds for all vectors u if

and only if it holds for all basis vectors (i.e. with one component equal to 1

and all the others zero); third, (2.11.2) holds for all basis vectors if and only

if
∑

j xjaji = xi (=
∑

j ajixi) for all i; that is, if and only if AT x = x where

AT denote the m ×m square matrix whose (i, j) entry is aji. Thus lemma

2.11.2 boils down to lemma 2.11.1 applied to M = AT . Conversely, lemma

2.11.1 is a special case of lemma 2.11.2.

Incidentally, Hart and Schmeidler prove lemma 2.11.2 through the Min-

imax theorem; so proposition 2.11.3 yields a game-theoretic proof of the

existence of invariant distributions for finite Markov chains.32

2.11.2 Other proofs

Nau and McCardle’s proof is very similar. They also introduce (implicitly)

the payoff matrix of ΓHS. A pure strategy profile s is defined to be jointly

coherent if g(s, α) = 0 for all (unnormalized) dual vectors α. Nau and Mc-

Cardle show through lemma 2.11.1, and essentially as in section 2.3, that

there exists a jointly coherent strategy profile. Finally, they prove through a

variant of Farkas lemma that a strategy profile is jointly coherent if and only

if it has positive probability in some correlated equilibrium.33 It follows that

there exists a correlated equilibrium.

Myerson’s proof is very close to the proof of section 2.3, but instead of

introducing an auxiliary zero-sum game, Myerson introduces an auxiliary lin-

ear program. Deviation vectors appear as vectors of dual variables, hence the

terms dual vector and dual reduction. Myerson’s linear program corresponds

to the maximisation’s program of the maximizer in the auxiliary game of

section 2.3.

32I owe this remark to B. von Stengel, who first showed me a proof of lemma 2.11.1
based on linear duality. Such a proof can also be found in (Mertens et al, 1994, ex. 9, p.
41).

33This implies that if s is not jointly coherent, then there exists a dual vector α such
that g(s, α) < 0. Since the set of dual vectors is convex, this implies that there exists a
dual vector satisfying g(s, α) < 0 for every non jointly coherent s, as used in the proof of
proposition 2.5.5.





Chapitre 3

Openness of the Set of Games

with a Unique Correlated

Equilibrium1

Abstract

This chapter shows that the set of n-player games with a unique
correlated equilibrium is open, which is not true for Nash equilibrium.
Related results are studied. For instance, we show that, even though
the set of bimatrix games with a unique Nash equilibrium is open,
the set of symmetric bimatrix games with a unique symmetric Nash
equilibrium is not.

Keywords: correlated equilibrium, open set, quasi-strict equilibrium

The practical relevance of a phenomenon arising in a game often hinges upon

this phenomenon being robust to perturbation of the game. To establish such

robustness results typically requires proving that some of the properties of

the game we initially considered are themselves robust; that is, that the set

of games having these properties is open. We investigate here whether the

set of games with a unique equilibrium is open, both for Nash equilibrium

and correlated equilibrium.

A first result, due to Jansen (1981), is that the set of bimatrix games

with a unique Nash equilibrium is open. However, this does not extend to

three-player games. A counter-example due to Eilon Solan (personal commu-

nication) is given in section 3.3. Our main result is that, by contrast, for any

69
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number of players n, the set of n-player finite games with a unique correlated

equilibrium is open.2 This generalizes an earlier result of Nitzan (2005).3 We

also establish a number of related results. For instance, the fact that the set

of games with a unique and strict Nash equilibrium is open, or the fact that,

in two-player games, the set of symmetric games with a unique symmetric

Nash equilibrium is not open, but the set of symmetric games with a unique

and quasi-strict symmetric Nash equilibrium is.

The material is organized as follows. Definitions and notations are intro-

duced in section 1. The fact that the set of games with a unique correlated

equilibrium is open proved in section 2. Related results are stated and proved

in section 3.

3.1 Definitions and main result

We first recall the notations: I = {1, 2, ..., n} is the set of players, Si the

set of pure strategies of player i and S−i := ×j∈I\{i}S
j. The utility function

of player i is U i : S = ×i∈IS
i → R. A pure strategy profile is denoted

by s = (si, s−i). Finally, given any finite set T , the simplex of probability

distributions over T is denoted by ∆(T ).

A correlated strategy of the players in I is a probability distribution over

the set S of pure strategy profiles. Thus µ = (µ(s))s∈S is a correlated strategy

if:

µ(s) ≥ 0 ∀s ∈ S (3.1.1)∑
s∈S

µ(s) = 1 (3.1.2)

Henceforth, the conditions in (3.1.1) will be called nonnegativity constraints.

For si, ti in Si and µ in ∆(S), let

hsi,ti(µ) :=
∑

s−i∈S−i

µ(s)[U i(s)− U i(ti, s−i)]

2This will be used in chapter 10 to show that elimination of all strategies used in
correlated equilibria by a wide class of evolutionary dynamics occurs for an open set of
games.

3She showed that, for two-player games with the same number of pure strategies for
both players, the set of games with a unique correlated equilibrium and such that this
correlated equilibrium has full support is open.
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where, as throughout, s = (si, s−i).

Definition. A correlated strategy µ is a correlated equilibrium (Aumann,

1974) if it satisfies the following incentive constraints:

hsi,ti(µ) ≥ 0, ∀i ∈ I,∀si ∈ Si,∀ti ∈ Si (3.1.3)

A n-player finite game has size m1×m2× ...×mn if, for every i in I, the

pure strategy set of player i has cardinal mi. Assimilating a game and its

payoff matrices, a n-player game of size m1 ×m2 × ...×mn may be seen as

a point in (Rm1m2...mn)n, hence the notions of a neighborhood of a game and

of an open set of games. The main result of this chapter is that:

Proposition 3.1.1. The set of n-player games of size m1 ×m2 × ... ×mn

with a unique correlated equilibrium is a nonempty, open subset of the set of

games of size m1×m2× ....×mn. Furthermore, if a n-player finite game has

a unique correlated equilibrium σ, then the (unique) correlated equilibrium of

every nearby game has the same support as σ.

3.2 Proof

The fact that the set of m1 ×m2 × ...×mn games with a unique correlated

equilibrium is nonempty is obvious: any dominance solvable game has a

unique correlated equilibrium4. Thus it suffices to prove that this set if open.

Equivalently, letting G be a game with a unique correlated equilibrium and

(Gn) a sequence of games converging towards G, we need to show that, for n

large enough, the game Gn has a unique correlated equilibrium. The proof

runs as follows: Let σ denote the unique correlated equilibrium of G. A dual

reduction argument shows that σ is a quasi-strict Nash equilibrium (lemma

3.2.2). Together with the upper semi-continuity of the Nash equilibrium cor-

respondence this implies that, for n large enough, Gn has a quasi-strict Nash

equilibrium with the same support as σ (lemma 3.2.3). Since two quasi-strict

Nash equilibria with the same support satisfy the same nonnegativity and

incentive constraints with strict inequality (lemma 3.2.4), it follows that, for

n large enough, Gn has a correlated equilibrium satisfying with strict inequal-

ity the same constraints as σ. Due to a general result on polytopes (lemma

4Note also that, as will be shown in the next chapter, generic two-player zero-sum
games have a unique correlated equilibrium.
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3.2.1), this implies that, for n sufficiently large, the correlated equilibrium

polytope of Gn is a singleton. This completes the proof.

We begin with the result on polytopes: Let (An) be a sequence of p×q real

matrices and (an) a sequence of column vectors of size p (we use bold letters

for vectors and matrices). Assume that (An) and (an) converge respectively

towards the matrix A and the vector a. Let

Cn = {x ∈ Rq,Anx ≥ an}

and5 C = {x ∈ Rq,Ax ≥ a}. Assume that Cn is uniformly bounded:

∃M ∈ R,∀n ∈ N,∀x ∈ Cn, max
1≤i≤p

|(Anx)i| ≤ M (3.2.1)

Assume finally that C is a singleton: C = {x̄}. Let an,i denote the ith

component of an. We have:

Lemma 3.2.1. If there exists N ∈ N such that, for all n ≥ N ,

∃xn ∈ Cn,∀i ∈ {1, ..., p}, (Anxn)i > an,i ⇒ (Ax̄)i > ai (3.2.2)

then for n large enough, Cn is a singleton.

Proof. The proof is by contradiction. For notational simplicity, assume an =

0 for all n (hence a = 0). The proof in the general case is the same.6 If lemma

3.2.1 does not hold, then, up to considering a subsequence, we may assume

that for every n in N, condition (3.2.2) holds but Cn is not a singleton. As

will later be proved, this implies that for every n in N:

∃zn ∈ Cn,∃i ∈ {1, ..., p}, (Anzn)i = 0, (Ax̄)i > 0 (3.2.3)

Due to (3.2.1), the sequence (zn) is bounded. Furthermore, since An → A

and Anzn ≥ 0, any accumulation point z̄ of (zn) satisfies Az̄ ≥ 0, i.e. z̄ ∈
C. Since C = {x̄}, it follows that (zn) converges to x̄. Therefore, for n

sufficiently large,

∀i ∈ {1, ..., p}, (Ax̄)i > 0 ⇒ (Anzn)i > 0

contradicting (3.2.3).

5Anx ≥ an means that the inequality holds for each coordinate i in {1, ..., p}.
6Up to replacement of the scalar 0 by ai or an,i and of the vector 0 by a or an, depending

on the context.
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It only remains to prove (3.2.3). By assumption, there exists yn ∈ Cn,

yn 6= xn. By convexity of Cn, for every λ in [0, 1], λyn + (1 − λ)xn ∈ Cn.

Now extend the segment [xn,yn] in the direction of yn: since yn 6= xn and

since Cn is bounded, there exists a maximal value of λ (≥ 1) such that

λyn + (1− λ)xn ∈ Cn. Call this value λmax and let

zn := λmaxyn + (1− λmax)xn = xn + λmax(yn − xn)

By definition of λmax, there exists i in {1, ..., p} such that

(Anzn)i = (Anxn)i + λmax [(Anyn)i − (Anxn)i] = 0 (3.2.4)

and

∀λ ∈ R, λ > λmax ⇒ (Anxn)i + λ [(Anyn)i − (Anxn)i] < 0

It follows that (Anyn)i − (Anxn)i < 0. Since (Anyn)i ≥ 0, this implies

(Anxn)i > 0, hence by (3.2.2), (Ax̄)i > 0. Together with (3.2.4), this proves

(3.2.3) and completes the proof of lemma 3.2.1.

Definition. A Nash equilibrium τ is quasi-strict if, for every player i and

every pure strategy si in Si, if si does not belong to the support of τ i, then

U i(si, τ−i) < U i(τ).

Lemma 3.2.2. If a n-player finite game has a unique correlated equilibrium,

then this correlated equilibrium is a quasi-strict Nash equilibrium.

Proof. This was proved as corollary 2.5.7 in chapter 2.

Lemma 3.2.3. If the n-player game G has a unique Nash equilibrium σ and

that this Nash equilibrium is quasi-strict, then there exists a neighbourhood

ΩG of G such that, for every game Ĝ in ΩG and every Nash equilibrium σ̂ of

Ĝ, the support of σ̂ is equal to the support of σ and σ̂ is quasi-strict.

Proof. Let (Gn)n∈N be a sequence of games converging to G and σn a Nash

equilibrium of Gn. To prove lemma 3.2.3, it is enough to show that, for n

large enough, the support of σn is equal to the support of σ and σn is quasi-

strict. Since the Nash equilibrium correspondence is upper semi-continuous

and since G has a unique Nash equilibrium, it follows that σn converges to σ.

Therefore, if σi(si) is positive then, for n sufficiently large, σi
n(si) is positive

too. It follows that there exists a constant N ′ such that, for all n ≥ N ′, the

support of σn includes the support of σ.
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Furthermore, the Nash equilibrium σ is quasi-strict. Therefore, if si does

not belong to the support of σi, then U i(si, σ−i) < U i(σ). Since σn converges

to σ and U i
n to U i, this7 implies that, for n large enough, U i

n(si, σ−i
n ) < U i

n(σn).

Therefore, there exists a constant N ′′ such that

∀n ≥ N ′′,∀i ∈ I, ∀si ∈ Si, σi(si) = 0 ⇒ U i
n(si, σ−i

n ) < U i
n(σn) (3.2.5)

Since U i
n(si, σ−i

n ) < U i
n(σn) ⇒ σi

n(si) = 0, it follows that, for n ≥ N ′′, the

support of σ includes the support of σn. For n ≥ max(N ′, N ′′), σ and σn have

the same support; we can thus replace σi(si) > 0 by σi
n(si) > 0 in (3.2.5),

which shows that σn is quasi-strict. This completes the proof.

Lemma 3.2.4. Let G and Ĝ be two games with the same set of players and

strategies. Let σ and σ̂ be Nash equilibria of, respectively, G and Ĝ. Assume

that σ and σ̂ have the same support and are both quasi-strict. Then, among

the nonnegativity and incentive constraints defining correlated equilibria, σ

and σ̂ satisfy the same constraints with strict inequality.

Proof. Since, by assumption, σ and σ̂ have the same support, they satisfy

with strict inequality the same nonnegativity constraints. We now show that

they satisfy with strict inequality the same incentive constraints. Since σ is

a product distribution, it follows that

hsi,ti(σ) = σi(si)
[
U i(si, σ−i)− U i(ti, σ−i)

]
∀i,∀si,∀ti

Let S̃ = ×iS̃
i denote the support of both σ and σ̂. If si /∈ S̃i, then σi(si) = 0

hence hsi,ti(σ) = 0 for every ti in Si. If si ∈ S̃i and ti ∈ S̃i, then, since σ is

a Nash equilibrium, U i(si, σ−i) = U i(ti, σ−i) hence hsi,ti(σ) = 0. Finally, if

si ∈ S̃i and ti /∈ S̃i then σi(si) > 0 and, since σ is quasi-strict, U i(si, σ−i)−
U i(ti, σ−i) > 0. Therefore, hsi,ti(σ) > 0. Grouping these observations we

obtain that hsi,ti(σ) > 0 if and only if si ∈ S̃i and ti /∈ S̃i. The same result

holds for σ̂ so that, letting (ĥsi,ti)si∈Si,ti∈Si denote the linear forms associated

with the correlated equilibrium incentive constraints of Ĝ, we have:

hsi,ti(σ) > 0 ⇔ ĥsi,ti(σ̂) > 0

This completes the proof.

7U i
n denotes the utility function of player i in the game Gn.
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We now conclude. Let G be a game with a unique correlated equilibrium

σ and (Gn) be a sequence of games converging towards G. Let Cn be the

correlated equilibrium polytope of Gn. Combining lemmae 3.2.2, 3.2.3 and

3.2.4, we obtain that, for n large enough, Gn has a correlated equilibrium σn

satisfying with strict inequality the same constraints as σ. By lemma 3.2.1,

this implies that for n sufficiently large, Cn is a singleton. This completes

the proof of proposition 3.1.1.

3.3 Remarks

1. Nitzan (2005) proved independently and earlier a weaker version of

proposition 3.1.1. More precisely, she proved that if a two-player m×m game

has a unique correlated equilibrium and that this correlated equilibrium has

full support, then every nearby game has a unique correlated equilibrium

and this correlated equilibrium has full support. To prove this result with

our method, it suffices to note that if a game has a unique and completely

mixed Nash equilibrium, then every nearby game has a completely mixed

Nash equilibrium, and then to apply lemma 3.2.1. This illustrates a differ-

ence between our arguments and Nitzan’s: while she uses a theorem of the

alternative, we do not need any theorem of the alternative to prove her re-

sults.8

2. The set of 3-player games with a unique Nash equilibrium is not open.

The following 2× 2× 2 counter-example is adapted from (Flesch et al, 1997)

and was provided by Eilon Solan (personal communication).(
1, 1, 1 0, 1, 1

1, 1, 0 1, 0, 1

) (
1, 0, 1− ε 1, 1, 0

0, 1, 1 0, 0, 0

)
(3.3.1)

Player 1 chooses a row (Top or Bottom), player 2 a column (Left or Right)

and player 3 a matrix (West or East). For ε = 0, there is a unique Nash

equilibrium, in which all players play their first strategy (this will be proved

below). However, for ε > 0, there is a continuum of Nash equilibria. Indeed,

every (partially) mixed strategy profile in which player 1 plays Bottom with

8We do however use a theorem of the alternative to prove proposition 3.1.1. Indeed,
the proof of lemma 3.2.2 uses Nau and McCardle’s (1990) characterization of strategy
profiles with positive probability in at least one correlated equilibrium, which itself relies
on a theorem of the alternative.
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probability less than ε/(1 + ε) and player 2 and 3 stick to their first strategy

is a Nash equilibrium. Thus, in 3-player games, there are sequences of games

with a continuum of Nash equilibria converging towards a game with a unique

Nash equilibrium.

The game (3.3.1) with ε = 0 also provides an example of a game with

a unique Nash equilibrium that is not quasi-strict. This cannot happen in

two-player games, since bimatrix games always have a quasi-strict Nash equi-

librium (Norde, 1999).9

Proof that the game (3.3.1) with ε = 0 has a unique Nash equilibrium: for

ε = 0, the game (3.3.1) may be described as follows: player i + 1 (counted

modulo 3) wants to mismatch player i, except if all players play their first

strategy. Thus, in an hypothetical equilibrium different from Top-Left-West,

if i plays in pure strategy, then i+1 must mismatch i, i+2 mismatch i+1 and

i + 3 = i mismatch i + 2; therefore, i must mismatch itself, a contradiction.

It follows that the only equilibrium in which one of the players plays in pure

strategy is Top-Left-West.

It remains to show that there are no completely mixed Nash equilib-

ria. By contradiction, let x ∈]0, 1[ (resp. y, z) be the probability of Bot-

tom (resp. Right, East) in an hypothetical completely mixed Nash equi-

librium. Since player 1 is indifferent between Top and Bottom, we have

y(1 − z) = (1 − y)z + yz = z, hence y > z. Since the game is cyclically

symmetric, it follows that y > z > x > y, which cannot be. This completes

the proof.

3. A corollary of lemma 3.2.3 is that:

Corollary 3.3.1. If a finite game has a unique and strict Nash equilibrium

σ, then σ is also the unique Nash equilibrium of every nearby game.

Indeed, by lemma 3.2.3, every Nash equilibrium of every nearby game

has the same support as σ, hence is equal to σ as σ is pure. Thus, the set of

games with a unique and strict Nash equilibrium is open. We do not know

whether the set of games with a unique and quasi-strict Nash equilibrium is

9It is well known that 3-player games need not have a quasi-strict equilibrium. However,
the counter-examples I found in the literature, e.g. (Raghavan, 2002), are of games with
several Nash equilibria. Thus, up to my knowledge, whether a unique Nash equilibrium is
necessarily quasi-strict was still open.
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open.

4. In bimatrix games, both the set of games with a unique Nash equi-

librium and the set of games with a unique correlated equilibrium are open.

Since there are games with a unique Nash equilibrium but many correlated

equilibria, the latter set is included in the former. The following examples

show that on the relative boundary of the set of bimatrix games with a unique

correlated equilibrium, there are games with a continuum of Nash equilib-

ria, games with a finite number (> 1) of Nash equilibria, and games with a

unique Nash equilibrium:

(
0

ε

) (
1, 1 0, 0

0, 0 −ε,−ε

) 
0, 0 2, 1 1, 2 −1, x

1, 2 0, 0 2, 1 −1, x

2, 1 1, 2 0, 0 −1, x

x,−1 x,−1 x,−1 0, 0


The left game is a one-person game. For ε > 0 it has a unique correlated

equilibrium. For ε = 0 it has a continuum of Nash equilibria. The middle

game has a unique correlated equilibrium (Top-Left) for ε > 0, but two Nash

equilibria for ε = 0. The game on the right is adapted from (Nau and Mc-

Cardle, 1990, example 4). The 3 × 3 game in the top-left corner is due to

Moulin and Vial (1978). This 3 × 3 game has a unique Nash equilibrium:

(1/3, 1/3, 1/3) for both players, with payoff 1; but putting probability 1/6

on every off-diagonal square yields a correlated equilibrium with payoff 3/2.

Now consider the whole 4× 4 game. For any value of x, (4,4) is a Nash equi-

librium. For 1 < x ≤ 3/2, this is the unique Nash equilibrium, but not the

unique correlated equilibrium (the correlated equilibrium with payoff 3/2 of

the 3× 3 top-left game induces a correlated equilibrium of the whole game).

For x > 3/2, this is the unique correlated equilibrium.

5. The following example shows that, within the set of two-person sym-

metric games, the set of games with a unique symmetric Nash equilibrium is

not open:  −ε,−ε 1, 0 1, 0

0, 1 0, 0 −1,−1

0, 1 −1,−1 0, 0


For ε = 0, this game has a unique symmetric Nash equilibrium: Top-Left.

For ε > 0, it has 3 symmetric Nash equilibria: ( 1
1+ε

, ε
1+ε

, 0), ( 1
1+ε

, 0, ε
1+ε

),
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( 3
3+2ε

, ε
3+2ε

, ε
3+2ε

). This is linked to the fact that, for ε = 0, the unique

symmetric Nash equilibrium is not quasi-strict. Indeed, the openness of

the set of bimatrix games with a unique Nash equilibrium has the following

analogue for symmetric games:

Proposition 3.3.2. Within the set of two-person symmetric games, the set

of two-person symmetric games with a unique symmetric Nash equilibrium10

and such that this Nash equilibrium is quasi-strict is open.

Proof. Let G be a two-person game with a unique symmetric Nash equilib-

rium, with support S̃ = S̃1 × S̃2, and such that this Nash equilibrium is

quasi-strict. It follows from a variant of lemma 3.2.3 that, within the set of

two-person symmetric games, there exists a neighborhood ΩG of G such that,

for any game G′ in ΩG, any symmetric Nash equilibrium of G′ has support

S̃ and is quasi-strict.

Fix G′ in ΩG. Since G′ is symmetric, it has a symmetric Nash equilib-

rium σ. To establish proposition 3.3.2, it is enough to show that G′ has no

other symmetric Nash equilibria. By contradiction, assume that G′ has a

symmetric Nash equilibrium τ 6= σ. For every λ in R, define the symmetric

mixed strategy profile σλ by σi
λ = λτ i + (1− λ)σi, for i = 1, 2.

There are five types of incentive and nonnegativity constraints that σλ

must satisfy in order to be a (symmetric) Nash equilibrium:

(i) σλ(s) ≥ 0, s ∈ S̃;

(ii) σλ(s) ≥ 0, s /∈ S̃;

(iii) hsi,ti(σλ) ≥ 0, si ∈ S̃i, ti /∈ S̃i, i = 1, 2;

(iv) hsi,ti(σλ) ≥ 0, si ∈ S̃i, ti ∈ S̃i, i = 1, 2;

(v) hsi,ti(σλ) ≥ 0, si /∈ S̃i, ti ∈ Si, i = 1, 2.

Using the fact that both σ and τ are Nash equilibria with support S̃, it is

easily checked that for every λ in R, σλ satisfies (with equality) all constraints

of types (ii), (iv) and (v).

Moreover, since σ 6= τ and since the set of Nash equilibria is compact, it

follows that there exists a maximal value of λ such that σλ is a (symmetric)

Nash equilibrium. Call this value λmax. Since all symmetric Nash equilibria

of G′ have support S̃ and are quasi-strict, they all satisfy with strict inequal-

ity all constraints of types (i) and (iii), hence so does σλmax . Therefore, there

exists λ > λmax such that σλ satisfies all constraints of type (i) and (iii).

10There might be other, asymmetric Nash equilibria.
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Since, as mentioned in the previous paragraph, σλ also satisfies all other con-

straints, it follows that σλ is a (symmetric) Nash equilibrium, contradicting

the maximality of λmax.

Finally, a variant of the proof of corollary 3.3.1 shows that the set of

n-player symmetric games with a unique and strict symmetric Nash equilib-

rium is open.

6. In order to prove the existence of correlated equilibria without using

a fixed point theorem, Hart and Schmeidler (1989) associate to every finite

game G an auxiliary zero-sum game whose size depends only on the size of

G and whose payoff matrix depends continuously on the payoff matrices of

G (see chapter 2, sections 2.3 and 2.11). In this auxiliary zero-sum game,

the optimal strategies of the maximizer correspond exactly to the correlated

equilibria of G, so that G has a unique correlated equilibrium if and only if, in

the auxiliary game, the maximizer has a unique optimal strategy. It follows

that, in order to get an alternative proof of the fact that the set of games

with a unique correlated equilibrium is open, it would have been enough to

prove that:

If in a two-player zero-sum game, one of the players has a unique optimal

strategy, then in every nearby zero-sum game (in the space of payoff matri-

ces), this player has a unique optimal strategy.

However, this turns out to be false: let Gε be the two-player zero-sum

game with payoff matrix for the row player

L R

T

M

B

 −ε 0

0 −1

0 −1


For ε = 0, the row player has a unique optimal strategy (playing T ). But for

ε > 0, the row player has an infinite number of optimal strategies: playing

T with probability 1/(1 + ε) and playing M and B with any probabilities

summing to ε/(1 + ε).





Chapitre 4

Correlated Equilibrium in

Generic Two-Person Zero-Sum

Games

Abstract

This chapter combines arguments of Forges (1990) and of Bohnen-
blust et al (1950) to show that, in generic two-person zero-sum games,
all correlated equilibria are Nash equilibria.1

Forges (1990) showed that a correlated equilibrium of a two-person zero-

sum game need not be a convex combination of Nash equilibria. This chap-

ter establishes that, nevertheless, in generic two-person zero-sum games all

correlated equilibria are Nash equilibria, and that with a more demanding

notion of genericity, there is a unique correlated equilibrium. While this

seems to have gone unnoticed, the arguments are hardly new: as noted by

Forges (1990), if, in a zero-sum game, one of the players has a unique opti-

mal strategy, then every correlated equilibrium is a Nash equilibrium. Since

Bonhenblust et al (1950) have shown that in a generic zero-sum game, there

is a unique pair of optimal strategies, it follows that in a generic zero-sum

game there is a unique correlated equilibrium, hence that every correlated

equilibrium is a Nash equilibrium.2 The merit of this chapter is thus only

to gather these two results, and to use a weaker notion of genericity than

1This chapter originated with conversations with Françoise Forges.
2We thank Sylvain Sorin for making us aware of Bonhenblust et al’s (1950) result.
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Bonhenblust et al (1950).3

Notations (the notations are different from the notations used in previ-

ous chapters): G is a two-person zero-sum game with payoff matrix A =

(aij)1≤i≤n, 1≤j≤p and value v. The pure strategy sets of the players are de-

noted respectively I (for player 1) and J (for player 2). If µ is a probability

distribution over I × J , then µ(i) =
∑

j∈J µ(i, j) is the marginal probability

of the pure strategy i in µ and Iµ = {i ∈ I, µ(i) > 0} the set of pure strate-

gies of player I to which µ assigns a positive marginal probability. Similarly,

Jµ = {j ∈ J, µ(j) > 0}. Also, for all i ∈ Iµ, µ(j|i) = µ(j, i)/µ(i) is the con-

ditional probability of j given i. A probability distribution µ over I × J is a

correlated equilibrium (Aumann, 1974) if for every i in Iµ, the pure strategy i

is a best-response to µ(·|i), and if the symmetric condition for player 2 holds

as well.

Let C be the set of all correlated equilibria of G and IC = ∪µ∈CIµ the set

of pure strategies of player 1 which have positive marginal probability in at

least one correlated equilibrium. Similarly, let JC = ∪µ∈CJµ. Finally, let AC

be the |IC | × |JC | submatrix of A obtained by considering only the i’s in IC

and the j’s in JC . This chapter establishes that:

Proposition If AC has full rank (i.e. if rankAr = min(|IC |, |JC |)), then

all correlated equilibria of G are Nash equilibria.

The proof relies on the following lemma:

Lemma (Forges, 1990) If µ is a correlated equilibrium of G and µ(i) > 0

then the conditional probability µ(·|i) over J is an optimal strategy of player

2.

Proof. Let i ∈ Iµ. Since µ is a correlated equilibrium, i is a best-response

to µ(·|i). Therefore,
∑

j∈J µ(j|i)aij ≥ v, with strict inequality if µ(·|i) is not

optimal. Therefore, if for some i in Iµ, µ(·|i) is not optimal, then the average

payoff of player 1 in µ:
∑

i∈I,j∈J µ(i, j)aij, is strictly greater than v; hence

the average payoff of player 2 is strictly less than v, i.e. less than what he

can guarantee: a contradiction.

3The arguments of this chapter were developed “independently”, in that we were not
aware of Bonhenblust et al’s (1950) result before completing the first draft of this chapter.
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We now prove the proposition:

Step 1. Assume that G has a Nash equilibrium σ with support IC ×
JC . Assume without loss of generality |IC | ≥ |JC |. Let τ2 be an optimal

strategy of player 2. The mixed strategy profile (σ1, τ2) is a Nash equilibrium

with payoff v, as a product of optimal strategies. Therefore, for all i ∈ IC ,

(ACτ2)i =
∑

j∈Jr
τ2(j)aij = v. This defines a linear system of |IC | equations

with |JC | variables (the τ(j), j ∈ JC). Assuming that AC has full rank

(hence rank |JC | in our case) this linear system has at most one solution,

hence player 2 has a unique optimal strategy.

Step 2. Assume now that player 2 has a unique optimal strategy and

let µ be a correlated equilibrium of G. For all i ∈ Iµ, µ(·|i) is an optimal

strategy of player 2. Since player 2 has a unique optimal strategy, µ(·|i) is

independent of i ∈ Iµ. This implies that µ is a product distribution, hence a

Nash equilibrium.4

Step 3. To complete the proof we need to show that G has indeed a

Nash equilibrium with support IC×JC . By convexity of the set of correlated

equilibria, there exists a correlated equilibrium µ such that µ(i)µ(j) > 0 for

all (i, j) ∈ IC × JC . Recall that for all i ∈ IC , µ(·|i) is an optimal strategy

of player 2. Hence, by convexity of the set of optimal strategies of player

2, σ2 =
∑

i∈IC
µ(i)µ(·|i) is also optimal. Since σ2(j) = µ(j) for all j ∈ JC ,

it follows that σ2 has support JC . Symmetrically, player 1 has an optimal

strategy σ1 with support IC . The mixed strategy profile (σ1, σ2) provides a

Nash equilibrium with support IC × JC .

Remarks:

1. Generically5, A and all its submatrices have full rank. Therefore,

in generic two-person zero-sum games, AC has full rank and all correlated

equilibria are Nash.

2. In a similar spirit the following more precise results can be proved : if µ

is a correlated equilibrium and rank(AC) ≥ min(|Iµ|, |Jµ|), then µ is a Nash

equilibrium. In particular, if the submatrix of A obtained by considering

only the lines in Iµ and the columns in Jµ has full rank, then µ is a Nash

4As already mentioned, the fact that if a player has a unique optimal strategy, then
every correlated equilibrium is a Nash equilibrium had been noted by Forges (1990).

5That is, for an open and dense set of matrices.
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equilibrium distribution.

3. The above arguments are essentially the arguments used by Bohnen-

blust et al (1950) to show that, with a more demanding notion of genericity,

generic two-person zero-sum games have a unique pair of optimal strategies

(hence, by the second step of the proof of the proposition, a unique correlated

equilibrium).



Chapitre 5

Elementary Games and Games

Whose Correlated Equilibrium

Polytope has Full Dimension

Abstract
A game is elementary (Myerson, 1997) if it has a strict correlated

equilibrium with full support. A game is “full” if its correlated equi-
librium polytope has the dimension of the simplex of pure strategy
profiles. This chapter relates and characterizes these classes of games.

5.1 Introduction

As mentioned in chapter 2, Myerson (1997) defines a game to be elementary

if it has correlated equilibria that satisfy all nonnegativity and incentive con-

straints with strict inequality. This class of games satisfies two interesting

properties. First, as Myerson (1997, p. 186) points out: “For such elemen-

tary games, any player can be motivated to choose any pure strategy with

no indifference problems” so that, for elementary games, “correlated equi-

librium refinements that generalize Selten’s perfectness concept should be

unnecessary.” Furthermore, as already mentioned in chapter 2, proposition

2.4.11, a game is elementary if and only if it cannot be (strictly) reduced by

dual reduction (Myerson, 1997). It follows that by iterative dual reduction,

any finite game is eventually reduced to an elementary game.1

1Myerson (1997) writes that this suggests that “game theorists may study elementary
games without loss of generality”, a view we do not endorse.
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A slightly larger, closely related class of games is the class of games whose

correlated equilibrium polytope C has full dimension2, henceforth called full

games. Nau et al (2004) proved that if a game G is full and nontrivial3 then

there is no Nash equilibrium in the relative interior of C, and that this is not

true for general games.

This chapter relates and characterizes these two classes of games. The

material is organized as follows: in the next section, the main definitions

and notations are introduced. Section 5.3 shows that a game is elementary

if and only if it is full and all linear forms corresponding to the incentives

constraints defining correlated equilibria are nonzero. The last section and

the second appendix (section 5.6) are devoted to characterizations of full

games. These can also be used to characterize elementary games. Finally,

a method to build full but nonelementary games is explained in the first

appendix (section 5.5).

5.2 Notations and definitions

5.2.1 Notations

Let G = {I, (Si)i∈I , (Ui)i∈I} denote a finite game in strategic form: I is the

nonempty finite set of players, Si the nonempty finite set of pure strategies

of player i and Ui : ×i∈ISi → R the utility function of player i. The set

of (pure) strategy profiles is S = ×i∈ISi; the set of strategy profiles for the

players other than i is S−i = ×j∈I−iSj. Pure strategies of player i (resp.

pure strategy profiles; pure strategy profiles of the players other than i) are

denoted si or ti (resp. s; s−i). We may write (ti, s−i) to denote the strategy

profile that differs from s only in that its ith component is ti. Finally, N

denotes the cardinal of S and ∆(S) the set of probability distribution over

S.

5.2.2 Correlated equilibrium

We recall the definition of a correlated equilibrium and introduce some new

notations for incentive constraints. The set ∆(S) is an N − 1 dimensional

2That is, dimension N−1 where N is the number of pure strategy profiles in the game.
See section 5.2.

3A game is trivial if the payoffs of the players are independent of their own strategy.
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simplex, henceforth called the simplex. A correlated strategy of the players in

I is an element of the simplex. Thus µ = (µ(s))s∈S is a correlated strategy

if:

(nonnegativity constraints) µ(s) ≥ 0 ∀s ∈ S (5.2.1)

(normalization constraint)
∑
s∈S

µ(s) = 1 (5.2.2)

For (i, si, ti) ∈ I×Si×Si, let hsi,ti denote the linear form on RS which maps

x = (x(s))s∈S to

hsi,ti(x) =
∑

s−i∈S−i

x(s)[Ui(s)− Ui(ti, s−i)]

A correlated strategy µ is a correlated equilibrium (Aumann, 1974) if:

(incentive constraints) hsi,ti(µ) ≥ 0 ∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si\{si}
(5.2.3)

The set of correlated equilibria is a polytope, which we denote by C.

Since C is a subset of the simplex, it has at most dimension N − 1.

Definition 5.2.1. The polytope C has full dimension if it has dimension

N − 1.

5.2.3 Full games

Definition 5.2.2. G is a full game if C has full dimension.

To state more precisely the result of Nau et al (2004) mentioned in the

introduction, we need some definitions:

Definition 5.2.3. Let (i, si, ti) ∈ I × Si × Si, with si 6= ti. The incentive

constraint hsi,ti(·) ≥ 0 is vacuous if hsi,ti = 0. That is, if Ui(si, ·) = Ui(ti, ·).

Definition 5.2.4. A game is nontrivial if at least one of the incentive con-

straints is nonvacuous: ∃i ∈ I, ∃si ∈ Si,∃ti 6= si, Ui(si, ·) 6= Ui(ti, ·).

Nau et al (2004) proved that if G is nontrivial, then all Nash equilibria

lie on the boundary of C 4. If furthermore C has full dimension, its bound-

ary coincides with its relative boundary, hence all Nash equilibria lie on its

4We could see C as a subset of RN , in which case C (and ∆(S)) would always have an
empty interior. Rather, we see C as a subset of the hyperplane containing the simplex.
Therefore, a correlated equilibrium belongs to the boundary of C if and only if it belongs
to a face of C whose dimension is at most N − 2.
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relative boundary. In contrast, if C has less than full dimension, it consists

entirely of boundary; the above result is then void and there are examples

of nontrivial games with Nash equilibria in the relative interior of C (Nau et

al, 2004).

5.2.4 Elementary games

Definition 5.2.5. A game is elementary (Myerson, 1997) if it has a corre-

lated equilibrium µ which satisfies all incentive constraints (5.2.3) with strict

inequality. That is,

∀i ∈ I,∀si ∈ Si,∀ti ∈ Si\{si}, hsi,ti(µ) > 0 (5.2.4)

A game is elementary if and only if it has a strict correlated equilibrium

with full support.5 Indeed, if µ is a strict correlated equilibrium with full

support, then it satisfies (5.2.4). Conversely, by definition of hsi,ti , if si has

marginal probability zero in µ, then hsi,ti(µ) = 0 for all ti in Si. Therefore

if µ satisfies (5.2.4), then every pure strategy of every player has positive

marginal probability in µ and, by perturbing µ, one obtains a strict correlated

equilibrium with full support.

Finally, if some player i is indifferent between two pure strategies si and

ti 6= si (that is, if Ui(si, ·) = Ui(ti, ·)) then hsi,ti(µ) = 0 for all µ in ∆(S), and

(5.2.4) cannot be satisfied. It follows that:

Remark 5.2.6. If a game is elementary, then all incentive constraints are

nonvacuous: ∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si\{si}, Ui(si, ·) 6= Ui(ti, ·).

5.3 The relation between elementary games

and full games

In this section, we first give necessary and sufficient conditions for a game to

be full. We then precise the link between elementary games and full games.

Proposition 5.3.1. The following properties are equivalent:

(i) C has full dimension

5That is, a correlated equilibrium satisfying all nonnegativity and incentive constraints
with strict inequality.
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(ii) There exists a correlated equilibrium that satisfies all nonvacuous in-

centive constraints with strict inequality. Formally,

∃µ ∈ C,∀i ∈ I,∀si ∈ Si,∀ti ∈ Si\{si}, hsi,ti 6= 0 ⇒ hsi,ti(µ) > 0

(5.3.1)

(iii) There exists a correlated equilibrium that satisfies all nonnegativity con-

straints and all nonvacuous incentive constraints with strict inequality.

Proof. To prove (ii) ⇒ (iii) and (iii) ⇒ (i), note that by perturbing a corre-

lated equilibrium satisfying all nonvacuous incentive constraints with strict

inequality, one obtains a correlated equilibrium satisfying all nonnegativity

constraints and all nonvacuous incentive constraints with strict inequality

and that any correlated strategy in a sufficiently small neighborhood of this

correlated equilibrium is a correlated equilibrium. We now prove (i) ⇒ (ii)

by contraposition. By convexity of the set of correlated equilibria C, (ii) is

equivalent to:

∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si\{si}, hsi,ti 6= 0 ⇒ (∃µ ∈ C, hsi,ti(µ) > 0)

Therefore, if (ii) does not hold, then there exists a nonvacuous incentive

constraint that is binding in all correlated equilibria; this constraint defines

an hyperplane whose intersection with the simplex has at most dimension

N−2 and includes C; therefore C has at most dimension N−2, contradicting

(i).

Corollary 5.3.2. G is elementary if and only if (a) none of the incentive

constraints is vacuous and (b) C has full dimension.

Proof. Clear from definition 5.2.5, remark 5.2.6 and the equivalence of (i)

and (ii) in proposition 5.3.1.

Any trivial game (in the sense of definition 5.2.4) is a full, nonelementary

game. A more subtle example of such a game is the following:

Example 5.3.3.

L R

T

B

(
1, 1 0, 0

1, 0 0, 1

)
There are four incentive constraints. Two of them are vacuous, hence this

game is not elementary. However, the correlated strategy assigning probabil-

ity 1/2 to both TL and BR checks the two nonvacuous incentive constraints

with strict inequality, so, by proposition 5.3.1, this game is full.
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A general method to build full, nonelementary games is given in the first

appendix (section 5.5).

5.4 Characterizations of full games and ele-

mentary games

In this section, we provide criteria to determine whether C has full dimension.

By corollary 5.3.2, these criteria can also be used to determine whether a

game is elementary. We conclude with examples of applications of these

criteria.

5.4.1 Characterizations

The following proposition is based on (Hart and Schmeidler, 1989), (Owen,

1995, p.186) and (Myerson, 1997). Let G be nontrivial. Consider the follow-

ing two-player, zero-sum, auxiliary game Γ: the maximizer chooses a strategy

profile s in S; the minimizer chooses a player i in N and a couple of strategy

(s′i, ti) in Si×Si, such that Ui(s
′
i, ·) 6= Ui(ti, ·).6 The payoff for the maximizer

is Ui(s)− Ui(ti, s−i) if s′i = si and 0 otherwise.

Proposition 5.4.1. C has full dimension if and only if the value of (the

mixed extension of) Γ is positive.

Proof. A mixed strategy of the maximizer is a correlated strategy µ of G;

the payoff if the minimizer chooses (s′i, ti) is hs′i,ti
(µ). Thus, µ guarantees a

positive payoff if and only if µ checks all nonvacuous incentive constraints

with strict inequality (and if it does µ ∈ C). Then apply proposition 5.3.1.

The following propositions apply only to games with a correlated equilib-

rium with full support (for instance, a completely mixed Nash equilibrium).

Let m be a positive integer and h1, ..., hm denote the linear forms associated

with the nonvacuous incentive constraints.

Proposition 5.4.2. Assume that G has a correlated equilibrium with full

support. If h1, ..., hm are independent, then C has full dimension.

6Such a triplet (i, s′i, ti) with Ui(s′i, ·) 6= Ui(ti, ·) must exist, because G is nontrivial.
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Proof. Given in the second appendix (section 5.6).

If h1, ..., hm are not independent, let B be a basis of the linear span of

{h1, ..., hm}. Without loss of generality, assume that B = (h1, ..., hq) with

1 ≤ q < m. Let A = (akl)1≤k≤q, q+1≤l≤m be the matrix of (hq+1, ..., hm) in the

basis B; that is, for all q + 1 ≤ l ≤ n,

hl =
∑

1≤k≤q

aklhk

Let Γ′ denote the two-player, zero-sum, auxiliary game, whose payoff matrix

for the maximizer is A; that is the maximizer chooses k in {1, ..., q}, the

minimizer chooses l in {q + 1, ...,m} and the payoff for the maximizer is akl.

Proposition 5.4.3. Assume that G has a correlated equilibrium with full

support. If h1, ..., hm are not independent, C has full dimension if and only

if the value of (the mixed extension of) Γ′ is positive.

Proof. Given in the second appendix (section 5.6).

5.4.2 Examples

Example 5.4.4. An elementary game with linearly dependent incentive con-

straints.

The following 3-player, 2× 2× 2 game is studied by Nau et al (2004):

Up: Left Right

Top

Bottom

(
0, 0, 2 0, 3, 0

3, 0, 0 0, 0, 0

)
Down:

Top

Bottom

(
1, 1, 0 0, 0, 0

0, 0, 0 0, 0, 3

)
This game has a completely mixed Nash equilibrium. There are only five

distinct incentive constraints (the constraint stipulating that Row should

not deviate from Top to Bottom is the same as the constraint stipulating

that Column should not deviate from Left to Right). These five incentive

constraints are linearly independent. It follows that the payoff matrix of

the auxiliary game Γ′ is a 5 × 1 column matrix whose entries are four 0

and a 1. Therefore, the value of Γ′ is positive and, by proposition 5.4.3, C

has dimension 7. Furthermore, none of the incentive constraints is vacuous.

Therefore, by corollary 5.3.2, this game is elementary.
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Example 5.4.5. A nonelementary game:

L R

T

B

(
2,−1 0, 0

0, 0 1,−2

)
This game has a completely mixed Nash equilibrium. Any incentive con-

straint is a nonpositive linear combination of the three other incentive con-

straints, which are linearly independent. It follows that the payoff matrix of

Γ′ is a 3 × 1, nonpositive column matrix, hence that the value of Γ′ is non-

positive. By proposition 5.4.3, this implies that C has less than dimension

3. In particular, this game is not elementary.7

5.5 First appendix: A method to build full,

nonelementary games

We first need a definition:

Definition 5.5.1. Let G = (I, (Si)i∈I , (Ui)i∈I) and G′ = (I ′, (S ′i)i∈I′ , (U
′
i)i∈I′)

be two finite games. G′ is built on G by adding a semi-duplicate to player i

if:

• I ′ = I

• S ′j = Sj ∀j 6= i

• ∃t′i ∈ S ′i, S ′i = Si ∪ {t′i}

• U ′
k(s) = Uk(s) ∀s ∈ S,∀k ∈ I

• ∃ti ∈ Si,∀s−i ∈ S−i, U ′
i(t

′
i, s−i) = Ui(ti, s−i)

8

7Of course, this can also be proved by other methods, for instance by noting that this
game is best-response equivalent to a two-player zero-sum game (Rosenthal, 1974) and
that in a non trivial zero-sum game, the correlated equilibrium polytope cannot have full
dimension.

8In words, in G′ the set of players is the same as in G and the pure strategy sets are
the same for all players but i, who has an additional pure strategy t′i; when player i does
not use his additional strategy the payoffs in G′ are the same as in G; furthermore player
i is indifferent between his additional strategy and a strategy ti that was already available
in G.
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Example 5.5.2.

G1 =
(

1, 1 0, 0
)

G′
1 =

(
1, 1 0, 0

1, 0 0, 1

)
G

′′
1 =

(
1, 1 0, 0 0, 1

1, 0 0, 1 1, 0

)
G′

1 is built on G1 by adding a semi-duplicate to the row player and G
′′
1 is built

on G′
1 by adding a semi-duplicate to the column player.

We can now provide the method:

Proposition 5.5.3. Let G be elementary and G′ be built on G by adding a

semi-duplicate to some player. Then G′ is full and nonelementary.

Proof. G′ is clearly nonelementary, so we only have to prove that G′ is full.

Let µ in ∆(S) check all incentive contraints of G with strict inequality (in

the sense of (5.2.4)). Define µ′ and ν ′ in ∆(S ′) by:

µ′(s) = µ(s) ∀s ∈ S ; µ′(t′i, s−i) = 0 ∀s−i ∈ S−i

ν ′(s) = 0 ∀s ∈ S ; ν ′(t′i, s−i) =
1

µ(ti × S−i)
µ(ti, s−i) ∀s−i ∈ S−i

where µ(ti × S−i) =
∑

s−i∈S−i
µ(ti, s−i). For ε > 0 small enough, µ′ε :=

(1−ε)µ′+εν ′ is a correlated equilibrium of G′ that satisfies all its nonvacuous

incentive constraints with strict inequality. By proposition 5.3.1, it follows

that G′ is full.

Full, nonelementary games cannot all be built by adding semi-duplicates

to an elementary game. For instance, G′
1 is full and nonelementary (see

example 5.3.3) but cannot be built in this way. Note also that if G is full

but not elementary, then adding a semi-duplicate to G need not yield a full

game. For instance, G′′
1 is not full.9 The point is that adding a new strategy

to some player may lift the indifference of some other player between two of

her strategies. This shall be clear from proposition 5.5.5, which generalizes

proposition 5.5.3. We first need a definition:

Definition 5.5.4. Let G′ be a game built on G by adding a semi-duplicate

to player i. G′ preserves indifference in G if for all j 6= i and all sj, tj in Sj:

Uj(sj, ·) = Uj(tj, ·) ⇒ U ′
j(sj, ·) = U ′

j(tj, ·)
9This follows from proposition 5.3.1 and from the fact that the first strategy (Top) of

player 1 is weakly dominated.
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That is, if player j was indifferent between sj and tj in G, she is still indif-

ferent between sj and tj in G′.

Proposition 5.5.5. Let G be full and G′ be built on G by adding a semi-

duplicate t′i to player i. If G′ preserves indifference in G, then G′ is full.10

If G is a two-player game, then the converse holds, so that G′ is full if and

only if G′ preserves indifference in G.

Proof. In G′, there are three kinds of incentive constraints: constraints of

type

(i) h′sj ,tj
(·) ≥ 0 with j 6= i or, if j = i, si 6= t′i and ti 6= t′i;

(ii) h′si,t′i
(·) ≥ 0 with si ∈ Si;

(iii) h′
t
′
i,si

(·) ≥ 0 with si ∈ Si.

(The prime in h′ indicates that we consider incentive constraints of G′.)

Since G is full, there exists a correlated strategy µ that checks all the

nonvacuous incentive constraints of G with strict inequality. Define µ′, ν ′

and µ′ε as in the proof of proposition 5.5.3. Assuming that G′ preserves

indifference in G, we now show that for ε small enough, µ′ε satisfies with strict

inequality all the nonvacuous incentive constraints of G′. By proposition

5.3.1, this implies that G′ is full.

First, for ε small enough, µ′ε satisfies with strict inequality all the incentive

constraints of type (i) corresponding to incentive constraints of G satisfied

by µ with strict inequality. Since G′ preserves indifference in G, the other in-

centive constraints of type (i) are vacuous. Since for all si ∈ Si, h′si,t′i
= h′si,ti

,

the above argument also takes care of constraints of type (ii). Finally, the

conditional probabilities on S−i given t′i in µ′ε are the same as the conditional

probabilities given ti in µ. Since U ′
i(t

′
i, ·) = Ui(ti, ·), it follows that µ′ε satisfies

with strict inequality all the nonvacuous incentive constraints of type (iii).

Now assume that G is a 2-player game and that i = 2. Let t′2 be the

strategy added to player 2 in G′. If G′ does not preserve indifference in

G, then there exists s1, t1 ∈ S1 such that player 1 is indifferent between

s1 and t1 in G but not in G′: U1(s1, s2) 6= U1(t1, s2) for all s2 in S2 but

U1(s1, t
′
2) 6= U1(t1, t

′
2). Assume w.l.o.g. U1(s1, t

′
2) > U1(t1, t

′
2); then, in G′,

s1 weakly dominates t1. So the incentive constraint h′t1,s1
(·) ≥ 0, which is

10If G is elementary, then there are no strategies sj , tj such that Uj(sj , ·) = Uj(tj , ·)
hence G′ necessarily preserves indifference in G. The first part of proposition 5.5.5 then
reduces to proposition 5.5.3.
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nonvacuous, cannot be satisfied with strict inequality. Therefore G′ cannot

be full.

5.6 Second appendix: Proof of propositions

5.4.2 and 5.4.3

We begin with a claim:

Claim 5.6.1. C has full dimension if and only if (α) there exists a correlated

equilibrium µ with full support and (β) there exists x in RS such that x

satisfies all nonvacuous incentive constraints with strict inequality.

Proof. If C has full dimension, then it follows from from proposition 5.3.1

that (α) and (β) are satisfied. Conversely, assuming that (α) and (β) hold,

let ν = (1 − ε)µ + εx. For ε positive small enough, normalizing ν yields

a correlated equilibrium which satisfies all nonvacuous incentive constraints

with strict inequality. Therefore, by proposition 5.3.1, C has full dimension.

Claim 5.6.1 implies that if there exists a correlated equilibrium with full

support, then C has full dimension if and only if (β) holds. We now show that

the condition required on top of (α) in proposition 5.4.2 (resp. proposition

5.4.3) imply (resp. is equivalent to) condition (β). We will use the following

standard result:

Lemma 5.6.2. Let E be a finite dimensional real vector space, q a pos-

itive integer, and f1, ..., fq linear forms on E. Then f1, ..., fq are linearly

independent if and only if for any y in Rq there exists x in E such that

y = (f1(x), ..., fq(x)).

The notations below are taken from section 5.4.1. Furthermore, if y is a

vector then y > 0 (resp. y ≥ 0) means that every coordinate of y is positive

(resp. nonnegative). Assume that h1, ..., hm are linearly independent; lemma

5.6.2 then implies that (β) holds, proving proposition 5.4.2. Assume now

that B = (h1, ..., hq) is a basis of the linear span of {h1, ..., hm}, for some

1 ≤ q < m. The value of the auxiliary game of proposition 5.4.3 is positive

if and only if

∃y ∈ Rq, y ≥ 0,

q∑
k=1

yk = 1, yA > 0 (5.6.1)
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For x in RS, let y(x) = (h1(x), ..., hq(x)). By definition of the matrix A, we

have (hq+1(x), ..., hm(x)) = y(x)A. Therefore (β) holds if and only if there

exists x in RS such that y(x) > 0 and y(x)A > 0. But, by lemma 5.6.2, y(x)

may be given any value in Rq by an appropriate choice of x. Therefore (β)

is equivalent to:

∃y ∈ Rq, y > 0, yA > 0 (5.6.2)

It is easy to see that (5.6.2) is equivalent to (5.6.1), completing the proof of

proposition 5.4.3.



Chapitre 6

Geometry, Correlated

Equilibrium and Zero-Sum

Games

Abstract

We characterize the class of games whose correlated equilibrium
polytope contains a Nash equilibrium in its relative interior (unless
this relative interior is empty). It is defined by requiring that, in ev-
ery correlated equilibrium, all incentives constraints stipulating not
to deviate to a strategy played with positive probability in at least
one correlated equilibrium be tight. This class of games, though not
defined by some antagonistic property, is shown to include and gener-
alize two-player zero-sum games.

6.1 Introduction

The set of correlated equilibria of a finite game is a convex polytope which

contains the Nash equilibria. Understanding the location of the Nash equi-

libria within this polytope may allow to get a better understanding of the

connections between Nash equilibria and correlated equilibria and to design

more efficient algorithm for computing Nash equilibria.1

1The idea is to compute Nash equilibria as special correlated equilibria. It is motivated
by the fact that the set of correlated equilibria has a much simpler structure than the set

97
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Progress has been made in the last decade: Evangelista and Raghavan

(1996) showed that in bimatrix games, extreme Nash equilibria are extreme

point of the correlated equilibrium polytope (see also, Gomez Canovas et al

(2000) for an alternate proof). More recently, Nau et al (2004) showed that

in any nontrivial2 n-player game, if the correlated equilibrium polytope has

“full” dimension3 then all Nash equilibria belong to the relative boundary

of this polytope. Improving on this result, we characterize in this chapter

the class of games for which the correlated equilibrium polytope contains a

Nash equilibrium in its relative interior (unless there is a unique correlated

equilibrium, in which case this relative interior is empty). It is defined by

requiring that in every correlated equilibrium, all incentive constraints that

stipulate not to deviate towards a pure strategy that has positive probability

in at least one correlated equilibrium be tight.

This class of games, which we call pre-tight, turns out to be interesting

in some other respect: we show that in the two-player case, it includes and

generalizes games that are best-response equivalent to a zero-sum game. In

particular, Nash equilibria are exchangeable, Nash equilibrium payoffs and

correlated equilibrium payoffs coincide, and profiles of marginals of correlated

equilibria are Nash equilibria. Up to our knowledge, this is the largest known

class of games in which Nash equilibria are exchangeable.

The material is organized as follows: the next section is devoted to basic

notations and definitions. In section 6.3, we recall the definition of tight

games (Nitzan, 2005) and introduce the class of pre-tight games. These

classes of games are defined by special properties of correlated equilibria.

However, section 6.4 shows that whether a game is tight (resp. pre-tight) or

not may be checked without computing its correlated equilibria. The link

between tight and pre-tight games is made precise in section 6.5. Topological

properties of the sets of tight and pre-tight games are studied in section 6.6.

In section 6.7, we show that the relative interior of the correlated equilibrium

polytope contains a Nash equilibrium if and only if the game is tight and does

not have a unique correlated equilibrium. Finally, in section 6.8, we show

that in the two-player case, pre-tight games include and generalize zero-sum

of Nash equilibria and that efficient (polynomial-time) algorithm to compute a correlated
equilibrium are available. See Gilboa and Zemel (1989) for results on computation of Nash
equilibria and correlated equilibria.

2As in the previous chapter, a game is called trivial if the payoffs of the players are
independent of their own move.

3That is, dimension N−1 where N is the number of pure strategy profiles of the game.
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games.

6.2 Notations

The notations are the same as in previous chapters:

G = {I, (Si)i∈I , (Ui)i∈I}

denotes a finite game in strategic form; I is the nonempty finite set of players,

Si the nonempty finite set of pure strategies of player i and Ui : ×i∈ISi → R
the utility function of player i. We let S := ×i∈ISi and S−i := ×j∈I−iSj. For

any finite set Σ, ∆(Σ) denotes the set of probability distributions over Σ.

Finally, N denotes the cardinal of S.

6.2.1 Correlated equilibrium

We recall the definition of correlated equilibria and the notation for incentive

constraints introduced in chapter 5 The set ∆(S) of probability distributions

over S is an N − 1 dimensional simplex, henceforth called the simplex. A

correlated strategy of the players in I is an element of the simplex. Thus

µ = (µ(s))s∈S is a correlated strategy if:

(nonnegativity constraints) µ(s) ≥ 0 ∀s ∈ S (6.2.1)

(normalization constraint)
∑
s∈S

µ(s) = 1 (6.2.2)

For (i, si, ti) ∈ I×Si×Si, let hsi,ti denote the linear form on RS which maps

x = (x(s))s∈S to

hsi,ti(x) =
∑

s−i∈S−i

x(s)[Ui(s)− Ui(ti, s−i)]

A correlated strategy µ is a correlated equilibrium (Aumann, 1974) if:

(incentive constraints) hsi,ti(µ) ≥ 0 ∀i ∈ I, ∀si ∈ Si,∀ti ∈ Si

(6.2.3)

The set of correlated equilibria is a polytope, which we denote by C.

More notations and vocabulary: Let si ∈ Si, s ∈ S and µ ∈ ∆(S). The

strategy si (resp. strategy profile s) is played in the correlated strategy µ if
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µ(si × S−i) :=
∑

s−i∈S−i
µ(si, s−i) > 0 (resp. µ(s) > 0). In that case, we let

µ(·|si) ∈ ∆(S−i) denote the correlated strategy given si of the players other

than i:

∀s−i ∈ S−i, µ(s−i|si) =
µ(si, s−i)

µ(si × S−i)

Finally, the average payoff of player i in µ is

Ui(µ) :=
∑
s∈S

µ(s)Ui(s)

6.3 Definitions of tight and pre-tight games

In this section, we define the two classes of games studied in this chapter:

tight and pre-tight games.

6.3.1 Tight games

Definition 6.3.1. A game is tight (Nitzan, 2005) if in any correlated equi-

librium all the incentive constraints are tight. Formally,

∀µ ∈ C,∀i ∈ I,∀si ∈ Si,∀ti ∈ Si, hsi,ti(µ) = 0 (6.3.1)

This means that whenever a pure strategy si is played in a correlated

equilibrium µ, then every pure strategy of player i is an alternative best-

response to µ(·|si).

Example 6.3.2.

G1 =

(
1,−1 −1, 1

−1, 1 1,−1

)
G2 =

(
1,−1 −1, 1 0,−1

−1, 1 1,−1 0,−1

)
The game G1 (i.e. Matching Pennies) is tight. Indeed, it has a unique

correlated equilibrium: the Nash equilibrium σ in which both players play

(1/2, 1/2). Therefore, G1 is tight if, in σ, all incentive constraints are tight.

Since σ is a completely mixed Nash equilibrium, this is indeed the case.

In contrast, the game G2 is not tight. Indeed, the mixed strategy profile

in which the row player plays (1
2
, 1

2
) and the column player (1

2
, 1

2
, 0) is a Nash

equilibrium, hence a correlated equilibrium. However, against (1
2
, 1

2
), player

2 has a strict incentive not to play her third strategy. More examples will be

given in section 6.4.2.
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6.3.2 Pretight games

Following Nau et al (2004), let us define a pure strategy (resp. a pure strategy

profile) to be coherent if it is played in some correlated equilibrium. Formally,

Definition 6.3.3. The pure strategy si (resp. the pure strategy profile s) is

coherent if there exists a correlated equilibrium µ such that µ(si × S−i) > 0

(resp. µ(s) > 0).

Denote by Sc
i the set of coherent pure strategies of player i.

Definition 6.3.4. A game is pre-tight if in any correlated equilibrium all

the incentive constraints stipulating not to “deviate” to a coherent strategy

are tight. Formally,

∀µ ∈ C,∀i ∈ I, ∀si ∈ Si,∀ti ∈ Sc
i , hsi,ti(µ) = 0

(The above condition is equivalent to

∀µ ∈ C,∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Sc

i , hsi,ti(µ) = 0

Indeed, if si is not coherent, then for any correlated equilibrium µ, we have

µ(si × S−i) = 0, hence hsi,ti(µ) = 0 for every ti in Si.)

This means that whenever a pure strategy si is played in a correlated

equilibrium µ, every coherent pure strategy of player i is an alternative best-

response to µ(·|si). This does not imply that every coherent pure strategy is

played in all correlated equilibria. For instance, the game G3 (below, left) is

pre-tight (see proposition 6.3.7). Furthermore, since the correlated strategy

µ (below, center) is a completely mixed Nash equilibrium, it follows that

every pure strategy is coherent. Nevertheless, the third column is not played

in the Nash equilibrium ν (below, right).

G3 =

(
1,−1 −1, 1 0, 0

−1, 1 1,−1 0, 0

)
µ =

1/6 1/6 1/6

1/6 1/6 1/6
ν =

1/4 1/4 0

1/4 1/4 0

Proposition 6.3.5. Any tight game is pre-tight.

Proof. This follows directly from the definitions of tight and pre-tight games.

As already mentioned in chapter 2:
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Proposition 6.3.6. Any game with a unique correlated equilibrium is pre-

tight.

Proof. We recall the proof: if a game has a unique correlated equilibrium

σ, then σ is a Nash equilibrium. Furthermore, the set of coherent strategies

of player i is simply the support of σi. Therefore, by definition 6.3.4, the

game is pre-tight if and only if: Ui(si, σ−i) = Ui(ti, σ−i) for any player i in

I and any pure strategies si and ti in the support of σi. Since σ is a Nash

equilibrium, this condition is satisfied.

Proposition 6.3.7. Any two-player zero-sum game is pre-tight.

This will be proved in section 6.8, proposition 6.8.1.

6.3.3 Best-Response Equivalence

We note here that whether a game is tight or not (resp. pre-tight or not)

depends only on the best-response correspondence, and is in particular un-

affected by positive affine transformation of he payoff functions. Consider

two games G and G′ with the same sets of players and strategies, but with

different utility functions:

Definition 6.3.8. The games G and G′ are best-response equivalent if for

every player i in I, every pure strategy si in Si, and every correlated strategy

µ−i in ∆(S−i), the pure strategy si is a best-response to µ−i in G if and only

if si is a best-response to µ−i in G′.

Proposition 6.3.9. If G is tight (resp. pre-tight) then any game that is

best-response equivalent to G is tight (resp. pre-tight).

Proof. In the definitions of tight and pre-tight games, the utility functions

only intervene via best-responses to correlated strategies of the other players.

The result follows.

6.4 Characterization of tight and pre-tight

games

This section provides a criterion allowing to check that a game is tight (resp.

pre-tight) without having to compute its correlated equilibria.
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6.4.1 Statement of the results

We first recall the definition of a dual vector (chapter 2, definition 2.4.1):

For each player i in I, let αi be a transition probability over the set of pure

strategies of player i:
αi : Si → ∆(Si)

si → αi ∗ si

The vector α = (αi)i∈I is a dual vector (Myerson, 1997) if

∀s ∈ S, f(α, s) :=
∑
i∈I

[Ui(αi ∗ si, s−i)− Ui(s)] ≥ 0

The4 following proposition was proved in chapter 2 as proposition 2.6.5:

Proposition 6.4.1. (1) The game G is tight if and only if there exists a

dual vector α such that, for every player i in I and every pure strategy si in

Si, the mixed strategy αi ∗ si is completely mixed.

(2) The game G is pre-tight if and only if there exists a dual vector α,

and, for every player i in I, a subset S ′i ⊆ Si of pure strategies such that:

(a) For every player i in I and every pure strategy si in S ′i, the mixed strategy

αi ∗ si has support S ′i.

(b) For every pure strategy profile s in S that does not belong to S ′ := ×i∈IS
′
i,

we have f(α, s) > 0

In that case, S ′i is the set of coherent pure strategies of player i. That is,

S ′i = Sc
i .

6.4.2 Examples

This section illustrates the use of proposition 6.4.1 and provides more exam-

ples of tight and pre-tight games.

Example 6.4.2 (A pre-tight game).

Consider the following game, due to Bernheim (1984) and studied by Nau

and McCardle (1990):

L M ′ R

T

M

B

 0, 7 2, 5 7, 0

5, 2 3, 3 5, 2

7, 0 2, 5 0, 7


4In chapter 2, f(α, s) is denoted −g(α, s).



104 CHAPITRE 6. GEOMETRY, CE AND ZERO-SUM GAMES

A way to check that this game is pre-tight is to prove that it has a unique

correlated equilibrium: the Nash equilibrium (M, M ′), and to apply propo-

sition 6.3.6. An alternative way is to use proposition 6.4.1: define α by

α1 ∗ T = α1 ∗ M = α1 ∗ B = M and α2 ∗ L = α2 ∗ M ′ = α2 ∗ R = M ′.

Let S ′1 = {M} and S ′2 = {M ′}. As noted by Nau and McCardle (1990,

example 2), α is a dual vector.5 Furthermore, if s1 6= M and s2 6= M ′, then

f(α, s) = 3. If s1 6= M or s2 6= M ′ (but not both), then f(α, s) = 1. Thus,

in any case, if s /∈ S ′1 × S ′2 (i.e. s 6= (M, M ′)), then f(α, s) > 0. By propo-

sition 6.4.1 this implies that the game is pre-tight (and that it has a unique

correlated equilibrium).

Example 6.4.3 (General Rock-Paper-Scissors games).

A Rock-Paper-Scissors game is a 3 × 3 symmetric game in which the

second strategy (Paper) beats the first (Rock), the third (Scissors) beats the

second, and the first beats the third. Up to normalization (i.e. putting zeros

on the diagonal, which is without loss of generality) the payoff matrix of

player 1 is of the form:

1 2 3

1

2

3

 0 −a2 b3

b1 0 −a3

−a1 b2 0

 with ak > 0, bk > 0 for all k = 1, 2, 3.

(6.4.1)

(Note that we consider general Rock-Paper-Scissors games and not only the

zero-sum version. That is, we do not require b1 = a2 and so forth.)

Proposition 6.4.4. Any Rock-Paper-Scissors game (6.4.1) is tight.

Proof. Let {1,2,3} denote the set of pure strategies of both players

(recall that the game is symmetric). Assume without loss of generality that

ak + bk < 1 for all k in {1, 2, 3}. Counting k modulo 3, define α1 as follows:

α1 maps the pure strategy k on the mixed strategy consisting in playing

k +1 with probability ak, k−1 with probability bk and k with the remaining

probability 1 − ak − bk. Let α2 = α1. It is clear that αi ∗ k is completely

mixed, for every player i in {1, 2} and every pure strategy k in {1, 2, 3}.
Thus, in view of proposition 6.4.1, it only remains to check that α is a dual

5Of course, Nau and McCardle (1990) do not use the expression dual vector, which was
only later coined by Myerson (1997).
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vector. Due to the symmetry and cyclic symmetry of both α and the game,

it is enough to check that f(α, s) is nonnegative for s = (1, 1) and s = (1, 2).

For s = (1, 1) we get:

f(α, s) = 2(a1[b1] + b1[−a1]) = 0

For s = (1, 2), we get

f(α, s) = (a1[a2] + b1[a2 + b2]) + (a2[−b1 − a1] + b2[−b1]) = 0

Example 6.4.5 (An example with an arbitrary large number of players).

The following example (an n-player version of Matching Pennies) gener-

alizes an example which appeared in an earlier version of (Nau et al, 2004).

Consider an n-player game Gn in which every player has two pure strategies:

K(eep) and R(everse). The payoff of player i ∈ {1, 2, ..., n} is (−1)i+r where

r is the number of players playing R.

Proposition 6.4.6. For every positive integer n, the game Gn is tight

Proof. If n is even, define α by αi(K|R) = αi(R|K) = 1/2 for every i in

{1, 2, ..., n}. If n is odd, hence n = 2p+1, define αi by αi(R|K) = αi(K|R) =
p+1
2p+1

if i is even and by αi(R|K) = αi(K|R) = p
2p+1

if i is odd. It is easily

checked that α is a dual vector. Furthermore, αi ∗ si is completely mixed

for every player i in {1, 2, ..., n} and every pure strategy si in {K, R}. By

proposition 6.4.1, this implies that the game is tight.

6.5 Links between tight and pre-tight games

This section clarifies the links between tight and pre-tight games

Proposition 6.5.1. A game is tight if and only if it is pre-tight and every

pure strategy of every player is coherent.

Proof. If a game is pre-tight and if all pure strategies are coherent, then

it follows from the definitions of tight and pre-tight games that the game

is tight. Conversely, if a game is tight, then it is pre-tight, as noted in

proposition 6.3.5. Furthermore, it follows from proposition 6.4.1, point (1),

that there exists a dual vector α such that, for every si in Si, the mixed

strategy αi ∗ si is completely mixed. By proposition 6.4.1, point (2), this

implies that Si = Sc
i .
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To state the next result, we first need to introduce the game Gc obtained

from G by restricting the players to their coherent strategies:

Gc = {I, (Sc
i )i∈I , (Ui)i∈I}

Proposition 6.5.2. A game G is pre-tight if and only if the game Gc is

tight.

We first need a lemma: recall that a Nash equilibrium σ is quasi-strict if

for every player i in I, any pure best-response to σ−i belongs to the support

of σi. We proved in chapter 2, proposition 2.6.8 that

Lemma 6.5.3. Any pre-tight game has a quasi-strict Nash equilibrium with

support Sc = ×i∈IS
c
i .

We now prove proposition 6.5.2:

Proof. First, denote by Cc ⊆ ∆(Sc) the set of correlated equilibria of Gc.

Since any correlated equilibrium of G has support in Sc, the set of correlated

equilibria of G may be seen as a subset of ∆(Sc). Since, in Gc, the players

have less options than in G, it follows that any correlated equilibrium of G

is a correlated equilibrium of Gc. That is, C ⊆ Cc.

Second, by definition 6.3.1, the game Gc is tight if and only if

∀µ ∈ Cc, hsi,ti(µ) = 0 ∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Sc

i (6.5.1)

Similarly, by definition 6.3.4, G is pre-tight if and only if

∀µ ∈ C, hsi,ti(µ) = 0 ∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Sc

i (6.5.2)

Since C ⊆ Cc, it follows that (6.5.1) implies (6.5.2).

Third, we show that (6.5.2) implies (6.5.1) by contraposition.6 Assume

that (6.5.1) does not hold. Then:

∃µ ∈ Cc,∃i ∈ I, ∃s∗i ∈ Sc
i ,∃t∗i ∈ Sc

i , hsi,ti(µ) > 0

By lemma 6.5.3, there exists a quasi-strict Nash equilibrium with support

Sc, hence a correlated equilibrium σ such that:

∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Si\Sc

i , hsi,ti(σ) > 0

For ε > 0 small enough, µε = εµ + (1− ε)σ is in C. But hs∗i ,t∗i
(µε) > 0. This

contradicts (6.5.2).

6The reason why this implication is not trivial is that the inclusion C ⊆ Cc may be
strict, as shown by example 2.7.13 in chapter 2.
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To conclude this section note that, as already proved in chapter 2:

Corollary 6.5.4. Any tight game has a completely mixed Nash equilibrium

Proof. This follows from lemma 6.5.3 and proposition 6.5.1.

6.6 Topology of tight and pre-tight games

In this section we first show that the set of tight (resp. pre-tight) games is

neither closed nor open; we then study the size of the class of tight (resp.

pre-tight) games.

Example 6.6.1. Consider the following 2× 2 games:

L R

T

B

(
ε,−ε 0, 0

0, 0 ε,−1

) L R

T

B

(
ε, ε 0, 0

0, 0 ε, ε

)
For ε > 0, the left game is tight (apply proposition 6.4.1 with α defined

by: α1(B|T ) = α2(L|R) = α2(R|L) = ε/2 and α1(T |B) = 1/2). However, for

ε = 0, the left game is not even pre-tight, as in the Nash equilibrium (B, L),

player 2 has a strict incentive not to play R. This shows that the set of tight

(resp. pre-tight) games is not closed. Furthermore, the game on the right is

tight for ε = 0, but for ε > 0 it is not even pre-tight. This shows that the set

of tight (resp. pre-tight) games is not open.

Another issue is the size of the class of tight (resp. pre-tight) games. Fix

a positive integer n:

Proposition 6.6.2. (i) Within the set of n × n bimatrix games, the set of

tight games contains an open set. (ii) If n 6= m, then within the set of n×m

bimatrix games, the set of tight games has Lebesgue measure 0.

Proof. Proof of (i): Nitzan (2005) shows that the set of n × n bimatrix

games with a unique correlated equilibrium and such that this correlated

equilibrium is a completely mixed Nash equilibrium, is nonempty and open.

It follows from proposition 6.3.6 and proposition 6.5.1 that such games are

tight, hence the result.

Proof of (ii): It follows from (von Stengel, 2002, discussion following

theorem 2.10) that, if n 6= m, the set of n×m games with a completely mixed

Nash equilibrium has Lebesgue measure 0. Since by corollary 6.5.4, any tight

game has a completely mixed Nash equilibrium, point (ii) follows.
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In contrast with point (ii) of proposition 6.6.2, for any number of players

n and any positive integers m1, m2,...,mn:

Proposition 6.6.3. The set of n-player pre-tight games of size m1 ×m2 ×
...×mn contains a nonempty, open subset of the set of all n-player games of

size m1 ×m2 × ...×mn.

Proof. We showed in chapter 3 that the set of n-player games of size m1 ×
m2×...×mn with a unique correlated equilibrium, is a nonempty, open subset

of the set of all n-player games of size m1 ×m2 × ... ×mn. Since any game

with a unique correlated equilibrium is pre-tight, the result follows.

Thus, at least for non square bimatrix games, the set of pre-tight games

is much bigger than the set of tight games.

6.7 The geometry of Nash equilibria and cor-

related equilibria

Nau et al (2004) proved the following:

Proposition 6.7.1. If G has a Nash equilibrium σ in the relative interior

of C, then:

(a) The Nash equilibrium σ assigns positive probability to every coherent

strategy of every player; that is, σ has support Sc := ×i∈IS
c
i .

(b) G is pre-tight.7

For completeness, we recall the proof:

Proof. If (a) is not checked, then σ satisfies with equality some nonnegativ-

ity constraint which is not satisfied with equality by all correlated equilibria,

hence σ belongs to the relative boundary of C. Assuming now that con-

dition (a) is checked, σ renders indifferent every player among its coherent

strategies; therefore σ satisfies with equality all incentive constraints of type

hsi,ti(·) ≥ 0, where si and ti are coherent. If G is not pre-tight, at least one

of these constraints is not satisfied with equality by all correlated equilibria,

hence σ belongs to the relative boundary of C.

7While Nau et al (2004) introduce the condition defining pre-tight games, they do not
give a name to this class of games.
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This section proves a converse of this result:

Proposition 6.7.2. If a game is pre-tight, then either C is a singleton or C

contains a Nash equilibrium in its relative interior.

Proof. We first need a lemma:

Lemma 6.7.3. Let G be pre-tight and assume that C is not a singleton.

A Nash equilibrium belongs to the relative interior of C if and only if it is

quasi-strict.

Proof. First note that if σ is a quasi-strict Nash equilibrium, then σ has

necessarily support Sc. Indeed, if si ∈ Sc
i , then it follows from definition

6.3.4 that si is a best-response to σ−i. Therefore either σi(si) > 0 or σ is

not quasi-strict. The second sentence of lemma 6.7.3 may thus be rephrased

as follows: a Nash equilibrium σ belongs to the relative interior of C if and

only if it is quasi-strict and has support Sc. That is,

∀s ∈ Sc, σ(s) > 0 (6.7.1)

and

∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Si\Sc

i , hsi,ti(σ) > 0 (6.7.2)

Now, let σ be a Nash equilibrium of G. By lemma 6.5.3, G has a

quasi-strict Nash equilibrium with support Sc, hence a correlated equilib-

rium checking (6.7.1) and (6.7.2). Therefore, if σ does not check (6.7.1) and

(6.7.2) then there exists a nonnegativity constraint or an incentive constraint

which is tight in σ but not in all correlated equilibria; hence σ belongs to a

strict face of C.

Conversely, assume that σ satisfies (6.7.1) and (6.7.2). Since (6.7.1) and

(6.7.2) are strict inequalities, there exists an neighbourhood Ω of σ in RS

in which they are still satisfied. Let E denote the linear subspace of RS

consisting of all points x = (x(s))s∈S such that:

(i)
∑

s∈S x(s) = 1 ; ∀s ∈ S\Sc, x(s) = 0 and ∀i ∈ I, ∀si ∈ Si\Sc
i ,∀ti ∈

Si, hsi,ti(x) = 0 ;

(ii) ∀i ∈ I, ∀si ∈ Sc
i ,∀ti ∈ Sc

i , hsi,ti(x) = 0. Since G is pre-tight, the affine

span of C is a subset of E.8 Furthermore, Ω∩E ⊆ C. Finally, since C is not

a singleton, E is not a singleton either. Therefore, σ belongs to the relative

interior of C.
8Indeed, if µ is a correlated equilibrium of any game, µ satisfies the constraints in (i),

and if the game is pre-tight, then µ satisfies the constraints in (ii).
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We can now prove proposition 6.7.2: assume that G is pre-tight. By

lemma 6.5.3, G has a quasi-strict Nash equilibrium. If furthermore C is not

a singleton, lemma 6.7.3 implies that this Nash equilibrium belongs to the

relative interior of C.

Corollary 6.7.4. A game G is pre-tight if and only if C is a singleton or C

contains a Nash equilibrium in its relative interior.

Proof. If C is a singleton (resp. contains a Nash equilibrium in its relative

interior) then it follows from proposition 6.3.6 (resp. proposition 6.7.1) that

the game is tight. The converse is exactly proposition 6.7.2.

Thus, C contains a Nash equilibrium in its relative interior if and only if

G is pre-tight and C is not a singleton.

6.8 Two-player pre-tight games

In this section we first show that two-player zero-sum games are pre-tight

but that a pre-tight game need not be best-response equivalent to a zero-sum

game. We then show that, nevertheless, some of the properties of the equi-

libria and equilibrium payoffs of zero-sum games extend to pre-tight games.

We then discuss the interest and implications of these findings.

6.8.1 Pretight games and zero-sum games

Proposition 6.8.1. A two-player game which is best-response equivalent to

a zero-sum game is pre-tight.

Proof. In view of proposition 6.3.9 we only need to prove the result for two-

player zero-sum games. Consider a two-player zero-sum game with value v.

As noted by Forges (1990), and recalled in chapter 4:

(i) If the pure strategy s1 has positive marginal probability in the cor-

related equilibrium µ, then the conditional probability µ(·|s1) is an optimal

strategy for player 2.

It follows that:

(ii) If a pure strategy of player 1 is coherent, then it is a best response to

any optimal strategy of player 2.

Indeed, if t1 is coherent then there exists µ in C and s2 in S2 such that

µ(t1|s2) is positive. Assume that there exists an optimal strategy σ2 of player
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2 to which t1 is not a best response. By playing σ2 against µ(·|s2), player

2 would obtain strictly more than −v. Therefore µ(·|s2) is not an optimal

strategy of player 1. This contradicts the analogue of (i) for player 2.

It follows from (i) and (ii) that in every correlated equilibrium µ and for

every pure strategy si with positive marginal probability in µ, every coherent

pure strategy of player 1 is a best-response to µ(·|s1). Together with the

analogous result for player 2, this shows that the game is pre-tight.

The converse of proposition 6.8.1 is false:

Proposition 6.8.2. A two-player tight game need not be best-response equiv-

alent to a zero-sum game.

Proof. Recall that every Rock-Paper-Scissors game is tight (proposition 6.4.4).

We now show that Rock-Paper-Scissors games need not be best-response

equivalent to a zero-sum game: In all bimatrix games that are best-response

equivalent to a zero-sum game, fictitious play and its continuous time analog:

the best-response dynamics, converge to the set of Nash equilibria (Robinson

1951, Hofbauer and Sorin, 2002). But, in Rock-Paper-Scissors games (6.4.1)

such that a1a2a3 > b1b2b3, the best-response dynamics does not converge to

the unique Nash equilibrium but to a triangle (see, for instance, Hofbauer

and Sigmund, 1998). The result follows.9

The next section shows that, nevertheless, some of the main properties

of two-player zero-sum games extend to pre-tight games. Noticeably, in two-

player pre-tight games, the Nash equilibria are exchangeable and any corre-

lated equilibrium payoff is a Nash equilibrium payoff.

6.8.2 Equilibria of pre-tight games

Let us first introduce some notations: we denote by NE the set of Nash

equilibria of G and by NEi the set of Nash equilibrium strategies of player

i. That is,

NEi = {σi ∈ ∆(Si),∃σ−i ∈ ×j 6=i∆(Sj), (σi, σ−i) ∈ NE}

Proposition 6.8.3. In a two-player pre-tight game:

9It follows from this proof that, within the class of 3× 3 symmetric games, there exists
an open set of games which are tight (hence pre-tight) but are not best-response equivalent
to a zero-sum game.
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(a) NE1 and NE2 are convex polytopes.

(b) NE = NE1 ×NE2. That is, Nash equilibria are exchangeable.

We first need a lemma:

Lemma 6.8.4. Let G be a two-player pre-tight game and let σ1 ∈ ∆(S1).

The following assertions are equivalent:

(i) σ1 is a Nash equilibrium strategy. That is, σ1 ∈ NE1.

(ii) For some pure strategy s2 of player 2, σ1 is the conditional strategy

of player 1 given s2 in some correlated equilibrium. Formally, ∃µ ∈
C,∃s2 ∈ S2, µ(s2 × S1) > 0 and σ1 = µ(·|s2).

(iii) Every pure strategy in the support in σ1 is coherent and all coherent

strategies of player 2 are best responses to σ1.

(The symmetric results for σ2 in ∆(S2) hold obviously just as well.)

Proof. (i) trivially implies (ii) and (ii) implies (iii) by definition of pretight

games (definition 6.3.4). So we only need to prove that (iii) implies (i). Let

σ1 check (iii) and let τ2 ∈ NE2. Necessarily, any pure strategy played in

τ2 is coherent. Since any coherent strategy of player 2 is a best response to

σ1, it follows that τ2 is a best response to σ1. Similarly, by the analogue of

(i) ⇒ (iii) for player 2, any coherent strategy of player 1 is a best response to

τ2. Since all pure strategies played in σ1 are coherent, σ1 is a best response to

τ2. Grouping these results, we get that (σ1, τ2) is a Nash equilibrium, hence

σ1 ∈ NE1.

We now prove proposition 6.8.3: it follows from the proof of lemma 6.8.4

that if σ1 ∈ NE1, then for any τ2 ∈ NE2, (σ1, τ2) is a Nash equilibrium. This

implies that Nash equilibria are exchangeable (point (b)). Furthermore, from

the equivalence of (i) and (iii) it follows that NE1 can be defined by a finite

number of linear inequalities. Therefore, NE1 is a polytope, and so is NE2

by symmetry (point (a)).

Our second result is that if µ is a correlated equilibrium, then the profile

of its marginals is a Nash equilibrium:
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Proposition 6.8.5. Let µ be a correlated equilibrium of a two-player pre-

tight game. Let σ1 ∈ ∆(S1) (resp. σ2 ∈ ∆(S2)) denote the marginal probabil-

ity distribution of µ on S1 (resp. S2). That is, ∀s1 ∈ S1, σ1(s1) = µ(s1×S2).

Let σ = (σ1, σ2) so that σ is the profile of the marginals of µ. We have:

(a) σ is a Nash equilibrium

(b) The average payoff of the players is the same in σ and in µ. That is,

∀i ∈ {1, 2}, Ui(σ) = Ui(µ).

Proof. First note that σ2 may be written:

σ2 =
∑

s1∈S1 : µ(s1×S2)>0

µ(s1 × S2)µ(·|s1) (6.8.1)

Proof of (a): assume µ(s1×S2) > 0; then by lemma 6.8.4, µ(·|s1) ∈ NE2.

Therefore, by (6.8.1) and convexity of NE2, σ2 ∈ NE2. Similarly, σ1 ∈ NE1,

so that, by proposition 6.8.3, σ ∈ NE.

Proof of (b): assume µ(s1 × S2) > 0; then s1 is coherent and, by the

analogue for player 2 of (ii) ⇒ (iii) in lemma 6.8.4, any coherent strategy of

player 1 is a best response to µ(·|s1). Since σ is a Nash equilibrium, every

pure strategy in the support of σ1 is coherent, so that

U1(σ1, µ(·|s1)) = U1(s1, µ(·|s1)) (6.8.2)

Using successively (6.8.1), (6.8.2) and a straightforward computation, we get

U1(σ) =
∑

s1∈S1:µ(s1×S2)>0 µ(s1 × S2)U1(σ1, µ(·|s1))

=
∑

s1∈S1:µ(s1×S2)>0 µ(s1 × S2)U1(s1, µ(·|s1)) = U1(µ)

Similarly, U2(σ) = U2(µ), completing the proof.

Finally, as noted by Forges (1990) and already mentioned in chapter 4,

a two-player zero-sum game has a unique Nash equilibrium if and only if it

has a unique correlated equilibrium. Since Bohnenblust et al (1950) showed

that almost all zero-sum games have a unique Nash equilibrium, this implies

that almost all zero-sum games have a unique correlated equilibrium. The

next two propositions extend these results to two-player pre-tight games:

Proposition 6.8.6. A two-player pre-tight game has a unique Nash equilib-

rium if and only if it has a unique correlated equilibrium.
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(Proof below.) Furthermore,

Proposition 6.8.7. Within the set of p× q bimatrix games, the set of pre-

tight games which do not have a unique correlated equilibrium has Lebesgue

measure 0.10

Proof of propositions 6.8.6 and 6.8.7 If C is a singleton, then G has

trivially a unique Nash equilibrium. Conversely, let G be a two-player pre-

tight game such that C is not a singleton. By proposition 6.7.2, there exists

a Nash equilibrium σ in the relative interior of C. Let τ be an extreme

Nash equilibrium (in the sense of Evangelista and Raghavan (1996)). Since,

in two-player games, an extreme Nash equilibrium is an extreme point of C

(Evangelista and Raghavan, 1996), it follows that τ is an extreme point of C.

Therefore τ 6= σ. This proves proposition 6.8.6.11 Furthermore, since τ does

not belong to the relative interior of C, it follows from proposition 6.7.3 that

τ is not quasi-strict. Since almost all games have only quasi-strict equilibria

(Harsanyi, 1973), this implies proposition 6.8.7

Together with corollary 6.7.4, proposition 6.8.7 shows that for almost all

bimatrix games, all Nash equilibria belong to the relative boundary of C.

The author does not know whether this extends to games with three or more

players. The reason why the above proof does not go through is that in

games with three or more players, there need not exists a Nash equilibrium

that is an extreme point of C (Nau et al, 2004).

6.8.3 Equilibrium payoffs of pre-tight games

Let NEP (resp. NEPi, CEP ) denote the set of Nash equilibrium payoffs

(resp. Nash equilibrium payoffs of player i, correlated equilibrium payoffs).

That is,

NEP = {g = (gi)i∈I ∈ RI : ∃σ ∈ NE,∀i ∈ I, Ui(σ) = gi}

NEPi = {gi ∈ R : ∃σ ∈ NE, Ui(σ) = gi}

CEP = {g = (gi)i∈I ∈ RI : ∃µ ∈ C,∀i ∈ I, Ui(µ) = gi}
10By proposition 6.6.3 the set of p×q pre-tight games contains a nonempty, open subset

of the set of p× q bimatrix games. Therefore, it indeed follows from proposition 6.8.7 that
almost all pre-tight games have a unique correlated equilibrium.

11Proposition 6.8.6 also follows, and more directly, from lemma 6.8.4; but the above
argument is convenient to prove jointly propositions 6.8.6 and 6.8.7.
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Two-player games which are best-response equivalent to zero-sum games

may have an infinity of Nash equilibrium payoffs. So pre-tight games need

not have a unique Nash equilibrium payoff. Nonetheless, some of the prop-

erties of equilibrium payoffs of zero-sum games are preserved. In particular,

proposition 6.8.3 and proposition 6.8.5 imply respectively that:

Corollary 6.8.8. In a two-player pre-tight game, NEP1 and NEP2 are

convex and NEP = NEP1 ×NEP2

Corollary 6.8.9. In a two-player pre-tight game, CEP = NEP

Thus, allowing for correlation is useless in two-player pre-tight games, in

the sense that it cannot improve the payoffs of the players in equilibria. In

particular, there are no “good” correlated equilibria in the sense of Rosenthal

(1974). Furthermore:

Corollary 6.8.10. In a two-player pre-tight game, any correlated equilibrium

payoff of player i given his move is a Nash equilibrium payoff of player i:

∀µ ∈ C,∀i ∈ {1, 2},∀si ∈ Si, µ(si×S−i) > 0 ⇒
∑

s−i∈S−i

µ(s−i|si)Ui(s) ∈ NEPi

Proof. For clarity we take i = 1. In equation (6.8.2), (σ1, µ(·|s1)) is a Nash

equilibrium (by lemma 6.8.4, proposition 6.8.5(a) and proposition 6.8.3).

Therefore, U1(s1, µ(·|s1)) =
∑

s2∈S2
µ(s2|s1)U1(s) ∈ NEP1.

Finally, there exists a dominant Nash equilibrium. That is,

Proposition 6.8.11. There exists a Nash equilibrium σ such that

∀i ∈ {1, 2}, Ui(σ) = max NEPi (6.8.3)

Proof. Let τ , τ ′ be Nash equilibria such that U1(τ) = max NEP1 and U2(τ
′) =

max NEP2. From exchangeability of equilibria, it follows that σ = (τ ′1, τ2) is

a Nash equilibrium which satisfies (6.8.3).

6.8.4 Discussion

(a) Several classes of non-zero sum games in which some of the properties of

two-player zero-sum games are satisfied have been studied. Most are defined

in either of these three ways:
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(i) by requiring some conflict in the preferences of the players over strat-

egy profiles (“Strictly competitive games” (Aumann, 1961; Friedman, 1983),

“Unilaterally competitive games” (Kats and Thisse, 1992));

(ii) by comparing the best or better response correspondence in G and in

some zero-sum game (games “best-response equivalent” (Rosenthal, 1974) or

“order-equivalent” (Shapley, 1964) to a zero-sum game; “strategically zero-

sum games” (Moulin and Vial, 1978));

(iii) by comparing the Nash equilibria or Nash equilibrium payoffs of G

and of some auxiliary game (“Almost strictly competitive games” (Aumann,

1961) and other classes of games studied by Beaud (2002)).

The definition of tight and pre-tight games do not fall in these categories;

tight games however may be defined by comparing the correlated equilibria

of G and of some auxiliary game. Indeed, let −G be the game with the same

sets of players and strategies as G but in which all the payoffs are multiplied

by −1:

−G = {I, (Si)i∈I , (−Ui)i∈I}

It is easily checked that G is tight if and only if G and −G have the same

correlated equilibria.

(b) Lemma 6.8.4 implies that in two-player tight games, as in two-player

zero-sum games, the Nash equilibrium strategies of the players can be com-

puted independently, as solutions of linear programs that depend only on

the payoffs of the other player. In two-player pre-tight games, the additional

knowledge of the sets of individually coherent strategies is required (indeed

the 1 × 2 games ( 0, 1 0, 0 ) and ( 0, 0 0, 1 ) are both pre-tight and in

both games the payoffs of player 1 are the same; but the Nash equilibrium

strategies of player 2 are not the same in both games).

(c) A wide range of dynamic procedures converge towards correlated

equilibria in all games (for instance generalized no-regret procedures (Hart

and Mas-Collel, 2001 and 2003a)). By proposition 6.8.5, suitably modified

versions of these dynamics converge towards Nash equilibria in all two-player

pre-tight games.

(d) In 3-player tight games, Nash equilibria are not exchangeable (for

instance, the game in (Nau et al, 2004, section 6) is tight, since its correlated

equilibrium polytope contains a completely mixed Nash equilibrium in its

relative interior; but its Nash equilibria are nott exchangeable). Up to our

knowledge, whether the other properties of section 6.8 extend to n-player

games is not known.
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Chapitre 7

Introduction to part II:

Evolutionary Dynamics and

Strategic Concepts

This introduction is organized as follows: section 7.1 introduces basic notions

and methodological issues. Section 7.2 surveys some of the main topics and

results of evolutionary game theory. Section 7.3 presents the main contribu-

tions of the second part of this dissertation.1

7.1 Basics of evolutionary game theory

7.1.1 What do we try to understand?

Evolutionary game theory studies the evolution of populations of agents inter-

acting strategically. Applications were originally in biology, but then spread

to economics and other social sciences. Examples of situations that evolu-

tionary game theory helps to understand include animal conflicts (Maynard

1The introduction to evolutionary game theory given below is very basic and almost
completely ignores static evolutionary concepts. For more substantial introductions to
evolutionary game theory, we refer to the books of Maynard Smith (1982), Weibull (1995),
Vega-Redondo (1996), Samuelson (1997), Hofbauer and Sigmund (1998) and Cressman
(2003), and to the surveys of Hammerstein and Selten (1994) and Hofbauer and Sigmund
(2003). We also recommend, in French, the very clear introduction to the Ph’D dissertation
of Philippe Rivière (1997).
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Smith and Price, 1973), the evolution of dispersal (Hamilton and May, 1977),

or the evolution of conventions (Young, 1993).

The interactions may be with individuals from the same population (males

fighting other males, firms competing with similar firms), with individuals

from other populations (males interacting with females, rabbits with wolves,

or buyers with traders) or with individuals from the same population and

individuals from other populations at the same time (plants competing for ac-

cess to light with many other plants, including plants from their own species

and from other species).2 The individuals are typically bacteries or animals

in biology, humans or firms in economics.

The interaction is strategic in that there is something to be gain or lost,

and that this gain or loss depends both on the behaviour of the agent and

on the behaviour of the agents it is interacting with. Behaviours resulting

in relatively large gains spread. In biology, this is because animals gaining

access to better resources tend to reproduce more and that their behaviour

is assumed to be hereditary.3 In economics and other social sciences, this is

mostly because social agents tend to imitate currently successful behaviours.

As currently successful behaviours (strategies) spread, the distribution of

behaviours in the population changes, so that new behaviours might become

successful and spread, while those behaviours that were successful in the

past might now decline.4 This leads to a potentially complex dynamics for

the distribution of behaviours in the population, which we try to understand.

2The behaviour of agents adapting to an uncertain environment (single-player games)
is also of interest but belongs to optimization and not to game theory.

3More precisely, it is usually assumed that the behavior of an agent is coded in its
genes and that reproduction is clonal so that, unless a mutation arises, the offspring and
the parent have the same behavior. The fact that reproduction is assumed clonal is one of
the many problematic assumptions in deriving evolutionary game dynamics, since many
applications concern sexually reproducing populations. Maynard-Smith (1982), among
others, discusses this issue.

4In many models in social sciences, agents revise their strategy at some random times
and then adopt a better or best-reply to the current population’s behaviour. These agents
are boundedly rational in that they do not take into account the later evolution of the
population’s behaviour.
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7.1.2 Models

Games. The interaction is modeled by a game. That is, by a specification

of the number and type of agents interacting (the players), of the possible

and relevant behaviours for each player (his pure strategies), and of a payoff

function, which maps every possible behaviour profile to a payoff for each

agent: his gain or loss resulting from the interaction.

As most authors, we focus on finite games (a finite number of players, each

having a finite set of pure strategies), with multi-linear payoff functions. We

even usually focus on two-player games played within a single-population.

The underlying paradigm is that there is a large population from which,

repeatedly, individuals are randomly drawn to interact. This models the fact

that they meet in a certain context.

This is appropriate to model some situations, such as animal conflicts over

mates, food, or territories, with which evolutionary game theory originated.

However, many biological (or economic) situations call for other models, with

a continuous set of players and/or a continuous set of pure strategies. For

instance, in the third part of this dissertation, we study the optimal invest-

ment into fecundity of some cells. It is then natural to assume that any level

of investment into fecundity between two extreme levels is relevant, which we

model by assuming that the pure strategy set of a cell is a continuum. Also,

quite often in biology, e.g., when studying the evolution of the sex-ratio5, it

is natural to assume that the individuals interact with the population as a

whole, which we might want to model by a continuum of agents.

Dynamics. An evolutionary dynamics is a rule governing the evolution of

the behaviours’ distribution. We focus on deterministic differential equations

(or differential inclusions) but discrete and stochastic dynamics are also of

interest. To introduce specific examples, we first need some notations:

Consider a two-player game played within a single-population. Let {1, ..., N}
denote the pure strategies available to a player. Let xi(t) denote the probabil-

ity at time t that an individual drawn at random will play the pure strategy

i. Let x(t) := (xi(t))1≤i≤N denote the so-called mean strategy in the popula-

tion (we use bold letters for vectors). Let U(i, j) denote the payoff (utility,

fitness gain) of a player playing the pure strategy i facing a player playing the

5The evolution of the sex-ratio, i.e., the respective proportions of males and females
that an individual should produce, is a traditional topic of evolutionary biology.
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pure strategy j. The dynamics we study are (usually) differential equations

ẋ(t) = f(x(t)) such that strategies which at time t obtain a good payoff tend

to spread. For instance, the replicator dynamics (Taylor and Jonker, 1978)

is given by:

ẋi(t) = xi(t) [U(i,x(t))− U(x(t),x(t))] (7.1.1)

where U(i,x) =
∑

j xjU(i, j) is the expected payoff of a player playing strat-

egy i when the mean-strategy is x, and U(x,x) =
∑

i xiU(i,x) is the mean

payoff in the population. It may be derived as follows (see Maynard Smith,

1982, appendix D): start with a generation model (time is discrete: t, t+1,...;

individuals live only one period, then they reproduce and die). Let Xi(t)

denote the density of individuals playing strategy i at generation t (hence

xi(t) = Xi(t)/
∑

i Xi(t) ). Assume that the expected number of offspring (or

fitness) of an individual playing strategy i is

Wi := C + U(i,x(t)) (7.1.2)

where C is large enough for Wi to be positive for all i. The constant C

represents the background fitness, i.e., the part of the reproduction rate which

is not related to the game we study.

Neglecting stochasticities, we get: Xi(t + 1) = WiXi(t) which leads to

xi(t + 1)− xi(t) = xi(t)
U(i,x)− U(x,x)

C + U(x,x)
(7.1.3)

When C is large enough, this difference equation is well approximated (on

compact intervals of time) by its continuous time counterpart

ẋi(t) = xi(t)
U(i,x)− U(x,x)

C + U(x,x)
(7.1.4)

Since the denominator is independent of i, omitting it does not change the

orbits. This leads to (7.1.1).

Another well studied dynamics is the best-response dynamics (Gilboa and

Matsui, 1991), given by:

ẋ(t) ∈ BR(x(t))− x(t) (7.1.5)

where6 BR(x) is the set of mixed strategies that are best-responses to x. The

underlying model is that at each period of time, a fraction of the population

6Note that the best-response dynamics is a differential inclusion; that is, ẋ may be
multi-valued.
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revises its choice of strategy and chooses a best-response to the current state

of the population.

These two dynamics are those that we will study most. The replicator

dynamics, under which every strategy earning above average has a positive

growth-rate, may be seen as the benchmark dynamics for applications in bi-

ology; the best-response dynamics, under which only strategies that are best-

responses to the current state have a positive growth rate, is more adapted

to economic applications, with myopic but otherwise rational, actively opti-

mizing agents.

Crudeness of derivations and benchmark dynamics. We will not expand

more on the derivations of these and other dynamics but to point out that

they are usually rather crude. For instance, in the above derivation of the

replicator dynamics, we ignored the intricacies of sexual reproduction, the

age structure of the population, stochastic aspects, etc. This is appropriate

as a first step: introducing additional layers of complexity is bound to be

fruitless as long as we do not understand simple models, and focusing on

very specific situations may yield results of limited applicability. However,

as in all models, we should worry that aspects of real-life situations that are

being ignored might alter our results.

This is not to say that studying extensively a particular dynamics, how-

ever crudely derived, is not of interest: this allows to go deeper into our

understanding of this dynamics and to discover phenomena or properties

that we can then investigate in larger classes of dynamics. But we should

always wonder whether the properties that we have established are likely to

hold for similar dynamics or whether they are really specific of the dynamics

we studied.7

Lotka-Volterra dynamics and replicator dynamics. There is a close analogy

between the evolution of the abundance of different species in an ecological

system and the evolution of the relative abundance of different behaviours in

a single species or population. This analogy is grounded mathematically. In

particular, the ecological Lotka-Volterra dynamics is closely related - “mathe-

matically equivalent” - to the game-theoretical replicator dynamics (see Hof-

7For instance, many properties of the time-average of the replicator dynamics do not
hold for dynamics similar to the replicator dynamics. See, e.g., Gaunersdorfer and Hof-
bauer, 1995, section 4.
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bauer and Sigmund, 1998). Evolutionary game dynamics are thus also rele-

vant for the study of competition between species.8

Biological and economical dynamics. We conclude this section by discussing

a difference between ecological and economical dynamics. In an ecological

context, it is highly improbable that a large share of the population will

suddenly mutate to some new strategy. Rather, mutations are rare, and even

when a strategy is highly favoured, the speed at which it spreads is limited

by the current number of agents playing this strategy. This is because the

number of offspring that an agent can have, and a fortiori the effect of the

game on the number of offspring that an agent can have, is bounded. For

most biological applications, the role of mutations is confined to introducing

novelty, and mutations terms may be omitted as in the replicator dynamics,

as long as we focus on interior solutions; that is, solutions with all species

present at all times.9

In an economic context, it might be that the speed at which new be-

haviours spread is bounded too. For instance, if agents need to encounter

an agent playing a “mutant” strategy, to become aware of the possibility of

playing this strategy. Such assumptions lead to dynamics resembling bio-

logical dynamics. But we might also consider that the agents are aware of

all the strategies they could use, and periodically revise their strategy to a

best (or good) reply to the current state of the population (as in the deriva-

tion of the best-response dynamics sketched above). In such situations, the

growth ẋi of the share of the population playing strategy i is not limited by

8For instance, Bomze (1983) uses the phase portraits’ classification of the two-
dimensional replicator dynamics to classify the phase portraits of the two-dimensional
Lotka-Volterra dynamics.

9Even when focusing on interior solutions, mutations cannot always be ignored: for
instance, in chapter 10, proposition 10.9.5, we give an example of an heteroclinic cycle
which, under the replicator dynamics (7.1.1), is not asymptotically stable, but still attracts
an open and - for some parameters - large set of solutions. If we want to understand the
long-run behaviour of the system we model (and not only of the system of differential
equations we model it with), it is crucial to note that in a finite population model à la
Kandori et al (1993), a single mutation suffices to take the population out of the basin
of attraction of this heteroclinic cycle. This issue is different from the consideration of
large deviations to select between strict equilibria (Foster and Young, 1990; Kandori et
al, 1993), where a large number of almost simultaneous mutations - a very rare event - is
needed to switch from the basin of attraction of an equilibrium to the basin of attraction
of another equilibrium.
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the current value of xi. This calls for innovative dynamics for which, even if

stochasticities are neglected, new strategies may appear and spread quickly,

so that the growth-rate of a strategy: ẋi/xi, is unbounded.

We now present some of the main research topics in evolutionary game

theory.

7.2 Research topics in evolutionary game the-

ory

Main issues. There are two main questions: what is the outcome of evo-

lution? What are the links between the outcome of evolution and static

solution concepts (Nash equilibrium, correlated equilibrium, rationalizabil-

ity, etc.)? The first question seems to us the most important one. But

the second serves to orientate research, and is important per se, to decide

whether results based on the paradigm of rational agents (typically, common

knowledge of rationality) are still relevant once the paradigm is changed to

populations of agents adapting to the environment through rules of thumb.

Convergence to and stability of equilibria. A first issue is whether the

outcome of evolution tends to be a Nash equilibrium. The main positive

result is the so-called folk theorem of evolutionary game theory. It states

that, for a very wide class of dynamics: first, for every initial condition with

all strategies present, if an interior trajectory converges to a point, then

this point is a Nash equilibrium: second, every (Lyapunov) stable state is

a Nash equilibrium.10,11 Furthermore, for several dynamics and classes of

games (potential games, games with an interior ESS, dominance solvable

games, etc.) global convergence to Nash equilibria has been established.

This might be seen as a foundation for an “as-if” interpretation of Nash

equilibrium play, and John Nash had actually an evolutionary interpretation

in mind when conceiving his equilibrium concept:

10A point p is Lyapunov stable (under some dynamics) if for every neighborhood N1

of p, there exists a neighborhood N2 of p such that if the solution starts in N2, then it
remains in N1 for ever.

11This holds in particular for any (smooth) dynamics for which, whenever not all strate-
gies earn the same payoff, the growth rate of at least one of the strategies earning strictly
less than average is negative (or the growth rate of at least one of the strategies earning
strictly more than average is positive). See Weibull, 1995, proposition 4.11.
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“[Assume] that there is a population (...) of participants for each posi-

tion of the game. Let us also assume that the “average playing” of the game

involves n participants selected at random from the n populations, and that

there is a stable average frequency with which each pure strategy is employed

by the “average member” of the appropriate population. (...) The assump-

tions (...) made in this “mass-action” interpretation lead to the conclusion

that the mixed strategies representing the average behavior in each of the

populations form an equilibrium point.” (Nash, 1950, p.21-23)

However, Nash equilibria need not be (Lyapunov) stable.12 For instance,

in so called outward cycling Rock-Paper-Scissors games, the Nash equilibrium

is unique, completely mixed, and passes all (non-evolutionary) equilibrium

refinements13, but it is unstable under the replicator dynamics and many

other evolutionary dynamics (see, e.g., section 7.7. in Hofbauer and Sigmund,

1998, or chapter 10, section 10.2 of this dissertation).14

With respect to stability, ESS (evolutionary stable strategies), a refine-

ment of Nash equilibrium, fare better: ESS are asymptotically stable, and

interior ESS globally asymptotically stable under many dynamics including

the replicator and best-response dynamics (Hofbauer, 2000). But ESS may

fail to exist, as in Rock-Paper-Scissors games.

Nonconvergence to Nash equilibrium is not a feature of only a few dynam-

ics, but appears to be a universal phenomenon. In particular, Hofbauer and

Swinkels (personal communication) showed that cyclic behaviour is “univer-

sal”, in that it occurs for essentially all adjustment dynamics15 of Swinkels

(1993). See (Hofbauer and Sigmund, 1998, section 8.6). Related results

have been obtained by Hart and Mas-Collel (2003b). Once acknowledged

the possibility of nonconvergence, attention turns to general properties of

evolutionary dynamics which do not depend on whether the solution con-

verges or not.

12Paraphrasing the above quotation, there need not be a “stable average frequency with
which each pure strategy is employed”.

13Except that it is not strict.
14For multi-population dynamics, the contrast between the refinement literature and the

evolutionary games literature is even starker: while completely mixed equilibria pass most
refinements in van Damme (1991), they are always unstable for wide classes of evolutionary
dynamics. See, e.g., Ritzberger and Weibull, 1996.

15Adjustement dynamics are, essentially, those dynamics under which the mean strategy
evolves towards better reply to the current state: a rather minimal condition of adaptivity.
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Permanence. A very important issue, from an ecological perspective, is

whether diversity will be maintained. That is, whether, with high proba-

bility, all behaviours initially present will still be observed in the long run,

or whether some will go extinct. This issue has been addressed through the

concept of permanence. Boldly said, a deterministic ecological dynamical

system is permanent if there exists a positive threshold ε such that, for any

initial condition with all species present, all species will eventually be present

in a proportion greater than ε. Of course, even if the evolution of the dis-

tribution of behaviors in a population is well described in the short run by

a permanent dynamical system, large stochastic fluctuations will drive some

behaviours extinct; Hofbauer and Sigmund (1998, part III) give necessary

conditions and sufficient conditions for some systems to be permanent, and

study the related concept of persistence.

Classes of strategies that tend to survive and rationalizability. For non-

permanent system, the main issue is to determine the strategies that survive

and those that are eliminated. There is a parallel between trying to define

classes of strategies that survive (or classes of strategies that are eliminated)

and weak static solution concepts such as elimination of dominated strategies

and rationalizability. In both cases, the basic tenet is that it would be too

ambitious to try to predict a single outcome but that some outcomes may be

discarded as unreasonable or selected against. Accordingly, many researchers

studied whether evolutionary dynamics eliminate dominated strategies. We

survey some of this literature in chapter 8. Suffice here to say that, for many

dynamics, including all monotonic16 dynamics and the best-response dynam-

ics, it has been found that for every game and every interior initial condition,

all pure strategies that are iteratively strictly dominated are eliminated. A

dual statement is that only rationalizable pure strategies survive.

Time-averages of dynamics and equilibria. Another avenue of research is to

investigate the behaviour of time-averages of dynamics, and whether they are

related to Nash equilibrium, correlated equilibrium or other standard con-

cepts. For instance, for permanent systems (and actually along all solutions

that are eventually bounded away from the boundary of the state-space), the

16A dynamics is monotonic if, on top of some smoothness assumptions, whenever strat-
egy i earns more than strategy j, its growth-rate is higher than the growth-rate of strategy
j.
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time-average of the (single-population or two-population) replicator dynam-

ics converges to a Nash equilibrium (Hofbauer and Sigmund, 1998). In any

finite game, the time-average of the (multi-population) replicator dynamics

converges to the set of weak correlated equilibria17 (Hofbauer, 2004). As

another example of a link between the time-average of a dynamics and an

equilibrium concept, consider the following 2× 2× 2 game, a variant of Jor-

dan’s (1993) 3-player matching pennies game studied by Gaunersdorfer and

Hofbauer (1995):(
−1,−1,−1 −1, +1, +1

+1, +1,−1 +1,−1, +1

) (
+1,−1, +1 +1, +1,−1

−1, +1, +1 −1,−1,−1

)
This game has a unique Nash equilibrium, in which every player plays

(1/2, 1/2). This gives a payoff of 0 (for every player). The probability dis-

tribution which puts probability 0 on the two squares with payoff −1 for

all players and probability 1/6 on each of the six other squares is a corre-

lated equilibrium, with payoff 1/3 (for every player). For almost all initial

conditions, the time average of the three-population best-response dynamics

converges to this correlated equilibrium. This follows from the analysis of the

best-response dynamics in this game made by Gaunersdorfer and Hofbauer

(1995, section 5, in particular p. 298). See also (Jordan, 1993).

7.3 Contribution of this dissertation

Subject and motivations. We investigate the link between strategies that

tend to survive under evolutionary dynamics and strategies belonging to the

support of a Nash equilibrium or of a correlated equilibrium. This is related

to two of the main issues of evolutionary game theory: trying to define classes

of strategies that tend to survive (or to be eliminated), and investigating the

relevance of standard, static concepts for evolutionary dynamics.

There are three more specific motivations. First, we saw in the pre-

ceding section that even when a solution of an evolutionary dynamics does

17Let G be a finite game, Si the set of pure strategies of player i and Ui : S = ×iSi → R
its payoff function. A weak correlated equilibrium (Moulin and Vial, 1978) is a probability
distribution µ on the set of strategy profiles S such that, for every player i and every pure
strategy ti in Si,

∑
s∈S µ(s)[Ui(s)− Ui(s−i, ti)] ≥ 0 (where (s−i, ti) is the strategy profile

which differs from s only in that its ith component is ti. The set of weak correlated
equilibria is also called the Hannan set.
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not converge, there might still be a link between its long-run behavior and

equilibrium concepts. Second, a number of adaptive procedures converge,

in a time-average sense, towards the set of correlated equilibria (for a sur-

vey, see Hart, 2005). While these procedures, often based on a notion of

regret, differ from the evolutionary dynamics that we study18, it is natural

to ask whether correlated equilibria enjoy similar good properties under evo-

lutionary dynamics; in particular, whether correlated equilibrium is a better

concept than Nash equilibrium from an evolutionary perspective. Finally,

as already mentioned in the first part of this dissertation, Nau and McCar-

dle (1990) characterized the set of strategy profiles that do not belong to

the support of any correlated equilibrium. They show that these strategy

profiles are aggregatively bad, in the sense that they expose the group of

players to arbitrage from an outside observer19. This suggests that strate-

gies never played in correlated equilibrium might be eliminated under some

evolutionary dynamics.

Small dimension: Elimination of all strategies not played in equilibrium For

2 × 2 games and 3 × 3 symmetric games, this intuition is correct. Indeed,

for these games, Nau and McCardle’s characterization implies that if a pure

strategy is never played in correlated equilibrium, then certain domination re-

lations hold, which imply that for any interior initial condition, this strategy

is eliminated by the (two-population) replicator dynamics, the best-response

dynamics and any convex monotonic dynamics. For the single-population

replicator dynamics, the fact that, in 3 × 3 symmetric games, all strategies

that are not used in correlated equilibrium are eliminated, follows from a

more basic result: all strategies not used in Nash equilibrium are eliminated.

More precisely, in a 3 × 3 symmetric game, either there exists a completely

mixed Nash equilibrium, or for any interior initial condition, the replica-

tor dynamics converges to the set of Nash equilibria. This may be seen by

examining Bomze’s (1983) classification of the single-population replicator

dynamics in 3×3 symmetric games (see also Zeeman, 1980); we give a direct

proof in chapter 9 and show that the same result holds for the best-response

dynamics. The fundamental reason for this result, so we think, is that the

18In particular, in no-regret dynamics, the state variable is a time-average and through
this state variable, current play depends on the whole past. In contrast, the evolutionary
dynamics that we study here have no memory and the state variable is simply current
play.

19Mathematically, this takes the form of proposition 2.5.5 in chapter 2
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single-population dynamics in 3× 3 games is a two-dimensional smooth dy-

namical system evolving in a compact region of the plane. Due to, e.g., the

Poincaré-Bendixson theorem, there are severe constraints on the ways such

a dynamical system can behave.20

The general case: All strategies used in correlated equilibrium may be elim-

inated. Summing up, chapter 9 shows that for small dimensional games,

strategies which do not belong to the support of any correlated equilibrium

are eliminated by many dynamics. This does not extend to higher dimen-

sions. Indeed, chapter 10 shows that in 4×4 symmetric games, all strategies

played in correlated equilibrium may be eliminated, so that only strategies

that do not belong to the support of any correlated equilibrium remain. The

examples we build are very much related to Dekel and Scotchmer’s (1992)

example of a game for which a strictly dominated pure strategy survives

under a discrete-time version of the replicator dynamics.

Elimination of all strategies in the support of correlated equilibria is very

robust (it occurs for many dynamics, including all monotonic dynamics, and

for each of these dynamics, for an open set of games and an open set of initial

conditions; for the replicator dynamics, it is robust to perturbation of the

vector field, occurs in continuous-time as well as in discrete-time, and for an

arbitrarily large set of initial conditions).

Universal elimination of all strategies used in Nash equilibrium. For Nash

equilibrium, even more can be shown: in particular, elimination of all strate-

gies used in Nash equilibrium occurs for essentially all adjustement dynam-

ics.See chapter 11. In our examples, there is a unique, strict Nash equilib-

rium. In particular, this equilibrium is an ESS and satisfies all refinements

from the literature. Thus, failure to converge to Nash equilibrium does not

come from a failure to coordinate on the right equilibrium or from an absence

of perfectness.

Finally, we show that for the replicator and best-response dynamics, all

strategies played in Nash equilibrium may be eliminated from almost all ini-

tial conditions (chapter 12). Here again, the Nash equilibrium is unique and

20In contrast, the two-population replicator dynamics in 3 × 3 games is 4-dimensional,
hence from this point of view, our result on elimination of all strategies unused in correlated
equilibrium is non-trivial; this is still due to a small dimension effect, but not of the same
type. See chapter 9.
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passes most refinements (all refinements studied by van Damme (1991), but

ESS and strictness).

Relevance of Nash and correlated equilibria for evolutionary dynamics. So

what should we think of Nash and correlated equilibria? Are they relevant

to evolutionary dynamics? Are they not? Our position is mixed. Much ef-

fort has been devoted to “justify” traditional concepts by finding dynamics

converging to equilibria. This need not be the right approach: if we think

of evolutionary game theory as a tool to describe the evolution of human

or animal behaviour, then it seems more fruitful to try to design dynam-

ics resembling this behaviour, rather than dynamics converging to equilibria.

However, it cannot be ignored that, as previously mentioned, many dynamics

do indeed converge to Nash equilibria in several important classes of games.

Furthermore, even if we study disequilibrium behaviour, or games for which

all strategies used in equilibrium are eliminated, Nash equilibria remain im-

portant as rest points of evolutionary dynamics.

Chapters 10, 11 and 12 should not be seen as an attempt to disqualify

the Nash equilibrium concept or the correlated equilibrium concept. They

suggest though that other, more dynamical solution concepts are of interest,

such as limit cycles or invariant measures.





Chapitre 8

Elimination of Dominated

Strategies

Abstract

We survey and unify results on elimination of dominated strategies
by evolutionary dynamics.

8.1 Introduction

One of the main issues in evolutionary game theory is whether evolution-

ary dynamics lend support to strategic concepts. A most basic strategic

concept is the elimination of dominated strategies and, accordingly, whether

evolutionary dynamics wipe out dominated strategies has been studied by

a number of authors (Akin, 1980; Nachbar, 1990; Dekel and Scotchmer,

1992; Samuelson and Zhang, 1992; Cabrales and Sobel, 1992; Hofbauer and

Weibull, 1996; Berger and Hofbauer, 2005; and others). Many results concern

monotonic dynamics and are proved in a very similar way. We unify these

results, and prove some new results on concave monotonic dynamics (defined

in the next section). We also discuss elimination of dominated strategies by

the best-response dynamics and by the Brown-von Neumann-Nash dynam-

ics. The material is organized as follows. In the next section we precise

the framework and define several classes of dynamics. Section 8.3 is devoted

to positive results and section 8.4 to negative results. Finally, section 8.5

considers discrete-time dynamics.
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8.2 Framework and classes of dynamics

The setting we introduce is rather abstract in order to encompass a variety of

situations, including 1-player decision problem, games within a population or

games between individuals from different populations, which need not evolve

according to the same dynamics.

We consider a large population of players from which individuals are

repeatedly and randomly drawn to play a game against some opponent, which

could be the weather, or (one or several) individuals from the same population

and/or other populations. For instance, if the underlying game is a n-person

game, then we focus on player 1 and consider players 2 to n as a single entity,

which we call the opponent (whether players 2 to n can correlate their actions

or not will not be relevant). In what follows, unless mentioned otherwise,

“player” means player 1, “the population” means the population of players

1 and “a strategy” means a strategy of player 1.

We assume that the set I := {1, ..., N} of pure strategies of player 1 is

finite and that the set Sopp of strategies of the opponent is compact. Let SN

denote the N − 1 dimensional simplex over I:

SN =

{
x ∈ RN

+ ,
∑
i∈I

xi = 1

}

and int SN := {x ∈ SN : ∀i ∈ I, xi > 0} its interior. Let x(t) := (xi(t))i∈I ∈
SN denote the mean-strategy in the population at time t, and y(t) the op-

ponent’s strategy at time t.1

We assume that the population adapts to the opponent’s strategy so that

the mean-strategy x(t) evolves over-time.2 This is modeled by assuming that

x(t) follows a differential equation or, possibly, a differential inclusion. We

will mostly consider dynamics of the form:

ẋi(t) = xi(t)

[
gi(x(t),y(t))−

∑
k∈I

xk(t)gk(x(t),y(t))

]
(8.2.1)

1For instance, if the game consists of an interaction with an individual of another
population, then y(t) would be the mean strategy at time t in this other population; if
the game consists of a symmetric interaction with an individual of the same population,
then y(t) = x(t).

2Evolution may take place by hereditary or cultural transmission of strategies to off-
spring and differential reproduction of individuals playing different strategies, or by imi-
tation of currently successful strategies.
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where the functions gi are continuous. Note that SN and its boundary faces

are invariant under (8.2.1). The best-known example of such a dynamics is

the replicator dynamics given by (time indices suppressed):

ẋi = xi [U(i,y)− U(x,y)] (8.2.2)

where U(i,y) is the payoff of player 1 when playing the pure strategy i and

facing strategy y, and U(x,y) :=
∑

i∈I xiU(i,y). Throughout, the payoff

function U(·, ·) is assumed to be continuous.

We say that gi(x(t),y(t)) is the unnormalized growth rate of strategy i

at time t. By analogy, if p is a mixed strategy, we say that

gp(x,y) :=
∑
i∈I

pigi(x,y) (8.2.3)

is the unnormalized growth rate of the mixed strategy p. To understand this

name note that in the replicator dynamics, gp(x,y) = U(p,y) so that

U(i,y) = U(p,y) ⇒ gp(x,y) = gi(x,y) ∀(x,y) (8.2.4)

We now introduce some classes of dynamics. Let i and j denote pure strate-

gies and p and q mixed strategies.

Definition 8.2.1. A dynamics (8.2.1) is monotonic3 if

U(i,y) > U(j,y) ⇒ gi(x,y) > gj(x,y) ∀(i, j,x,y) (8.2.5)

It is convex monotonic (Hofbauer and Weibull, 1996) if furthermore

U(p,y) > U(i,y) ⇒ gp(x,y) > gi(x,y) ∀(i,p,x,y) (8.2.6)

It is strictly convex monotonic if furthermore

[U(p,y) = U(i,y) and ∃(k, l) ∈ I × I, pkpl > 0, U(k,y) 6= U(l,y)]

⇒ gp(x,y) > gi(x,y) (8.2.7)

The dynamics is concave monotonic if it is monotonic and

U(i,y) > U(p,y) ⇒ gi(x,y) > gp(x,y) ∀(i,p,x,y) (8.2.8)

3This property is called relative monotonicity by Nachbar (1990), order-compatibility of
pre-dynamics by Friedman (1991), monotonicity by Samuelson and Zhang (1992), which
we follow, and payoff monotonicity by Hofbauer and Weibull (1996).
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It is strictly concave monotonic if furthermore,

[U(i,y) = U(p,y) and ∃(k, l) ∈ I × I, pkpl > 0, U(k,y) 6= U(l,y)]

⇒ gi(x,y) > gp(x,y) (8.2.9)

Finally, the dynamics is aggregate monotonic (Samuelson and Zhang, 1992)

if it is both convex and concave monotonic; that is, if

U(p,y) > U(q,y) ⇔ gp(x,y) > gq(x,y) ∀(p, q,x,y) (8.2.10)

An example of an aggregate monotonic dynamics is the replicator dynam-

ics4 (8.2.2). To understand the name convex monotonic, note that if there

exists an increasing function g such that

gi(x,y) = g(U(i,y)) ∀(i,x,y)

then the dynamics is (strictly) convex monotonic if and only if g is (strictly)

convex in x, and (strictly) concave monotonic iff g in (strictly) concave in x.

Any aggregate monotonic satisfies (8.2.4). In this sense, we may think

of aggregate monotonic dynamics as being neutral between mixed and pure

strategies. In contrast, in the sense of (8.2.7) and (8.2.9), strictly convex

(resp. strictly concave) monotonic dynamics give an advantage to mixed

(resp. pure) strategies. This explains that pure strategies are more eas-

ily eliminated by convex monotonic dynamics than by concave monotonic

dynamics, as will be clear from the next section.5

8.3 Positive results

Definition 8.3.1. The pure strategy i ∈ I is eliminated if xi(t) → 0 as

t → +∞. The mixed strategy q ∈ SN is eliminated if min{i∈I:qi>0} xi(t) → 0

(or equivalently
∏

i∈I xqi

i (t) → 0).

4Actually, in the context of bimatrix games, Samuelson and Zhang (1992, theorem
3) have shown that for any aggregate monotonic dynamics, there exists a positive speed
function λ such that ẋ(t) = λ(x(t),y(t))ẋREP (t), where ẋREP = xi(U(i,y)−U(x,y)). For
single-population dynamics (y(t) = x(t) ∀t), this implies that any aggregate monotonic
dynamics has the same orbits than the replicator dynamics; for multi-population dynamics,
this need not be so, because the speed function is population specific.

5Conversely, mixed strategies are more easily “eliminated” by concave than by convex
monotonic dynamics; see next section.
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Definition 8.3.2. The mixed strategy q is strictly dominated by the mixed

strategy p if

U(p,y) > U(q,y) ∀y ∈ Sopp (8.3.1)

The mixed strategy q is weakly dominated by the mixed strategy p if

U(p,y) ≥ U(q,y) ∀y ∈ Sopp (8.3.2)

and furthermore there exists y ∈ Sopp such that U(p,y) > U(q,y).

Note that if the mixed strategies q and q̃ have the same support and

that q is eliminated then so is q̃. In this sense, whether a mixed strategy is

eliminated depends only on its support.6,7

Now to the results. We first focus on aggregate monotonic dynamics. Let

p and q be two mixed strategies. The main result is the following:

Proposition 8.3.3. Assume that x(0) ∈ int SN . Assume furthermore that

lim sup
t→+∞

(U(q,y(t))− U(p,y(t)) < 0 (8.3.3)

or that the following holds: There exists T in R such that

∀t ≥ T, U(q,y(t)) ≤ U(p,y(t)), (8.3.4)

y(·) is uniformly continuous, and

lim inf
t→+∞

[U(q,y(t))− U(p,y(t))] < 0 (8.3.5)

Under any aggregate monotonic dynamics8,
∏

i∈I xqi−pi

i (t) → 0 hence strategy

q is eliminated.9

6It is also true that if q is weakly (strictly) dominated by a mixed strategy, then q̃ is
weakly (strictly) dominated by a mixed strategy too, though not necessarily by the same
mixed strategy.

7A way to see elimination of mixed strategies is as follows: Assume that individuals
may play mixed strategies. If a mixed strategy is eliminated in the sense of definition
8.3.1, then it follows that the proportion of the population playing this mixed strategy
goes to zero.

8What we mean is that x(t) evolves according to an aggregate monotonic dynamics;
unless explicitly mentioned otherwise, we never make any assumption on y(t).

9Note that the fact that q is eliminated is much weaker than the fact that∏
i∈I xqi−pi

i (t) → 0; in particular, if x(t) converges to the boundary of SN , which is com-
mon and the usual starting point to establish counter-intuitive properties of evolutionary
dynamics, then any completely mixed strategy is eliminated in the sense of definition 8.3.1.
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Proof. We begin with a basic result:

Lemma 8.3.4. Let w : R → R be differentiable. If lim supt→+∞ ẇ(t) < 0 or

if

∃T ∈ R,∀t ≥ T, ẇ(t) ≤ 0,

ẇ is uniformly continuous and lim inft→+∞ ẇ(t) < 0, then w(t) → −∞ as

t → +∞

Proof. Both sets of assumptions imply
∫ t

0
ẇ(τ) dτ → −∞ as t → +∞.

We now prove proposition 8.3.3. Let w(t) :=
∑

i∈I(qi − pi) ln xi(t). We

have:

ẇ =
∑
i∈I

(qi − pi)
ẋi

xi

=
∑
i∈I

(qi − pi)gi(x,y) = gq(x,y)− gp(x,y) (8.3.6)

We show below that the assumptions of proposition 8.3.3 imply that the

assumptions of lemma 8.3.4 are satisfied; it follows that w(t) → −∞ hence

that
∏

i∈I xqi−pi

i → 0 as t → +∞.

First, it follows from (8.2.10) and (8.3.6) that

(8.3.4) ⇒ (∀t ≥ T, ẇ ≤ 0)

Second, let ε > 0 and Kε := {y : U(q,y) − U(p,y) ≤ −ε}; it follows from

(8.2.10), compactness of Kε × SN and continuity of gq − gp that if Kε 6= ∅
then

−α := max
y∈Kε,x∈SN

(
gq(x,y)− gp(x,y)

)
< 0

Together with (8.3.6), this implies that

lim sup [U(q,y(t))− U(p,y(t))] < 0 ⇒ lim sup ẇ < 0

and similarly lim inf [U(q,y(t))− U(p,y(t))] < 0 ⇒ lim inf ẇ < 0.

Third, the functions gi are continuous hence uniformly continuous on the

compact set SN × Sopp; therefore, if y(·) is uniformly continuous then so is

ẇ(·). This completes the proof.

Remark. In some contexts, the assumption that y(·) is uniformly contin-

uous might seem unnatural. This assumption and (8.3.5) might be replaced
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by any assumption which ensures that the selection pressure against q is not

asymptotically released; that is,

∃ε > 0,

∫ +∞

0

1l p>q+ε(t) = +∞

where 1l p>q+ε(t) = 1 if U(p,y(t)) > U(q,y(t)) + ε and 0 otherwise.

Proposition 8.3.3 implies two better known properties, due to Samuelson

and Zhang (1992):

Corollary 8.3.5 (Strict domination). Let p and q be two mixed strategies.

If p strictly dominates q then, under any aggregate monotonic dynamics, q

is eliminated.

Proof. Since Sopp is compact, it follows from (8.3.1) that there exists ε > 0

such that

∀y ∈ Sopp, U(p,y) ≥ U(q,y) + ε

Therefore (8.3.3) holds. The result follows.

Corollary 8.3.6 (Weak domination). Let p and q be two mixed strategies.

Assume that y(t) is uniformly continuous and that p weakly dominates q.

For any aggregate monotonic dynamics, we have:

(a) If q is not eliminated then U(q,y(t))− U(p,y(t)) → 0.

(b) Assume that Sopp = SM (the M − 1 dimensional simplex) and that

U(i,y) =
∑

1≤j≤M yj(t)U(i, j). If q is not eliminated, then

U(p, j) > U(q, j) ⇒ yj(t) → 0 (8.3.7)

Proof. Since U(q,y(t))−U(p,y(t)) ≤ 0 for all t, it follows that if U(q,y(t))−
U(p,y(t)) does not converge to zero, then lim inf(U(q,y(t))−U(p,y(t))) <

0. This being seen, (a) follows from proposition (8.3.3), and (b) follows from

(a).

Remark. For n-player finite games, letting Mk be the number of pure strate-

gies of player k and M =
∏

2≤k≤n Mk, we may see Sopp as a subset of SM .

Corollary 8.3.6 then yields that if strategy q is weakly dominated by the

mixed strategy p but not eliminated, then every strategy profile of players 2
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to n to which p is a strictly better response than q is eliminated.

Proposition 8.3.3, corollary 8.3.5 and corollary 8.3.6 extend trivially (with

suitable modifications) to the different classes of games introduced in defini-

tion 8.2.1:

Proposition 8.3.7.

(a) If q is a pure strategy, proposition 8.3.3, corollary 8.3.5 and corollary

8.3.6 hold for any convex monotonic dynamics.

(b) If p is a pure strategy, the same results hold for any concave monotonic

dynamics.

(c) If both p and q are pure, then the same results hold for any monotonic

dynamics.

(Point (a) is due to Hofbauer and Weibull (1996) and point (c) to Samuel-

son and Zhang (1992); point (b) appears to be new.)

The proofs of (the suitably modified versions of) proposition 8.3.3, corol-

lary 8.3.5 and corollary 8.3.6 for these other classes of dynamics is word by

word the same as the proofs for aggregate monotonic dynamics given above,

up to replacement of “aggregate monotonic” by “convex monotonic” (resp.

“concave monotonic”, “monotonic”) and of equation (8.2.10) by equation

(8.2.6) (resp. eq. (8.2.8), eq. (8.2.5)).

Best-response dynamics. Consider now the best-response dynamics (Gilboa

and Matsui, 1991; Matsui 1992) given by:

ẋ(t) ∈ BR(y(t))− x(t) (8.3.8)

for almost all t; here, BR(y) is the set of mixed best-responses to y:

BR(y) =

{
p ∈ SN , U(p,y) = max

q∈SN

U(q,y)

}
It follows from (8.3.8) that if from some time T on, the pure strategy i is never

a best-response to y(t), then xi(t) decreases exponentially to zero. In par-

ticular, if the pure strategy i is strictly dominated or if there exists a mixed

strategy p such that U(p,y(t)) > U(i,y(t)) for all t ≥ T , then xi(t) → 0.10

10This is in particular the case if p weakly dominates i, Sopp = SM for some integer M ,
and y(t) ∈ intSM for t ≥ T .
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For these results, we do not need any assumption on y(·), in particular, y(·)
need not be uniformly continuous.

Iterative elimination. We conclude this section with a standard result on

elimination of iteratively strictly dominated strategies. Consider the special

case of a two-player finite game, that is, Sopp = SM for some positive integer

M and U(i,y) =
∑

j∈J yjU(i, j) where J = {1, ...,M} denotes the set of pure

strategies of player 2. Let I0 = I, J0 = J , and inductively let Ik+1 (resp.

Jk+1) denote the set of pure strategies i ∈ Ik (resp. j ∈ Jk) that are not

strictly dominated by a mixed strategy in the game restricted to Ik × Jk.

Similarly, let Ĩ0 = I, J̃0 = J , and let Ĩk+1 (resp. J̃k+1) denote the set of pure

strategies i ∈ Ĩk (resp. j ∈ J̃k) that are not strictly dominated by a pure

strategy in the game restricted to Ĩk × J̃k.

Definition 8.3.8. A pure strategy i ∈ I is iteratively strictly dominated

(resp. iteratively strictly dominated by pure strategies) if there exists k in N
such that i /∈ Ik (resp. i /∈ Ĩk).

Proposition 8.3.9. Assume that both x(t) and y(t) follow a convex mono-

tonic (resp. monotonic) dynamics11. Then for every interior initial con-

dition, every pure strategy iteratively strictly dominated (resp. iteratively

strictly dominated by pure strategies) is eliminated.

Proof. We first prove the result on convex monotonic dynamics. It follows

from the analogue of corollary 8.3.5 for convex monotonic dynamics that the

pure strategies in I0\I1 and in J0\J1 are eliminated. By induction assume

that for k in N, the strategies in I0\Ik and in J0\Ik are eliminated, hence in

particular

∀η > 0,∃T ∈ R,∀t ≥ T, max
j∈J\Jk

yj(t) ≤ η (8.3.9)

Let i ∈ Ik\Ik+1. Since strategy i is strictly dominated in the game restricted

to Ik × Jk, there exists ε > 0, η > 0 and p ∈ SN such that

max
j∈J\Jk

yj ≤ η ⇒ U(i,y(t)) < U(p,y(t)) + ε

Therefore, it follows from (8.3.9) and the analogue of proposition (8.3.3)

for convex monotonic dynamics that strategy i is eliminated. The result

11Not necessarily the same.
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follows. The proof of the result on monotonic dynamics is the same, up to

replacement of “convex monotonic” by “monotonic”, “strictly dominated”

by “strictly dominated by a pure strategy”, and “p ∈ SN” by “i′ ∈ I”.

(The result on monotonic dynamics is due to Samuelson and Zhang

(1992), the result on convex monotonic dynamics to Hofbauer and Weibull

(1996).)

The extension to n-player games and to the best-response dynamics are

immediate. Note that there are no results on iterative elimination of dom-

inated mixed strategies, because when a mixed strategy is eliminated, this

does not give rise to a well defined reduced game. We now turn to negative

results.

8.4 Negative results

Consider a dynamics (8.2.1) in which the unnormalized growth rate of a pure

strategy depends only on its payoff:

ẋi = xi

[
g(U(i,y))−

∑
k∈I

xkg(U(k,y))

]
(8.4.1)

for some continuous function g independent of i ∈ I. If g is increasing, then

the dynamics is monotonic.

Proposition 8.4.1. (a). If g is not convex, then (8.4.1) need not eliminate

pure strategies dominated by mixed strategies.12

(b). If g is not concave, then (8.4.1) need not eliminate mixed strategies

strictly dominated by pure strategies.

(Point (a) is due to Hofbauer and Weibull (1996); point (b) appears to

be new.)

Proof. The proofs of points (a) and (b) are very similar. We give a detailed

proof of (b) below and sketch a proof of (a) in the appendix.

12More precisely, for any continuous and non-convex function g, there exist a 3×2 game
and an opponent’s strategy function y(·) : R → S2 for which (8.4.1) does not eliminate
a pure strategy strictly dominated by a mixed strategy. The next statement is to be
understood in the same way. See the proofs.
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If g is not concave, then there exist reals a and b such that

g(a) + g(b)

2
> g

(
a + b

2

)
By continuity of g, there exists ε > 0 such that:

α :=
g(a) + g(b)

2
− g

(
a + b

2
+ ε

)
> 0 (8.4.2)

Assume that player 1 plays a 3× 2 game with payoff matrix:

L R

1

2

3

 a b
a+b
2

+ ε a+b
2

+ ε

b a


Let yl(t) denote the probability at time t that the opponent chooses the left

column. Fix some large positive constant T (more precisely, T > (2C +

1)/α+1 with C = max[a,b] |g|; this condition will appear later). Assume that

the function yl(·) is 2T -periodic with yl(t) = 1 if t ∈ [0, T − 1], yl(t) = 0 if

t ∈ [T, 2T − 1], and linear variation on [T − 1, T ] and [2T − 1, 2T ].

Assume that x(0) ∈ intSN and let

w(t) := ln

(
x2√
x1x3

)
(t)

Letting gi(t) := g(U(i,y(t)), we have:

ẇ(t) = g2(t)−
g1(t) + g3(t)

2

hence

w((k + 1)T )− w(kT ) =

∫ (k+1)T

kT

(
g2(t)−

g1(t) + g3(t)

2

)
dt

Since for all t, g2(t) = g((a + b)/2 + ε) and since

∀t ∈ [kT, (k + 1)T − 1], g1(t) + g3(t) = g(a) + g(b)

it follows from (8.4.2) that:

w((k + 1)T )− w(kT ) ≤ −(T − 1)α + 2C
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with C = max[a,b] |g|. Since we assumed T > (2C + 1)/α + 1, it follows that

w((k + 1)T ) ≤ w(kT )− 1

Therefore w(kT ) → −∞ as k → +∞. Since the variation of w between kT

and (k + 1)T is bounded (less than 2CT ), it follows that w(t) → −∞ hence

x2(t) → 0 as t → +∞. Furthermore, it is easy to see by the same kind

of computation that x1(t)/x3(t) is 2T -periodic. It follows that x1x3 9 0.

Actually, as is easily seen,

inf
t∈R+

x1(t)x3(t) = min
t∈[0,2T ]

x1(t)x3(t) > 0

Therefore, though q = (1/2, 0, 1/2) is strictly dominated by strategy 2, the

mixed strategy q is not eliminated.13

The function y(·) used in the proofis quite ad-hoc, and thus one may

wonder whether we could obtain similar counter-examples with more realistic

opponent’s behaviours, e.g., with y(t) = x(t). For point (a), the answer is

positive: Hofbauer and Weibull (1996) have shown that for every C1 function

g which is increasing but not convex, there exists a 4 × 4 symmetric game

for which strategy 4 is strictly dominated by a mixed strategy but survives

along an open set of solutions of the single-population dynamics

ẋi = xi

[
g(U(i,x))−

∑
k∈I

g(U(k,x))

]
(8.4.3)

For point (b), we strongly conjecture that the answer is positive but our

proof is still incomplete.14

We conclude this section with two remarks. First, in chapter 10, we

implicitly give an example of a 4 × 4 symmetric game for which the mixed

strategy (1/3, 1/3, 1/3, 0) is strictly dominated by the fourth pure strategy

but survives along an open set of solutions of the single-population best-

response dynamics. Thus, the best-response dynamics need not eliminate

strictly dominated mixed strategies.

13Note also that for T sufficiently large or x1(0) sufficiently close to x3(0), there exists t

in [0, 2T ] such that x1(t) = x3(t), hence x1(t+2kT ) = x3(t+2kT ) for all k ∈ N. Together
with x2(t) → 0, this implies that lim supt→+∞ x1(t)x3(t) = 1/4.

14In the spirit of Hofbauer and Weibull (1996) and of chapter 10, it is easy to show
that if g is increasing but nonconcave, then there exists a 4× 4 symmetric game for which
strategy 4 strictly dominates q = (1/3, 1/3, 1/3, 0) but x4(t)

∏
i∈I x−qi

i (t) → 0; but it
might still be that

∏
i∈I xqi

i (t) → 0 (as in game (10.3.1) in chapter 10).
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Second, consider the Brown-von Neumann-Nash dynamics (Brown and

von Neumann, 1950):

ẋi = ki(x,y)− xi

∑
j∈I

kj(x,y) (8.4.4)

where ki(x,y) := max
[
0, U(i,y)−

∑
j xjU(j,y)

]
is the excess payoff of

strategy i over the average payoff. This is not a dynamics of type (8.2.1)

and it may be that a pure strategy has a higher payoff than another pure

strategy yet a lower growth rate. Nevertheless, this dynamics is adaptive in

that strategies earning less than average are selected against; that is, (8.4.4)

is weakly sign-preserving in the sense of (Ritzberger and Weibull, 1995).

This implies that (8.4.4) is an adjustement dynamics (Swinkels, 1993); i.e.

x(t) evolves in the direction of strategies that are better replies to y(t) than

x(t).15 Nevertheless, in the context of a game played within a single pop-

ulation (y(t) = x(t)), Berger and Hofbauer (2005) have shown that, under

(8.4.4), a pure strategy strictly dominated by another pure strategy need not

be eliminated. Generalizations of this result should appear in (Sandholm,

2006). Of course, this cannot happen with monotonic dynamics, as implied

by corollary 8.3.5.

8.5 Discrete-time dynamics

Dekel and Scotchmer (1992) have shown that a discrete-time version of the

replicator dynamics need not eliminate pure strategies strictly dominated by

mixed strategies. This implies that corollary 8.3.5 does not extend straight-

forwardly to discrete-time dynamics. To understand the difficulty, consider

the discrete-time dynamics:

xi(n + 1) = xi(n)
C + gi(x,y)

C +
∑

k xkgk(x,y)
(8.5.1)

with C > max
i,x,y

gi(x,y), x = x(n) and y = y(n). This is equivalent to

xi(n + 1)− xi(n) = xi(n)
gi(x,y)−

∑
k xkgk(x,y)

C +
∑

k xkgk(x,y)
(8.5.2)

15Formally, U(ẋ,y) ≥ 0 with strict inequality whenever x is not a best-response to y.
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Assume that the mixed strategy p strictly dominates the mixed strategy q

and let w(n) :=
∑

i∈I(qi− pi) ln xi(n). A straightforward computation shows

that

w(n + 1)− w(n) =
∑
i∈I

(qi − pi)g̃i(x,y) with g̃i = ln
(
1 +

gi

C

)
(8.5.3)

This should be compared to (8.3.6), i.e.

ẇ =
∑
i∈I

(qi − pi)gi(x,y)

Since the logarithm is concave, it is as if going from the continuous dynam-

ics (8.2.1) to its discrete-counterpart (8.5.1) made the growth rates more

concave. Thus, while the results on monotonic, concave monotonic, and

“non-convex” dynamics carry over with no change to discrete-time dynamics

(8.5.1), this is not true of the results on aggregate and convex monotonic

dynamics. In particular, the analogue of point (b) in proposition 8.4.1 is:

Proposition 8.5.1. If the function g is non-convex or linear, then the dy-

namics

xi(n + 1) = xi(n)
C + g(U(i,y))

C +
∑

k xkg(U(k,y))

need16 not eliminate pure strategies strictly dominated by mixed strategies.17

Proof. Similar to the proof of point (b) of proposition 8.4.1.

Dekel and Scotchmer’s (1992) example might be seen as a particularly beau-

tiful instance of this general result.

We now consider the limit C → +∞. If C � max(i,x,y) |gi(x,y)| then

ln (1 + gi/C) is approximately equal to gi/C. From this remark we obtain:

Proposition 8.5.2. Fix a game and functions gi; fix a mixed strategy q

strictly dominated by a mixed strategy p. Assume that (8.2.10) holds, or that

(8.2.6) holds and q is pure. Then there exists C̄ in R such that for all C ≥ C̄,

the discrete dynamics (8.5.1) eliminates strategy q.

16As before, x and y are taken at time n in the right-hand side.
17Again, in the sense that for any continuous, non-convex or linear g, there exist a

3× 2 game and an opponent’s strategy function y(·) : N → S2 for which (8.4.1) does not
eliminate a pure strategy strictly dominated by a mixed strategy.



8.5. DISCRETE-TIME DYNAMICS 147

Proof. There exists ε > 0 such that

∀(x,y),
∑
i∈I

(pi − qi)U(i,y) ≥ ε

Therefore, under the above assumptions, there exists α > 0 such that

∀(x,y),
∑
i∈I

(pi − qi)gi(x,y) ≥ α

For C large enough,

∀(i,x,y),

∣∣∣∣ln(1 +
gi(x,y)

C

)
− gi(x,y)

C

∣∣∣∣ < α

4C

so that

∀(x,y),
∑
i∈I

(pi − qi)g̃i(x,y) ≥ α/2C > 0

where g̃i = ln
(
1 + gi

C

)
. The result follows.

Note that the constant C̄ depends not only on the game and the functions

gi, but also, through ε, on the strategies p and q. Compare proposition 8.5.2

and proposition 8.5.1. Note that for aggregate monotonic dynamics, the

order of the quantifiers (whether we first fix the game, the functions gi and

the strategies p and q, or we first fix the constant C) is crucial.

To conclude, note that if the constant C depends on the step n:

xi(n + 1) = xi(n)
Cn + gi(x,y)

Cn +
∑

k xkgk(x,y)
(8.5.4)

then we have:

Proposition 8.5.3. Assume that Cn → +∞ as n → +∞ and that∑
n∈N

1

Cn

= +∞, (8.5.5)

Then for any game, any functions gi and any mixed strategies p and q such

that p strictly dominates q, if (8.2.10) holds, or if (8.2.6) holds and q is

pure, then the discrete dynamics (8.5.4) eliminates strategy q.

Proof. This follows from proposition 8.5.2. The condition (8.5.5) is needed

for the dynamics not to slow down too much and “stop”.
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Many complements to this section may be found in (Cabrales and Sobel,

1992).

Appendix: Proof of proposition 8.4.1, point (a).

We proceed as in the proof of point (b). If g is continuous and not convex,

then we can find reals a, b, and ε > 0 such that

α := g

(
a + b

2
− ε

)
− g(a) + g(b)

2
> 0 (8.5.6)

Assume that player 1 plays a 3× 2 game with payoff matrix: a b
a+b
2
− ε a+b

2
− ε

b a


Define yl(t) as in the proof of point (a), assume x(0) ∈ intSN and let w(t) :=

ln(x1(t))− ln(x2(t)). From ẇ(t) = g(U(1,y(t))− g(U(2,y(t)), the definition

of yl(t) and (8.5.6) we obtain:

w((2k + 2)T )− w(2kT ) ≤ −2(T − 1)α + 4C

with C = max[a,b] |g|. For T sufficiently large (which is without loss of gener-

ality), this implies w((2k + 2)T ) ≤ w(2kT )− 1 hence w(2kT ) → −∞. Since

the variation of w between 2kT and (2k+2)T is bounded (less than 4CT ), it

follows that w(t) → −∞ hence x1(t) → 0 as t → +∞. Similarly, we obtain

x3(t) → 0 so that x2(t) → 1 as t → +∞. Therefore, though strategy 2 is

strictly dominated by the mixed strategy (1/2, 0, 1/2), strategy 2 is the only

strategy that survives.



Chapitre 9

Evolutionary Dynamics and

Equilibria in Low Dimension:

Elimination of All Strategies

not Played in Equilibrium

In this chapter, we study evolutionary dynamics in 3× 3 symmetric games.

In the first part, we give a simple proof of the fact that, along all interior

solutions, the single population replicator dynamics eliminates all strategies

that do not belong to the support of any Nash equilibrium. We also show

that the same result holds for the best-response dynamics.

In the second part, we show that, along all interior solutions, strategies

that have zero (marginal) probability in all correlated equilibria are elimi-

nated by the two-population best-response dynamics, and any two-population

convex monotonic dynamics. The proof is based on the dual reduction tech-

nique, studied in chapter 2.
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Part A: Nash Equilibrium

9.1 Introduction

We give a short proof of the fact that in every 3×3 symmetric game and along

all interior solutions, the single-population replicator dynamics eliminates all

strategies that are not used in Nash equilibrium. The proof is direct, in that

it does not use Bomze’s (1983) classification of 3× 3 symmetric games. We

also show that the same result holds for the best-response dynamics.

The material is organized as follows: we first introduce the notations and

a lemma crucial to our proofs. The main results are proved in section 9.2

for the replicator dynamics and in section 9.3 for the best-response dynamics.

Notations. We consider finite, two-player symmetric games, played within

a single population. Such a game is given by a set I = {1, ..., N} of pure

strategies (the same for each player) and a payoff function U : I × I → R.

Thus, U(i, j) is the payoff of a player playing strategy i and facing strategy

j.

Let SN denote the simplex of mixed strategies

SN :=

{
x ∈ RI

+ :
∑
i∈I

xi = 1

}

and let int SN := {x ∈ SN ,∀i ∈ I, xi > 0}. Let ei denote the vertex of the

simplex corresponding to the pure strategy i. The payoff of a player playing

the mixed strategy x and facing the mixed strategy y will be denoted

U(x,y) :=
∑

i∈I,j∈I

xiyjU(i, j)

We will use the following lemma:
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Lemma 9.1.1. If a symmetric game does not have a completely mixed sym-

metric Nash equilibrium, then there exist mixed strategies p and q such that

p weakly dominates q; i.e. for all x in SN

[xi > 0 for all i in I ] ⇒ [U(p,x) > U(q,x)] (9.1.1)

The above result is due to Akin (1980). Guidelines to the proof can also be

found in (Hofbauer and Sigmund, 1998, exercice 7.6.3).

Two additional remarks will be useful: first, we may assume that p and

q have disjoint support1. Furthermore, it follows from (9.1.1) that U(p, k) ≥
U(q, k) for every k in {1, 2, 3}, with strict inequality for at least one k;

therefore, fixing k such that U(p, k) > U(q, k), we have:

xk > 0 ⇒ U(p,x) > U(q,x) (9.1.2)

9.2 Replicator dynamics

Given some initial condition x(0) in SN , the (single population) replicator

dynamics is given by

ẋi(t) = xi(t) [U(i,x(t))− U(x(t),x(t))] (9.2.1)

For lightness of notations, we often write ẋi, xi and x for ẋi(t), xi(t) and x(t).

Definition An initial condition is interior if it belongs to intSN .

Definition A pure strategy i in I is eliminated (along a solution of a given

dynamics) if xi(t) → 0 as t → +∞.

Proposition 9.2.1. Under the replicator dynamics (9.2.1), in every 3 × 3

symmetric game and from every interior initial condition, every strategy that

does not belong to the support of a symmetric Nash equilibrium is eliminated.

We will actually show a slightly stronger result. Namely, if the game

does not have a completely mixed symmetric Nash equilibrium, then every

interior solution converges to a Nash equilibrium.

1If piqi > 0 for some i in {1, 2, 3}, then replace p by p̃ = (p − λei)/(1 − λ) and q by
q̃ = (q− λei)/(1− λ), with λ = min(pi, qi); note that since p 6= q, it follows that λ < 1.
Clearly, (9.1.1) still holds for p̃ and q̃. If p̃ and q̃ do not have disjoint supports, iterate
the process.
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Proof. Consider a 3 × 3 symmetric game with no completely mixed, sym-

metric Nash equilibrium and fix an interior initial condition x(0). By lemma

9.1.1, there exist mixed strategies p and q with disjoint supports such that

p weakly dominates q. By corollary 8.3.6 in chapter 8, this implies that if

no pure strategy is eliminated then
∏

i:qi>0 xi(t) → 0. Since p and q have

disjoint supports, it follows that there are at most two pure strategies, say i

and j, in the support of q. Therefore, in any case, there exist pure strategies

i and j such that xi(t)xj(t) → 0 as t → +∞.

Assume for concreteness that x1x2 → 0. This means that the ω-limit of

x(t), i.e. {
y ∈ SN ,∃(tn) ∈ RN, tn → +∞,x(tn) → y

}
is included in the union of the edge [e1, e3] (i.e. {x : x2 = 0}) and of the

edge [e2, e3].

If the solution x(t) converges to a point, then by the folk-theorem of

evolutionary game theory (see, e.g., Weibull, 1995, proposition 4.11), this

point is a Nash equilibrium and the statement of the proposition is satisfied.

Otherwise, the ω-limit of x(t) contains at least two points x′ and x”. Since

a bounded ω-limit set is always connected, we may assume that x′ and x”

belong to the same edge, say [e2, e3]; furthermore, the whole segment [x′,x”]

must belong to the ω-limit set of x(t).2

There are two cases: either (case 1) the whole edge consists of rest points

or (case 2) there is at most one rest point in the relative interior of the edge

[e2, e3].
3

In case 1, U(2, i) = U(3, i) for i = 2, 3. Thus, if for instance U(2, 1) ≥
U(3, 1), then the payoff of 2 is always weakly greater than the payoff of 3.

Since the function w(t) = ln(x2(t)/x3(t)) satisfies

ẇ = U(2,x)− U(3,x) (9.2.2)

it follows that the ratio x2/x3 is always weakly increasing. Since this ratio is

2Being connected, the ω-limit set of x(t) must include a connected path from x′ to x”;
therefore it must include the segment [x′,x”] if x′ and x” belong to the same edge, and
the segments [x′, e3] and [e3,x”] otherwise; in the latter case, replace x′ by e3.

3The rest-points of the replicator dynamics within the edge [e2, e3] are the vertices e2,
e3 and the completely mixed symmetric Nash equilibria of the 2 × 2 game obtained by
eliminating strategy 1; in this 2× 2 symmetric game, as is well known (see, e.g., Weibull,
1995), either every symmetric mixed strategy profile is a Nash equilibrium or there is at
most one completely mixed symmetric Nash equilibrium.
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different at x′ and at x” and since x(t) visits infinitely often arbitrarily small

neighborhood of x′ and x”, this yields a contradiction.

In case 2, up to replacement of [x′,x”] by one of its subsegments, we may

assume that there is no rest-point in the segment [x′,x”]. Therefore, there

exists a neighborhood V of this segment in which one of the strategies 2 and

3 earns strictly less than the other one. By (9.2.2), this implies that the

ratio x2/x3 evolves monotonically in V . Note that this ratio is different at

x′ and x”. Thus, without loss of generality, we may assume both that this

ratio increases (weakly) in V and that it is strictly higher at x′ than at x”.

This implies that there exist neighborhoods V ′ and V ” of, respectively, x′

and x”, such that x(t) cannot go from V ′ to V ” while staying in V . This

yields a contradiction because, due to the structure of its ω-limit, x(t) must

go infinitely often from V ′ to V ” while eventually staying in an arbitrarily

small neighborhood of the union of the edge [e1, e3] and of the edge [e2, e3],

hence must eventually go from V ′ to V ” while staying in V .

9.3 Best-response dynamics

The single-population best-response dynamics (Gilboa and Matsui, 1991) is

given by the differential inclusion:

ẋ ∈ BR(x)− x (9.3.1)

where BR(x) is the set of (mixed) best-responses to x:

BR(x) = {p ∈ SN : U(p,x) = max
q∈SN

U(q,x)}

Proposition 9.3.1. Consider a 3 × 3 symmetric game with no completely

mixed symmetric Nash equilibrium. From every initial condition, every so-

lution of the single-population best-response dynamics converges to the set of

Nash equilibria.

Proof. The proof is similar to the proof given for the replicator dynamics. A

difference is that in general the best-response dynamics need not eliminate

mixed strategies strictly dominated by pure strategies.4. However, consider a

4As shown in chapter 8, it holds if q is a pure strategy; it also holds for 3×3 symmetric
games, as will be shown in the proof of lemma 9.3.2 below; but it does not hold for 4× 4
symmetric games, even if p is a pure strategy: a counter-example is (implicitly) given in
chapter 10.
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3×3 symmetric game with no completely mixed symmetric Nash equilibrium

and fix an initial condition x(0):

Lemma 9.3.2. For every solution of the best-response dynamics, there exist

i in {1, 2, 3} and a time T such that xi(t) → 0 and, for all t ≥ T , strategy i

is not a strict best-response to x(t).

We now prove proposition 9.3.1 (lemma 9.3.2 will be proved in the end):

assume without loss of generality that x1(t) → 0 (so that x(t) converges to

the edge [e2, e3]) and that for t sufficiently large, strategy 1 is not a strict

best-response to x(t). If x(t) converges to a point, then this point is a Nash

equilibrium and the statement of proposition 9.2.1 is satisfied. Otherwise, as

in the proof of proposition 9.2.1, the ω-limit of x(t) contains two points x′

and x” in the edge [e2, e3], and there are the same two cases: either (case 1)

U(2, i) = U(3, i) for i = 2, 3 or we may assume that (case 2) U(2,x) 6= U(3,x)

for every x in [x′,x′′].

In case 1, if p belongs to the ω-limit of x(t), then p1 = 0 and U(2,p) =

U(3,p) ≥ U(1,p); this implies that p is a Nash equilibrium.

In case 2, there exists a neighborhood of the segment [x′,x′′] in which

one of the strategies 2 and 3 earns strictly less than the other one, hence this

strategy is not a best-response. It follows that in the neighborhood of the

segment [x′,x”], the ratio x2/x3 evolves monotonically (at least in a weak

sense). As in the proof of proposition 9.2.1, this yields a contradiction.

Proof of lemma 9.3.2. Recall lemma 9.1.1. Fix mixed strategies p and q

with disjoint support and a pure strategy k such that (9.1.2) is satisfied. If

xk(t) = 0 for all t ≥ 0, then k is never a strict best-response to x(t) due to

(9.3.1) and the result follows.

Otherwise, there exists T such that xk(T ) > 0. Due to (9.3.1), this implies

that for every t ≥ T , xk(t) ≥ xk(T ) exp(t − T ) > 0, hence U(p,x(t)) >

U(q,x(t)).

Since p and q have disjoint support and since there are only three pure

strategies, it follows that at least one of the strategies p and q is pure.

Case 1: If q is a pure strategy, e.g., q = e1. Then for all t ≥ T ,

U(p,x(t)) > U(1,x(t)), hence 1 is not a best-response to x(t). This implies

that x1(t) → 0 and the result follows.

Case 2: If p is a pure strategy, e.g., p = e1. Then q1 = 0 and

∀t ≥ T, U(1,x(t)) > q2U(2,x(t)) + (1− q2)U(3,x(t)) (9.3.2)
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so that

∀t ≥ T, U(2,x(t)) = U(3,x(t)) ⇒ U(1,x(t)) > U(3,x(t)) (9.3.3)

If, e.g., U(2,x(t)) > U(3,x(t)) for all t ≥ T , then from time T on, strategy

3 is not a best-response to x(t), hence x3(t) → 0 and the result follows.

Therefore we may assume that there exists T ′ ≥ T such that U(2,x(T ′)) =

U(3,x(T ′)). Now, by (9.3.3), at time T ′ as at any time t ≥ T such that

U(2,x(t)) = U(3,x(t)), the unique best-response to x(t) is strategy 1, hence

the solution locally points towards e1.

Subcase 2.1: If U(2, 1) = U(3, 1), then the equality U(2,x(t)) = U(3,x(t))

is maintained as x(t) points towards e1. It follows that x(t) points towards

e1 for all t ≥ T ′, hence converges to e1 and the result follows.

Subcase 2.2: If, e.g., U(2, 1) > U(3, 1), then, as the solution points

towards e1, the difference U(2,x(t))− U(3,x(t)) strictly increases. This im-

plies that for t ≥ T ′, U(2,x(t))−U(3,x(t)) is nonnegative, hence U(3,x(t)) <

U(2,x(t)) or U(3,x(t)) = U(2,x(t)) < U(1,x(t)). In any case, strategy 3 is

not a best-response to x(t) and the result follows. This concludes the proof

of lemma 9.3.2.



Part B: Correlated Equilibrium

9.4 Notations, definitions and main result

9.4.1 Notations

In this second part, we still focus on two-player finite symmetric games but

we study two populations dynamics and so we need some new notations5:

we let y(t) ∈ SN denote the mean-strategy in the population of players 2.

The payoff of a player playing the mixed strategy x and facing the mixed

strategy y is:

U(x,y) :=
∑

i∈I,j∈I

xiyjU(i, j)

Given an initial condition (x(0),y(0)) in SN × SN , the two-population repli-

cator dynamics is given by:

ẋi = xi [U(i,y)− U(x,y)] and ẏi = yi [U(i,x)− U(y,x)] (9.4.1)

(here x (resp. y) represents the mean strategy in the population of players

1 (resp. 2); the reason why the same payoff function U appears in both

equations is that the game is symmetric)

Note that, for symmetric games and from a mathematical point of view,

the single population replicator dynamics corresponds to the two-population

replicator dynamics with symmetric initial conditions (that is, with x(0) =

y(0)).

Definition The pure strategy i of player 1 (resp. player 2) is eliminated by

the two-population replicator dynamics (for some initial condition (x(0),y(0))

5Since we restrict attention to symmetric games, the pure strategy set and the payoff
function are the same for both players; I (resp. U) denotes the pure strategy set (resp.
payoff function) both of player 1 and of player 2.
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if xi(t) (resp. yi(t)) goes to zero as t → +∞.

Definition The pure strategy i in I (resp. the pure strategy profile (i, j) in

I×I) is used in correlated equilibrium6 if there exists a correlated equilibrium

distribution µ such that
∑

j∈I µ(i, j) > 0 (resp. µ(i, j) > 0).

Remark 9.4.1. Due to the symmetry of the game, the existence of a corre-

lated equilibrium µ such that
∑

j∈I µ(i, j) > 0 is equivalent to the existence

of a correlated equilibrium µ′ such that
∑

j∈I µ′(j, i) > 0.

Thus, when we say that some pure strategy i is used (or not used) in

correlated equilibrium, it is unnecessary to specify whether we see this strat-

egy as a strategy of player 1 or as a strategy of player 2. Furthermore, due

to the symmetry of the game and to the convexity of the set of correlated

equilibrium distributions, a pure strategy is used in correlated equilibrium

if and only if it is used in some symmetric equilibrium (i.e. in a correlated

equilibrium µ such that µ(k, l) = µ(l, k) for every (k, l) in I × I). Thus, we

do not have to specify whether we are only interested in symmetric equilibria

or not.

9.4.2 Main result

Definition An initial condition is interior if it belongs to int SN × int SN

Proposition 9.4.2. Consider a 3× 3 symmetric game. If the pure strategy

i is not used in correlated equilibrium, then xi(t) and yi(t) both converge to 0

under the two-population replicator dynamics (9.4.1), for any interior initial

condition (x(0),y(0)).

9.5 Proof

9.5.1 A property of correlated equilibria

From Nau and McCardle’s (1990) characterization of strategy profiles never

played in correlated equilibria and from the fact that dual vector of symmetric

games may be symmetrized (proof of proposition 2.8.9), it follows that there

6For a definition of correlated equilibria see chapter 1.
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exists a mapping α : I → SN with the following properties: For all (i, j) in

I × I,

[U(α ∗ i, j)− U(i, j)] + [U(α ∗ j, i)− U(j, i)] ≥ 0 (9.5.1)

where the mixed strategy α ∗ i is the image of the pure strategy i by the

mapping α. Furthermore7, (9.5.1) holds with strict inequality whenever (i, j)

has probability zero in all correlated equilibria. In particular, if the pure

strategy i has marginal probability zero in all correlated equilibria then, for

all j in I,

[U(α ∗ i, j)− U(i, j)] + [U(α ∗ j, i)− U(j, i)] > 0 (9.5.2)

9.5.2 Properties of the replicator dynamics

The only properties of the replicator dynamics that will be used in the proof

are the one given below. The fact that the replicator dynamics satisfies these

properties was proved in chapter 8.

Let i, i′ and p denote respectively two pure strategies and a mixed strat-

egy of player 1. Fix an interior initial condition (x(0),y(0)).

Property 9.5.1. If there exist ε > 0 and a time T in R such that, for all

t ≥ T , U(i,y(t)) < U(i′,y(t))− ε, then xi(t) −→
t→+∞

0.

Property 9.5.2. If p weakly dominates i and if there exists a pure strategy

j in {j ∈ I, U(p, j) > U(i, j)} such that yj(t) does not go to zero as time

goes to infinity, then xi(t) −→
t→+∞

0

Property 9.5.3. If a pure strategy is strictly dominated by a mixed strategy,

then for every interior initial condition this pure strategy is eliminated by the

two-population replicator dynamics.

Of course, the symmetric properties (i.e. on elimination of strategies of

player 2) hold as well.

7In chapter 2, a mapping from the set of pure strategy of player k to its set of mixed
strategies is denoted αk. Here, due to the symmetry of the game and of the dual vector
we consider, we may skip the players’ subscripts, and write α both for α1 and for α2.
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9.5.3 Proof of proposition 9.4.2

We are now ready to prove proposition 9.4.2. From now on, there are only

three pure strategies: S = {1, 2, 3}, and strategy 3 is not used in correlated

equilibrium. The aim is to show that strategy 3 is eliminated by the replicator

dynamics. By symmetry, we only need to show that x3(t) converges to 0.

We first exploit the inequations (9.5.1) and (9.5.2). These inequations are

particularly interesting in two cases: first, taking j = i in (9.5.1) yields

∀i ∈ I, U(α ∗ i, i) ≥ U(i, i) (9.5.3)

If moreover strategy i is not used in correlated equilibrium then (9.5.2) yields:

U(α ∗ i, i) > U(i, i)

In particular,

U(α ∗ 3, 3) > U(3, 3) (9.5.4)

Second, if j is α-invariant, i.e. if α ∗ j = j, then (9.5.1) yields

U(α ∗ i, j) ≥ U(i, j) (9.5.5)

If moreover strategy i is not used in correlated equilibrium then (9.5.2) yields:

U(α ∗ i, j) > U(i, j) (9.5.6)

Now, distinguish the following cases:

Case 9.5.4. If at least one of the strategies 1 and 2 is α-invariant

Assume, for instance, that strategy 1 is α-invariant. Then, by (9.5.6),

U(α ∗ 3, 1) > U(3, 1) (9.5.7)

and by (9.5.5)

U(α ∗ 2, 1) ≥ U(2, 1) (9.5.8)

Furthermore, taking i = 3 and j = 2 in (9.5.2) yields:

[U(α ∗ 3, 2)− U(3, 2)] + [U(α ∗ 2, 3)− U(2, 3)] > 0

Thus, at least one of the two brackets must be positive. If the first bracket

is positive (subcase 1.1), i.e. if U(α ∗ 3, 2) > U(3, 2), then (9.5.4) and (9.5.7)
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imply that α ∗ 3 strictly dominates 3, hence x3(t) converges to 0 by property

9.5.3 and we are done.

Otherwise (subcase 1.2), the second bracket is positive, i.e. U(α ∗ 2, 3) >

U(2, 3). Together with (9.5.3) and (9.5.8) this implies that α ∗ 2 weakly

dominates strategy 2, with strict inequality against strategy 3. Therefore,

by property 9.5.2, if x3(t) does not converge to 0, then y2(t) does.

Now consider the 3×2 game obtained by eliminating the second strategy

of player 2: it follows from 9.5.4) and (9.5.7) that, in this reduced game,

the third strategy of player 1 is strictly dominated by α ∗ 3; since strategy

2 is weakly dominated, this implies that, in the reduced game, strategy 3 is

strictly dominated by strategy 1. Therefore there exists ε > 0 such that, once

y2(t) is low enough, U(3,y) ≤ U(1,y) − ε. By property 9.5.1, this implies

that x3(t) converges to 0.

Case 9.5.5. If neither strategy 1 nor strategy 2 is α-invariant

Consider the 2× 2 game Gr obtained by elimination of the third strategy

of both players. Since Gr is a 2 × 2 symmetric game, it may a priori be of

three kinds:

Subcase 2.1 a coordination game, i.e. a game with two strict Nash equi-

libria and a completely mixed one;

Subcase 2.2 a game with a weakly or strictly dominated strategy;

Subcase 2.3 a trivial game, i.e. a game where the players have no influence

on their own payoff.

Since α is an interior dual vector and since strategy 3 is not played in corre-

lated equilibrium, it follows from proposition 2.7.12 that strategy 3 is tran-

sient under the Markov chain on I induced by α. Since moreover, strategy

1 is not α-invariant, this implies that the support of α ∗ 1 contains strategy

2 but not strategy 3; similarly, the support of α ∗ 2 contains strategy 1 but

not strategy 3. This, in turn, implies two things:

First, the game Gr has no strict Nash equilibrium (indeed, if (i′, j′) is a

strict Nash equilibrium of Gr then the inequality (9.5.1) for i = i′ and j = j′

cannot be satisfied). This rules out subcase 2.1.

Second, the Markov chain on I induced by α has a unique recurrent

communicating set: {1, 2}. By the basic theory of dual reduction (Myerson,

1997), this implies that the game G may be reduced, in the sense of dual
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reduction, into a game with a unique strategy profile, which corresponds to

a mixed strategy profile of G with support {1, 2}×{1, 2}. By corollary 2.4.6,

this implies that G has a Nash equilibrium with support {1, 2} × {1, 2} and

so, that Gr has a completely mixed Nash equilibrium. This rules out subcase

2.2. It follows that Gr is necessarily a trivial game.

Now, only two possibilities remain: first (subcase 2.3.1), it may be that

U(1, 3) = U(2, 3), so that U(1, j) = U(2, j) for all j in I. Since for i = 1, 2,

α∗ i has support in {1, 2}, this implies that U(α∗ i, j) = U(i, j) for every i in

{1, 2} and every j in I. Therefore, repeated applications of (9.5.2) show that

strategy 3 is strictly dominated by α ∗ 3, which implies that x3(t) converges

to 0.

Otherwise (subcase 2.3.2), U(1, 3) 6= U(2, 3), so that we may assume for

instance U(1, 3) > U(2, 3). This implies that strategy 2 is weakly dominated

by strategy 1, with strict inequality against strategy 3. Thus, if x3(t) does not

converge to 0, then y2(t) does. But in the 3×2 game obtained by elimination

of the second strategy of player 2, strategy 1 strictly dominates 3. Therefore,

as in subcase 1.2, x3(t) converges to 0.

9.6 Extensions and comments

9.6.1 Other dynamics

The only properties of the replicator dynamics that are used in the proof of

proposition 9.4.2 are properties 9.5.1, 9.5.2 and 9.5.3. It follows that propo-

sition 9.4.2 extends to any dynamics satisfying these properties. As proved

in chapter 8, this is the case in particular of the best-response dynamics of

Gilboa and Matsui (1991) and of the convex monotonic dynamics of Hofbauer

and Weibull (1996).

9.6.2 Asymmetric games

When considering multi-population dynamics, there is no compelling reason

to focus on symmetric games. A more general result than proposition 9.4.2

would consist in proving that the two-population replicator dynamics elimi-

nates all strategies that are not played in correlated equilibrium in every 3×3
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game (and not only in symmetric ones).8 The author does not know whether

this is true or not. However, it may be shown that in every 2 × 2 game,

the two-population replicator dynamics eliminates all strategy profiles that

are not used in Nash equilibrium in the following sense: if the pure strategy

profile (i, j) has probability zero in all Nash equilibria, then xi(t)yj(t) → 0

as t → +∞ for any interior initial condition (x(0),y(0)). This implies that

in every 2 × 2 game, the two-population replicator dynamics eliminates all

strategies that are not used in Nash equilibrium.

Here again, the proof relies solely on properties 9.5.1, 9.5.2 and 9.5.3, so

that the same result holds for the two-population best-response dynamics

and for any two-population convex monotonic dynamics.

9.6.3 Nash Equilibrium

In the first part of this chapter, we have shown that in every 3×3 symmetric

games and from every interior initial condition, the single-population repli-

cator dynamics and best-response dynamics eliminate strategies which are

not used in Nash equilibrium. We do not know whether this extends to the

two-population replicator dynamics (or to the two-population best-response

dynamics).

9.6.4 Higher dimensional games

In both the first part and the second part of this chapter, the small dimen-

sionality of the games was crucial to the proofs. In the first part, we studied

dynamical systems evolving in a compact region of the plane. Due to, e.g.,

Poincaré-Bendixson theorem, there are severe constraints on the behavior of

such dynamical systems;9 this is, so we think, the fundamental reason why

proposition 9.2.1 holds.

In the second part, the dynamical systems we study are four-dimensional

hence could, a priori, exhibit more complex behaviors. However, since we

restrict attention to symmetric games, there are only a few pure strategy

8For two-player nonsymmetric games, the replicator dynamics is defined by taking x
in SN , y in SM and by replacing U by U1 (resp. U2) in the first (resp. second) equation
of (9.4.1).

9For this reason, we think that proposition 9.2.1 extends to all weakly payoff positive
dynamics (for a definition of weakly payoff positive dynamics, see, e.g., Weibull, 1995,
section 4.3.4).
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payoffs in the game; together with Nau and McCardle’s (1990) characteriza-

tion of strategy profiles never used in correlated equilibrium, this allows to

show that if a pure strategy is never played in correlated equilibrium, cer-

tain domination relation hold, which imply that strategies never played in

correlated equilibrium must be eliminated. This would not be the case in,

e.g., 4× 4 symmetric games. Indeed, in the 4× 4 symmetric games studied

in the next chapter, a unique strategy is used in correlated equilibrium, but

all pure strategies are undominated.

In this light, it should not come as a surprise that the results of this

chapter do not extend to higher dimensions, as will be clear from the next

chapters.



Chapitre 10

Elimination of All Strategies in

the Support of Correlated

Equilibria

This chapter is divided in two parts. In the first part, we show that there

exists an open set of 4 × 4 symmetric games for which, under the replica-

tor dynamics and from a large set of initial conditions, all strategies in the

support of correlated equilibria are eliminated (hence only strategies that are

NOT used in equilibrium remain). In the second part, we show that the same

result holds for vast classes of dynamics, in particular, for the best-response

dynamics (Gilboa and Matsui, 1991) and for every monotonic (Samuelson

and Zhang, 1992) or weakly sign preserving (Ritzberger and Weibull, 1995)

dynamics which depends continuously on the payoffs and for which pure

strategies initially absent remain absent.
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Part A: Replicator dynamics

The material is organized as follows: First, we introduce the notations and

basic definitions, and recall some classical results on Rock-Paper-Scissors

(RPS) games. In addition, we prove that these games have a unique corre-

lated equilibrium. We then introduce a family of 4×4 symmetric games built

by adding a strategy to a RPS game. We describe in details the orbits of the

replicator dynamics in these games and show that, from an open set of initial

conditions, all strategies used in correlated equilibrium are eliminated. We

then show that elimination of all strategies used in correlated equilibrium is

robust to perturbation of the vector field and occurs also for the discrete-time

replicator dynamics. We conclude with a short discussion.

10.1 Notations and basic definitions

Consider a finite, two-player symmetric game played within a single popu-

lation. Such a game is given by a set I = {1, ..., N} of pure strategies and

a payoff matrix U = (uij)1≤i,j≤N . Here uij is the payoff of a player playing

strategy i and facing strategy j. We use bold characters for vectors and

matrices.

The proportion of the population playing strategy i at time t is denoted

xi(t). Thus, the vector x(t) = (x1(t), ..., xN(t))T denotes the mean strategy

at time t. It belongs to the N − 1 dimensional simplex over I

SN :=

{
x ∈ RI

+ :
∑
i∈I

xi = 1

}
(henceforth, “the simplex”) whose vertices e1, e2, ..., eN correspond to the

pure strategies of the game. We study the evolution of the mean strategy x

under the single-population replicator dynamics (Taylor and Jonker, 1978):

ẋi(t) = xi(t) [(Ux(t))i − x(t) ·Ux(t)] (10.1.1)
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Remark : for notational simplicity, we usually write xi and x instead of xi(t)

and x(t).

We now recall the definition of a correlated equilibrium: Consider a (non

necessarily symmetric) bimatrix game with strategy set I (resp. J) for player

1 (resp. 2). Let gk(i, j) denote the payoff of player k when player 1 plays i and

player 2 plays j. A correlated equilibrium (Aumann, 1974) is a probability

distribution µ on the set I × J of pure strategy profiles (i.e. µ(i, j) ≥ 0

for all (i, j) in I × J and
∑

(i,j)∈I×J µ(i, j) = 1) which satisfies the following

inequalities:

∑
j∈J

µ(i, j) [g1(i, j)− g1(i
′, j)] ≥ 0 ∀i ∈ I, ∀i′ ∈ I (10.1.2)

and ∑
i∈I

µ(i, j) [g2(i, j)− g2(i, j
′)] ≥ 0 ∀j ∈ J,∀j′ ∈ J (10.1.3)

Though the above definition applies to general bimatrix games, from now on,

we only consider symmetric bimatrix games. We use the same vocabulary as

in the previous chapter:

Definition: the pure strategy i is used in correlated equilibrium if there exists

a correlated equilibrium µ and a pure strategy j such that µ(i, j) > 0.1

Definition: the pure strategy i is eliminated (for some initial condition x(0))

if xi(t) goes to zero as t → +∞.

10.2 A reminder on Rock-Paper-Scissors

A RPS (Rock-Paper-Scissors) game is a 3× 3 symmetric game in which the

second strategy (Paper) beats the first (Rock), the third (Scissors) beats the

second, and the first beats the third. Up to normalization (i.e. putting zeros

1As already noted in chapter 9, due to the symmetry of the game, if a strategy is used
in a correlated equilibrium, it is also used in a symmetric correlated equilibrium. Thus it
is immaterial whether we focus on symmetric correlated equilibria or not.
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on the diagonal) the payoff matrix is of the form:

1 2 3

1

2

3

 0 −a2 b3

b1 0 −a3

−a1 b2 0

 with ai > 0, bi > 0 for all i = 1, 2, 3.

(10.2.1)

Any RPS game has a unique Nash equilibrium: (p,p) with

p =
1

Σ
(a2a3 + a3b2 + b2b3, a1a3 + a1b3 + b3b1, a1a2 + a2b1 + b1b2) (10.2.2)

with Σ > 0 such that p ∈ S4 (see Zeeman, 1980; Gaunersdorfer and Hof-

bauer, 1995; or Hofbauer and Sigmund, 1998). Actually,

Notation: for x ∈ SN , x ⊗ x denotes the probability distribution on SN

induced by x.

Proposition 10.2.1. Any RPS game has a unique correlated equilibrium:

p⊗ p.

Proof. Let µ be a correlated equilibrium of (10.2.1). For i = 1 and, respec-

tively, i′ = 2 and i′ = 3, the incentive constraint (10.1.2) reads:

µ(1, 1)(−b1) + µ(1, 2)(−a2) + µ(1, 3)(a3 + b3) ≥ 0 (10.2.3)

µ(1, 1)a1 + µ(1, 2)(−a2 − b2) + µ(1, 3)b3 ≥ 0 (10.2.4)

Add (10.2.3) multiplied by a1 to (10.2.4) multiplied by b1. This gives

−µ(1, 2)(a1a2 + a2b1 + b1b2) + µ(1, 3)(a1a3 + a1b3 + b3b1) ≥ 0

That is, recalling (10.2.2):

p2µ(1, 3) ≥ p3µ(1, 2)

Every choice of a player and a strategy i yields a similar inequality. So we

get six inequalities which together read:

p2µ(1, 3) ≥ p3µ(1, 2) ≥ p1µ(3, 2) ≥ p2µ(3, 1) ≥ p3µ(2, 1) ≥ p1µ(2, 3) ≥ p2µ(1, 3)

Therefore all the above inequalities hold as equalities. Letting λ be such that

the common value of the above expressions is λp1p2p3, we have: µ(i, j) =

λpipj for every j 6= i. Together with (10.2.3) and (10.2.4), this implies

that we also have µ(1, 1) = λp2
1 (and by symmetry µ(i, i) = λp2

i for all i).

Therefore λ = 1 and µ = p⊗ p.
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The behaviour of the replicator dynamics in RPS games has been totally

analyzed by Zeeman (1980). In particular, letting ∂S3 := {x ∈ S3 : x1x2x3 =

0} denote the boundary of the simplex:

Proposition 10.2.2 (Zeeman (1980)). If a1a2a3 > b1b2b3, then for every

initial condition x(0) 6= p, the solution x(t) converges to ∂S3 as t → +∞.

In the case of cyclic symmetry (i.e. a1 = a2 = a3 and b1 = b2 = b3) then

the unique Nash equilibrium is p = (1
3
, 1

3
, 1

3
). Furthermore, up to division of

all payoffs by the common value of the ai, the payoff matrix may be taken

of the form:  0 −1 ε

ε 0 −1

−1 ε 0

 with ε > 0 (10.2.5)

The condition a1a2a3 > b1b2b3 then reduces to ε < 1 and in this case propo-

sition 10.2.2 may be proved as follows: for ε < 1, the Nash equilibrium p is

globally inferior in the sense that:

∀x ∈ S3,x 6= p ⇒ p ·Ux < x ·Ux (10.2.6)

More precisely,

p ·Ux−x ·Ux = −(p−x) ·U(p−x) = −
(

1− ε

2

) ∑
1≤i≤3

(pi−xi)
2 (10.2.7)

Now, let V̂ (x) := (x1x2x3)
1/3. Note that the function V̂ takes its minimal

value 0 on ∂S3 and its maximal value 1/3 at p. Letting v̂(t) := V̂ (x(t)) we

get:

˙̂v(t) = (p ·Ux− x ·Ux) v̂(t) = −v̂(t)

(
1− ε

2

) ∑
1≤i≤3

(pi − xi)
2 (10.2.8)

where x = x(t). The above expression is negative whenever v̂(t) 6= 0 and

x 6= p. It follows that for every initial condition x(0) 6= p, v̂(t) decreases to

zero hence x(t) converges to the boundary.
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10.3 A family of 4× 4 games

Fix ε in ]0, 1[, α ≥ 0, and consider the following 4×4 symmetric game which

is built by adding a strategy to a RPS game:

1 2 3 4

1

2

3

4


0 −1 ε −α

ε 0 −1 −α

−1 ε 0 −α
−1+ε

3
+ α −1+ε

3
+ α −1+ε

3
+ α 0

 (10.3.1)

For 0 < α < (1 − ε)/3, the interesting case, this game is very similar to

the example used by Dekel and Scotchmer (1992) to show that a discrete

version of the replicator dynamics need not eliminate all strictly dominated

strategies.2 We now describe the main features of the above game.

Let n123 =
(

1
3
, 1

3
, 1

3
, 0
)

denote the rest-point of the replicator dynamics

corresponding to the Nash equilibrium of the underlying RPS game. Let Uα

denote the payoff matrix (10.3.1).

The case α = 0. The strategies n123 and e4 always earn the same payoff:

n123 ·U0x = e4 ·U0x ∀x ∈ S4 (10.3.2)

Furthermore, against e4, as against n123, all strategies earn the same payoff:

(x− x′) ·U0e4 = (x− x′) ·U0n123 = 0 ∀x ∈ S4,∀x′ ∈ S4 (10.3.3)

The set of symmetric Nash equilibria is the segment E0 = [n123, e4].
3 This

shall be clear from the proof of proposition 10.3.2 below. A key property

is that whenever the mean strategy x does not belong to the segment of

equilibria E0, every strategy in E0 earns less than the mean payoff. Formally,

∀x /∈ E0,∀p ∈ E0,p ·U0x < x ·U0x

2More precisely, the game obtained from (10.3.1) by multiplying all payoffs by −1
belongs to the family of games à la Dekel and Scotchmer (1992) considered by Hofbauer
and Weibull (1996). In particular, figure 1 of (Hofbauer and Weibull, 1996, p.570) describes
the dynamics on the boundary of the simplex in game (10.3.1), up to reversal of all arrows
and permutation of strategies 2 and 3.

3That is, (x,x) is a Nash equilibrium if and only if x ∈ E0.
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More precisely, for x 6= e4, define x̂i as the share of the population that plays

i relative to the share of the population that plays 1, 2 or 3. Formally,

x̂i = xi/(x1 + x2 + x3) (10.3.4)

Lemma 10.3.1. For every p in E0 and every x 6= e4,

p ·U0x− x ·U0x = −(1− ε)

2
(1− x4)

2
∑

1≤i≤3

(x̂i − 1/3)2 (10.3.5)

Proof. Let K = p ·U0x − x ·U0x = (p − x) ·U0x. By (10.3.2), p ·U0x =

n123 ·U0x so that K = (n123 − x) ·U0x. Now let y = (x̂1, x̂2, x̂3, 0). Using

(10.3.3) we get:

K = (n123 − x) ·U0 [(1− x4)y + x4e4] = (1− x4)(n123 − x) ·U0y

Noting that n123−x = (1− x4)(n123−y) + x4(n123− e4) and using (10.3.2),

we get: K = (1−x4)
2(n123−y)·U0y. Now apply (10.2.7). This gives (10.3.5)

and concludes the proof.

The case α > 0. The mixed strategy n123 is no longer an equilibrium.

Actually:

Proposition 10.3.2. For every α > 0, there exists a neighborhood of the

game with payoffs (10.3.1), in which every game has a unique correlated

equilibrium: e4 ⊗ e4.

Proof. We proved in chapter 3 that if a game has a unique correlated equilib-

rium, then every nearby game has a unique correlated equilibrium, and with

the same support. Therefore, it suffices to show that e4 ⊗ e4 is the unique

correlated equilibrium of the game with payoffs (10.3.1).

Assume, by contradiction, that there exists a correlated equilibrium µ

different from e4⊗ e4. Since e4 is a strict Nash equilibrium, there exists 1 ≤
i, j ≤ 3 such that µ(i, j) > 0. Define the correlated distribution µ̂ ∈ ∆(S3)

of the underlying RPS game (10.2.5) by:

µ̂(i, j) =
µ(i, j)

K
1 ≤ i, j ≤ 3

with K =
∑

1≤i,j≤3 µ(i, j) > 0. For 1 ≤ i, i′ ≤ 3, we have ui4 = ui′4(= −α),

so that:

3∑
j=1

µ̂(i, j) [uij − ui′j] =
3∑

j=1

µ(i, j)

K
[uij − ui′j] =

1

K

4∑
j=1

µ(i, j) [uij − ui′j] ≥ 0
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(The latter inequality holds because µ is a correlated equilibrium)

Together with symmetric inequalities, this implies that µ̂ is a correlated

equilibrium of (10.2.5). By proposition 10.2.1, this implies that for every i in

{1, 2, 3}, we have µ̂(i, j) = 1/9 hence µ(i, j) = K/9. From this and the fact

that strategy 4 is a best-response to itself, it follows that for any 1 ≤ i, j ≤ 3∑
1≤j≤4

µ(i, j) [uij − u4j] ≤
∑

1≤j≤3

µ(i, j) [uij − u4j] = −Kα

3
< 0

This contradicts the fact that µ is a correlated equilibrium.

Nevertheless, for α < (1 − ε)/3, the above game has a best-response

cycle: e1 → e2 → e3 → e1. We will show that for α > 0 small enough, the

corresponding set

Γ := {x ∈ S4, x4 = 0 and x1x2x3 = 0} (10.3.6)

attracts all nearby orbits. We first show that the (replicator) dynamics in

the interior of S4 may be decomposed in two parts: an increase or decrease in

x4, and an outward spiralling movement around the segment E0 = [n123, e4].

10.4 Decomposition of the dynamics

First, note that for every x in E0, we have: (Ux)1 = (Ux)2 = (Ux)3. This

implies that the segment E0 is globally invariant. Second, recall the definition

(10.3.4) of x̂i. For x 6= e4, let x̂ = (x̂1, x̂2, x̂3). Let Û denote the payoff matrix

(10.2.5) of the underlying RPS game.

Lemma 10.4.1. Let x(·) be a solution of the replicator dynamics (10.1.1)

with x(0) 6= e4. For every i in {1, 2, 3},

˙̂xi = (1− x4) x̂i[(Ûx̂)i − x̂ · Ûx̂] (10.4.1)

Proof. Let i in {1, 2, 3}. If xi = 0, then (10.4.1) holds trivially. Otherwise,

for every j in {1, 2, 3} such that xj is positive,

˙̂xi

x̂i

−
˙̂xj

x̂j

=
d

dt
ln

(
x̂i

x̂j

)
=

d

dt
ln

(
xi

xj

)
= (Ux)i−(Ux)j = (1−x4)[(Ûx̂)i−(Ûx̂)j]

Multiplying the above equality by x̂j and summing over all j such that xj > 0

yields (10.4.1).
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The lemma means that, up to a change of velocity, x̂ follows the replicator

dynamics for the game with payoff matrix Û (hence spirals towards the

boundary).4 Now, recall equation (10.2.8) and the definition of V̂ . For

x 6= e4, let V (x) := V̂ (x̂). That is,

V (x) = (x̂1x̂2x̂3)
1/3 =

(x1x2x3)
1/3

x1 + x2 + x3

Corollary 10.4.2. Let x(·) be a solution of (10.1.1) with x(0) 6= e4. The

function v(t) := V (x(t)) satisfies:

v̇(t) = v(t)f(x(t)) with f(x) = −(1− x4)

(
1− ε

2

) ∑
1≤i≤3

(x̂i − 1/3)2 (10.4.2)

Proof. We have: v(t) = V (x(t)) = V̂ (x̂(t)). Therefore v̇ = ~gradV̂ · ˙̂x, with
~gradV̂ = (∂V̂ /∂x̂i)1≤i≤3. Applying lemma 10.4.1 and equation (10.2.8) yields

(10.4.2).

Note that v(t) is nonnegative and that the function f is negative every-

where but on the interval [n123, e4[, where V attains its maximal value 1/3.

Therefore, it follows from (10.4.2) that V decreases along all interior trajec-

tories, except the ones starting (hence remaining) in the interval ]n123, e4[.

We now exploit this fact to build a Lyapunov function5 for the set Γ defined

in (10.3.6).

10.5 Main results

Let W (x) := max (x4, 3V (x)) for x 6= e4 and W (e4) = 1, so that W is

continuous on S4. Note that W takes its maximal value 1 on the segment

E0 = [n123, e4] and its minimal value 0 on Γ.

For δ ≥ 0, let Kδ denote the compact set:

Kδ := {x ∈ SN , W (x) ≤ δ}
4The fact that when the N − 1 first strategies earn the same payoff against the N th

(and last) strategy, the dynamics may be decomposed as in lemma 10.4.1 was known to
Josef Hofbauer (personal communication). This results from a combination of theorem
7.5.1 and of exercise 7.5.2 in (Hofbauer and Sigmund, 1998). The author rediscovered it
independently.

5For an introduction to Lyapunov functions, see, e.g., Bhatia and Szegö, 1970.
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Recall that U0 denotes the payoff matrix (10.3.1) with α = 0. Finally, on

the set of 4× 4 payoff matrices U, define the norm ||U|| = max1≤i,j≤4 |uij|.

Proposition 10.5.1. Let 0 < δ < 1. There exists γ > 0 such that for every

4 × 4 symmetric game with payoff matrix U such that ||U −U0|| ≤ γ and

every initial condition x(0) in Kδ,

W (x(t)) ≤ W (x(0)) exp(−γt) ∀t ≥ 0

In particular, x4(t) → 0 as t → +∞.

Proof. Since δ < 1, the set Kδ is disjoint from E0. Therefore, it follows from

(10.3.5) that for every x in Kδ, the quantity (U0x)4 − x ·U0x is negative.

Similarly, it follows from the definition of the function f in (10.4.2) that for

every x in Kδ, f(x) is negative. Therefore, by compactness of Kδ, there

exists a positive constant γ such that

max
x∈Kδ

((U0x)4 − x ·U0x, f(x)) ≤ −3γ < 0 (10.5.1)

Fix a 4×4 payoff matrix U such that ||U−U0|| ≤ γ and let x(·,U) denote a

solution of the replicator dynamics for the game with payoff matrix U, with

initial condition different from e4. Since (Ux)4−x·Ux is Lipschitz continuous

in U with Lipschitz constant 2 (as the difference of two 1-Lipschitz terms),

it follows from (10.5.1) that

∀x ∈ Kδ, (Ux)4 − x ·Ux ≤ −γ

Since (Ux)4 − x ·Ux is the growth rate of strategy 4, this implies that:

x(t,U) ∈ Kδ ⇒
d

dt
x4(t,U) ≤ −γx4(t,U) (10.5.2)

Let vU(t) := V (x(t,U)). We claim that the function vU satisfies:

v̇U(t) = vU(t)fU(x(t,U)) with fU(x) =
1

3

∑
1≤i,j≤3

x̂j [(Ux)i − (Ux)j]

(10.5.3)

This will be proved in the end. The above expression for fU is Lipschitz

continuous in U with Lipschitz constant 2. Since6 the function f in (10.5.1) is

6fU is actually Lipschitz in U with constant 4/3 but we do not need it.
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equal to fU0 (see (10.4.2)), it follows from (10.5.1) that maxx∈Kδ
fU(x) ≤ −γ.

Together with (10.5.3) this implies that

x(t,U) ∈ Kδ ⇒ v̇U(t) ≤ −γvU(t) (10.5.4)

Let wU(t) = W (x(t,U)). Equations (10.5.2) and (10.5.4) imply that:

x(t,U) ∈ Kδ ⇒ ẇU(t) ≤ −γwU(t) (10.5.5)

Thus, if x(t,U) is in Kδ (i.e. wU(t) ≤ δ) then wU decreases weakly. This

implies that Kδ is forward invariant. It follows that for every initial con-

dition x(0) in Kδ and every time t ≥ 0, ẇU(t) ≤ −γwU(t), hence wU(t) ≤
wU(0) exp(−γt).

It only remains to prove the claim: proceeding as in the proof of lemma

10.4.1, we get (with x̂i = x̂i(t,U)):

˙̂xi = x̂i

∑
1≤j≤3

x̂j [(Ux)i − (Ux)j] (10.5.6)

Furthermore, by definition of vU , we have v̇U = 0 when vU = 0 and otherwise:

v̇U(t) = vU(t)

(
1

3

∑
1≤i≤3

˙̂xi

x̂i

(t)

)

Replacing ˙̂xi by the expression in (10.5.6) leads to (10.5.3). This completes

the proof.

It follows from propositions 10.3.2 and 10.5.1 that if α > 0 is small

enough7, then there exists a neighborhood of the game with payoffs (10.3.1)

such that: for any game in this neighborhood, the unique strategy used in

correlated equilibrium is strategy 4, but x4(t) → 0 from an open set of initial

conditions.

10.6 Extensions and variants

10.6.1 Robustness to perturbation of the vector field

We have shown that convergence to Γ does not only occur in the game with

payoffs (10.3.1), but is robust to perturbation of the game. We now show

7As will be clear from proposition 10.8.1 in part 2, it suffices that α be smaller than
(1− ε)/3.
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that, more generally, convergence to Γ is robust to perturbation of the vector

field.8 Let 0 < δ < 1. Fix γ as in proposition 10.5.1. Let 0 < α ≤ γ and let

Uα denote the payoff matrix (10.3.1).

Let f(x, t) = (fi(x, t))i∈I be a (time dependent) locally Lipschitz vector

field such that the perturbed dynamics

ẋi = xi [(Uαx)i − x ·Uαx] + fi(x, t) (10.6.1)

leaves the simplex SN forward invariant. Finally, let

g(t) = max
i∈I,x∈Kδ

|fi(x, t)| and h(t) = sup
i∈I,x∈Kδ ,xi>0

|fi(x, t)/xi|

(g measures the intensity of the perturbation in absolute terms, h in terms

of perturbation of the growth-rates; note that a priori h may take the value

+∞).

Corollary 10.6.1. If

∀t ≥ 0, g(t) < γδ3(1− δ) and lim
t→+∞

g(t) = 0 (10.6.2)

or if

∀t ≥ 0, h(t) < γ(1− δ) (10.6.3)

then for every initial condition x(0) in Kδ, the solution x(t) of (10.6.1) con-

verges to Γ.

Proof. Let x belong to Kδ and to the interior of the simplex. Recall that

V (x) = (x1x2x3)
1
3 /(1− x4). Therefore, letting v(t) = V (x(t)), we have:

v̇

v
=

1

3

∑
1≤i≤3

ẋi

xi

+
ẋ4

1− x4

=
1

3

∑
1≤i≤3

ẋi

xi

+
ẋ4

x4

x4

1− x4

(10.6.4)

Since this expression is less than −γ under the unperturbed dynamics, we

get:
v̇

v
+ γ ≤ h(t)

(
1 +

x4

1− x4

)
≤ h(t)

1− x4

≤ h(t)

1− δ

(for the last inequality, recall that x ∈ Kδ, so that x4 ≤ δ). Furthermore,

under the perturbed dynamics, ẋ4 ≤ x4(−γ +h(t)). It follows that if (10.6.3)

8Perturbing the payoffs amounts to a certain type of perturbation of the vector field.
In this sense the results of this section are more general than those of the previous section.
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holds then both V and x4 decrease (and actually decrease exponentially)

along the trajectories starting in Kδ.

Similarly, from the first equality in (10.6.4), we get:

V̇

V
+ γ ≤ g(t)

3

(∑
1≤i≤3

1

xi

+
3

x1 + x2 + x3

)

≤ 4g(t)

9

∑
1≤i≤3

1

xi

=
4

3(1− x4)

∑
1≤i≤3

1

x̂i

(for the second inequality, use the convexity of y → 1/y). But∑
1≤i≤3

1

x̂i

=
1

V 3

∑
1≤i<j≤3

x̂ix̂j =
1

V 3

[
1

3
− 1

6

∑
1≤i<j≤3

(x̂i − x̂j)
2

]
≤ 1

3V 3

so9 that finally for all x in Kδ

V̇ ≤ −γV +
4g(t)

27(1− x4)V 2
≤ −γV +

4g(t)

27(1− δ)V 2
(10.6.5)

Furthermore, ẋ4 ≤ −γx4 + g(t). Together with (10.6.5), this implies that if

g(t) ≤ γδ3(1 − δ), then both V and x4 decrease when equal to δ (hence Kδ

is forward invariant) and that if furthermore g(t) → 0, then both V and x4

converge to 0.

10.6.2 Discrete-time replicator dynamics

Consider the discrete-time version of the replicator dynamics (Maynard-

Smith, 1982):

x′i = xi
C + (Ux)i

C + x ·Ux
(10.6.6)

where x (resp. x′) is the value of the mean-strategy at time t (resp. t + 1),

and C is a large positive constant (larger than all the payoffs in the game).

This is equivalent to

x′i − xi = xi
(Ux)i − x ·Ux

C + x ·Ux
(10.6.7)

We will show that
9For the second equality, note that 1 = (

∑
i x̂i)2 =

∑
i x̂2

i + 2
∑

i<j x̂ix̂j and that(∑
i<j(x̂i − x̂j)2

)
/2 =

∑
i x̂2

i −
∑

i<j x̂ix̂j and then substract the latter equality to the
former.
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Proposition 10.6.2. If 0 < α < (1 − ε)/12 then for the game with pay-

offs (10.3.1) and from an open set of initial conditions, the mean-strategy

converges to Γ. In particular, strategy 4 is eliminated.

Proof. Recall that for the continuous-time version of the replicator dynamics,

we showed that the function W (x) = max(x4, 3x̂1x̂2x̂3) decreases exponen-

tially in the neighborhood of Γ. We show that the analogous property holds:

∃δ > 0,∃k < 1, W (x) < δ ⇒ W (x′) ≤ kW (x) (10.6.8)

The result clearly follows.

It is easy to see that the mean-payoff on Γ is always greater than (−1+ε)/4

(this value is attained in the middle of each edge [ei, ei+1]). Therefore, the

assumption α < (1−ε)/12 implies that there exists δ > 0 such that if W (x) ≤
δ then (Ux)4 < x ·Ux. Therefore, by compactness of Kδ := {x : W (x) ≤ δ},

max
x∈Kδ

C + (Ux)4

C + x ·Ux
< 1

Together with (10.6.6), this implies

∃k1 < 1, W (x) < δ ⇒ x′4 ≤ k1x4 (10.6.9)

Furthermore, as its continuous-time counterpart, the dynamics (10.6.6) may

be decomposed. Precisely (derivation omitted), for every i in {1, 2, 3},

x̂′i = x̂i
Ct + (Ûx̂)i

Ct + x̂ · Ûx̂
with Ct =

C − αx4

1− x4

(10.6.10)

To compare with (10.4.1), note that by subtracting x̂′i to both sides, we

obtain:

x̂′i − x̂i = (1− x4) x̂i
(Ûx̂)i − x̂ · Ûx̂

C − αx4 + x̂ · Ûx̂
(10.6.11)

It10 follows from (10.6.10) that:

A(x) :=
∏

1≤i≤3

x̂′i
x̂i

=
∏

1≤i≤3

Ct + (Ûx̂)i

Ct + x̂ · Ûx̂
(10.6.12)

10As is well known, (10.1.1) is obtained from (10.6.7) by replacing x′i − xi by dxi/dt,
rescaling the time from t to τ = t/C and finally letting C go to infinity. As should be, the
same operations applied to (10.6.11) yield (10.4.1)
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We claim that for every x in Kδ, A(x) < 1 (proof delayed). By compactness

of Kδ, this implies that

∃k2 < 1, W (x) ≤ δ ⇒ [x̂′1x̂
′
2x̂

′
3 ≤ k2x̂1x̂2x̂3] (10.6.13)

Equation (10.6.8) follows from (10.6.9) and (10.6.13). Therefore, it only

remains to prove that A(x) < 1 for every x in Kδ. Let x ∈ Kδ. We have:

ln A(x) =

(∑
1≤i≤3

ln
(
Ct + (Ûx̂)i

))
− 3 ln

(
Ct + x̂ · Ûx̂

)
Let p = (1/3, 1/3, 1/3). By concavity of the logarithm and by (10.2.6),∑

1≤i≤3

1

3
ln
(
Ct + (Ûx̂)i

)
≤ ln

(
Ct + p · Ûx̂

)
< ln

(
Ct + x̂ · Ûx̂

)
It follows that ln A(x) is negative. This completes the proof.

Since we assumed that the constant C is larger than all the coefficients

of the game, it follows from (10.6.6) that V (x′)/V (x) and x′4/x4 are (locally)

Lipschitz in the payoff matrix U. This11 implies that (10.6.8) is robust to

perturbation of the game, hence that elimination of the unique strategy used

in correlated equilibrium occurs for an open set of games.

10.7 Discussion

1. Propositions 10.3.2 and 10.5.1 also imply that the two-population

replicator dynamics may eliminate all strategies used in correlated equilib-

rium along interior solutions. See the remark in (Hofbauer and Weibull, 1996,

p.571).

2. The basic idea is that if an attractor is disjoint from the set of equi-

libria, then it is likely that we may add a strategy in a way that strongly

affects the set of equilibria but does not perturb much the dynamics in the

neighborhood of the attractor.

3. We showed that elimination of all strategies used in correlated equi-

librium occurs for an open set of games. In the second part of this chapter,

we will see that it also occurs for vast classes of dynamics. This robustness

11That is, there exists a neighborhood of (10.3.1) on which V (x′)/V (x) and x′4/x4 are
Lipschitz in U.
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is crucial for the practical relevancy of our results. Indeed, in practical sit-

uations, we are unlikely to have an exact knowledge of the payoffs or of the

dynamics followed by the agents.

4. Proposition 10.5.1 shows much more than nonconvergence to correlated

equilibrium: all strategies used in correlated equilibrium are wiped out. In

particular, no kind of time-average of the replicator dynamics can converge

to the set of correlated equilibria. In contrast, Hofbauer (2004) shows that,

in all n-player finite games and along all interior solutions, the time-average

of the (n-population) replicator dynamics converges to the Hannan set.

5. For α small, in the game with payoffs (10.3.1), there are two asymp-

totically stable attractors: the set Γ and the equilibrium e4. So we face a

problem of selection between attractors, similar to the standard problem of

selection between two strict Nash equilibria. For α small enough, the basin

of attraction of Γ is much larger than the basin of attraction of e4 (actu-

ally, as α → 0, the basin of attraction of Γ increases and converges towards

S4\E0 where E0 denotes the segment [e4,n123]). In particular, in models à la

Kandori et al (1993), for α small enough, Γ would be the only stochastically

stable attractor.12

12Let i ∈ {1, 2, 3}. As α gets small, a rough measure of the number of mutations needed
to go from Γ to the basin of attraction of e4 is the distance between ei and n123; a rough
measure of the number of mutations needed to go from e4 to the basin of attraction of Γ
is the distance between e4 and the rest-point of the replicator dynamics in ]e4, ei[, which
is of the order of α.





Part B: More General Games

and Other Dynamics

In the first part of this chapter, we showed that there exists an open set of

games for which, under the single-population replicator dynamics and from

an open set of initial conditions, all strategies used in correlated equilibrium

are eliminated. In this second part, we first give another proof of this result,

which applies to more general games (section 10.8). We then show that the

same result holds for a wide class of dynamics. Namely, the best-response

dynamics (section 10.9), the Brown-von Neumann-Nash dynamics (section

10.10) and any monotonic or weakly-sign preserving dynamics that depends

continuously on the payoffs and for which no new strategy appears by muta-

tion (section 10.11). We also show that for the replicator and best-response

dynamics, and in a sense to be made precise, elimination of all strategies used

in correlated equilibria is robust to the addition of mixed strategies as new

pure strategies of the game (section 10.12). Finally some proofs are gathered

in sections 10.13 and 10.14.

The notations are the same as in the first part and, as in the first part,

we focus on single-population dynamics in 4× 4 symmetric games.

10.8 Replicator dynamics

Any game in a sufficiently small neighborhood of the game with payoffs

(10.3.1) studied in part 1 is a particular case of a 4×4 symmetric game with

payoffs 
a1 b2 c3 d1

c1 a2 b3 d2

b1 c2 a3 d3

f1 f2 f3 a4

 (10.8.1)

183
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satisfying

bi < ai < ci for i = 1, 2, 3 ,

3∏
i=1

(ai − bi) >
3∏

i=1

(ci − ai) (10.8.2)

and

fi < ai for i = 1, 2, 3 (10.8.3)

The conditions (10.8.2) mean that the game restricted to {1, 2, 3} ×
{1, 2, 3} is an outward cycling RPS (Rock-Paper-Scissors) game. The condi-

tions in (10.8.3) imply that near the vertices e1, e2, e3 of the simplex, strategy

4 earns strictly less than the mean payoff. Together with (10.8.2), this im-

plies that there is a best-response cycle from e1 to e2 to e3 and back to e1.

As in part 1, we let Γ denote the corresponding set (see (10.3.6)).

Definition Let C be a closed subset of S4. The set C is asymptotically stable

if it is:

(a) invariant: x(0) ∈ C ⇒ (∀t ∈ R,x(t) ∈ C)

(b) Lyapunov stable: for every neighborhood N1 of C, there exists a

neighborhood N2 of C such that, for every initial solution x(0) in N2, x(t) ∈
N1 for all t ≥ 0.

(c) locally attracting: there exists a neighborhood N of C such that, for

every initial condition x(0) in N , minc∈C ||x(t)− c|| →t→+∞ 0 (where || · || is

any norm on RI .)

Proposition 10.8.1. For every game with payoffs (10.8.1) satisfying condi-

tions (10.8.2) and (10.8.3), the set Γ is asymptotically stable.

Proof. The proof consists in checking that the stability criteria for hetero-

clinic cycles developed by Hofbauer (1994) are satisfied. As these criteria will

be introduced in section 10.11, the proof is made in the appendix (section

10.13).

It follows from proposition 10.3.2 that there exists an open set of games

with payoffs (10.8.1) satisfying conditions (10.8.2) and (10.8.3) for which

e4⊗e4 is the unique correlated equilibrium. Together with proposition 10.8.1,

this provides an alternate proof of the fact that there exists an open set of

4× 4 symmetric games for which, from an open set of initial conditions, the

unique strategy used in correlated equilibrium is eliminated.
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Note that not all games satisfying (10.8.2) and (10.8.3) have e4 ⊗ e4 as

unique correlated or Nash equilibrium. Actually, proposition 10.8.1 provides

an example of a family of games with a common attractor but very different

sets of Nash equilibria13. The point is that this attractor, Γ, is bounded away

from the set of equilibria and that its asymptotic stability only depends on

the payoffs in its neighbourhood. This explains that the stability of Γ be in

a large part unrelated to the structure of the equilibrium set.

10.9 Best-response dynamics

The best-response dynamics (Gilboa and Matsui, 1991) is given by the dif-

ferential inclusion:

ẋ(t) ∈ BR(x(t))− x(t) (10.9.1)

where BR(x) is the set of best-responses to x:

BR(x) = {y ∈ SN : y ·Ux = max
z∈SN

z ·Ux}

A solution x(·) of the best-response dynamics is an absolutely continuous

function satisfying (10.9.1) for almost every t. In general, there might be

several solutions starting from the same initial condition. However, for the

games and the initial conditions that we will consider, there will be a unique

solution starting from each initial condition.14

Consider a 4 × 4 symmetric game with payoff matrix (10.8.1) satisfying

(10.8.2) and (10.8.3). Let

V (x) := max
1≤i≤3

[
(Ux)i −

∑
1≤i≤4

aixi

]
and W (x) := max(x4, |V (x)|)

13For instance, assuming throughout that (10.8.2) and (10.8.3) are satisfied: if the fi

are low enough, then the Nash equilibrium of the underlying RPS game induces a Nash
equilibrium of (10.8.1). If d1 = d2 = d3 < a4 [resp. > a4] and if the fi are high enough,
then there is a unique correlated equilibrium: e4 ⊗ e4 [resp. a convex combination of
e4⊗ e4 and of the Nash equilibrium of the underlying RPS game]; to see this, mimick the
proof of proposition 10.3.2 in part 1. If di < a4 for all i and if d2 and d3 are low enough
(with respect to d1 and f1), then there is a Nash equilibrium in the interior of the edge
[e1, e4], etc.

14We focus on forward time and so will never study whether a solution is uniquely
defined in backward time.
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The set

ST := {x ∈ S4 : W (x) = 0} (10.9.2)

is a triangle, which, following Gaunersdorfer and Hofbauer (1995), we call

the Shapley triangle. Gaunersdorfer and Hofbauer (1995) show that in the

underlying RPS game, this triangle attracts all solutions of (10.9.1) except

the one starting and remaining at the Nash equilibrium. Here, we show that

in the full game (10.8.1), this triangle still attracts all solutions from an open

set of initial conditions.

Proposition 10.9.1. If strategy 4 is not a best-response to x(0) and if strate-

gies 1, 2 and 3 are not all best-responses to x(0), then for all t ≥ 0, x(t)

is uniquely defined, and x(t) converges to the Shapley triangle (10.9.2) as

t → +∞.

Proof. We begin with a lemma, which is the continuous time version of the

improvement principle of Monderer and Sela (1997):

Lemma 10.9.2. Let t1 < t2, let b, b′ ∈ S4. Assume that ẋ = b− x for all t

in ]t1, t2[. If b′ is a best-response to x(t2) then b′ ·Ub ≥ b ·Ub, with strict

inequality if b′ is not a best-response to x(t1).

Proof of lemma 10.9.2. There exists λ in ]0, 1[ such that

x(t2) = λx(t1) + (1− λ)b (10.9.3)

If b′ is a best-response to x(t2) then (b′ − b) · Ux(t2) ≥ 0 so that, using

(10.9.3),

(1− λ)(b′ − b) ·Ub ≥ λ(b− b′) ·Ux(t1)

Since the right hand side is nonnegative, and positive if b′ is not a best-

response to x(t1), the result follows.

Using lemma 10.9.2, it is easy to see that, at least for some time, the

solution x(t) is uniquely defined and has the following behavior: assume for

concreteness that at some time t, strategy 1 is the unique best-response to

x(t). The solution will then point towards e1 till some time t′ > t when

some other pure strategy becomes a best-response. Due to the improvement

principle, this strategy can only be strategy 2. Thus, the solution must

then point towards the edge [e1, e2]. Since strategy 2 strictly dominates

strategy 1 in the game restricted to {1, 2}×{1, 2}, it follows that immediately

after time T , strategy 2 becomes the unique best-response; therefore the
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solution will actually point towards e2. The solution keeps pointing towards

e2 till some other pure strategy becomes a best-response; due to - again - the

improvement principle, this strategy must be strategy 3. The solution then

changes direction again, and points towards e3 till 1 becomes a best-response

again, and so on.

A priori, it could be that the times when the direction of the trajectory

changes accumulate, as happens in inward cycling RPS games (see, e.g.,

Gaunersdorfer and Hofbauer, 1995). But we claim that:

Claim 10.9.3. The time-length between two successive times when the di-

rection of x(t) changes is bounded away from zero.

This implies that the above description of the dynamics holds for all

positive times. Now when x(t) points towards ei (with i ∈ {1, 2, 3}), letting

v(t) := V (x(t)), we have:

v̇ = (Uẋ)i −
∑

1≤i≤4

aiẋi = (U(ei − x))i −

(
ai −

∑
1≤i≤4

aixi

)
= −v (10.9.4)

and we also have ẋ4 = −x4. Therefore, letting w(t) := W (x(t)),

ẇ(t) ≤ −w(t) for almost all t ≥ 0

It follows that w(t) decreases exponentially to 0, hence that x(t) converges

to the Shapley triangle.

To complete the proof, we still need to prove claim 10.9.3:

Proof of claim 10.9.3: In what follows i ∈ {1, 2, 3} and i + 1 is counted

modulo 3. Fix an initial condition and let

g(t) := max
1≤i,j≤3

[(Ux(t))i − (Ux(t))j]

Let tki denote the kth time at which strategy i becomes a best-response and

choose i such that tki < tki+1. Let x = x(tki ), g = g(tki ) and x′ = x(tki+1),

g′ = g(tki+1). We now compute g′ as a function of g.

Between tki and tki+1, the solution points towards ei. Therefore, there

exists λ in ]0, 1[ such that

x′ = λei + (1− λ)x

Furthermore, by definition of tki and tki+1, we have:

(Ux)i−1 = (Ux)i = (Ux)i+1 +g and (Ux′)i = (Ux′)i+1 = (Ux′)i−1 +g′
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Therefore

0 = (ei+1− ei) ·Ux′ = (ei+1− ei) ·U(λei + (1− λ)x) = λ(ci− ai)− (1− λ)g

and

g′ = (ei − ei−1) ·Ux′ = (ei − ei−1) ·U(λei + (1− λ)x) = λ(ai − bi)

Solving for g′ we get g′/g = αi/(g + βi) with αi = ai − bi and βi = ci − ai.

Iterating this argument, we obtain the return map:

g(tk+1
i ) =

α1α2α3

β1β2β3 + g(tik)(α1α2 + α1β3 + β2β3)
g(tki )

Since, by condition (10.8.2), α1α2α3 > β1β2β3, it follows that for small g(tki ),

we have g(tk+1
i ) > g(tki ), hence that g(tki ) is bounded away from zero. Now,

since (Ux(t))i − (Ux(t))i+1 decreases from g(tki ) to 0 between tki and tki+1,

and since the speed is bounded, it follows that tki+1 − tki is bounded away

from zero. This proves claim 10.9.3 and completes the proof of proposition

10.9.1.

Together with proposition 10.3.2, proposition 10.9.1 implies that there

exists an open set of 4 × 4 symmetric games for which the unique strategy

used in correlated equilibrium is strategy 4, but, from an open set of initial

conditions, the solution x(·) of (10.9.1) is uniquely defined and x4(t) → 0.

10.9.1 Remarks

Remark 1. For every η > 0, we may set the parameters of (10.8.1) so

that the set {x ∈ S4 : e4 ∈ BR(x) or {e1, e2, e3} ⊆ BR(x)} has Lebesgue

measure less than η. In this sense, the basin of attraction of the Shapley

triangle may be made arbitrarily large.

Remark 2. Recall the definition of x̂ and the decomposition of the repli-

cator dynamics in section 10.4. Consider a game of kind (10.8.1) with the

additional assumption that d1 = d2 = d3. This implies that, provided that

4 is not a best-response to x, the strategies i in {1, 2, 3} which are best-

responses to x are exactly those which are best-responses to x̂ in the under-

lying RPS game Ĝ. It follows that, up to a change of velocity, x̂ follows the
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best-response dynamics in Ĝ. More precisely, straightforward computations

show that if 4 is not a best-response to x then:

ẋ ∈ BR(x)− x ⇒ (1− x4) ˙̂x ∈ BR(x̂)− x̂

Interestingly, the change in velocity is the inverse of the change in velocity

found for the replicator dynamics (see (10.4.1)).

Remark 3. The proof of proposition 10.9.1 uses condition (10.8.3), i.e.,

fi < ai for i = 1, 2, 3. Since (Ux)4−
∑

1≤i≤4 aixi =
∑

1≤i≤3(fi−ai)xi is linear

in x, condition (10.8.3) means that (Ux)4 −
∑

1≤i≤4 aixi is negative on the

face of the simplex spanned by e1, e2, e3. If instead of requiring (10.8.3), we

only require that (Ux)4 −
∑

1≤i≤4 aixi be negative on the Shapley triangle:

W (x) = 0 ⇒ (Ux)4 −
∑

1≤i≤4

aixi < 0 (10.9.5)

then proposition 10.9.1 does not hold. For instance, if f1 > a1, f3 < a3

and d1 = d2 = d3 < a4, then from every initial condition sufficiently close

to the mixed strategy x ∈ [e3, e4] to which strategies 1 and 4 are both

best-responses, including initial conditions to which strategy 1 is the unique

best-response, every solution of (10.9.1) converges to e4. However,

Proposition 10.9.4. If (10.9.5) holds, then there exists γ > 0 such that

from every initial condition in Nγ := {x ∈ S4 : W (x) < γ}, there is a unique

solution to (10.9.1), and it converges to the Shapley triangle.

Proof. If we can find γ > 0 such that on Nγ strategy 4 is never a best-

response, then the proof of proposition 10.9.1 implies that, as long as x(t) ∈
Nγ, the solution is unique and W decreases exponentially. The later implies

that Nγ is forward invariant and that W goes to zero, hence the result.

Now, if (10.9.5) holds, then there exists an open neighborhood Ω of the

Shapley triangle on which 4 is not a best-response. Since W is positive

on the compact set S4\Ω, it follows that γ := minx/∈Ω W (x) is positive.

Furthermore, the definition of γ implies that Nγ ⊆ Ω; hence, on Nγ, strategy

4 is never a best-response and the result follows.

Following Gaunersdorfer and Hofbauer (1995), it is interesting to com-

pare the behavior of the best-response dynamics and of the time-average of

the replicator dynamics. If fi > ai for some i ∈ {1, 2, 3}, then under the

replicator dynamics, the heteroclinic cycle Γ is not stable. But
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Proposition 10.9.5. If (10.9.5) holds, then Γ attracts an open set of orbits,

along which the time-average converges to the Shapley triangle.

Proof. This follows from proposition 3.1 of Brannath (1994). For complete-

ness we give a sketch of proof in the appendix (section 10.14).

Remark 4. In order to understand whether elimination of all strategies

used in Nash equilibrium is a common phenomenon for, say, the replicator

dynamics, it is natural to try to characterize all games for which this phe-

nomenon occurs. While such a characterization seems out of reach in the

general case, it should not be too difficult to obtain for 4 × 4 symmetric

games. More precisely, say that a game is of type 1 if under the replicator

dynamics and for an open set of initial conditions, all strategies used in Nash

equilibrium are eliminated. We just showed that 4 × 4 symmetric games

satisfying (10.8.2) and (10.9.5) are of type 1. We conjecture that, conversely:

Conjecture 10.9.6. Up to permutation of the strategies, almost all 4 × 4

symmetric games of type 1 satisfy (10.8.2) and (10.9.5).

We now motivate the conjecture. All statements concern symmetric

games and the replicator dynamics. Proceeding as in chapter 9, proof of

proposition 9.2.1, it is easy to show that if at most two pure strategies sur-

vive, then the solution converges to the set of Nash equilibria. Therefore a

4×4 game of type 1 must have a unique, pure Nash equilibrium. By unique-

ness and since the game is symmetric, this equilibrium must be symmetric,

and we may assume that this is (e4, e4). Furthermore, as a unique and pure

Nash equilibrium of a bimatrix game, this equilibrium is strict.15

Now focus on the three strategies not used in Nash equilibrium. By the

folk theorem of evolutionary game theory, if an interior solution converges

to a point, then this point is a Nash equilibrium. Therefore, in a game of

type 1, we must have an open set of nonconverging solutions. Together with

Bomze’s (1983) classification of 3 × 3 symmetric games, this suggests that

the three strategies not used in Nash equilibrium form an outward cycling

Rock-Paper-Scissors game; more precisely, that the inequalities (10.8.2) hold

at least as weak inequalities. Finally, if (10.8.2) holds and if (10.9.5) does

not hold at least with a weak inequality, i.e. if there exists y ∈ ST to which

15In a bimatrix game, there always exists a quasi-strict Nash equilibrium (Norde, 1999);
it follows that a unique Nash equilibrium is quasi-strict, and that a unique and pure Nash
equilibrium is strict.
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strategy 4 is a strict best-response, then a Poincaré map argument shows

that the heteroclinic cycle Γ cannot attract an interior solution.

The reason why the conjecture concerns almost all games of type 1, and

not all, is that we want to exclude the possibility that (10.8.2) and (10.9.5)

hold as weak inequalities but not as strict inequalities: a degenerate case.

10.10 Brown-von Neumann-Nash dynamics

The Brown-von Neumann-Nash dynamics (henceforth BNN) is given by:

ẋi = ki(x)− xi

∑
j∈I

kj(x) (10.10.1)

where ki(x) := max(0, (Ux)i − x ·Ux) is the excess payoff of strategy i over

the average payoff. As in the best-response dynamics, strategies that are

initially absent may appear, the proportion of every strategy earning less

than average decreases and the rest-points are exactly the Nash equilibria of

the game.16 Furthermore, since the right-hand side of (10.10.1) is Lipschitz

continuous, BNN has a unique solution from each initial condition. We refer

to (Hofbauer, 2000; Berger and Hofbauer, 2005) and references therein for a

motivation of and results on BNN.

Recall the following notations introduced in part 1: G0 denotes the game

(10.3.1) with α = 0 and U0 its payoff matrix; n123 =
(

1
3
, 1

3
, 1

3
, 0
)

denotes the

mixed strategy corresponding to the unique Nash equilibrium of the under-

lying RPS game, and E0 = [n123, e4] the set of symmetric Nash equilibria of

G0. This section is devoted to a proof of the following proposition:

Proposition 10.10.1. If C is a closed subset of S4 disjoint from E0, then

there exists a neighborhood of G0 such that, for every game in this neighbor-

hood and every initial condition in C, x4(t) → 0 as t → +∞.

Proposition 10.3.2 implies that any neighborhood of the game G0 contains

an open set of games for which the unique correlated equilibrium is e4 ⊗ e4.

Together with proposition 10.10.1, this implies that there exists an open set

of games for which, under BNN, the unique strategy played in correlated

equilibrium is eliminated from an open set of initial conditions. We first

show that in G0 the segment E0 is locally repelling.

16The symmetric Nash equilibria, for the single-population version presented here.
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The function

V0(x) :=
1

2

∑
i∈I

k2
i =

1

2

∑
i∈I

[max(0, (U0x)i − x ·U0x]2

is continuous, nonnegative and equals 0 exactly on E0 so that V0(x) may be

seen as a distance from x to E0. Fix an initial condition and let v0(t) :=

V0(x(t)).

Lemma 10.10.2. There exists an open neighborhood Neq of E0 such that,

under BNN in the game G0, v̇0(t) > 0 whenever x(t) ∈ Neq\E0.

Proof. We will need the following equations (derived in part 1 as equations

(10.3.2), (10.3.3) and (10.3.5), respectively):

n123 ·U0x = e4 ·U0x ∀x ∈ S4 (10.10.2)

(x− x′) ·U0e4 = (x− x′) ·U0n123 = 0 ∀x ∈ S4,∀x′ ∈ S4 (10.10.3)

and, for every p in E0 and every x 6= E0,

(x− p) ·U0x = (x− p) ·U0(x− p) =
1− ε

2

∑
1≤i≤3

(
xi −

1− x4

3

)2

> 0

(10.10.4)

Hofbauer (2000) shows that the function v0 satisfies

v̇0 = k̄2 [(q− x) ·U0(q− x)− (q− x) ·U0x] (10.10.5)

with x = x(t), k̄ =
∑

i ki and qi = ki/k̄. It follows from equation (10.10.3)

that if p ∈ E0, then against p all strategies earn the same payoff. Therefore,

the second term (q− x) ·U0x goes to 0 as x approaches E0. Thus, to prove

lemma 10.10.2, it suffices to show that as x approaches E0, the first term

(q−x) ·U0(q−x) is positive and bounded away from 0. But it follows from

(10.10.2) and (10.10.4) that for x /∈ E0,

min
1≤i≤3

(U0x)i ≤ n123 ·U0x = (U0x)4 < x ·U0x (10.10.6)

This implies that q4 = 0 and qi = 0 for some i in {1, 2, 3}. Therefore, it

follows from (10.10.4) that for every p in E0,

(q− p) ·U0(q− p) =
1− ε

2

∑
1≤i≤3

(
qi −

1

3

)2

≥ 1− ε

18

This completes the proof.
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We now prove proposition 10.10.1. Consider first the BNN dynamics

in the game G0. Recall lemma 10.10.2 and let 0 < δ < minx∈S4\Neq V0(x)

(the latter is positive by compactness of S4\Neq). By lemma 10.10.2 and

definition of δ, the right hand side of (10.10.5) is positive for every x in

V −1
0 (δ) := {x ∈ S4 : V0(x) = δ}. Therefore, by compactness of V −1

0 (δ),

∃γ > 0,∀x ∈ S4, (v0(t) = δ) ⇒ (v̇0 ≥ γ > 0) (10.10.7)

Let Cδ := {x : V0(x) ≥ δ}. If V0(x) ≥ δ, then x /∈ E0, so that by (10.10.4) ,

(U0x)4−x ·U0x is negative. Since Cδ is compact, it follows that there exists

γ′ > 0 such that

x ∈ Cδ ⇒ (U0x)4 − x ·U0x ≤ −γ′ < 0 (10.10.8)

so that x4 decreases as long as x ∈ Cδ. Since by (10.10.7), the set Cδ is

forward invariant, it follows that if x(0) ∈ Cδ, then x4(t) → 0 as t → +∞.

Moreover, V0 is Lipschitz in x, and ẋ is Lipschitz in the payoff matrix U.

Therefore, for U close enough to U0, we still have v0(t) = δ ⇒ v̇0 > 0 under

the perturbed dynamics, and also x ∈ Cδ ⇒ (Ux)4 − x ·Ux < 0. Therefore,

the above reasoning applies and for every initial condition in Cδ, we have

x4(t) → 0 as t → +∞.

Finally, the set C is compact and disjoint from the compact E0, hence

bounded away from E0. Therefore, for δ small enough, C ⊂ Cδ. This

completes the proof

10.11 Monotonic and weakly sign preserving

dynamics

Consider a dynamics of the form

ẋi = xigi(x) (10.11.1)

where the C1 functions gi have the property that
∑

i∈I xigi(x) = 0 for all x

in S4, so that S4 and its boundary faces are invariant.

Such a dynamics is monotonic if the growth rates of the different strategies
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are ranked according to their payoffs17:

gi(x) > gj(x) ⇔ (Ux)i > (Ux)j ∀i ∈ I,∀j ∈ I (10.11.2)

A dynamics of type (10.11.1) is weakly sign preserving (WSP) (Ritzberger

and Weibull, 1995) if whenever a strategy earns below average, its growth

rate is negative:

[(Ux)i < x ·Ux] ⇒ gi(x) < 0 (10.11.3)

Before18 stating the result, a definition is still needed: implicitly, dynam-

ics of type (10.11.1) depend on the payoff matrix U. Thus, a more correct

writing of (10.11.1) would be:

ẋi = xigi(x,U)

where U ∈ RN×N . Such a dynamics depends continuously on the payoff

matrix if, for every i in I, the functions gi are defined for an open set of

payoff matrices and depend continuously on U. We now state the result: fix

a monotonic or WSP dynamics (10.11.1) that depends continuously on the

payoff matrix.

Proposition 10.11.1. For every α in ]0, 1/3[, there exists ε > 0 such that

for every game in the neighborhood of the game with payoffs (10.3.1), the set

Γ defined by (10.3.6) is asymptotically stable.

Proof. For every monotonic or WSP dynamics (10.11.1), and for every game

in the neighborhood of (10.3.1), the set Γ is a so-called heteroclinic cycle.

That is, a globally invariant set, consisting of saddle rest points and of the

saddle orbits connecting these rest points. Thus we may use the asymptotic

stability’s criteria for heteroclinic cycles developed by Hofbauer (1994) (a

more accessible reference for this result is theorem 17.5.1 in Hofbauer and

Sigmund, 1998). Specifically, associate with the heteroclinic cycle Γ its so-

called characteristic matrix. That is, the 3 × 4 matrix whose entry in row

17As already mentioned in chapter 8, this property goes under various names in the
literature: relative monotonicity in (Nachbar, 1990), order-compatibility of pre-dynamics in
(Friedman, 1991), monotonicity in (Samuelson and Zhang, 1992) and payoff monotonicity
in (Hofbauer and Weibull, 1996).

18Instead of dynamics of type (10.11.1), Ritzberger and Weibull (1995) consider dy-
namics of the more general type ẋi = hi(x), that need not leave the faces of the simplex
positively invariant. Thus, we only consider a subclass of their WSP dynamics.
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i and column j is gj(ei) (i.e. the eigenvalue in the direction of ej of the

linearization of the vector field at ei):

1 2 3 4

e1 0 g2(e1) g3(e1) g4(e1)

e2 g1(e2) 0 g3(e2) g4(e2)

e3 g1(e3) g2(e3) 0 g4(e3)

(Note that gi(ei) = 0 because ei is a rest point of (10.11.1).)

Call C this matrix. If p is a real vector, let p < 0 (resp. p > 0) mean

that all coordinates of p are negative (resp. positive). Hofbauer (1994) shows

that if the following conditions are satisfied:

Γ is asymptotically stable within the boundary of S4
19 (10.11.4)

There exists a vector p in R4 such that p > 0 and Cp < 0 (10.11.5)

then Γ is asymptotically stable. Therefore, it is enough to show that these

conditions hold for small positive ε. We begin with a lemma. In the remainder

of this section, i ∈ {1, 2, 3} and i− 1 and i + 1 are counted modulo 3.

Lemma 10.11.2. For every 0 < α < 1/3, there exists ε > 0 such that in the

game with payoffs (10.3.1) and for every i in {1, 2, 3},

g4(ei) < 0 and 0 < gi+1(ei) < −gi−1(ei) (10.11.6)

Proof of lemma 10.11.2 for monotonic dynamics. For ε = 0, at the

vertex ei, the payoff of strategy 4 (resp. i + 1) is strictly smaller (greater)

than the payoff of strategy i. Since the growth rate of strategy i at ei is 0, this

implies by monotonicity g4(ei) < 0 (resp. gi+1(ei) > 0). Moreover, for ε = 0,

we have: (Uei)i = (Uei)i+1 > (Uei)i−1 so that 0 = gi+1(ei) < −gi−1(ei).

Since the dynamics depends continuously on the payoff matrix, the latter

strict inequality still holds for small ε > 0.

Proof of lemma 10.11.2 for WSP dynamics. For concreteness, set i = 2.

At e2, strategy 4 earns less than average. Therefore g4(e2) < 0. Now consider

the case ε = 0: At every point x in the (relative) interior of the edge [e1, e2],

strategy 3 earns strictly less than average hence its growth rate is negative.

19That is, for each proper face (subsimplex) F of S4, if Γ
⋂

F is nonempty, then it is
asymptotically stable for the dynamics restricted to F .
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By continuity at e2 this implies g3(e2) ≤ 0. Since at e2, strategy 1 earns

strictly less than average, it follows that g1(e2) < 0, hence 0 < −g1(e2),

hence g3(e2) < −g1(e2). Since the dynamics depends continuously on the

payoff matrix, the latter strict inequality still holds for small ε > 0.

To establish (10.11.6), we still need to show that g3(e2) is positive for

small positive ε. Let ε > 0. If λ > 0 is sufficiently small then, for all

µ > 0 small enough, the unique strategy which earns above average at

x = (λµ, 1 − µ − λµ, µ, 0) is strategy 3. Since
∑

i xigi(x) = 0, it follows

that x1g1(x) + x3g3(x) = λµg1(x) + µg2(x) > 0, hence g3(x) > −λg1(x). By

letting µ go to zero, we obtain g3(e2) ≥ −λg1(e2) > 0.

We now prove proposition 10.11.1. Fix α and ε as in lemma 10.11.2. Note

that since the dynamics we consider depends continuously on the payoff ma-

trix, there exists a neighborhood of the game with payoffs (10.3.1) in which

the strict inequalities (10.11.6) still hold. Fix a game for which (10.11.6)

holds.

Proof that condition (10.11.5) holds. It follows from (10.11.6) that

g4(ei) is negative for all i in {1, 2, 3}. This implies that condition 2 holds (fix

p1 = p2 = p3 = −1 and take a very high p4).

Proof that condition (10.11.4) holds. To prove asymptotic stability on

the boundary, we use again characteristic matrices. Let Ĉ denote the 3× 3

matrix obtained from C by eliminating the fourth column. This corresponds

to the characteristic matrix of Γ, when viewed as an heteroclinic cycle of the

underlying 3× 3 RPS game. In this RPS game, the set Γ is trivially asymp-

totically stable on the relative boundary of S3 (Γ is the relative boundary!).

Furthermore, for p̂ = (1/3, 1/3, 1/3) > 0, the second inequation in (10.11.6)

implies that Ĉp̂ < 0. Therefore, it follows from theorem 1 of Hofbauer (1994)

than, in the 4×4 initial game, Γ is asymptotically stable on the face spanned

by e1, e2, e3. Asymptotic stability on the face spanned by ei, ei+1, e4 is easy.

This concludes the proof.
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10.12 Robustness to the addition of mixed

strategies as new pure strategies

We showed that for many dynamics, there exists an open set of symmetric

4 × 4 games for which, from an open set of initial conditions, the unique

strategy used in correlated equilibrium is eliminated. Since we might not

want to rule out the possibility that some players use mixed strategies, and

that mixed strategies be heritable, it is important to check whether our results

change if we explicitly introduce mixed strategies as new pure strategies of

the game. We tackle this question for the best-response dynamics and for the

replicator dynamics. We first precise the issue we have in mind and introduce

some notations.

Let G be a finite game with strategy set I = {1, ..., N} and payoff matrix

U. A finite game G′ is said to be built on G by adding mixed strategies as

new pure strategies if:

First, letting I ′ = {1, ..., N, N + 1, ..., N ′} be the set of pure strategies of

G′ and U′ its payoff matrix, we may associate to each pure strategy i in I ′ a

mixed strategy pi in SN in such a way that:

∀i ∈ I ′,∀j ∈ I ′, e′i ·U′e′j = pi ·Upj (10.12.1)

where e′i is the unit vector in SN ′ corresponding to the pure strategy i.

Second, if 1 ≤ i ≤ N , the pure strategy i in the game G′ corresponds to

the pure strategy i in the base game G:

1 ≤ i ≤ N ⇒ pi = ei (10.12.2)

If µ′ = (µ(k, l))1≤k,l≤N ′ is a probability distribution over I ′ × I ′, then it

induces the probability distribution µ on I × I given by:

µ(i, j) =
∑

1≤k,l≤N ′

µ′(k, l)pk
i p

l
j ∀(i, j) ∈ I × I,

It follows from a version of the revelation principle (see Myerson, 1994) that,

if G′ is built on G by adding mixed strategies as new pure strategies, then for

any correlated equilibrium µ′ of G′, the induced probability distribution on

I×I is a correlated equilibrium of G. In particular, if G is a 4×4 symmetric

game with e4 ⊗ e4 as unique correlated equilibrium, then µ′ is a correlated

equilibrium of G′ if and only if, for every k, l in I ′ such that µ′(k, l) is positive,
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pk = pl = e4. Thus, the unique strategy of G used in correlated equilibria

of G′ is strategy 4.

The question investigated below is whether there exists an open set of

4 × 4 symmetric games with e4 ⊗ e4 as unique correlated equilibrium such

that, for any game G in this set and any game G′ built on G by adding

mixed strategies as new pure strategies, we have: from an open set of initial

conditions, every pure strategy k in I ′ such that pk
4 > 0 is eliminated.

We show that this is the case for the best-response dynamics and for the

replicator dynamics.20 For the best-response dynamics, we actually prove a

much more general result: for any finite game and in a sense made precise

in the next section, adding mixed strategies as new pure strategies does not

modify the behavior of the best-response dynamics.

10.12.1 Best-response dynamics

Let G be a finite game and let G′ be built on G by adding mixed strategies

as new pure strategies. We want to relate the behaviour of the best-response

dynamics in the game G′ to its behaviour in the base game G. For this pur-

pose, associate to each mixed strategy x′ in SN ′ the induced mixed strategy

x in SN defined by:

x :=
N ′∑
k=1

x′kp
k (10.12.3)

Let x′(·) be a solution of the best-response dynamics in G′ and x(·) the

induced mapping from R+ to SN .

Proposition 10.12.1. x(·) is a solution of the best-response dynamics in G.

Before proving proposition 10.12.1, note that together with propositions

10.3.2 and 10.9.1, proposition 10.12.1 implies that there indeed exists an open

set of 4 × 4 symmetric games such that, for every game G in this set and

every game G′ built on G by adding mixed strategies as new pure strategies,

we have: from an open set of initial conditions, every pure strategy k such

that pk
4 > 0 is eliminated. We now prove proposition 10.12.1.

20For BNN, the condition pk
4 > 0 does not seem sufficient to ensure elimination. This

is because, as noted in (Berger and Hofbauer, 2005), BNN tends to equalize the shares of
pure strategies that earn nearly the same payoff. Thus, if pk = (1− pk

4)e1 + pk
4e4 with pk

4

very low, then it seems likely that if strategy 1 survives, then so will strategy k.
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Proof. For almost all t ≥ 0, there exists a vector b′ ∈ BR(x′(t)) such that

ẋ′(t) = b′ − x′(t). Let b :=
∑

k∈I′ b
′
kp

k ∈ SN . It follows from (10.12.3) that:

ẋ(t) =
N ′∑
k=1

(b′k − x′k)p
k = b− x(t) (10.12.4)

Furthermore, since b′ is a best-response to x′(t) it follows from (10.12.1) and

(10.12.2) that b is a best-response to x(t) (otherwise, letting i ∈ {1, ..., N} be

a best-response to x, we have: b′ ·U′x′ = b ·Ux < ei ·Ux = e′i ·U′x′, hence

b′ is not a best-response to x′, a contradiction). Together with (10.12.4),

this implies that, for almost all t, ẋ ∈ BR(x)− x. The result follows.

We have shown that any solution of the best-response dynamics in the

augmented game G′ induces in the natural way a solution of the best-response

dynamics in the base game G. Since there may be several solutions to the

best-response dynamics with the same initial condition, it is also interesting

to check that for any x′ in SN ′ , any solution in the base game with initial

condition x (induced by x′) is induced by some solution in the augmented

game with initial condition x′. This is our next result:21

Let x′ ∈ SN ′ . Define x as in (10.12.3). Let x(·) be a solution to (10.9.1)

in G with initial condition x(0) = x.

Proposition 10.12.2. There exists a solution x′(·) to (10.9.1) in G′ with

initial condition x′(0) = x′ such that, for all t ≥ 0, x′(t) induces x(t) in the

sense of (10.12.3).

Proof. Let t ≥ 0. For all k in {N + 1, ..., N ′} let x′k(t) = x′k(0) exp(−t) and

choose x′1(t), ..., x
′
N(t) such that x′(t) induces x(t). To any vector b in SN

associate the vector b′ in SN ′ such that: b′k = bk if 1 ≤ k ≤ N and b′k = 0

otherwise. A simple computation shows that if ẋ = b − x and b ∈ BR(x)

then ẋ′ = b′ − x′ and b′ ∈ BR(x′). It follows that x′(·) is a solution of the

best-response dynamics in G′.

10.12.2 Replicator dynamics

Recall that U0 denote the payoff matrix (10.3.1) with α = 0 and for x in S4

let

V (x) := 3
(x1x2x3)

1/3

x1 + x2 + x3

(10.12.5)

21This second result is unrelated to the issue of elimination of all strategies used in
correlated equilibrium, but we think that it is interesting as a general result.
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Fix a 4 × 4 matrix U and a solution x(·) of the replicator dynamics with

payoff matrix U, and let v(t) := V (x(t)). Fix δ in ]0, 1[. Proceeding as in

the proof of proposition 10.5.1, we get that there exists a positive constant

γ such that if ||U−U0|| < γ then:

[x1 + x2 + x3 = 1 and V (x) ≤ δ] ⇒ [(Ux)4 − x ·Ux ≤ −γ] (10.12.6)

and

[x1(t) + x2(t) + x3(t) = 1 and v(t) = δ] ⇒ v̇(t) ≤ −γ (10.12.7)

Fix a game G with payoff matrix U such that ||U −U0|| < γ. Let G′ be a

game built on G by adding mixed strategies of G as new pure strategies, and

let U′ be its payoff matrix. Recall 10.12.5 and for x′ in SN ′ , let

V ′(x′) := 3
(x′1x

′
2x

′
3)

1/3

x′1 + x′2 + x′3

Consider a solution x′(·) of the replicator dynamics in G′ and let v′(t) =

V ′(x′(t)). It follows from (10.12.6) and (10.12.7) that there exists positive

constant η and γ′ such that[
max

k∈{4,...,N ′}
x′k ≤ η and V ′(x′) ≤ δ

]
⇒ (U′x′)4 ≤ x′ ·U′x′ − γ′ (10.12.8)

and [
max

k∈{4,...,N ′}
x′k ≤ η and v′(t) = δ

]
⇒ v̇′(t) ≤ −γ′ (10.12.9)

Fix y′ ∈ SN ′ such that y′1 +y′2 +y′3 = 1, V (y′) < δ and C := min1≤i≤3 y′i >

0. There exists a open neighborhood Ω of y in SN ′ such that for every x′ in

Ω,

min
1≤i≤3

x′i > C/2, max
k∈{4,...,N ′}

x′k < Cη/2, and V ′(x′) < δ

Consider an interior solution x′(·) of the replicator dynamics in G′ with initial

condition in Ω. Recall that pk denote the mixed strategy of G associated

with the pure strategy k of G′. We will show that:

Proposition 10.12.3. For all k in {4, ..., N ′} such that pk
4 > 0, x′k(t) →t→+∞

0
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Proof. We begin with two lemmas:22

Lemma 10.12.4. Let T > 0 and k ∈ {4, ..., N ′}. If x′4(T ) ≤ x′4(0) then

x′k(T ) < η.

Proof. By definition of pk,

(U′x′)k =
∑

1≤i≤4

pk
i (U

′x′)i

Therefore, it follows from the definition of the replicator dynamics that:

ẋ′k
x′k

=
∑

1≤i≤4

pk
i

ẋ′i
x′i

Integrating between 0 and T and taking the exponential of both members

leads to:

x′k(T ) = x′k(0)
∏

1≤i≤4

(
x′i(T )

x′i(0)

)pk
i

(10.12.10)

Noting that for 1 ≤ i ≤ 3, we have x′i(T ) ≤ 1 and 1 ≤ 1/x′i(0) ≤ 2/C, we

get:

∏
1≤i≤3

(
x′i(T )

x′i(0)

)pk
i

≤
∏

1≤i≤3

(
2

C

)pk
i

=

(
2

C

)1−pk
4

≤ 2

C
(10.12.11)

Since furthermore x′k(0) < Cη/2, we obtain from (10.12.10) and (10.12.11):

x′k(T ) =
Cη

2

2

C

(
x′4(T )

x′4(0)

)pk
4

< η

(
x′4(T )

x′4(0)

)pk
4

(10.12.12)

The result follows.

Lemma 10.12.5. For all t > 0, maxk∈{4,...,N ′} x′k(t) < η and v′(t) < δ

22The heteroclinic cycle Γ′ : e′1 → e′2 → e′3 → e′1 need not be asymptotically stable on
the boundary of SN ′ . This is because there might be strategies k 6= i+1 (counted modulo
3) such that pk is a better response to ei than ei (e.g. pk = (1 − λ)ei+1 + λe4, with λ

small). Therefore we cannot use use theorem 1 of (Hofbauer, 1994) as in our first proof of
proposition 10.8.1.
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Proof. Otherwise there exists a first time T > 0 such that maxk∈{4,...,N ′} x′k(T ) =

η or v′(T ) = δ (or both). It follows from (10.12.8) and the definition of the

replicator dynamics that if 0 ≤ t ≤ T then ẋ′4(t) ≤ −γ′ < 0. Therefore

x′4(T ) ≤ x′4(0). By lemma 10.12.4, this implies that maxk∈{4,...,N ′} x′k(T ) < η.

Therefore, v′(T ) = δ. Due to (10.12.9) this implies that v̇′(T ) < 0. Therefore,

there exists a time T1 < T such that v(T1) ≥ δ, contradicting the minimality

of T .

We now conclude: it follows from lemma 10.12.5, equation (10.12.8)

and the definition of the replicator dynamics that for all t ≥ 0, x′4(t) ≤
exp(−γ′t)x′4(0). By (10.12.12) this implies that for every k in {4, ..., N ′},

∀t ≥ 0, xk(t) < η exp(−γ′pk
4t)

Therefore, if pk
4 > 0 then x′4(t) → 0.

10.13 First appendix: Proof of proposition

10.8.1

We provide two proofs (which we think provide different insights). The first

one, in the spirit of section 10.11, consists in checking that the sufficient

conditions for asymptotic stability of heteroclinic cycles given by Hofbauer

(1994) are satisfied. The second proof, in the spirit of proposition 10.5.1

exhibits an (average) Lyapunov function.23 In both proofs, i ∈ {1, 2, 3} and

i + 1 and i− 1 are counted modulo 3.

Proof 1. We use the tools introduced at the beginning of the proof

of proposition 10.11.1 (up to lemma 10.11.2): The heteroclinic cycle Γ is

asymptotically stable on the boundary of S4: asymptotic stability on the

face spanned by e1, e2, e3 follows from condition (10.8.2), as shown by Zee-

man (1980); asymptotic stability on the face spanned by ei, ei+1, e4 is easy.

Furthermore, under the replicator dynamics, the characteristic matrix C of

23Our first proof relies on theorem 1 of Hofbauer (1994), which itself relies on the
construction of an (average) Lyapunov function; however this average Lyapunov function
is more abstract than the one we exhibit in our second proof.
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Γ has the sign structure

1 2 3 4

e1 0 − + −
e2 + 0 − −
e3 − + 0 −

It follows that there exists a vector p in R4 such that p > 0 and Cp < 0

(fix p1 = p2 = p3 = 1 and take a very high p4). By theorem 1 of Hofbauer

(1994), this implies that Γ is asymptotically stable.

Proof 2 (sketch). Applying lemma 7 from Zeeman (1980) in the spirit

of (Hofbauer and Sigmund, 1998, proof of theorem 7.7.2), we may assume

without loss of generality that there exists a positive constant c such that

bi−ai+1 = c for all i = 1, 2, 3. Let p ∈ S3 denote the Nash equilibrium of the

underlying RPS game and let V (x) =
∏

1≤i≤3 x̂pi

i (where x̂i = xi/(1 − x4)).

The function V̇ /V extends to a continuous function on S4 which is strictly

negative on Γ (more precisely, if x4 = 0, then V̇ = −cV
∑

1≤i≤3(xi− pi)
2; see

Hofbauer and Sigmund, 1998, proof of theorem 7.7.2). This implies that V

decreases exponentially in the neighborhood of Γ. The only difference with

the proof of proposition 10.5.1 in part 1 is then that W (x) = max(x4, V (x))

is no longer a local Lyapunov function (because x4 need not decrease every-

where in the neighbourhood of Γ) but a local average Lyapunov function (x4

decreases in average over an approximate cycle). We only give the heuristic

argument: there exists a neighbourhood Ni of ei in which strategy 4 earns

strictly less than the mean payoff, so that x4 decreases. As long as x(t) is

close enough to Γ, it describes a cycling movement from N1 to N2 to N3 and

back to N1. During this (approximate) cycle, most of the time24 is spent

in the Ni, so that x4 decreases over the cycle. This allows to show that for

every δ > 0, there exists δ′ > 0 such that if W (x(0)) ≤ δ′ then W (x(t)) ≤ δ

for all t ≥ 0 and W (x(t)) → 0 as t → +∞.

24A proportion of the time which can be made arbitrarily large by requiring that the
solution starts close enough to Γ.
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10.14 Second appendix: (Sketch of) proof of

proposition 10.9.5

It is convenient and without loss of generality to normalize the payoff matrix

to have zeros on the diagonal. Consider thus a 4 × 4 symmetric game with

payoff matrix: 
0 −α2 β3 δ1

β1 0 −α3 δ2

−α1 β2 0 δ3

γ1 γ2 γ3 0

 (10.14.1)

such that all the αi and βi are positive, and assume furthermore that

3∏
i=1

αi >
3∏

i=1

βi (10.14.2)

and that (10.9.5) holds. That is, x ∈ ST ⇒ (Ux)4 < 0, where ST is the

Shapley triangle defined in (10.9.2). Throughout, i ∈ {1, 2, 3} and i + 1

and i − 1 are counted modulo 3. Let V (x) := min1≤i≤3 xi and W (x) =

max(V (x), x4) so that W (x) = 0 if and only if x ∈ Γ. Fix a small positive

constant η. Let

Ni = {x ∈ S4, xi > 1− 2η, x4 < η}

(recall that x̂i = xi/(x1 + x2 + x3)). Thus, Ni is a small neighborhood of ei.

Let S−i and S+
i denote the sections “before” and “after” ei:

S−i := {x ∈ Ni, xi−1 = η}

S+
i := {x ∈ Ni, xi+1 = η}

Consider an interior solution x(·) with initial condition close to Γ. If

∀t ≥ 0, W (x(t)) < η/2 (10.14.3)

then x(t) describes cycles

S−i → S+
i → S−i+1 → S+

i+1 → S−i+2 = S−i−1 → S+
i−1 → S−i (10.14.4)

Let x(t−i ) ∈ S−i and let t+i be the first time after time t−i when x(t) hits S+
i :

t+i := min{t ≥ t−i : x(t+i ) ∈ S+
i }
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Setting yj := xj/η and computing the approximate Poincaré map from S−i
to S+

i we get that (approximately)

yi−i(t
+
i ) =

[
yi+1(t

−
i )
]αi/βi (10.14.5)

x4(t
+
i ) = x4(t

−
i )
[
yi+1(t

−
i ]
)−γi/βi (10.14.6)

Iterating the argument25, we may compute the approximate return map

S−i → S−i . We obtain that if t̃−i is the first time after t−i when the solu-

tion comes back to S−i , then (approximately)

yi−i(t̃
−
i ) =

(
yi−1(t

−
i )
)α1α2α3/β1β2β3 (10.14.7)

x4(t̃
−
i ) = x4(t

−
i ) (yi+1)

θi (10.14.8)

with

−θi =
γiβi−1βi + γi+1αiβi−1 + γi+2αiαi+1

β1β2β3

(10.14.9)

Let ρ := (α1α2α3/β1β2β3) − 1. It follows from (10.14.2) that ρ is positive

and from (10.14.7) that

yi−i(t̃
−
i ) ≤ k1yi−1(t

−
i ) with k1 := ηρ < 1 (10.14.10)

Furthermore, a simple computation26 shows that the numerator of the right-

hand side of (10.14.9) is equal to (Uq)4 where q is the vertex of the Shapley

triangle such that (Uq)i−1 = (Uq)i = 0. Therefore, (10.9.5) implies that θi

is positive. Since by assumption yi+1(t
−
i ) ≤ η, it follows from (10.14.8) that

x4(t̃
−
i ) ≤ k2x4(t

−
i ) with k2 := ηθi < 1 (10.14.11)

Fix k3 such that max(k1, k2) < k3 < 1. It follows from (10.14.10) and

(10.14.11) that for W (x(t−i )) sufficiently small27

W (x(t̃−i )) ≤ k3W (x(t−i )) (10.14.12)

Furthermore, if γi < 0 and γi−1 > 0, then during a cycle (10.14.4), x4 first

decreases in the neighborhood of ei then increases or decreases near ei+1 and

25If W (x(t−i )) is sufficiently small, we may neglect the transit time between S+
i and

S−i+1.
26See (Gaunersdorfer and Hofbauer, 1995) or (Hofbauer and Sigmund, 1998, p.82 and

p.96).
27We need lnxi+1(t−i ) � ln η to control the error made when neglecting the transit

times between the S+
j and the S−j+1.
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finally increases near ei−1. In any case, x4 starts by decreasing and then

increases till x reaches S−i . This implies that (approximately)

max
t∈[t−i ,t̃−i ]

x4(t) = max(x4(t
−
i ), x4(t

+
i )) = x4(t

−
i ) (10.14.13)

(the last equality follows from (10.14.11)).

We are now in a position to prove that if γi < 0 and γi−1 > 0 then:

Lemma 10.14.1. Assume that x(t) ∈ S−i . There exist positive constants a,

b, c and k, with k < 1 such that, if W (x(t)) < a, then there exists t̃ > t such

that x(t̃) ∈ S−i , and

W (x(t̃)) ≤ kW (x(t)) (10.14.14)

W (x(t′)) ≤ b [W (x(t))]c ∀t′ ∈ [t, t̃] (10.14.15)

Proof. Let t̃ be the first time (> t) such that either W (x(t̃)) = η or x(t̃) ∈ S−i .

Between t and t̃, the function W is less than η, so that the above estimates

apply. Choose c such that 0 < 3
√

c < min(1, α1/β1, α2/β2, α3/β3). It follows

from (10.14.5) that there exists b > 1 and a > 0 such that if W (x(t)) < a then

V (x(t′)) < bV (x(t))c for every t′ in [t, t̃]. Henceforth, we assume W (x(t)) <

a. It follows from (10.14.13) that we have x4(t
′) ≤ x4(t) ≤ bx4(t)

c. Thus,

assuming without loss of generality bac < η, we have:

∀t′ ∈ [t, t̃], W (x(t′)) ≤ b [W (x(t))]c ≤ abc < η

In particular, W (x(t̃)) < η. By definition t̃, this implies x(t̃) ∈ S−i . Finally,

it follows from (10.14.12) that (10.14.14) holds provided that a is sufficiently

small. This concludes the proof.

It follows from lemma 10.14.1 that there exist positive constants a, b, c

and k, with k < 1 such that, if x(0) ∈ S−i and W (x(0)) < a then

lim sup
t→+∞

W (x(t)) ≤ lim sup
n→+∞

knbac = 0

hence x(t) → Γ. This implies that for an open set of initial conditions

x(t) → Γ and28 concludes the proof of proposition 10.9.5.

28Let ξ(x, t) denote the value at time t of the solution of the replicator dynamics with
initial condition x. The set Ω := {ξ(x, t)|t ∈ R,x ∈ S−i ,W (x) < a} contains an open set
and for every x in Ω, ξ(x, t) → Γ as t → +∞.



Chapitre 11

Elimination of All Strategies in

the Support of Nash Equilibria:

a Universal Example

Abstract

For every Myopic Adjustement Dynamics that depends continu-
ously on the payoffs, there exists an open set of games for which, from
an open set of initial conditions, all strategies used in Nash equilib-
rium are (nearly) eliminated. This holds both for single-population
dynamics and multi-population dynamics.

11.1 Introduction

Chapter 10 showed that under many single-population dynamics, all strate-

gies played in correlated equilibria may be eliminated. This chapter provides

examples of games for which, for an even wider class of dynamics, all strate-

gies played in Nash equilibria are eliminated (or nearly eliminated). As in

chapter 10, the examples we give are of games with a unique, strict Nash

equilibrium. Thus, elimination of all strategies played in Nash equilibria

does not come from a problem of coordination on the right equilibrium.1

1When does elimination of all strategies played in Nash equilibria occur is more difficult
to clarify. Our results rely on the fact that, in the games we study, the unique Nash
equilibrium is not Pareto-efficient and the mean-payoff of the players tend to increase
under evolutionary dynamics.

207
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The material is organized as follows: the main results are stated in sec-

tion 11.2 and proved in section 11.3. Complementary examples are given in

section 11.4. Section 11.5 concludes. Finally, an auxiliary result is proved in

the appendix (section 11.6.

11.2 Framework and statement of the results

Let G be a two-player bimatrix game. Let I (resp. J) be the set of pure

strategies of player 1 (resp. 2). Let A = (aij) (resp. B = (bji)) denote the

payoff matrix of player 1 (resp. 2). Here aij (resp. bji) denote the payoff

of player 1 (resp. 2) when player 1 plays i and player 2 plays j. Note that

the matrix B has the same number of rows and columns than AT . Let ∆(I)

(resp. ∆(J)) denote the simplex over I (resp. J). That is,

∆(I) =

{
x ∈ RI

+ :
∑
i∈I

xi = 1

}
The class of dynamics we consider is a variant of Swinkels’(1993) my-

opic adjustment dynamics (MAD)2: Consider two-population dynamics of

the form

(ẋ, ẏ) = (f1(x,y, A,B), f2(x,y, A,B)) (11.2.1)

where x and y are the mean strategies in, respectively, population 1 and

population 2, and where the function f = (f1, f2) : RI×J → RI×J is Lipschitz

continuous and such that the state space ∆(I) × ∆(J) is positively invari-

ant. Such dynamics may be innovative (initially absent pure strategies may

appear). A definition is now needed:

Definition. (x,y) is a selection equilibrium if xi > 0 ⇒ (Ay)i = x ·Ay and

yj > 0 ⇒ (Bx)j = y ·Bx.3

The dynamics we consider are required to be adaptive in the sense that,

for all (x,y) ∈ ∆(I)×∆(J),

ẋ ·Ay ≥ 0 , ẏ ·Bx ≥ 0 (11.2.2)

2The class of myopic adjustment dynamics is itself a variant of Friedman’s (1991) weak
compatible dynamics.

3Thus, (x,y) is a selection equilibrium if and only if it is a Nash equilibrium or a Nash
equilibrium of one of the “subgames” obtained by eliminating some of the pure strategies;
the selection equilibria are exactly the rest-points of the replicator dynamics.
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with at least one strict inequality whenever (x,y) is not a selection equilib-

rium. The condition ẋ · Ay ≥ 0 means that population 1 evolves towards

(weakly) better replies to the current mean strategy of players 2.

Finally, and this is the main difference with (Swinkels, 1993), the dynam-

ics is required to evolve smoothly with the game. That is, the functions f1, f2

in (11.2.1) are jointly continuous in (x,y,A,B).

Definition A dynamics (11.2.1) is a myopic adjustement dynamics∗ (hence-

forth, MAD∗) if it satisfies the above requirements.

An important subclass of dynamics satisfying (11.2.2) is the class of

weakly sign preserving (WSP) dynamics (Ritzberger and Weibull, 1995). A

dynamics is WSP if the proportion of each strategy earning less than average

decreases:

(xi > 0 and (Ay)i < x·Ay) ⇒ ẋi < 0 ; (yj > 0 and (Bx)j < y·Bx) ⇒ ẏj < 0

Before stating the results, more definitions are needed: let IN ⊂ I denote

the set of pure strategies of player 1 belonging to the support of at least one

Nash equilibrium:

IN = {i ∈ I, ∃NE(x,y), xi > 0}

(where “∃NE” means “there exists a Nash equilibrium”). Let N(x) =∑
i∈IN

xi. Define JN ⊂ J and N(y) similarly. Our main result is the fol-

lowing:

Theorem 11.2.1. For any MAD∗ and every α > 0, there exists an open

set of (bimatrix) games for which, from an open set of initial conditions,

lim sup[N(x(t)) + N(y(t))] ≤ α, (and lim[N(x(t)) + N(y(t))] = 0 if the

dynamics is WSP).

The analogue of theorem 11.2.1 for single-population dynamics is also

obtained: For symmetric games (I = J and A = B), we may consider

single-population dynamics of the form ẋ = f(x, A), call MAD∗ the single-

population dynamics satisfying the analogue of the above requirements, and

let N(x) =
∑

i∈IN
xi denote the proportion of strategies used in Nash equi-

librium. We then have:
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Theorem 11.2.2. Within the set of two-player symmetric games, for any

single-population MAD∗ and every α > 0, there exists an open set of games

for which, from an open set of initial conditions, lim sup N(x(t)) ≤ α (and

lim N(x(t)) = 0 if the dynamics is WSP).

11.3 Proof

The proof combines ideas of (Hofbauer and Sigmund, 1998, section 8.6) show-

ing that cycling behaviour occurs in every MAD∗ with the method used in

chapter 10 to build games in which all strategies used in equilibria are elimi-

nated. Crucial to our proof is the fact that, in games with identical interests

(A = BT ) and under any MAD, the mean payoff increases along the trajec-

tory:

Lemma 11.3.1. If B = AT then, for any MAD∗, the mean-payoff P (x,y) =

x ·Ay = y ·Bx satisfies d
dt

P (x(t),y(t)) ≥ 0, with strict inequality whenever

(x(t),y(t)) is not a selection equilibrium.

Proof. Let p(t) := x(t)·Ay(t). We have: ṗ = ẋ·Ay+x·Aẏ = ẋ·Ay+ẏ·ATx.

Since B = AT it follows that ṗ = ẋ ·Ay + ẏ · Bx. The result now follows

from (11.2.2).

The sole use of condition (11.2.2) is to derive lemma 11.3.1. Thus, the

above results also hold for any dynamics that does not satisfy (11.2.2) but

for which lemma 11.3.1 holds.4

Consider the family of 6× 6 symmetric games with payoff matrix:

0 ε −1 −1 0 −2/5

0 0 ε −1 −1 −2/5

−1 0 0 ε −1 −2/5

−1 −1 0 0 ε −2/5

ε −1 −1 0 0 −2/5

−2/5 + ε −2/5 + ε −2/5 + ε −2/5 + ε −2/5 + ε −2/5 + ε


(11.3.1)

Denote this game by Gε and its payoff matrix (11.3.1) by Aε. Since the game

is symmetric, Aε is the payoff matrix of both players. The 5×5 game obtained

4This would be the case for instance if, instead of requiring the nonnegativity of both
ẋ ·Ay and ẏ ·Bx, we required a form of “aggregate adaptiveness”: that the sum ẋ ·Ay+
ẏ ·Bx be nonnegative (and positive if (x,y) is not a selection equilibrium).
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by eliminating the sixth strategy is a variant of game (8.24) in (Hofbauer

and Sigmund, 1998). For ε > 0, it has a unique Nash equilibrium5,6: the

symmetric equilibrium in which both players play (1
5
, 1

5
, 1

5
, 1

5
, 1

5
), with payoff

(−2 + ε)/5. Together with proposition 11.6.1 in the appendix, this implies

that for ε > 0, game (11.3.1) has a unique Nash equilibrium: the symmetric,

strict Nash equilibrium (6, 6). Note that there are no nonsymmetric Nash

equilibria.

For ε = 0, the game (11.3.1) is a game with identical interests. Let

P0(x,y) = x ·A0y

denote the mean payoff. The maximal value of P0 is 0. Furthermore (proof

omitted),

Lemma 11.3.2. There are no selection equilibria (x,y) with −2
5

< P0(x,y) <

0.

Together with lemma 11.3.1, this implies that if the mean payoff is ini-

tially greater than −2/5 then it increases monotonically to 0. Therefore,

the solution (x(t),y(t)) converges to {(x,y) : P0(x,y) = 0}. It follows that

x6(t) + y6(t) → 0. If we perturb the game, then x6(t) + y6(t) need not go to

zero, but it will still get very low from an open set of initial conditions: let

||A|| = maxi,j |aij|.

Proposition 11.3.3. For every α > 0, there exists ε̄ > 0 such that, for all

(6 × 6 bimatrix) games with payoff matrices A,B such that ||A − A0|| <

ε̄, ||B − A0|| < ε̄, and for every initial condition (x(0),y(0)) such that

P0(x(0),y(0)) > −2
5

+ α,

lim sup(x6(t) + y6(t)) ≤ α

and lim(x6(t) + y6(t)) = 0 if the dynamics is WSP.

Proof. This follows from the fact that for games sufficiently close to G0,

the function P0 is still a Lyapunov function outside a neighbourhood of the

5In contrast, the game (8.24) in (Hofbauer and Sigmund, 1998) had a unique symmetric
equilibrium but several Nash equilibria, including Pareto-efficient ones, which is why we
need to modify it.

6We omit the proof, as we found no other than checking all the different possible
supports.
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selection equilibria of G0. More precisely, for α > 0, let Kα denote the

compact set:

Kα =

{
(x,y) ∈ ∆(I)×∆(J) : −2

5
+ α ≤ P0(x,y) ≤ − α

10

}
In the game G0, at every point in Kα, the mean payoff P0(x,y) is strictly

increasing:

∀(x,y) ∈ Kα, f1(x,y,A0,A0) ·A0y + f2(x,y,A0,A0) ·A0x > 0

By compactness of Kα and continuity of f1 and f2, we actually have:

∃β > 0,∀(x,y) ∈ Kα, f1(x,y,A0,A0) ·A0y + f2(x,y,A0,A0) ·A0x > β

Since f1 and f2 are jointly continuous7 in (x,y,A,B), it follows that there

exists ε̄ > 0 such that for all payoff matrices A,B with ||A − A0|| < ε̄,

||B−A0|| < ε̄,

∀(x,y) ∈ Kα, f1(x,y,A,B) ·A0y + f2(x,y,A,B) ·A0x > 0 (11.3.2)

That is, as long as the solution is in Kα, P0(x,y) strictly increases along

solutions of the perturbed dynamics. This implies that for every initial con-

dition (x,y) such that P0(x,y) > −2/5 + α, the solution (x(t),y(t)) enters

the set {(x,y) : P0(x,y) > −α/10} and stays there forever.

Fix payoff matrices A and B such that ||A−A0|| < ε̄ and ||B−A0|| < ε̄.

We have:

P0(x,y) ≤ ε̄− 1

5
(x6 + y6)

Therefore, provided that ε̄ ≤ α/10,(
P0(x,y) ≥ − α

10

)
⇒ (x6 + y6 ≤ α)

It follows that if P0(x(0),y(0)) > −2/5 + α then lim sup(x6(t) + y6(t)) ≤ α.

Finally, note that if P0(x,y) > −α/10 then, (provided that α and ε̄ are

chosen small enough), the sixth strategy of player k ∈ {1, 2} earns strictly

less than the mean payoff in population k. It follows that if the dynamics is

WSP and P0(x(0),y(0)) > −2/5 + α then x6(t) + y6(t) → 0.

7This is the only use of the joint continuity of f1 and f2.



11.4. OTHER EXAMPLES 213

We are now in a position to prove theorems 11.2.1 and 11.2.2:

Proof of theorem 11.2.1. Fix α > 0. Recall that for ε > 0, the game Gε

has a unique Nash equilibrium: (6, 6). Since the set of bimatrix games with

a unique Nash equilibrium is open (Jansen, 1981) and since (6, 6) is a strict

equilibrium, it follows that there is a neighborhood8 of Gε in which every

game has a unique Nash equilibrium: (6, 6). Since every neighboorhood of

G0 contains a neighborhood of some Gε, it follows from proposition 11.3.3

that there exists an open set of games for which the unique Nash equilibrium

is (6, 6) but, from every initial condition (x,y) with P0(x,y) > −2/5 + α,

lim sup(x6(t) + y6(t)) ≤ α (and lim(x6(t) + y6(t)) = 0 if the dynamics is

WSP).

Proof of theorem 11.2.2: the orbits of the single-population dynamics

ẋ = f(x,A) correspond to the orbits of the two-population dynamics (ẋ, ẏ) =

(f(y,A), f(x,A)) for symmetric initial conditions (x(0) = y(0)). Therefore,

since the game Gε is symmetric, it follows from the above proof that there

exists an open set of symmetric games for which the unique Nash equilibrium

is (6, 6) but, from every initial condition x with P0(x,x) = x·A0x > −2/5+α,

lim sup x6(t) ≤ α (and lim x6(t) = 0 if the dynamics is WSP).

11.4 Other examples

In the previous section, we considered a game with a relatively high num-

ber of strategies to prove theorem 11.2.1 and theorem 11.2.2 simultaneously.

Here we provide three smaller dimensional examples: the first, based on game

(8.24) of (Hofbauer and Sigmund, 1998), is adapted to single-population dy-

namics; the second and third ones are based on games designed by Josef

Hofbauer and Jeroen Swinkels (personal communication). They are respec-

tively adapted to two-population and three-population dynamics. All proofs

are similar to the proof of theorem 11.2.1 and therefore omitted.

8A set of (6 × 6) games is a neighborhood of the game (A,B) if, for some α > 0, this
set contains every game (A′, B′) with ||A−A′|| < α, ||B −B′|| < α
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11.4.1 Single-population dynamics

Consider the following symmetric two-player game Gε:
0 0 −1 ε −1/4

ε 0 0 −1 −1/4

−1 ε 0 0 −1/4

0 −1 ε 0 −1/4

−1/4 + ε −1/4 + ε −1/4 + ε −1/4 + ε −1/4 + ε

 (11.4.1)

For ε > 0, this game has a unique symmetric Nash equilibrium: the strict

Nash equilibrium (5, 5). This follows from proposition 11.6.1 in the appendix

and from the fact that the underlying 4 × 4 game has a unique symmetric

Nash equilibrium: (1
4
, 1

4
, 1

4
, 1

4
), whose payoff −1+ε

4
is less that −1

4
+ ε (see

Hofbauer and Sigmund, 1998, section 8.6, for a more detailed presentation

of this 4× 4 game). The mean payoff in the game G0 is

P0(x) := −2(x1x3 + x2x4)− (2x6 − x2
6)/4

Proposition 11.4.1. For every single-population MAD∗ and every α > 0,

there exist ε > 0 and a neighborhood of Gε such that, for every game in

this neighborhood, the unique symmetric Nash equilibrium is (5, 5) but, for

every initial condition x with P0(x) ≥ −1
4

+ α, we have lim sup x5 ≤ α, and

lim x5 = 0 if the dynamics is WSP.

11.4.2 Two-population dynamics

Consider the following two-player game Gε:
−1,−1 ε, 0 0, ε −1/3,−1/3 + ε

0, ε −1,−1 ε, 0 −1/3,−1/3 + ε

ε, 0 0, ε −1,−1 −1/3,−1/3 + ε

−1/3 + ε,−1/3 −1/3 + ε,−1/3 −1/3 + ε,−1/3 −1/3 + ε,−1/3 + ε


(11.4.2)

For ε > 0, this game has a unique Nash equilibrium: the strict Nash equilib-

rium (4, 4). This follows from proposition 11.6.1 in the appendix and from

the fact that the underlying 3 × 3 game has a unique Nash equilibrium:

(1
3
, 1

3
, 1

3
), whose payoff −1+ε

3
is less that −1

3
+ ε.

The mean payoff in the game G0 is

P0(x,y) = −(x1y1 + x2y2 + x3y3)−
1

3
(x6 + y6 − x6y6)
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Proposition 11.4.2. For every MAD∗ and every α > 0, there exists ε > 0

and a neighborhood of Gε such that, for every game in this neighborhood, the

unique Nash equilibrium is (4, 4) but, for every initial condition (x,y) with

P0(x,y) ≤ −1
3
+α, we have lim sup(x4 + y4) ≤ α, and lim(x4 + y4) = 0 if the

dynamics is WSP.

Note that the game (11.4.2) is symmetric. However, for our purposes,

it is not adapted to single-population dynamics as there is no mixed strat-

egy x such that P0(x,x) > −1/3. Actually, in the game Gε, under any

sign-preserving dynamics (Ritzberger and Weibull, 1995), the unique Nash

equilibrium (4, 4) is globally asymptotically stable. This is because the payoff

of the fourth strategy is always greater than the mean payoff.

11.4.3 A three-player game(
−1,−1,−1 0, 0, ε

0, ε, 0 ε, 0, 0

) (
ε, 0, 0 0, ε, 0

0, 0, ε −1,−1,−1

)
(11.4.3)

The 2×2×2 game (11.4.3) has a unique Nash equilibrium, in which each

player plays (1/2, 1/2), with payoff −(1 + ε)/4. Consider the 3× 3× 3 game

Gε with the following payoffs (for pure strategies): if every player plays one

of his two first strategies, then the payoffs are as in (11.4.3); if one of the

players plays his third strategy, then the payoff of each player is (−1/4)+mε

where m is the number of players playing strategy 3. Let (x,y, z) denote

the vector of mean strategies and P0(x,y, z) the mean payoff in G0. Define

three-population MAD∗ by replacing (11.2.2) by its analogue for three-player

games (see equation (1.1) in (Swinkels, 1993)).

Proposition 11.4.3. For every MAD∗ and every α > 0, there exists ε > 0

and a neighborhood of the game Gε such that, for every game in this neigh-

borhood, the unique Nash equilibrium is (3, 3, 3) but for every initial condi-

tion (x,y, z) with P0(x,y, z) > −1
4

+ α, we have lim sup(x4 + y4) ≤ α, and

lim(x4 + y4) = 0 if the dynamics is WSP.9

9The proof of theorem 11.2.1 relies on the openness of the set of bimatrix games with
a unique Nash equilibrium. This is to be replaced here by the fact that the set of n-
player games with a unique, strict Nash equilibrium is open. This follows from the upper
semi-continuity of the Nash equilibrium correspondence, as shown in chapter 3, corollary
3.3.1.
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11.5 Discussion

Chapter 10 dealt with elimination of all strategies used in correlated equilib-

ria, while this chapter only studies elimination of all strategies used in Nash

equilibria. From this point of view, the results of this chapter are weaker. On

the other hand, the dynamics considered in this chapter are more general:

In chapter 10, the results on monotonic or WSP dynamics is obtained under

the additional assumption that initially absent strategies do not appear: an

assumption which, as discussed by Swinkels (1993), is hardly satisfactory in

an economical context. Here this assumption is relaxed. Furthermore, the

results of this chapter are not restricted to single-population dynamics but

hold for multi-population dynamics as well10.

Up to our knowledge the following problems remain open:

1. whether for all MAD∗ (or all WSP dynamics), there exists some games

for which all strategies used in correlated equilibrium are (almost) eliminated

along some interior solutions;

2. whether for some two-population MAD∗, there exists an open set of

games for which, from an open set of initial conditions, all strategies used in

correlated equilibrium are eliminated.

11.6 Appendix: A class of games with a unique

equilibrium

In this appendix, we prove a general result implying that the games Gε

considered in this chapter have a unique Nash equilibrium (symmetric Nash

equilibrium, in the case of game (11.4.1)). Consider a n-player finite game

G = {I, (Si), (Ui)}: I is the set of players, Si the set of pure strategies

of player i and Ui : S = ×k∈ISk → R its utility function. As usual, let

S−i := ×j 6=iSj.

For each player i, fix ti in Si and assume that Ŝi := Si\{ti} is nonempty.

Let Ŝ = ×i∈I Ŝi and let Ĝ denote the game obtained by restricting the players

to their strategies in Ŝ. For instance, if G is the two-player game (11.3.1) and

10The results of chapter 10 show that, for a large class of two-population dynamics,
there exist an open set of symmetric games for which, for an open set of symmetric initial
conditions; but it does not show that this occurs on a open set of games nor from an open
set of initial conditions.
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if, for i = 1, 2, the strategy ti is the sixth strategy, then Ĝ is the underlying

5× 5 game.

Proposition 11.6.1. (i) Assume that no Nash equilibrium of Ĝ induces

a Nash equilibrium of G, and that if at least one player j plays tj (with

probability 1), then every player i 6= j is indifferent between his strategies in

Ŝi and has a strict incentive to play ti. Formally, letting NE(Ĝ) denote the

set of Nash equilibria of Ĝ:

∀σ̂ ∈ NE(Ĝ),∃i ∈ I, Ui(ti, σ̂−i) > Ui(σ) (11.6.1)

∀i,∀s−i ∈ S−i\Ŝ−i,∀(si, s
′
i) ∈ Ŝi × Ŝi, Ui(s) = Ui(s

′
i, s−i) < Ui(ti, s−i)

(11.6.2)

Then G has a unique Nash equilibrium: the strict equilibrium t = (ti)i∈I .

(ii) For symmetric games, the same result holds if we replace everywhere

Nash equilibrium by symmetric Nash equilibrium.

Proof. We prove (i). The proof of (ii) is similar. First, the fact that t is

a strict Nash equilibrium follows from (11.6.2). Second, let σ be a Nash

equilibrium of G. If for some j, σj = tj, then it follows from (11.6.2) and

from the fact that σ is a Nash equilibrium that σ = t. Otherwise, for every

i, Ki :=
∑

si∈Ŝi
σi(si) is positive. Let σ̂i be the mixed strategy of player i in

the game Ĝ defined by

∀si ∈ Ŝi, σ̂i(si) = σi(si)/Ki

Let K−i :=
∏

j 6=i Kj. Fix a couple of pure strategies (si, s
′
i) in Ŝi × Ŝi. We

have:

Ui(si, σ̂−i)− Ui(s
′
i, σ̂−i) =

∑
s−i∈Ŝ−i

σ−i(s−i)

K−i

[Ui(s)− Ui(s
′
i, s−i)] (11.6.3)

Furthermore, by (11.6.2), Ui(s) = Ui(s
′
i, s−i) for all s−i /∈ Ŝ−i. It follows that

Ui(si, σ−i)− Ui(s
′
i, σ−i) =

∑
s−i∈Ŝ−i

σ−i(s−i)[Ui(s)− Ui(s
′
i, s−i)] (11.6.4)

If si belongs to the support of σ̂i, then it belongs to the support of σi so that

Ui(si, σ−i)−Ui(s
′
i, σ−i) ≥ 0 (because σ is a Nash equilibrium). Together with

(11.6.3) and (11.6.4), this implies that if σ̂i(si) > 0 then

Ui(si, σ̂−i)− Ui(s
′
i, σ̂−i) = K−i[Ui(si, σ−i)− Ui(s

′
i, σ−i)] ≥ 0
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It follows that σ̂ := (σ̂i)i∈I is a Nash equilibrium of Ĝ. Therefore, by (11.6.1),

there exists a player i such that Ui(ti, σ̂−i) > Ui(σ̂) hence

Ui(ti, σ̂−i) > Ui(σi, σ̂−i) (11.6.5)

Let

C :=
∑
si∈Si

∑
s−i /∈Ŝ−i

σ(s)[Ui(ti, s−i)− Ui(s)]

Note that C is nonnegative by (11.6.2). Therefore,

Ui(ti, σ−i)− Ui(σ) = K−i [Ui(ti, σ̂−i)− Ui(σi, σ̂−i)] + C > C ≥ 0

where the strict inequality follows from (11.6.5). This implies Ui(ti, σ−i) −
Ui(σ)) > 0, contradicting the assumption that σ is a Nash equilibrium. This

completes the proof.



Chapitre 12

Elimination of All Strategies in

the Support of Nash Equilibria

From Almost All Initial

Conditions

Abstract

We show that under the replicator dynamics and the best-response
dynamics, all strategies in the support of at least one Nash equilibrium
may be eliminated from almost all initial conditions. For the best-
response dynamics, this holds for an open set of games.

12.1 Introduction

In the previous chapters, examples were given of games for which, for many

dynamics and from an open set of initial conditions, all strategies in the

support of the unique Nash equilibrium are eliminated. However, in these

examples, the Nash equilibrium is strict and thus asymptotically stable under

most dynamics.

This leads to the following question: are there examples of games for

which all strategies played in Nash equilibrium distributions are eliminated

for almost all initial conditions ? This chapter shows that the answer is

positive, at least for the single-population replicator dynamics (REP) and

the best response dynamics (BR). For BR, we even exhibit an open set of

219
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games for which all strategies played in Nash equilibrium are eliminated from

almost all initial conditions.

Our examples are relatively high dimensional: 6 × 6 for BR and 7 × 7

for REP. The reason why, for the replicator dynamics, we need an extra-

dimension, and study only specific games instead of an open set of games,

seems purely technical: we think that our examples for the best-response

dynamics work as well for the replicator dynamics, but this does not seem so

easy to prove, as the replicator dynamics is more difficult to “control” than

the best-response dynamics.

The reason why our games are relatively high dimensional is deeper:

though we have no formal proof of this, it seems that for the single-population

replicator (or best-response) dynamics, examples of games for which all

strategies played in Nash equilibrium are eliminated from almost all initial

conditions cannot be found in games with less than 5 strategies.

The reason is twofold: first, by the folk-theorem of evolutionary game

theory (see, e.g., Weibull, 1995, prop. 4.11), if an interior trajectory of

REP of BR converges to a point, then this point is a Nash equilibrium.

Thus, we need nonconvergent trajectories, and along which, asymptotically,

only strategies that do not belong to the support of a Nash equilibrium have

positive probability. This seems to require at least three strategies not played

in Nash equilibrium. Second, the only solution for having a unique strategy

played in Nash equilibrium is to have a unique, pure Nash equilibrium. But

such a Nash equilibrium would be strict. Indeed, as already mentioned in

chapter 10:

Proposition 12.1.1. In a bimatrix game, a unique and pure Nash equilib-

rium is strict.

Proof. Every bimatrix game has a quasi-strict Nash equilibrium1 (Norde,

1999). Therefore, if a Nash equilibrium is unique, it is quasi-strict; if it is

unique and pure, it is quasi-strict and pure, hence strict.

We thus need at least two strategies played in Nash equilibrium, which

together with the three strategies not played in Nash equilibrium which

seems to be needed, make at least five strategies. Our examples for the

1With standard notations, a Nash equilibrium σ is quasi-strict if for every player i, the
pure strategies in the support of σi are the only pure best-responses to σ−i.
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best-response dynamics are 6 × 6 games; thus, there might be room for im-

provement, but not much.2

The main results are proved in section 12.2 for the best-response dynam-

ics and in section 12.3 for the replicator dynamics. Section 12.4 concludes.

Framework and notations. We study single-population dynamics in two-

player, finite symmetric games. The set of pure strategies is I = {1, 2, .., N}
and the payoff matrix is U = (uij)1≤i,j≤N . We let SN denotes the simplex of

mixed strategies. Its vertices ei, 1 ≤ i ≤ N , correspond to the pure strategies

of the game. The mean strategy at time t is denoted x(t) = (xi(t))1≤i≤N .

12.2 Best-response dynamics

The best-response dynamics (Gilboa and Matsui, 1991) is given by the dif-

ferential inclusion:

ẋ(t) ∈ BR(x(t))− x(t) (12.2.1)

where BR(x) is the set of best-responses to x:

BR(x) = {y ∈ SN : y ·Ux = max
z∈SN

z ·Ux}

A solution x(·) of the best-response dynamics is an absolutely continuous

function satisfying (12.2.1) for almost every t. In the games considered below,

there might be several solutions with the same initial condition. This explains

the way our first result is phrased:

Theorem 12.2.1. There exists an open set of 6 × 6 bimatrix games with a

unique Nash equilibrium and such that, for almost every initial condition x in

S6, there exists a solution x(t) of the best-response dynamics with x(0) = x,

along which all strategies in the support of the Nash equilibrium are elimi-

nated.

2It might be possible to design an example whose restriction to the set of strategies
played in Nash equilibrium is a 2× 2 coordination game, and whose unique Nash equilib-
rium corresponds to the mixed, unstable equilibrium of this coordination game.
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12.2.1 Intuition and steps of the proofs

The games we study are based on outward cycling Rock-Paper-Scissors (RPS)

games, i.e. 3× 3 symmetric games a1 b2 c3

c1 a2 b3

b1 c2 a3

 (12.2.2)

satisfying

bi < ai < ci for i = 1, 2, 3 and
3∏

i=1

(ai − bi) >
3∏

i=1

(ci − ai) (12.2.3)

As already mentioned in chapter 10, these games have a unique, completely

mixed Nash equilibrium. Furthermore, for every initial condition x different

from the Nash equilibrium, there is a unique solution x(t) to (12.2.1) with

initial condition x and it converges to the so called Shapley triangle:

ST = {x ∈ S3 :

[
max
1≤i≤3

(Ux)i

]
−
∑

1≤i≤3

aixi = 0

See (Gaunersdorfer and Hofbauer, 1995).

Consider the following 6× 6 symmetric game G:

0 −3 1 −1 −1 −1

1 0 −3 −1 −1 −1

−3 1 0 −1 −1 −1

−4 −4 3 0 −5 1

−1 −1 −3 1 0 −5

−1 −1 −3 −5 1 0


(12.2.4)

Let G123 (resp. G456) denote the 3× 3 game obtained from G by restricting

the players to their three first (resp. last) strategies. Both G123 and G456

are outward cycling RPS games with cyclic symmetry. Their unique Nash

equilibrium correspond in the whole game to:

n123 =

(
1

3
,
1

3
,
1

3
, 0, 0, 0

)
for G123 and to

n456 =

(
0, 0, 0,

1

3
,
1

3
,
1

3

)
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for G456. The payoffs are chosen so that (n123,n123) be a Nash equilibrium

of (12.2.4) but not (n456,n456). Actually,

Proposition 12.2.2. The game (12.2.4) has a unique Nash equilibrium:

(n123,n123).

Proof. See next section.

Proposition 12.2.2 does not only state that (n123,n123) is the unique sym-

metric Nash equilibrium, but also that there are no asymmetric Nash equi-

libria. Nevertheless, we will show that from almost all initial conditions,

strategies 1, 2 and 3 are eliminated. More precisely, let ST456 denote the

Shapley triangle

ST456 =

{
x : x4 + x5 + x6 = 1 and max

4≤i≤6
(Ux)i = 0

}
(12.2.5)

Proposition 12.2.3. For every mixed strategy x in S6 to which there is

a unique best-response, there exists a solution x(t) of the best response-

dynamics (12.2.1) with initial condition x(0) = x which converges to the

Shapley triangle ST456; in particular, x1(t)+x2(t)+x3(t) → 0. Furthermore,

if there is not time T such that strategies 1, 3 and 4 are all best-responses to

x(T ), then this is the unique solution to (12.2.1) with initial condition x.

This will be proved in section 12.2.3. The intuition is that, while the

best-response cycle of G456: 4 → 5 → 6 → 4 is still a best-response cycle

in the whole game, the best-response cycle of G123: 1 → 2 → 3 → 1 is

perturbed by the fact that, in the whole game, the unique best-response to

strategy 3 is strategy 4. More precisely, let

ST123 =

{
x : x1 + x2 + x3 = 1 and max

1≤i≤3
(Ux)i = 0

}
(12.2.6)

denote the Shapley triangle of the RPS game G123. Let q denote the vertex

of this triangle at which strategies 1 and 3 earn the same payoff, i.e.

q = (1/13, 3/13, 9/13, 0, 0, 0)

The reason why the Shapley triangle ST123 does not attract any trajectory

is that, in the neighborhood of q, the unique best-response is strategy 4.
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Taken together, propositions 12.2.2 and 12.2.3 show that in the game

with payoffs (12.2.4), from almost every initial condition, there exists a so-

lution of the best-response dynamics along which all strategies used in Nash

equilibrium are eliminated. To prove theorem 12.2.1, it only remains to show

that this result is robust to perturbations of the game:

Proposition 12.2.4. There exists a neighborhood of (12.2.4) in which every

game has a unique Nash equilibrium and its support is {1, 2, 3} × {1, 2, 3}.

Proof. This follows directly from proposition 12.2.2 and lemma 3.2.3 in chap-

ter 3.

Proposition 12.2.5. There exists a neighborhood of the game (12.2.4) such

that proposition 12.2.3 holds for every game in this neighborhood, up to re-

placement of (Ux)i by (Ux)i −
∑

i∈I uiixi in the definition of the Shapley

triangle (12.2.5).

Proof. See section 12.2.3.

12.2.2 Proof of proposition 12.2.2

We begin with a general result related to proposition 11.6.1 of chapter 11

and which will be used several times: let I ′ ⊂ I. For x in SN , define x′ ∈ RN

by x′i = xi if i ∈ I ′ and x′i = 0 otherwise. Let x′′ = x − x′. Finally, let

x(I ′) =
∑

i∈I′ xi. Define y′, y′′ and y(I ′) similarly.

Lemma 12.2.6. Let (x,y) be a Nash equilibrium. If x(I ′)y(I ′) > 0 and if

∀i ∈ I ′,∀j ∈ I ′, [(Uy′′)i = (Uy′′)j and (Ux′′)i = (Ux′′)j] (12.2.7)

then (x′,y′) induces an (unnormalized) Nash equilibrium of the game re-

stricted to I ′ × I ′.

Proof. Let i ∈ I ′. For every j in I ′, by (12.2.7), (Uy)i − (Uy)j = (Uy′)i −
(Uy′)j. If x′i > 0, then xi > 0, hence, since x is a best-response to y,

(Uy)i ≥ (Uy)j for every j in I; therefore, for every j in I ′, (Uy′)i ≥ (Uy′)j.

Similarly, if y′i > 0, then for every j in I ′, (Ux′)i ≥ (Ux′)j. Therefore,

(x′,y′) induces an (unnormalized) Nash equilibrium of the game restricted

to I ′ × I ′.
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We are now ready to prove proposition 12.2.2: let (x,y) be a Nash equi-

librium of (12.2.4) and note that:

(i) n456 is strictly dominated by n123

(ii) x4x5x6 = 0 and by symmetry y4y5y6 = 0.

Indeed, if x4x5x6 > 0, then strategies 4, 5 and 6 are all best-responses to y,

hence so is n456. But this cannot be due to (i).

(iii) If y1 = y2 = y3 = 0, then x1 + x2 + x3 > 0

Indeed, if for every i in {1, 2, 3}, xi = yi = 0, then x and y have support

in {4, 5, 6}, hence must induce a Nash equilibrium of the game restricted to

{4, 5, 6} × {4, 5, 6}. This implies that x = y = n456, which contradicts (ii).

(iv) y1 + y2 + y3 > 0 and by symmetry x1 + x2 + x3 > 0

Assume by contradiction that y1 = y2 = y3 = 0. It follows that

∀i ∈ {1, 2, 3}, (Uy)i = −1 < 0 (12.2.8)

Furthermore, due to (ii), y has support in {4, 5}, {5, 6} or {4, 6}. In any

case, there exists i in {4, 5, 6} such that (Uy)i ≥ 0. Together with (12.2.8),

this implies that strategies 1, 2 and 3 are not best-responses to y, hence

x1 = x2 = x3 = 0. But since y1 = y2 = y3 = 0, this contradicts (iii).

(v) x1 = x2 = x3 and y1 = y2 = y3.

Let x′ = (x1, x2, x3, 0, 0, 0) and x′′ = x − x′ = (0, 0, 0, x4, x5, x6). Define y′

and y′′ symmetrically. For every i and j in {1, 2, 3}, we have (Ux′′)i = (Ux′′)j

and (Uy′′)i = (Uy′′)j. Therefore, if follows from (iv) and from lemma 12.2.6

that (x′,y′) is an unnormalized Nash equilibrium of the game restricted to

{1, 2, 3} × {1, 2, 3}. Therefore x and y are both proportional to n123. The

result follows.

(vi) If x4 + x5 + x6 > 0 then y4 + y5 + y6 = 0.

Let x′ = (0, 0, 0, x4, x5, x6) and x′′ = x − x′ = (x1, x2, x3, 0, 0, 0) (in order

to be consistent with the notations of lemma 12.2.6, the vector denoted x′′

(resp. x′) in the proof of (v) is now denoted x′ (resp. x′′)). Similarly, let

y′ = (0, 0, 0, y4, y5, y6) and y′′ = y − y′. Against n123, every strategy i in

{4, 5, 6} earns the same payoff: −5/3. Therefore it follows from (v) that for

every i and j in {4, 5, 6}, we have (Ux′′)i = (Ux′′)j and (Uy′′)i = (Uy′′)j.

Therefore, by lemma 12.2.6, if x4 + x5 + x6 > 0 and y4 + y5 + y6 > 0 then x′

and y′ are proportional to n456, hence x4x5x6 > 0, which contradicts (ii).

(vii) x4 + x5 + x6 = 0

Otherwise, by (vi), y4 + y5 + y6 = 0. But then, by (v), y = n123. Therefore,
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strategies 4, 5 and 6 are not best-responses to y, hence x4 = x5 = x6 = 0.

We now conclude: it follows from (vii) that x4 = x5 = x6 = 0 and, by

symmetry, y4 = y5 = y6 = 0. Therefore, by (v), x = y = n123. It follows

that the only Nash equilibrium of (12.2.4) is (n123,n123).

12.2.3 Proof of propositions 12.2.3 and 12.2.5

It suffices to prove proposition 12.2.5 as it is more general than proposition

12.2.3. The proof relies on the following properties, which hold for any game

in a sufficiently small neighborhood of the game with payoffs (12.2.4):

(a) for every i ∈ {1, 2, 4, 5} and every j /∈ {i, i+1}, uji < uii < ui+1,i ; for

every j /∈ {6, 4}, uj6 < u66 < u46 ; for every j /∈ 1, 3, 4, uj3 < u33 < u13 < u43

(b) For any i in I and any j such that uji > uii, in the game restricted

to {i, j} × {i, j}, strategy i is strictly dominated.3

(c) The Rock-Paper-Scissors games on {1, 2, 3}×{1, 2, 3} and on {4, 5, 6}×
{4, 5, 6} are outward cycling.

(d) Let ST123 denote the Shapley triangle

ST123 =

{
x : x1 + x2 + x3 = 1 and max

1≤i≤3
[(Ux)i]−

∑
i∈I

uiixi = 0

}
(12.2.9)

denote the Shapley triangle of the RPS game G123. Let q denote the vertex

of this triangle at which strategies 1 and 3 earn the same payoff:

q1 + q2 + q3 = 1 and (Uq)1 = (Uq)3 =
∑
i∈I

uiiqi (12.2.10)

The unique best-reply to q is strategy 4.

Finally, we will use the following version of the improvement principle

(Monderer and Sela, 1997):

Lemma 12.2.7 (Improvement principle). Assume that BR(x(T )) = {ei},
and let T ′ be the first time greater than T such that strategy i is not the only

best-response to x(t); if strategy j is a best-reply to x(T ′) then uji > uii.

Proof. See chapter 10, lemma 10.9.2.

3This is actually a consequence of (a).
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We are now in a position to prove proposition 12.2.5. We proved much

as in chapter 10, proof of proposition 10.9.1. Let PBR(x) := {i ∈ I, ei ∈
BR(x)} denote the set of pure best-responses to x. Recall that we only

consider initial conditions to which there is a unique best-reply. There are

two cases:

Case 1: if PBR(x(0)) ∈ {4, 5, 6}. Let us assume for concreteness that

PBR(x(0)) = {4}. It follows that x(t) must point towards e4 for some time.

Let T be the first positive time at which strategy 4 is not the unique best-

response (T is finite as strategy 4 is not a best-response to itself). Due to the

improvement principle and to property (a), the pure best-replies to x(T ) must

be strategies 4 and 5. Thus, the solution will then point towards the edge

[e4, e5]. But, by property (b), strategy 4 is strictly dominated by strategy 5

in the game restricted to {4, 5} × {4, 5}. It follows that, immediately after

time T , x(t) must point towards e5, so that strategy 5 becomes the unique

best-reply.4

Iterating the argument, we see that the solution will point towards e5 till

6 becomes a best-response, then it will point towards e6, till 4 becomes a

best-response, then it will points towards e4, so that 4 becomes the unique

best-response again, etc. To make sure that this cycling movement goes on

for ever, we need to check that the times when the direction of x(t) change

do not accumulate. This can be done exactly as in chapter 10, part 2, proof

of proposition 10.9.1; the proof relies on the fact that the RPS game on

{4, 5, 6} × {4, 5, 6} is outward cycling.

It follows from the above description of the dynamics that, if PBR(x(0) ∈
{4, 5, 6}, then there is a unique solution to (12.2.1) with initial condition x(0)

and that strategies 1, 2 and 3 never become best-responses; therefore, x1, x2

and x3 decrease exponentially to zero. Furthermore, for almost all t ≥ 0,

there exists i in {4, 5, 6} such that BR(x(t)) = {ei} and ẋ(t) = ei − x(t).

The function

v(t) := max
4≤i≤6

[
(Ux(t))i −

∑
i∈I

uiixi

]
then satisfies

v̇ = −v

(the computation is detailed in chapter 10, equation (10.9.4))

4Here and in what follows, we say that a property holds immediately after (before)
some time T if it holds on an interval ]T, T + τ [ (]T − τ, T [) with τ > 0.
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It follows that v(t) converges to zero, hence that x(t) converges to the

Shapley triangle ST456.

Case 2: if PBR(x(0)) ∈ {1, 2, 3}. As long as none of the strategies 4,

5 and 6 becomes a best-response, the dynamics may be described as above.

That is, assuming for concreteness that PBR(x(0)) = {1}, the solution will

first points towards e1, then towards e2, then towards e3, etc. If none of the

strategies 4, 5 and 6 ever becomes a best-response, then x(t) converges to

the Shapley triangle ST123 and visits arbitrarily small neighborhood of the

vertex q defined in the statement of property (d). This cannot be, because,

by property (d), in the neighborhood of q the unique best-reply is strategy

4, hence 4 would become a best-response (contradicting the assumption that

none of the strategies 4, 5 and 6 ever becomes a best-response).

Therefore, there exists a time at which one of the strategies 4, 5 or 6

becomes a best-response. Let T be the smallest such time. Due to the

improvement principle and to the behavior of the dynamics before time T , it

must be that immediately before time T the unique best-response is strategy

3, and that the pure best-response to x(T ) are either (subcase 2.1) strategies

3 and 4, or (subcase 2.2) strategies 1, 3 and 4.

In the first subcase, since in the game restricted to {3, 4}×{3, 4}, strategy

3 is strictly dominated, it follows that immediately after time T the solution

points towards e4 so that strategy 4 becomes the unique best-response. We

are then back to case 1. In the second subcase, the solution to (12.2.1) ceases

to be uniquely defined; however, since e4 induces a Nash equilibrium of the

game restricted to {1, 3, 4} × {1, 3, 4}, it follows that there exists a solution

to (12.2.1) which points to e4 immediately after time T , so that strategy 4

becomes the unique best-response. For this solution, we are back to case 1

and thus this solution converges to ST567.

12.3 Replicator dynamics

We showed in the previous section that, for the best-response dynamics, there

exists games for which, from almost all initial conditions, all strategies used

in Nash equilibrium are eliminated. We now show that this is also true of

the replicator dynamics:

ẋi(t) = xi(t) [(Ux(t))i − x(t) ·Ux(t)] (12.3.1)
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12.3.1 Example and statement of the result

Consider for instance the following 7× 7 symmetric game:

0 −1 ε −10 −1/3 + ε −1/3 + ε −1/3 + ε

ε 0 −1 −10 −1/3 + ε −1/3 + ε −1/3 + ε

−1 ε 0 −10 −1/3 + ε −1/3 + ε −1/3 + ε

−2 −2 2 0 −1/3 −1/3 −1/3

−1/3 −1/3 −1/3 10 0 −1 ε

−1/3 −1/3 −1/3 10 ε 0 −1

−1/3 −1/3 −1/3 10 −1 ε 0


(12.3.2)

with 0 < ε < 1/48. This game is similar to the game with payoffs (12.2.4).

In particular, both the three first and the three last strategies form, when

alone, a Rock-Paper-Scissors game with cyclic symmetry. Each of these Rock-

Paper-Scissors games has a unique Nash equilibrium. The corresponding

rest-points of the replicator dynamics are:

n123 =

(
1

3
,
1

3
,
1

3
, 0, 0, 0, 0

)
and

n567 =

(
0, 0, 0, 0,

1

3
,
1

3
,
1

3

)
The payoffs are chosen so that (n123,n123) be a Nash equilibrium of (12.3.2).

Actually,

Proposition 12.3.1. (n123,n123) is the unique Nash equilibrium of the game

with payoffs (12.3.2)5

Proof. See next section.

However, we will show that for almost all initial conditions, strategies

1, 2 and 3 are eliminated. The intuition is as follows: the behavior of the

replicator dynamics in RPS games is well known (see, e.g., Hofbauer and

Sigmund, 1998). In particular, for any initial condition x ∈ S7 such that

x1 + x2 + x3 = 1 and (x1, x2, x3) 6= (1/3, 1/3, 1/3), x(t) converges to

Γ123 := {x ∈ S7, x1 + x2 + x3 = 1 and x1x2x3 = 0} (12.3.3)

5There are no asymmetric Nash equilibria.
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However, in the whole game, Γ123 is not asymptotically stable because strat-

egy 4 destabilizes it in the neighbourhood of e3.
6 In contrast, in the neigh-

borhood of the vertices e5, e6 and e7, the payoffs of strategies 1 to 4 are

negative, hence less than the mean payoff. It follows (using, e.g., the tools

in (Hofbauer and Sigmund, 1998, chapter 17)) that the heteroclinic cycle7

5 → 6 → 7 → 5, i.e.

Γ567 := {x ∈ S7, x5 + x6 + x7 = 1 and x5x6x7 = 0} (12.3.4)

is asymptotically stable. Actually,

Proposition 12.3.2. For any interior initial condition x = x(0) such that8

neither x1 = x2 = x3 nor x5 = x6 = x7, the solution x(t) of the replicator

dynamics converges to Γ567.

Proof. See section 12.3.3.

The same result holds for the best-response dynamics, up to replacement

of the heteroclinic cycle Γ567 by the corresponding Shapley triangle:

ST567 := {x ∈ S7 : x5 + x6 + x7 = 1 and max
5≤i≤7

(Ux)i = 0}

More precisely,

Proposition 12.3.3. If 0 < ε ≤ 2/11 then, for any initial condition x such

that neither x1 = x2 = x3 nor x5 = x6 = x7, ALL solutions of the best-

response dynamics converge to the Shapley triangle ST567.

Proof. See section 12.3.4.

12.3.2 Proof of proposition 12.3.1

Recall the definition of n123 and n567:

n123 =

(
1

3
,
1

3
,
1

3
, 0, 0, 0, 0

)
6While not asymptotically stable, Γ123 could still attract an open set of orbits (see

Brannath, 1994; see also chapter 10, proposition 10.9.5); the reason why this is not so is
that at the point q defined as in (12.2.10), strategy 4 is the unique best-response.

7Recall that a heteroclinic cycle is a globally invariant set consisting of saddle rest-
points and saddle orbits connecting these rest-points.

8An initial condition x is interior if xi > 0 for every i in I
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and

n567 =

(
0, 0, 0, 0,

1

3
,
1

3
,
1

3

)
Let (x,y) be a Nash equilibrium of the game with payoffs (12.3.2). It

follows from lemma 12.2.6 that

Lemma 12.3.4. If

x1 + x2 + x3 > 0 and y1 + y2 + y3 > 0 (12.3.5)

then x̄ = ȳ = (1/3, 1/3, 1/3) and if

x5 + x6 + x7 > 0 and y5 + y6 + y7 > 0 (12.3.6)

then x̂ = ŷ = (1/3, 1/3, 1/3)

We now formally prove proposition 12.3.1.

Case 1: assume that (12.3.5) holds. Then, by lemma 12.3.4, y1 = y2 =

y3. Therefore (n567 − e4) ·Uy > 0, hence x4 = 0. By symmetry, y4 = 0.

Subcase 1.1. If furthermore (12.3.6) holds, then by lemma 12.3.4, y5 =

y6 = y7. Since we proved y4 = 0 and y1 = y2 = y3, it follows that y is a

convex combination of n567 and n123. Since n123 is a strictly better response

than 5, 6 and 7 both against n567 and against n123,
9

it follows that none of the strategies 5, 6, and 7 is a best-response to y.

Therefore, x5 + x6 + x7 = 0, contradicting (12.3.6).

Subcase 1.2. If (12.3.6) does not hold. Without loss of generality, as-

sume that y5 + y6 + y7 = 0. Since y4 = 0 and y1 = y2 = y3, this implies

that y = n123. Therefore, as above, none of the strategies 5, 6 and 7 is a

best-response to y. Therefore x5 + x6 + x7 = 0 which by the same argument

implies x = n123. Therefore, x = y = n123.

Case 2: assume that (12.3.5) does not hold. Without loss of generality,

assume x1 + x2 + x3 = 0. This implies that n567 is a strictly better response

to x than strategy 4. Thus, y4 = 0.

Subcase 2.1. If furthermore (12.3.6) holds, then y is a convex com-

bination of n567 and strategies 1, 2, 3. This implies that n123 is a strictly

9That is, n123 ·Un567 > ei ·Un567 and n123 ·Un123 > ei ·Un123 for any strategy i in
{5, 6, 7}.
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better response to y than either 5, 6 or 7. Therefore, x5 = x6 = x7 = 0,

contradicting (12.3.6).

Subcase 2.2. If (12.3.6) does not hold, then x5 + x6 + x7 = 0 or y5 +

y6 + y7 = 0. In the latter case, since y4 = 0, it follows that y has support in

{1, 2, 3}, hence that n123 is a strictly better response to y than either 5, 6, or

7; therefore, in any case, x5 +x6 +x7 = 0. Since we assumed x1 +x2 +x3 = 0,

it follows that x = e4. As the best-responses to 4 are strategies 5, 6 and 7, y

must have support in {5, 6, 7}. This implies that strategies 1, 2, 3 are strictly

better responses to y than strategy 4, hence x4 = 0, contradicting x = e4.

This completes the proof.

12.3.3 Proof of proposition 12.3.2

We first introduce some notations and explain the main features of the dy-

namics. We then prove proposition 12.3.2.

Notations and intuition We proceed much as in chapter 10. Let x(·) be

an interior solution of the replicator dynamics; that is, x(0) ∈ int S7, so that

x(t) ∈ int S7 for all t. For each pure strategy i in {1, 2, 3}, define x̄i(t) as the

share of strategy i at time t relative to the total share of strategies 1, 2 and

3:

x̄i :=
xi

x1 + x2 + x3

(12.3.7)

and let x̄ = (x̄1, x̄2, x̄3). For i ∈ {5, 6, 7}, define similarly:

x̂i :=
xi

x5 + x6 + x7

(12.3.8)

and let x̂ = (x̂5, x̂6, x̂7). Finally, let λ(t) := x1(t) + x2(t) + x3(t) (resp.

µ(t) = x5(t) + x6(t) + x7(t)) denote the total share of the three first (resp.

last) strategies at time t.

The evolution of x is fully described by the joint evolution of x̄, x̂, λ and

µ. The interest of such a description is that as in chapter 10, lemma 10.4.1,

the dynamics may be decomposed. That is, up to a change in velocity, x̄

(resp. x̂) follows the replicator dynamics of the Rock-Paper-Scissors game

formed by the three first (resp. last) strategies. More precisely, letting Ū

(resp. Û) denote the matrix obtained from (12.3.2) by restricting the players

to their three first (resp. last) strategies:10

10Of course, with our choice of payoffs for the game (12.3.2), it turns out that Ū = Û,
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Lemma 12.3.5. Let x(·) be an interior solution to (12.3.1). We have (time

indices suppressed):

˙̄xi = λx̄i

[
(Ūx̄)i − x̄ · Ūx̄

]
∀i = 1, 2, 3 (12.3.9)

and
˙̂xi = µx̂i

[
(Ûx̂)i − x̂ · Ûx̂

]
∀i = 5, 6, 7 (12.3.10)

Proof. The proof is the same as the proof of lemma 10.4.1 in chapter 10.

Define y(t) = (y1(t), y2(t), y3(t)) as the solution of the replicator dynam-

ics:

ẏi = yi

(
(Ūy)i − y · Ūy

)
∀i = 1, 2, 3

with initial condition y(0) = x̄(0). It follows from (12.3.9) that:

Lemma 12.3.6.

∀t ≥ 0, x̄(t) = y(τ(t))

where τ(t) is the rescaled time:

τ(t) :=

∫ t

0

λ(s)ds

Proof. By (12.3.9), y(τ(t)) and x̄(t) are solutions of the same differential

equation, which admits a unique solution through each initial condition.

It follows from lemma 12.3.6 and from the behavior of the replicator

dynamics in RPS games (see, e.g., Hofbauer and Sigmund (1998)) that:

Lemma 12.3.7. If x̄(0) 6= (1
3
, 1

3
, 1

3
) and

∫ +∞
0

λ(t)dt = +∞ then we have:

x̄1(t)x̄2(t)x̄3(t) → 0 as t → +∞. Similarly, if x̂(0) 6= (1
3
, 1

3
, 1

3
) and

∫ +∞
0

µ(t) dt =

+∞, then x̂5(t)x̂6(t)x̂7(t) → 0 as t → +∞.

Before proving proposition 12.3.2, we describe informally the behaviour

of the replicator dynamics in the game with payoffs (12.3.2). Let Γ̄ (resp.

Γ̂) denote the heteroclinic cycle of the rock-scissors-paper game with payoff

matrix Ū (resp. Û). Fix x(0) ∈ int S7 such that x̄(0) and x̂(0) are both

different from (1
3
, 1

3
, 1

3
). Assume for concreteness that x(0) is close from the

unique Nash equilibrium of the game. Initially, the payoff of strategies 4 to 7

is less than the mean payoff, hence λ increases. However, at the same time,

but this is coincidental.
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x̄ spirals outwards towards Γ̄. Eventually, x̄ stays long enough close to e3

for x4 to increase substantially. Since strategy 4 is a better reply to 4 than

1, 2 and 3, it follows that x4 keeps increasing as long as µ is low. When x4

is sufficiently high and as long as λ stays low, µ increases so that x̂ spirals

towards the heteroclinic cycle Γ̂ (recall that by (12.3.10) the speed at which x̂

spirals outwards is proportional to µ). If initially x̂ was very close to (1
3
, 1

3
, 1

3
),

it may be that, at this point, λ increases again and that the same process

starts again: x first approaches the cycle 1 → 2 → 3 → 1, but eventually x4

increases, triggering an increase in µ, etc. However, each time this process

runs, x̂ gets closer to the boundary (and the maximal value of µ tends to

get higher). Eventually, x̂ will be sufficiently close to the boundary and µ

sufficiently high for x to be in the basin of attraction of the (asymptotically

stable) heteroclinic cycle 5 → 6 → 7 → 5 and thus to converge to this

heteroclinic cycle. In particular, λ will converge to zero, hence all strategies

played in Nash equilibrium will be eliminated.

We now make these points formal.

Proof of proposition 12.3.2. Fix x(0) ∈ int S7 such that x̄(0) and x̂(0)

are both different from (1
3
, 1

3
, 1

3
). We must show that x(t) converges to Γ567

(defined in (12.3.4)). It is enough to show that lambda(t) goes to zero as t

goes to infinity. Indeed, in the absence of the three first strategies, the fourth

strategy is strictly dominated by n567. Thus, if λ goes to zero, then there

exists α > 0 and a time T such that, for every t ≥ T , (n567−e4)·Ux > α > 0.

Therefore, by proposition 8.3.3 in chapter 8, x4(t) → 0, hence µ(t) → 1. By

lemma 12.3.7, this implies that x(t) converges to Γ567. We now show that λ

converges to zero.

The proof is by contradiction. Assume thus that λ does not converge to

zero. Computing λ̇, ẋ4 and µ̇ from (12.3.1), we get (time indices suppressed):

λ̇

λ
= λ x̄ · Ūx̄ +

(
ε− 1

3

)
µ− 10x4 − x ·Ux (12.3.11)

ẋ4

x4

= 4x3 − 2λ− µ

3
− x ·Ux (12.3.12)

µ̇

µ
= µ x̂ · Ûx̂− λ

3
+ 10x4 − x ·Ux (12.3.13)

From (12.3.11) and (12.3.12) we get:

d

dt
ln
(x4

λ

)
= 4x3 − 2λ− λx̄ · Ūx̄− εµ + 10x4 (12.3.14)
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Similarly, from (12.3.11) and (12.3.13) we get:

d

dt
ln
(µ

λ

)
= µ

(
x̂ · Ûx̂ +

1

3
− ε

)
− λ.

(
1

3
+ x̄ · Ūx̄

)
+ 20x4 (12.3.15)

A lemma is now needed:

Lemma 12.3.8. lim sup
t→+∞

µ(t) ≥ 1

1 + ε

Proof. Since ε ≤ 1, it follows that x̄ · Ūx̄ is nonpositive. Therefore (12.3.14)

implies:
d

dt
ln
(x4

λ

)
≥ 4x3 − 2λ− εµ + 10x4 (12.3.16)

If lim supt→+∞ µ(t) < 1
1+ε

, then there exists a time T > 0 such that for all

t ≥ T , (1 + ε)µ(t) < 1 = µ(t) + λ(t) + x4(t) hence εµ(t) ≤ λ(t) + x4(t).

Together with (12.3.16), this implies that for t ≥ T :

d

dt
ln
(x4

λ

)
≥ 4x3 − 3λ + 9x4 (12.3.17)

Therefore, for t′ ≥ T ,

ln
(x4

λ

)
(t′) ≥ ln

(x4

λ

)
(T ) +

∫ t′

T

(4x3 − 3λ) dt (12.3.18)

Since, by assumption, λ does not converge to zero, it follows from (12.3.18)

that:

Claim 12.3.9. lim sup
(x4

λ

)
= +∞

Proof. Recall the definition of y(t) and τ(t) and the fact that, by lemma

12.3.6, y(τ(t) = ¯x(t). It follows from lemma 12.3.6 that if t′ ≥ 0 and τ ′ =

τ(t′), then∫ t′

0

[4x3(t)− 3λ(t)] dt =

∫ t′

0

λ(t) [4x̄3(t)− 3] dt =

∫ τ(t′)

0

[4y3(τ)− 3] dτ

As, by assumption, λ does not converge to zero, τ(t) → +∞ as t → +∞.

Thus, in order to prove claim 12.3.9, it suffices to show that

lim sup
τ ′→+∞

I(τ ′) = +∞ with I(τ ′) =

∫ τ ′

0

[4y3(τ)− 3] dτ (12.3.19)
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It follows from Gaunersdorfer and Hofbauer (1995, proof of theorem 2, p.

287-288) that the time-average

z(τ ′) :=
1

τ ′

∫ τ ′

0

y(τ)dτ

converges to the Shapley triangle

S̄T :=

{
y ∈ S3 : max

1≤i≤3
(Ūy)i = 0

}
and that there exists a sequence τ ′n → +∞ such that z(τ ′n) converges to its

vertex q̂ given by:

q̂ =
1

1 + ε + ε2
(ε2, ε, 1)

Therefore,

I(τ ′n) ∼ τ ′n

[
4

1 + ε + ε2
− 3

]
∼ τ ′n

[
1− 3ε− 3ε2

1 + ε + ε2

]
Since we assumed ε > 1/48, it follows that 1−3ε−3ε2 is positive, hence that

I(τ ′n) → +∞ as n → +∞. This concludes the proof of claim 12.3.9.

It follows from claim 12.3.9 that there exists a time T ′ > T at which the

ratio x4/λ is greater than 1. But it follows from (12.3.17) that once the ratio

x4/λ is greater than 1/3, then this ratio keeps increasing. Therefore, at any

time t ≥ T ′, the ratio x4/λ is greater than 1, i.e. x4(t) ≥ λ(t). Together with

(12.3.17), this implies
d

dt
ln
(x4

λ

)
≥ 6λ

Hence for t ≥ T ′,

ln
(x4

λ

)
(t) ≥ ln

(x4

λ

)
(T ′) +

∫ t

T ′
6λ(s)ds (12.3.20)

Since λ is continuous and, by assumption, does not go to zero, this implies

that the ratio x4/λ goes to +∞, hence that λ goes to zero, a contradiction.

Therefore, lim supt→+∞ µ ≥ 1
1+ε

. This completes the proof of lemma 12.3.8.

A corollary of lemma 12.3.8 is that
∫ +∞

0
µ(t) dt = +∞. This implies that

x̂ converges to the heteroclinic cycle Γ̂. Since along this cycle, the mean

payoff is always greater than −1
4
, this implies:
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∃T1 ≥ 0, ∀t ≥ T1, x̂(t) · Ûx̂(t) ≥ −1

4
− ε (12.3.21)

Assuming ε ≤ 1
48

, equations (12.3.21) and (12.3.15) jointly imply that for

t ≥ T1:

d

dt
ln
(µ

λ

)
≥ µ

24
− λ

3
(12.3.22)

It follows from lemma 12.3.8 that there exists a time T2 ≥ T1 at which the

ratio µ/λ is greater than 16. Since (12.3.22) implies that the ratio µ/λ keeps

increasing once greater than 8, it follows that at any time t ≥ T2, the ratio

µ/λ is still greater than 16. Together with (12.3.22), this implies that:

∀t ≥ T2,
d

dt
ln
(µ

λ

)
(t) ≥ 16λ

24
− λ

3
≥ λ(t)

3
(12.3.23)

Since λ is continuous, this implies that λ goes to zero, a final contradiction.

12.3.4 Proof of proposition 12.3.3

We first explain the main difference between proposition 12.3.3 and proposi-

tion 12.2.3. Consider an initial condition x such that neither x1 = x2 = x3

nor x5 = x6 = x7. It is easy to show along the lines of the proof of 12.2.3 that

there exists a time at which a strategy in {4, 5, 6, 7} becomes a best-response,

and that this implies that there exists a solution with initial condition x which

converges to the Shapley triangle ST567. The difficulty is to prove that all

solutions with initial condition x converge to ST567.

To see why this difficulty arises, consider a time t such that the pure

best-responses to x(t) are strategies 1, 3 and 4. After time t, the solution

is not uniquely defined: it might point towards e4, but it might also point

towards e1 or towards the mixed Nash equilibrium of the game restricted

to {e1, e4} × {e1, e4}; each of these three possibilities gives rise to a valid

solution to (12.2.1).

In proposition 12.2.3, we avoided this difficulty by focusing on a particular

solution. In game (12.3.2), it may be shown that, up to a change in velocity,

x̄ and x̂ follow a Rock-Paper-Scissors best-response dynamics. This allows

to prove asymptotic results valid for all solutions without having to follow

precisely each solution.
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We now turn to the proof. We use the notations introduced in section

12.3.1 and at the beginning of section 12.3.3 (that is, x̄, x̂, λ, µ, Ū, Û and

n567). Let Ḡ (resp. Ĝ) denote the RPS game with payoff matrix Ū (resp.

Û).

We first show that:

Lemma 12.3.10. If there exists a time T such that

none of the strategies 1, 2 and 3 is a best-response to x(T ) (12.3.24)

and

x5(T ) = x6(T ) = x7(T ) does not hold (12.3.25)

then x(t) converges to the Shapley triangle ST567.

We then show that, up to a change of velocity, x̄ and x̂ follow the best-

response dynamics in respectively Ḡ and Ĝ. More precisely,

Lemma 12.3.11. For almost all time t, if λ(t) > 0 then (time indices sup-

pressed):

˙̄x ∈

(
1 +

λ̇

λ

)
(BR(x̄)− x̄) (12.3.26)

where BR(·) is the best-response correspondence in Ḡ. Similarly, if µ(t) > 0

then

˙̂x ∈
(

1 +
µ̇

µ

)
(BR(x̂)− x̂) (12.3.27)

where BR(·) is the best-response correspondence in Ĝ.

This allows to show that:

Lemma 12.3.12. For any initial condition with neither x1 = x2 = x3 nor

x5 = x6 = x7 there exists a time T such that none of the strategies 1, 2 and

3 is a best-response to x(T ) and such that x5(T ) = x6(T ) = x7(T ) does not

hold.

Proposition 12.3.3 follows from the combination of lemmas 12.3.10 and

12.3.12.

Proof of lemma 12.3.10. Let PBR(x) := {i ∈ I, ei ∈ BR(x)} denote

the set of pure best-responses to x. Let T check the assumptions of lemma

12.3.10. Since none of the strategies 1, 2 and 3 is a best-response to x(T )

and since strategies 5, 6 and 7 are cyclically symmetric, we may assume that

we are in one of the following cases:
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(a) {5, 6, 7} ⊆ PBR(x(T ))

(b) PBR(x(T )) ⊆ {5, 6}

(c) PBR(x(T )) = {4, 6} or PBR(x(T )) = {4, 5, 6}

(d) PBR(x(T )) = {4}

In case (a), (Ux)5 = (Ux)6 = (Ux)7 for x = x(T ). But as explained in the

proof of proposition 12.3.2, the differences between the payoffs of strategy

5, 6 and 7 are only due to the values of x5, x6 and x7. In particular, if

(Ux)5 = (Ux)6 = (Ux)7, then either x5 = x6 = x7 = 0 or (Ûx̂)5 = (Ûx̂)6 =

(Ûx̂)7; the latter implies that x̂ is a symmetric Nash equilibrium of the

game restricted to {5, 6, 7} × {5, 6, 7}, hence x̂ = (1/3, 1/3, 1/3). Thus, in

any case, x5 = x6 = x7. Therefore case (a) is ruled out by the assumption

that x5(T ) = x6(T ) = x7(T ) does not hold.

In case (b), an adaptation of the proof of proposition 12.2.5 shows that

x(t) converges towards ST567.

In case (c), immediately after time T , the solution must point towards the

convex hull of e4, e5 and e6. Since in the game restricted to {4, 5, 6}×{4, 5, 6},
strategy 4 is strictly dominated by strategy 6, it follows that the solution

actually points towards the edge [e5, e6]; since in the game restricted to

{5, 6} × {5, 6}, strategy 5 is strictly dominated by strategy 6, this implies

that the solution actually points towards e6, so that strategy 6 becomes the

unique best-response. We are then back to case (b).

In case (d), the solution will point towards e4 till some time T ′ when

strategy 4 ceases to be the unique best-response. It follows from the im-

provement principle that none of the strategies 1, 2, and 3 is a best-response

to x(T ′). Furthermore, between time T and time T ′, the shares of strategies

5, 6 and 7 decrease exponentially, so that:

∀i ∈ {5, 6, 7}, xi(T
′) = xi(T ) exp(−(T ′ − T ))

Together with (12.3.25) this implies that at time T ′ the condition x5 = x6 =

x7 does not hold. Therefore, we are back to case (c). This concludes the

proof.

Proof of lemma 12.3.11. We only prove (12.3.26). The proof of (12.3.27)

is exactly the same. Consider a time t and a vector b ∈ BR(x(t)) such that
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ẋ(t) = b− x(t), or equivalently x(t) + ẋ = b. We then have

λ + λ̇ = b1 + b2 + b3 (12.3.28)

Furthermore, differentiating the equality λx̄i = xi for i in {1, 2, 3} we get:

λ̇x̄i + λ ˙̄xi = ẋi = bi − xi = bi − λx̄i

hence

˙̄xi =
bi − (λ + λ̇)x̄i

λ
(12.3.29)

If b1 = b2 = b3 = 0, then by (12.3.28), λ + λ̇ = 0 (hence 1 + λ̇
λ

= 0), and by

(12.3.29), ˙̄x = 0. Therefore (12.3.26) holds trivially.

If b1 + b2 + b3 > 0 define b̄ ∈ S3 by b̄i = bi/(b1 + b2 + b3) for i = 1, 2, 3. It

follows from (12.3.28) that b = (λ + λ̇)b̄. Therefore, by (12.3.29):

˙̄x =
λ + λ̇

λ

(
b̄− x̄

)
=

(
1 +

λ̇

λ

)(
b̄− x̄

)
(12.3.30)

To complete the proof, it suffices to show that b̄ is a best-response to x̄(t).

This is where we use the special structure of the game. Note that for any i

and j in {1, 2, 3},

(Ux)i ≥ (Ux)j ⇔ (Ūx̄)i ≥ (Ūx̄)j

This implies that if strategy i ∈ {1, 2, 3} is a best-response to x then it is

a best-response to x̄. Now, if b̄i > 0 then bi > 0 hence strategy i is a best-

response to x(t); therefore, as we just saw, strategy i is a best-response to

x̄(t). It follows that b̄ ∈ BR(x̄(t)), which completes the proof.

Proof of lemma 12.3.12. For simplicity, we assume that λ(0) and µ(0)

are both positive (otherwise, x̄ and/or x̂ are not initially defined and this

complicates some arguments). It will be clear ex-post that this is without

loss of generality. Let y(·) be the (unique) solution of the best-response

dynamics in the game Ḡ with initial condition y(0) = x̄(0). Let τ(t) denote

the rescaled time:

τ(t) :=

∫ t

0

(
1 +

λ̇

λ

)
(s) ds = t + ln

(
λ(t)

λ(0)

)
(12.3.31)
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Note that τ(t) is nondecreasing as, due to (12.3.28), λ̇ + λ is always nonneg-

ative. It follows from (12.3.26) that

∀t ≥ 0, x̄(t) = y(τ(t)) (12.3.32)

Similarly, let y′(·) be the (unique) solution of the best-response dynamics in

Ĝ with initial condition y′(0) = x̂(0) and let:

τ ′(t) := t + ln

(
µ(t)

µ(0)

)
(12.3.33)

It follows from (12.3.27) that

∀t ≥ 0, x̂(t) = y′(τ ′(t)) (12.3.34)

Let V̄ (x̄) = max1≤i≤3(Ūx̄)i. Let

q =

(
ε2

1 + ε + ε2
,

ε

1 + ε + ε2
,

1

1 + ε + ε2

)
be the vertex of the Shapley triangle S̄T := {y ∈ S3, V̄ (y) = 0} such that

(Ūq)3 = (Ūq)1 = 0. Since x̄(0) 6= (1
3
, 1

3
, 1

3
), it follows from (12.3.32) that:

Claim 12.3.13. If λ(t) does not converge to 0 then V̄ (x̄(t)) → 0 and there

exists a sequence (tn) such that tn → +∞ and ¯x(tn) → q.

Proof. In view of (12.3.32) and of the behavior of the best-response dynamics

in RPS games (see chapter 10 or, e.g., Gaunersdorfer and Hofbauer, 1995), it

suffices to show that if λ 9 0 then τ(t) → +∞. Since τ(t) is nondecreasing,

it actually suffices to show that if λ 9 0 then lim supt→+∞ τ(t) = +∞. This

is clear from (12.3.31).

Similarly, let V̂ (x̂) = max4≤i≤6(Ûx̂)i. It follows from (12.3.34) that:

Claim 12.3.14. If µ(t) does not converge to 0 then V̂ (x̂(t)) → 0.

Another consequence of (12.3.34) is that there is no time T ≥ 0 such that

x5(T ) = x6(T ) = x7(T ). Therefore, to establish lemma 12.3.12, it suffices to

show that there exists a time T ≥ 0 such that none of the strategies 1, 2, 3

is a best-response to x(T ). Assume by contradiction that:

∀t ≥ 0,

[
max
1≤i≤3

(Ux)i

]
− (Ux)4 ≥ 0 (12.3.35)
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∀t ≥ 0,

[
max
1≤i≤3

(Ux)i

]
−
[

max
5≤j≤7

(Ux)j

]
≥ 0 (12.3.36)

Straightforward computations show that:[
max
1≤i≤3

(Ux)i

]
− (Ux)4 = λ

[
V̄ (x̄)− (Ux̄)4

]
− 10x4 + εµ (12.3.37)

((Ux̄) = −2x̄1−2x̄2+2x̄3 is defined by identifying x̄ and (x̄1, x̄2, x̄3, 0, 0, 0, 0))

Furthermore,[
max
1≤i≤3

(Ux)i

]
−
[

max
5≤j≤7

(Ux)j

]
= λ

[
V̄ (x̄) + 1/3

]
− 20x4−µ

[
V̂ (x̂) + 1/3− ε

]
(12.3.38)

Equations (12.3.35) and (12.3.37) imply:

µ

λ
≥ (Ux̄)4 − V̄ (x̄)

ε
≥ 0 (12.3.39)

Equations (12.3.36) and (12.3.38) imply:

λ
[
V̄ (x̄) + 1/3

]
− µ

[
V̂ (x̂) + 1/3− ε

]
≥ 20x4 ≥ 0 (12.3.40)

and in particular, if V̂ (x̂) > −1/3 + ε,

µ

λ
≤ V̄ (x̄) + 1/3

V̂ (x̂) + 1/3− ε
(12.3.41)

If λ → 0 then there exists a time T1 such that, for all t ≥ T1, (n567 − e4) ·
Ux(t) > 0 so that strategy 4 is not a best-response to x(t). Therefore, x4 → 0

hence µ → 1. By claim (12.3.14), this implies that V̂ (x̂) → 0. Therefore the

left-hand side of (12.3.40) converges to −1/3 + ε, which is negative as, by

assumption, ε ≤ 2/11. This contradicts (12.3.40).

Thus, we may assume that λ does not converge to 0. By claim 12.3.13

this implies that

lim sup
µ

λ
≥ lim sup

(
(Ux̄)4 − V̄ (x̄)

ε

)
≥ (Uq)4

ε

hence

lim sup
µ

λ
≥ 1

ε

[
2(1− ε− ε2)

1 + ε + ε2

]
(12.3.42)
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The first inequality in (12.3.40) implies that lim sup x4 < 1. Therefore, it

follows from (12.3.42) and the assumption ε ≤ 2/11 that µ does not con-

verge to zero. By claim 12.3.14 and (12.3.39), this implies that V̂ (x̂) → 0.

Furthermore, we have seen that λ does not converge to zero and that this

implies that V̄ (x̄) → 0. Therefore, it follows from (12.3.41) that

lim sup
µ

λ
≤ 1/3

(1/3)− ε
=

1

1− 3ε
(12.3.43)

For ε ≤ 2/11, equations (12.3.42) and (12.3.43) are contradictory. There-

fore, there exists a time T such that none of the strategies 1, 2 and 3 is a

best-response to x(T ). This completes the proof of lemma 12.3.12 and of

proposition 12.3.3.

12.4 Discussion

In the games we presented, the Nash equilibrium is unique and quasi-strict,

and therefore persistent, regular11, hence strongly stable, essential, strictly

proper, strictly perfect, etc. Thus, from the traditional, rationalistic point of

view, it is the unambiguous solution of the game. However, under the repli-

cator dynamics and/or best-response dynamics, all strategies in the support

of this Nash equilibrium are eliminated from almost all initial conditions.

This indicates an even wider gap between strategic and evolutionary consid-

erations that had been noted before.

It is the author’s view that elimination of all strategies in the support

of Nash equilibria from almost all initial conditions likely occurs for many

dynamics, and is not a specific feature of the replicator dynamics and of the

best-response dynamics. However, as mentioned in the introduction, this

phenomenon can only occur in relatively large games and these games might

prove difficult to analyse for dynamics more complicated or less studied than

the best-response or replicator dynamics.

11In a bimatrix game, an isolated and quasi-strict Nash equilibrium is regular, see Van
Damme, 1991
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Chapitre 13

Introduction to part III:

Transition from Unicellular to

Multicellular Organisms and

Germ-Soma Separation

This part consists of a single article, co-written with Richard. E. Michod,

Cristian Solari, Mathilde Hurand, and Aurora M. Nedelcu, and accepted for

publication in Journal of Theoretical Biology. We study aspects of the tran-

sition from unicellular to multicellular organisms, and in particular factors

driving germ-soma separation. While the points made in the formal models

are fairly general, we focus on specific organisms: volvocine green algae. The

purpose of this introduction is both to introduce some basic issues related to

the article and to sum up our contributions. A more technical introduction,

including extensive references, will be given in the article.

The living world is organized hierarchically: genes inside chromosomes,

chromosomes inside genomes, genomes inside cells, cells inside multi-cellular

organisms, and multi-cellular organisms inside animal societies. This is not

how the living world originally looked like. Rather, the evolution of such a

hierarchical organization required a series of evolutionary transitions between

levels of organization. These are key-events in evolution and the study of

these transitions is accordingly one of the major topics in evolutionary biology

(Buss, 1987; Maynard Smith and Szathmary, 1995; Michod, 1999).

We focus on the transition between unicellular and multicellular organ-

isms. A fundamental aspect of this transition is that in a multicellular or-
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ganism, cells may differentiate. In particular, some cells (called germ cells)

may specialize in reproduction while other cells (somatic cells) specialize in

vegetative functions (they help the reproductive cells to survive and repro-

duce). This division of labor is not an option open to solitary cells, since a

solitary cell which would not reproduce would simply not transmit its genes.

In contrast, in multicellular organism, a somatic cell may transmit its genes

even though it does not reproduce itself, provided that its genes are identical

or related to the reproductive cells’ genes.

While cell differentiation opens up immense possibilities of evolution and

complexification to multicellular organisms, cell differentiation, and germ-

soma separation in particular, is not present in all multicellular organisms. It

may well be that multicellular organisms evolve, for instance because group-

living enhances viability due to predation avoidance or ability to catch bigger

preys, or because it provides a buffered environment, etc., but that cells

stay undifferentiated, because differentiation does not provide an immediate

selective advantage. We try to understand the factors driving the evolution of

germ-soma differentiation, both in general and in the special case of volvocine

green algae.

The special interest of these algae for understanding the transition from

unicellular to multicellular organism and aspects of their biology relevant to

our analysis will be explained in the text. However, it may help at this point

to know that there are many different (but closely related) species of volvocine

green algae, which range from unicellular forms to colonies involving more

than 50,000 cells. Boldly said (the article will be more precise), the smaller

colonies are undifferentiated, colonies of intermediate size are partially dif-

ferentiated (some cells specialize in somatic functions and the other cells are

generalists) and the larger colonies are totally differentiated in somatic cells

and germ cells. Furthermore, the proportion of somatic cells increases with

the size of the colony. These are the facts we try to understand.

A basic and general point is that cells should both survive and reproduce

(or, in a group setting, contribute to the survival of the group and contribute

to its reproduction). Since resources are limited, the resources affected to one

of these two basic functions is likely to detract from the resources affected

to the other one. This results in a trade-off between fecundity and viability,

embodied in a trade-off function. More precisely, let v and b be the contri-

bution of a cell to the viability and fecundity of the colony.1 We assume that

1Assume for now that the contributions of the cells to the viability and fecundity and
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there exists an intrinsic relationship between v and b, so that v = f(b) for

some decreasing trade-off function f .

We argue that the evolution of the curvature (concavity/convexity) of this

trade-off function is crucial to germ-soma separation. The essence of the ar-

gument is as follows: division of labor is favored if there are increasing returns

on investment in viability and/or fecundity (specialists are more efficient than

generalists); increasing (decreasing) returns on investment corresponds to a

convex (concave) trade-off function; therefore a convex (concave) trade-off

selects for (against) specialization.

A factor that tends to make the trade-off function convex like, hence

selects for germ-soma specialization, is the existence of a fixed cost to repro-

duction (a minimal investment in reproduction needed for there to be any

reproduction at all).2 In the presence of such a fixed cost of reproduction3,

a cell specializing in somatic functions would contribute much more to the

viability of the group than a cell performing viability functions during most

of its life cycle but also reproducing.

Recall that, as the size of volvocine green algae colonies increases, these

colonies tend to be more and more differentiated. In light of the previous

paragraphs, this suggests that the viability-fecundity trade-off becomes in-

creasingly convex as size increases. Why should it be so? This seems to be

linked for a good part to the reproduction mode of these algae: rather than

growing, dividing in two, growing, dividing in two, etc. reproductive cells of

a 2N cell colony first grow a lot and then divide N times. Furthermore, in

large colonies (N > 5), a reproductive cell cannot both divide and contribute

to the motility of the colony.4 It follows that, in large colonies, a reproductive

cell must go through a long phase during which it cannot contribute to the

motility of the colony.

Now imagine a large colony of undifferentiated cells. Assume for simplic-

colony are additive. See the article for more discussion and relaxation of this assumption.
2We do not mean that such a fixed cost necessarily exists, but that when it exists, it

selects for specialization.
3In the article, we use the expression “initial cost of reproduction to survival” to stress

that we focus on the cost resulting from going to no reproduction to a little reproduction,
and that this cost is in term of reduced contribution to survival.

4More precisely, cells have a flagella, which serves several purposes: it helps to move
the colony but to increase the exchange of chemical with the environment due to a vortex
effect. For simplicity, we focus on motility.
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ity that all cells reproduce at the same time.5 Since there are no somatic

cells, the colony undergoes a long reproduction phase during which it has no

motility at all, a phase which is increasingly long as the size of the colony in-

creases. Since motility is an important component of survival, such a colony

is likely to have low survival capabilities. If some cells were to specialize in

vegetative functions, then they could provide at least some motility during

this phase, and this would likely lead to a substantial increase in survival

capabilities of the colony. We argue that this is one of the factors lead-

ing to germ-soma specialization in large colonies. Additional factors will be

discussed in the article.

The fact that the proportion of somatic cells increases as the size of the

colonies increases may be understood as follows: in a large colony, repro-

ductive cells, just before dividing, are much larger and heavier compared to

somatic cells than in a small colony (this is due to the particular reproduc-

tion mode of volvocine green algae, explained above). Accordingly, a much

higher proportion of somatic cells is needed to move the colony during the

reproduction phase in a large colony than in a small one. Other factors

are also important, in particular, hydrodynamical factors: as the size of the

colony increases, drag increases superlinearly, hence it is very important for

a large colony to have a compact organization, which requires specialization

of a high proportion of cells in soma.
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Abstract

The fitness of an evolutionary individual can be understood in terms of its two basic components: survival and reproduction. As

embodied in current theory, trade-offs between these fitness components drive the evolution of life-history traits in extant multicellular

organisms. Here, we argue that the evolution of germ–soma specialization and the emergence of individuality at a new higher level during

the transition from unicellular to multicellular organisms are also consequences of trade-offs between the two components of fitness—

survival and reproduction. The models presented here explore fitness trade-offs at both the cell and group levels during the

unicellular–multicellular transition. When the two components of fitness negatively covary at the lower level there is an enhanced fitness

at the group level equal to the covariance of components at the lower level. We show that the group fitness trade-offs are initially

determined by the cell level trade-offs. However, as the transition proceeds to multicellularity, the group level trade-offs depart from the

cell level ones, because certain fitness advantages of cell specialization may be realized only by the group. The curvature of the trade-off

between fitness components is a basic issue in life-history theory and we predict that this curvature is concave in single-celled organisms

but becomes increasingly convex as group size increases in multicellular organisms. We argue that the increasingly convex curvature of

the trade-off function is driven by the initial cost of reproduction to survival which increases as group size increases. To illustrate the

principles and conclusions of the model, we consider aspects of the biology of the volvocine green algae, which contain both unicellular

and multicellular members.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Cost of reproduction; Germ–soma differentiation; Fitness; Body size; Evolutionary transitions; Life-history evolution; Volvox
1. Introduction

Fitness can be understood in terms of its two basic
components: survival (viability) and reproduction (fecund-
ity). Investment in one component often detracts from the
other, leading to trade-offs in fitness components. A wide
body of work shows that fitness trade-offs underlie the
evolution of diverse life-history traits in extant organisms
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(Stearns, 1992; Charlesworth, 1980). We show here that
trade-offs between survival and reproduction have special
significance during evolutionary transitions; in particular,
they may drive the evolution of individuality during the
transition from unicellular to multicellular organisms.
The emergence of individuality during the unicellular–

multicellular transition is based on the evolution of cells
that differentiate and specialize in reproductive and
survival-enhancing vegetative functions. In unicellular
individuals, the same cell must contribute to both fitness
components, these contributions typically being separated
in time. In multicellular groups, cells may specialize during
development in either component, leading to the differ-
entiation and specialization in reproductive (germ) and

www.elsevier.com/locate/yjtbi
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vegetative survival-enhancing functions (soma)—what we
term germ–soma or ‘‘G–S’’ specialization. As cells specia-
lize in these different but essential fitness components, they
relinquish their autonomy in favor of the group and, as a
result, fitness and individuality are transferred from the cell
level to the group level. We argue here that the evolution of
G–S separation and the emergence of individuality at the
new higher level are consequences of fitness trade-offs
among life-history components—in short, that life-history
evolution is a fundamental factor in evolutionary transi-
tions. We first present an overview of the volvocine green
algae, which are the organisms we had in mind when
constructing the models. Although we discuss the models
with regard to the volvocine algae, we have kept the
assumptions of the models general so that they will apply
to other groups.

2. The volvocine green algae

The evolution of multicellular organisms from unicel-
lular and colonial ancestors is the premier example of the
integration of lower level units into a new, higher level
individual. Unfortunately, for the major multicellular
lineages, the factors underlying their origin lie hidden deep
in their evolutionary past, obscured by hundreds of
millions of years of evolution. In contrast, according to
one estimate (Rausch et al., 1989), the colonial volvocine
algae (Fig. 1) diverged from a unicellular ancestor just 35
million years ago, providing a unique window into this
major transition.

Volvocine algae are flagellated photosynthetic organisms
that range from unicellular (i.e. Chlamydomonas) and
multicellular forms with no cell differentiation (e.g.,
Gonium and Eudorina; 8–32 cells) or incomplete G–S
differentiation (Pleodorina; 64–128 cells) to multicellular
Fig. 1. Subset of volvocine species which shows an increase in complexity,

cell number, volume of extracellular matrix, division of labor between

somatic and reproductive cells, and proportion of somatic cells. A:

Chlamydomonas reinhardtii; B: Gonium pectorale; C: Eudorina elegans; D:

Pleodorina californica; E: Volvox carteri; F: Volvox aureus. Where two cell

types are present (D, E and F), the smaller cells are the vegetative sterile

somatic cells, whereas the larger cells are the reproductive germ cells.

Picture credit: C. Solari.
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forms with complete G–S separation (i.e. Volvox;
500–50,000 cells) (Kirk, 1998). In multicellular volvocine
colonies the number of cells is determined by the number of
cleavage divisions that take place during their initial
formation, and cell number is not augmented by additional
cell divisions (Kirk, 1997). In colonies without G–S
separation (i.e., Gonium, Eudorina), each cell gives rise to
a daughter colony. The life cycle corresponds to one of
discrete generations as the parent colony dies as soon as the
daughter colonies hatch.
It is believed that all multicellular volvocine algae have

evolved from a common ancestor similar to the extant
Chlamydomonas reinhardtii (Coleman, 1999; Larson et al.,
1992). Within this closely-related monophyletic group
(Buchheim et al., 1994; Coleman, 1999; Larson et al.,
1992; Nozaki et al., 2000, 2002, 2003; Nozaki, 2003),
significant evolutionary transitions have occurred repeat-
edly within a relatively short period of time (possibly as
short as 35 million years (Rausch et al., 1989), as already
mentioned), suggesting strong selective pressures driving
the evolution of multicellularity and G–S specialization.
Although several model systems have been used to

investigate the origins of multicellularity, including choa-
noflagellates (King and Carroll, 2001), cellular slime molds
(Strassmann et al., 2000; Foster et al., 2002; Queller et al.,
2003) and myxobacteria (Velicer et al., 2000; Shimkets,
1990), volvocine algae exhibit a number of features that
make them especially suitable for our work (see the
Volvocales Information Project at www.unbf.ca/vip). Like
most familiar multicellular forms, and unlike other model
experimental systems such as slime molds or myxobacteria,
multicellular volvocine algae develop from a single cell, so
the cells in the group are related. They can easily be
obtained from nature (where uni- and multicellular forms
coexist) and maintained in the lab under realistic condi-
tions that allow for an eco-physiological framework. Many
aspects of their biology have been studied (Kirk, 1998)
(cytology, biochemistry, development, genetics, physiol-
ogy, natural history, ecology and life-history). The ‘social’
genes necessary for group living and fitness reorganization
have been identified in V. carteri (Kirk et al., 1999; Miller
and Kirk, 1999), indicating that the underlying genetics of
cellular differentiation and G–S specialization is likely
simple and may not involve many genetic steps (Kirk, 1997,
1998).
3. Overview of models

The models studied below focus on the trade-offs
between survival and reproduction and on how these
trade-offs change as group size increases and cells specialize
in reproductive and vegetative functions. The models are
based on three general assumptions: (i) there are both
advantages and disadvantages associated with increasing
group size, (ii) generations are discrete, so that fitness is the
product of viability and fecundity, and (iii) variation in
4
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fitness exists primarily at the group or colony level; within-
group variation is assumed negligible.

Larger group size may be beneficial for survival (for
example, in terms of predation avoidance, ability to catch
bigger prey, or a buffered environment within a group), as
well as for reproduction (for example, in terms of a higher
number or quality of offspring). Reduced predation is likely
to be especially important in the volvocine algae (Morgan,
1980; Pentecost, 1983; Porter, 1977; Reynolds, 1984;
Shikano et al., 1990). However, we do not explicitly model
or discuss further this assumed advantage of larger groups.

Increasing group size may also detract from fitness,
because of the increasing need for local resources, less
effective movement within the environment, and longer
generation time. In volvocine algae, these disadvantages of
larger size are the result of (i) the ‘flagellation constraint’
which impedes motility in dividing cells (Koufopanou,
1994) and (ii) the ‘enlargement constraint’ which refers to
the transport and hydrodynamic problems associated with
the metabolism and translocation of an increasingly larger
colony (Solari et al., 2005a, b). Bell (1985) has also
discussed with respect to the volvocines the effect of
increased colony size on the increased generation time and
the resources needed.

The flagellation constraint impedes motility, and thus
viability, during cell division (Koufopanou, 1994), and is a
consequence of the coherent glycoprotein cell wall that
does not allow the flagellar basal bodies to move laterally
and take the expected position of centrioles in cell division
while still attached to the flagella (as they do in naked green
flagellates). This constraint sets an upper limit of five for
the number of times a cell can divide while still maintaining
an active flagellum, and thus becomes critical at about the
32-cell stage.

The enlargement constraint stems from the particular
way in which volvocine algae reproduce. Because post-
embryonic cell divisions are not possible (although the
young colonies do increase in size after their release from
the mother colony through an increase in cell size and
volume of extracellular matrix), the embryo contains all the
cells present in the adult. Consequently, the larger the
number of cells in the colony, the larger the embryo that
develops and must be supported by the swimming mother
colony. And, the larger the colony, the larger the
investment needed for there to be any reproduction at all.
This initial cost of reproduction is especially acute in
species in which cells do not double in size and then
undergo binary fission, but grow about N ¼ 2d fold in size
and then undergo a rapid synchronous series of d divisions
(under the mother cell wall). This type of cell division,
which is considered the ancestral developmental program
in this lineage (Desnitski, 1995), is known as ‘‘palintomy’’
and is thought to have predisposed these algae to
multicellularity (Kirk, 1998). It occurs in the smaller
species (including Chlamydomonas, Gonium, Eudorina and
Pleodorina) and in some of the G–S specialized Volvox

species (e.g., V. carteri) (Fig. 1).
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The assumption of selection at the group level (assump-
tion (iii)) is likely to hold in volvocine algae because of their
mode of reproduction and colony formation, in which all
cells in the group are derived clonally from a single cell
after a specific number of cell divisions, d (d ¼ 3 for
Gonium, d ¼ 5 for Eudorina, d ¼ 627 for Pleodorina and
d ¼ 8216 for species of Volvox). We have previously
studied the conditions under which multilevel selection
may select for systems of conflict mediation that enhance
selection at the group level (Michod, 1996, 1997, 1999;
Michod and Roze, 1997, 1999; Michod et al., 2003).
Another factor favoring selection at the group level is
‘‘parental control’’ of the cell phenotype, in which the
behavioral phenotype (i.e., the cell fate) is determined
during development by the ‘‘mother’’ cell. This is the case
in V. carteri, as the cell fate (somatic or germ) is established
early in development through a series of asymmetric cell
divisions of the anterior blastomeres (for discussion see
Michod et al. (2003)). It is well known that it is easier for
cooperation to be maintained in a group under parental
control than under offspring control (in which the
phenotype is determined by the genotype of the cell),
because the sacrifice of cooperation is spread over the
different genotypes present in the cell group (see, for
example, Michod (1982)).
Here we consider a group of cells and seek to understand

the selective pressures that mold the allocation of energy
and resources at the cell level to the two fitness components
of the group, survival and reproduction. We present two
models. In the fitness isocline model we consider whether,
as groups increase in size, when a single new cell is added, it
could increase the fitness of the group by changing its
reproductive effort from what the existing cells in the group
have been doing. In the full optimization model we
consider whether a small change in behavior of one or
several cells could increase the fitness of the group. The
optimization model is clearly more general, but we begin
with the fitness isocline model for heuristic reasons.
Throughout, we seek qualitative results that are indepen-
dent of the specific functions involved (so long as these
functions meet the general assumptions stated: differentia-
bility, concavity, convexity, etc.).

4. Fitness isocline model

Consider a group of N � 1 cells with a group viability
VN�1 and fecundity BN�1. We would like to predict the
allocation of energy and resources to reproduction, e, and
survival-enhancing vegetative functions, 1�e, for the Nth
cell, resulting in b(e) and v(1�e) contributions to fecundity
and viability, respectively. The variable e is the familiar
reproductive effort variable of life-history theory (Stearns,
1992; Charlesworth, 1980). Since both b and v are assumed
to be monotonic functions of e, we follow precedence in
this area and generally work in terms of b and v directly
(instead of in terms of e). We assume a simple additive
model of fitness at the group level (termed ‘‘group selection
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I’’ by Damuth and Heisler (1988)) so that the fitness
components of the group are the sum of the contributions
of the cells, or considering the additional Nth cell, the
fitness of the group is W ¼ ðV þ vÞðBþ bÞ, where V ¼

VN�1 and B ¼ BN�1. We suppress the group size subscript
here and in what follows for notational simplicity.
Additivity of cell contributions to viability and fecundity
might apply, for example, to the simpler forms of volvocine
algae considered in Fig. 1, in which cells stay together after
cell division.

The new fitness of the group with the additional cell is
then given by

W ¼ bvþ bV þ vBþ BV . (1)

We would like to maximize the fitness, Wi, contributed by
the new cell given by

W i ¼ bvþ bV þ vB. (2)

For fixed W (fixed V and B), the fitness contributed by the
new cell, Wi, is a function of two variables, b and v. We can
plot isoclines for Wi by using Eqs. (3) and (4) to plot v as a
function of b as done in Fig. 2:

v ¼
W i � bV

bþ B
, (3)

v0ðbÞ ¼ �
W i þ BV

ðbþ BÞ2
o0 and

v00ðbÞ ¼ 2
W i þ BV

ðbþ BÞ3
40. ð4Þ

We note a few points about Fig. 2 that will be useful below.
The isoclines are convex functions (first derivative increas-
ing) which do not overlap and, for increasing fitness return,
Wi, they occur increasingly farther from the origin. For any
particular W i, W i=B and W i=V are the maximal fitness
that could be attained at the group level for viability and
Isoclines of increasing Wi

Wi

B

v

Wi

V

bWBi + V

B2
a= -

V 2

WBi + V
a = -

Fig. 2. Fitness isoclines for the contribution of the new cell to viability, v,

and fecundity, b, at the group level. Four isoclines are shown, the heavy

solid line is the isocline of interest, the others are dashed. Tangents to the

isocline are shown at the maximal contributions possible: W i=V for

reproduction and W i=B for viability.
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fecundity, respectively. Using Eq. (4), the slopes of
tangents to the isocline at these points are indicated in
Fig. 2.
In addition to the fitness relations at the group level

graphed by the isoclines in Fig. 2, we assume there is an
intrinsic relation that links b and v within the cell because
of cell physiology and/or other constraints. We refer to this
intrinsic relation as the ‘‘trade-off function’’, as it embodies
life-history trade-offs between the two fitness components
at the cell level. During the origin of multicellularity, we
expect these trade-offs to depend upon the size of the group
that the cells must create (investigated below), as well as a
host of other factors; but, for the moment, we consider the
implications of the simple linear relation

v ¼ vmax � ab. (5)

As illustrated in Fig. 3A with a linear intrinsic function, the
cell will likely invest in both reproductive and viability-
related functions. Indeed, a simple inductive argument
given in Appendix A shows that for a linear intrinsic
function (Eq. (5)), cell groups have no incentive to
specialize. No matter how large the group is, provided
that the N�1 first cells exert intermediate reproductive
effort at b ¼ bmax=2 and v ¼ vmax=2, it is optimal that the
Nth cell exerts the same effort (this yields the best
unspecialized group; some specialized groups may achieve
the same level of fitness, but not a higher one). In the case
of a linear trade-off, the ratio of viability to fecundity at the
group level is determined directly by the trade-offs at the
cell level (as represented by a) and is given by

V ¼ aB. (6)

Since a governs the basic relationship between survival
and reproduction at the cell level, it imposes severe
constraints on fitness components V and B at the group
level (Eq. (6)). Indeed, as there is yet nothing else in the
model that might change the relationship between viability
and fecundity at the group level, we may expect that Eq. (6)
will hold as the group increases in size, so long as we
assume the linear constraint at the cell level (Eq. (5)).
Below we consider a cost of reproduction to survival that
increases as the size of the group produced by the cell
increases. This cost changes the basic relationship between
survival and reproduction at the group level from that
given in Eq. (6), because certain fitness advantages of cell
specialization may be realized by the group, but not the
cell.
From the graphs in Fig. 3 (B and C), we may anticipate a

central result of the model. Note that as the intrinsic curve
becomes convex (meaning its derivative increases with b),
the cell will specialize in viability (panel B) or fecundity
(panel C) functions to attain the maximum fitness gains
allowed at the group level. Such specialization in viability
or fecundity functions is tantamount to the evolution of
soma (panel B) and germ (panel C). In what follows, we
approximate a convex intrinsic function in a piecewise
linear fashion.
6
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(A) (C)(B)

Cell will invest in both
reproduction and viability

Wi
B

v

Wi
V

b

Cell will invest only in viability

Wi
B

v

Wi
V

b

Cell will invest only in reproduction

Wi
B

v

Wi
V

b

Fig. 3. Optimal investment strategy determined by the intrinsic functions and the fitness isocline. For a linear intrinsic curve (A), the new cell will perform

a mix of viability and fecundity functions. For convex intrinsic curves, the new cell will more likely specialize, for example, in survival (B) or reproduction

(C).

v

e

vmax

1(A) (C)(B)

v

vmax

b

vmax(1-eN)

bmax

B
on

us

b

e

eN

bmax

1

Cost

Fig. 4. Initial cost of reproduction. The piecewise convex curve in panel (C) is formed out of the functions in panels (A) and (B) and approximates the

convex curves in Fig. 3. In panel (A) the reproductive effort eN is the initial (or fixed) cost of reproduction. In panel (C) the quantity vmax � vmaxð1� eN Þ is

the bonus to viability of soma specialization. This bonus is realized only in groups. The negative of the bonus may be referred to as the initial cost of

reproduction to survival. See text for further explanation.
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An initial investment is often necessary to get any
reproduction. For example, growing the embryo inside the
mother colony in the case of the volvocine algae takes time,
energy and resources away from other functions (or a
mating display, producing a flower, etc.). These initial
reproductive costs tend to create a convex relationship
between reproductive effort, e, and fecundity, b(e), as
depicted in Fig. 4A in a piecewise linear way. We assume
that this initial cost of reproduction detracts from survival
and so we term it ‘‘initial cost of reproduction to survival’’
or sometimes just ‘‘initial cost of reproduction’’. This initial
cost will depend on the group size N which the cell must
produce, eN. Combining this initial cost of reproduction
(Fig. 4A) with a linear intrinsic function for viability
(Fig. 4B) and using the construction given in Fig. 4, we
obtain the piecewise linear intrinsic function relating v and
b given in Eq. (7) and plotted in Fig. 4C. By varying the
initial cost of reproduction, the piecewise linear curve in
Eq. (7) (Fig. 4B) can approximate the convex curves
graphed in Fig. 3 (panels B and C).

v ¼ vmaxð1� eN Þ 1�
b

bmax

� �
; vpvmaxð1� eNÞ,

v ¼ vmaxð1� eÞ; v4vmaxð1� eNÞ. (7)

In Fig. 4, the initial cost of reproduction to survival is
the vertical portion of the intrinsic curve running along the
v-axis from vmaxð1� eN Þ up to vmax. The modulus of this
initial cost also equals the benefit to viability of soma
specialization stemming from not having to pay the initial
257
cost of reproduction. For the volvocine green algae with
palintomic development (Fig. 1), the initial cost of
reproduction, eN in Fig. 4, is directly related to the group
size N which the reproductive cell must produce, and thus
to the cell size the reproductive cell must attain before
initiating the rapid series of embryonic divisions to create
the daughter colony.
We note three points about this benefit of soma

specialization, the ‘‘bonus’’ diagrammed in Fig. 4C. First,
this bonus is only obtainable through group living and is
only expressed at the group level, it is not an option open
to solitary cells. Second, it changes the basic relationship
that governs the fitness components at the cell level into a
new relationship between viability and reproduction at the
group level. Third, the benefit will likely change with the
size and organization of the group. For example, if there
are already many somatic cells in the group, the benefit of a
new somatic cell may be small.
If we assume that at the colony size at which the initial

cost of reproduction becomes operative, the ratio of
survival to reproduction at the group level is a (as the
linear constraint predicts), V ¼ aB, then a straight-
forward analysis is possible. In this case, we must have
Bvmax4Vbmax, so germ specialization never pays as a first
step from undifferentiated cells. Assuming V ¼ aB, a
critical value for the initial cost of reproduction, eN , can
be derived to determine whether the new cell will specialize
in somatic functions or remain undifferentiated. This
critical cost is obtained by investigating the conditions
when Bvmax4W �

i , where W �
i is the maximal value of added
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fitness obtained for optimal intermediate allocation to
reproduction, b�, and survival, v�. The critical value of the
initial cost of reproduction is given by

ecrit
N ¼

bmax

4Bþ bmax
. (8)

If eN4ecrit
N , soma specialization pays. Otherwise, the cell

continues to allocate resources to both survival and
reproduction.

By inspecting Eq. (8), we can see that the larger the
group fecundity (B) is, the smaller the initial cost of
reproduction may be for soma specialization to evolve. In
other words, in colonies with larger fecundity (and, all
things being equal, this means larger colonies) it is easier
for a specialized and sterile soma to evolve. This may be
explained as follows. The difference between the added
fitness brought about by a cell specializing in soma and the
added fitness brought about by a cell having the same
fecundity, b ¼ bmax=2, as the first N�1 cells is
ðvmax � v0ÞB� v0bmax=4. The first term is the advantage
of specialization linked to the initial cost of reproduction.
The second term is the loss linked to the fact that
specialization disrupts the balance between viability and
fecundity (see Section 5.4.1 for more discussion). While this
loss is independent of colony size, the advantage increases
with colony fecundity. Therefore, it is more likely for the
advantage of specialization to exceed the loss due to
specialization for larger and already more fecund colonies.

The significance of the loss due to specialization is a
result of the assumption that only one cell changes. In
particular, if the cell reduces its reproductive effort, there
must be a loss to fecundity that must be overcome for this
specialization to pay in the overall group fitness. In the
optimization model considered next, we allow two (or
more) cells to simultaneously change their allocation
strategy. If one cell increases and another cell decreases
their respective reproductive efforts by the same amount,
the total fecundity will remain the same (hence, there is no
fecundity loss to the group), but gains in viability are
possible under convex curvature.
5. Optimization model

5.1. Overview

We now apply optimization theory to the cell group, so
as to consider all the cells simultaneously and study
strategies in which cells jointly increase or decrease their
reproductive effort so as to maximize the fitness of the
group. In the fitness isocline model, we considered how a
single new cell could maximize its fitness contribution to
the group. In the optimization model we test whether small
deviations by two or more cells could increase the fitness of
the group. The stability conditions of the optimization
model include, and are more general than, the stability
conditions of the fitness isocline model.
25
5.2. The model

Consider groups of N cells, with cells indexed
i ¼ 1; 2; . . . ;N. Let e1; e2; . . . ; eN be the reproductive effort
for each cell, and let b1; b2; . . . ; bN be the resulting
contribution to the fecundity of the group. As we did
above, we assume the contribution to fecundity is an
increasing function of reproductive effort; therefore, we
can work in terms of fecundity, instead of reproductive
effort. Let v1; v2; . . . ; vN be the vegetative, viability-enhan-
cing capabilities of each cell. As more effort is put into
reproduction, less is available for vegetative functions,
resulting in a trade-off between the contributions to the
fitness components of the group. We assume that if
b ¼ bmax then v ¼ 0, and if b ¼ 0 then v ¼ vmax. As above,
for simplicity, we assume that the viability and fecundity of
the group, V and B, respectively, are simple additive
functions of the cell properties given by

B ¼
XN

i¼1

bi and V ¼
XN

i¼1

vi. (9)

Note that while in the fitness isocline model V and B

denoted the contribution to viability and fecundity of the
first N�1 cells, here they denote the viability and fecundity
of the whole colony. While it seems biologically reasonable
to assume additivity of the contributions to fecundity of the
group, additivity of the contributions to viability is more
questionable. We have in mind a trait-like flagellar motility
(or mixing) as a proxy for viability and assume there is a
simple linear relationship between the effort or time a cell
invests in flagellar action and the overall motility of the
group. While this assumption may hold over a limited
range, it would likely fail as the group gets larger and more
integrated. We show in Appendix B.3 that we may dispense
with the additivity assumption as it applies to viability so
long as we maintain it for fecundity and still reach the same
qualitative conclusions.
For our purposes, it is not necessary to normalize fitness,

since the analysis of optimal behavior in the optimization
model or in the fitness isocline model would not change.
Normalizing fitness means multiplying the fitness we have
by a coefficient which depends only on the size of the
colony. When we ask, for a colony of a particular size,
should cells specialize or remain generalists, normalization
would not change the answer, because the maxima for the
normalized or not-normalized fitness functions would be
the same.
We assume that group fitness, W, is the product of

viability and fecundity. This is appropriate for a life cycle
involving discrete generations as is the case with the
volvocine green algae.

W ¼ VB. (10)

Although the multiplicative decomposition of fitness into
viability and fecundity assumed in Eq. (10) applies when
generations are discrete, most of the qualitative points
8
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made in the following sections would still hold were fitness
a more general function W ðV ;BÞ which was nonnegative,
zero if and only if V ¼ 0 or B ¼ 0, and strictly increasing in
both arguments whenever V and B are both positive. In
particular, the fundamental point that cell specialization
allows the group to increase fitness under conditions of
convexity holds for this more general fitness function
(because specialization can retain the same group fecundity
while increasing viability).

As already mentioned, the additivity assumed in Eq. (9)
is an example of group selection of type I as discussed by
Damuth and Heisler (1988). However, there are interesting
implications of combining the fitness components at the
group level after first summing the cell contributions (as
assumed in Eqs. (9) and (10)). Most important (and critical
to our analysis below) is the fact that, if one cell has a high
fecundity (and hence a low viability, so that it would have a
low fitness by itself), this may be compensated for if
another cell has a high viability (and hence low fecundity).
Consequently, even though each of these cells by itself
would have a low fitness, together they can bring a high
fitness to the group (especially under conditions of
convexity of the trade-off). This kind of joint effect is a
first step towards integration of the group, and would not
be possible if we used as group fitness the average cell
fitness, ð1=NÞ

PN
i¼1vibi.

More formally, the normalized fitness, VB=N2, is greater
than the average cell fitness by the negative of the
covariance between the two fitness components. Since in
our case the covariance is negative, the normalized fitness
associated with Eq. (10), VB=N2, is greater than the
average cell fitness, ð1=NÞ

PN
i¼1vibi, by the magnitude of the

covariance between fitness components. This covariance
effect at the group level appears to be quite general. Its
contribution to a property like fitness depends on the
property being a multiplicative function (or some other
function requiring a strong balance) of two components
(e.g., viability and fecundity) which themselves covary so
that higher values of one component bring lower values of
the other (the trade-off principle). Of course, if there is no
variance in these components among the lower level units
(cells) then there is no covariance and no effect at the group
level. What factors might produce variance among the
lower level units? We can think of two factors: noise, and
the curvature of the trade-off function being convex.

5.3. Implications of different curvatures of the trade-off

function

When investigating the implications of the different
possible curvatures of the trade-off function, v(b), we will
repeatedly make use of the definitions of convex and
concave functions. For a strictly convex (concave) function
v(b), if we take a particular point, say b*, and two points
equidistant below and above b*, say b� and b+, respec-
tively, then v(b�)+v(b+)4(o) 2 v(b*). If b is fecundity and
v(b) viability, then convexity of v implies that there is an
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advantage to specializing in the two components of fitness,
while concavity implies there are diminishing returns on an
investment in either component. We first assume that there
is no initial cost of reproduction.

5.3.1. Concave trade-off

If the function v(b) is strictly concave, then the cell group
should remain unspecialized. More precisely, all cells
should exert the effort b� that maximizes the product
bv(b). The key to this result is to observe that if two cells, i

and j, have different reproductive efforts, biabj, then they
could both change their fecundities to ðbi þ bjÞ=2. This
change in reproductive effort would not change the overall
fecundity of the group but would (by definition of
concavity) increase group viability, and hence increase
fitness. Indeed, the change in group viability would be
DV ¼ 2vððbi þ bjÞ=2Þ � vðbiÞ � vðbjÞ, which is positive be-
cause v(b) is a strictly concave function. This shows that all
cells should exert the same effort. If this common effort is b

then the viability is V ¼ NvðbÞ, the fecundity is B ¼ Nb and
the fitness is W ¼ N2bvðbÞ. Thus, independently of the
number of cells in the colony, the optimal value of the cell
fecundity common to all cells is the one that maximizes the
product bvðbÞ. The result that the optimal fecundity for
each cell does not depend on the number of cells is likely
not robust and depends crucially on the assumptions that
viability is additive and that the trade-off function v(b)
does not depend on the size of the colony. In contrast, the
result that a concave trade-off function selects against
specialization is robust, as we show in Appendix B.

5.3.2. Linear trade-off

If the function v(b) is linear (vðbÞ ¼ vmax � ab, as in Eq.
(5)) then the group viability only depends on the group
fecundity (and not on the particular values of the
component cell fecundities). Indeed, we have
V ¼

P
ivi ¼

P
i ðvmax � abiÞ ¼ Nvmax � aB.

Thus, any values of the fecundities b1,y,bN leading to
the same global fecundity B yield the same fitness
W ¼ ðNvmax � aBÞB. The possible values of B range from
0 to Nvmax=a. The maximum fitness is obtained for B ¼

Nbmax=2 (hence V ¼ Nvmax=2) and is equal to
W � ¼ N2bmaxvmax=4. Any arrangement of the fecundities
b1,y,bN such that

P
ibi ¼ Nbmax=2 is optimal and these

are the only optimal choices of the fecundities. In
particular, assuming that the N�1 first cells have a
fecundity b ¼ bmax=2, then it is optimal for the Nth cell
to exert the same effort, which yields the first result of the
fitness isocline model. Formally, the group of cells behaves
as if there was just one cell. There is no incentive to
specialize and so no individuality at this stage.

5.3.3. Convex trade-off

If the function v(b) is strictly convex, then the vast
majority of cells will specialize (some in soma, some in
germ). It may be that, at most, one cell remains
unspecialized if, for example, there is an odd number of
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cells in the group. If there is an even number of cells, then
half should specialize in germ and half in soma. Indeed,
this yields a fitness of W ¼ 1

4
N2vmaxbmax, which is the same

fitness obtained in the more favorable linear case con-
sidered above with the same values of bmax and vmax. The
linear trade-off is more ‘‘favorable’’ in the sense that, for
any value of the contribution to fecundity b, the contribu-
tion to viability v(b) is higher or equal in the linear case
than in the convex case. As a result, for a convex trade-off,
complete specialization in equal proportions must be
optimal since it attains this highest possible fitness. If there
is an odd number of cells, it may be that one cell remains
unspecialized (for instance, when there is just one cell), but
at most one cell may remain unspecialized. Indeed, assume
that two cells i and j have an intermediate fecundity;
without loss of generality assume bipbj. Let d be positive
and smaller than both bi and bmax�bj. If cell i decreases its
fecundity while cell j increases its fecundity by the same
amount d, then the global fecundity of the colony does not
change. However, the viability increases, hence the fitness
increases. Indeed, the change in viability is
DV ¼ vðbi � dÞ þ vðbj þ dÞ � ðvðbiÞ þ vðbjÞÞ, which is posi-
tive due to the strict convexity of the function v(b), as
shown in Appendix B.1.
5.3.4. Neither convex nor concave

It might be that the function v(b) is neither concave nor
convex. In that case, in the absence of additional
information, whether specialization pays cannot be
decided. Some partial results may be obtained though.
For instance, assuming that v(b) is differentiable, if at a
fitness maximum a cell i has an intermediate fecundity bi,
then we must have qv=qbðbiÞ ¼ �V=B (taking the deriva-
tive of fitness with respect to fecundity of cell i and setting
it to zero using Eqs. (10) and (9)). Also, if v(b) is twice
differentiable, then at a fitness maximum at most one cell
may have an intermediate fecundity b0 such that the trade-
off function is locally strictly convex at b0 (that is,
q2v=q2bðb0Þ40). This generalizes the above result on
convex trade-offs. The proof of this result (omitted for
brevity) consists in differentiating the fitness function and
investigating the standard first- and second-order optim-
ality conditions.
5.4. Initial cost of reproduction

We now investigate the effect of an initial cost of
reproduction. Formally, letting vmax be the contribution to
viability of a completely specialized somatic cell ðb ¼ 0Þ
and letting v0 be the limit of v(b) when the fecundity b40
tends to zero, we assume that vmax is greater than v0 and
study how this modifies the results of the preceding section.
Recall that vmax�v0 is the bonus discussed in Fig. 4.
Intuitively, an initial cost of reproduction makes the trade-
off function more ‘‘convex-like’’, and thus tends to select
for specialization.
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5.4.1. Convex or linear trade-off

If the trade-off function v(b) is strictly convex, then
adding an initial cost of reproduction only reinforces the
conclusion that specialization should be favored. More
interesting are the cases of a linear trade-off (considered
now) or a concave trade-off (considered below). Recall that in
the linear case, without an initial cost of reproduction, the
maximal fitness may be obtained with or without specializa-
tion. Thus, in the previous case, the colony is indifferent to
specialization or no specialization. An initial cost of
reproduction, however small, tilts the balance in favor of
specialization. Indeed, assume that for b40, vðbÞ ¼ v0 � ab

with v0 ¼ abmaxovmax. If no cell specializes, then, as
discussed in the preceding section, the best fitness that the
colony can obtain is W � ¼ N2bmaxv0=4. This will be the case
when the group fecundity is B� ¼ Nbmax=2, and the group
viability is V� ¼ Nv0=2. We now apply the argument above
concerning a pair of cells and whether they might jointly
specialize by considering a colony in which N�2 cells have
fecundity b ¼ bmax=2, and in which the two other cells are
specialized, one in soma and one in germ. The overall
fecundity of the colony is still B�, but the viability is now
V ¼ ðN � 2Þv0=2þ vmax ¼ Nðv0=2Þ þ vmax � v04V�; hence,
the fitness is greater than W �. Therefore, if some of the cells,
specialize, the colony can obtain a greater fitness than if all
cells are generalists. If there is an even number of cells then, as
in the case of a convex trade-off and no initial cost of
reproduction, half of the cells should specialize in soma and
half in germ.
Note that, with a linear trade-off, specialization occurs

as soon as there is any initial cost of reproduction. This
contrasts with the fitness isocline model, in which
specialization requires that the initial cost of reproduction
be greater than a critical value (Eq. (8)). To understand this
difference, note that in the fitness isocline model we
assumed that the behavior of the N�1 first cells was fixed.
Thus, if the Nth cell specializes in soma, this yields a benefit
to viability (the bonus to specialization linked to the initial
cost of reproduction), but disrupts the balance between
fecundity and viability. For specialization to be optimal in
the fitness isocline model, the benefits must outweigh the
costs. In the more general optimization model considered
here, if a cell specializes in soma, the other cells may
increase their reproductive effort in order to compensate
for the corresponding loss of fecundity. Thus, the group
may obtain the benefits of specialization without having to
pay for a disruption in the balance between fecundity and
viability.

5.4.2. Concave trade-off

We assume now that the trade-off function v(b) is strictly
concave ð0obpbmaxÞ, but that there is an initial cost of
reproduction, so that vmax4v0 (Fig. 5). As in the preceding
section, if two cells i and j which are not specialized in soma
have a different fecundity, e.g. bi4bj40, then by changing
their fecundity to ðbi þ bjÞ=2, they would retain the same
overall contribution to group fecundity while increasing
0
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unspecialized colony. The solid concave curve (identical in both panels) is the trade-off between viability and fecundity. Three tangents relevant to the

analysis are drawn. In panel (A), the dotted and dashed lines are the tangents to the trade-off curve at b ¼ bmax and b ¼ b�, respectively. In panel (B), the

dashed line is the tangent to the curve at b ¼ ~b. The significance of these points is discussed in the text and Appendix B.2. The quantity 2v�2v0 is the

detriment to soma specialization due to the concavity of the trade-off. If vmax42v�, then specialization in soma pays. See text for further explanation.
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their contribution to group viability. It follows that, at a
fitness maximum, all cells which are not specialized in soma
must have the same fecundity. An immediate consequence
is that specialization in germ without specialization in soma
cannot pay as a first step. The question is whether
specialization of some cells in soma allows for an increase
in fitness.

Assuming that the function vðbÞ is twice differentiable,
an analysis given in Appendix B.2 gives the conditions
under which soma specialization will evolve, and, if soma
evolves, whether germ specialization will also evolve. We
now summarize those conditions referring to Fig. 5. Let b�

denote the fecundity of the cells in the best unspecialized
colony (i.e. b� is the fecundity which maximizes the product
bvðbÞ). If Eq. (11) holds, specialization does not pay (the
best colony is the one in which all cells have intermediate
fecundity b�).

vmaxp2v�. (11)

Since b� maximizes bvðbÞ, we have v� þ b�ðqv=qbÞðb�Þ ¼ 0.
It follows that Eq. (11) is equivalent to

vmaxpv� � b�
qv

qb
ðb�Þ. (12)

Eq. (12) means that the tangent to the trade-off curve at
b ¼ b� crosses the line b ¼ 0 below vmax. On the other
hand, if the reverse of Eq. (12) (given in Eq. (13)) holds,
then some cells should specialize in soma.

v� � b�
qv

qb
ðb�Þ ¼ 2v�ovmax. (13)

Furthermore, if, in addition to satisfying Eq. (13),
vmaxo� b�ðqv=qbÞðb�Þ, then the reproductive cells should
have an intermediate fecundity; more precisely, they should
have fecundity ~b such that the tangent to the trade-off
curve at b ¼ ~b crosses the line b ¼ 0 precisely at vmax (Fig. 5
261
panel (B)) (that is vmax ¼ ~v� ~bðqv=qbÞð ~bÞ, see Appendix
B.2). The proportion of somatic cells should be such that
the mean viability is vmax/2. The mean fecundity is then
~bmax=2; ~bmax ¼ �vmax=½ðqv=qbÞð ~bÞ� and the fitness
W ¼ N2vmax

~bmax=4, which is the highest obtainable fitness
for a colony facing a linear trade-off v ¼ vmax � ab with
a ¼ �qv=qbð ~bÞ.
Finally, if

vmaxX� bmax
qv

qb
ðbmaxÞ, (14)

then half of the cells should specialize in soma (b ¼ 0) and
the other half in germ (b ¼ bmax). This yields the fitness
W ¼ N2vmaxbmax=4.
The above analysis shows that there are two threshold

values for vmax (in the region vmax4v0 (see Fig. 5)). The
first threshold, vmax ¼ 2v� ¼ v� � b�ðqv=qbÞðb�Þ, concerns
specialization in soma. The second threshold, vmax ¼

�bmaxðqv=qbÞðbmaxÞ, concerns specialization in germ. In
the case of a linear trade-off, both thresholds are equal to
v0. Thus, while vmax – v0 is the bonus of soma specialization
linked to the cost of reproduction, we may see 2v� � v0 as
the detriment of soma specialization linked to the
concavity of the trade-off. Eq. (11) (or, equivalently, Eq.
(12)) expresses the condition that the bonus of soma
specialization is smaller than its detriment.
As detailed in Appendix B.2, if we take into account the

fact that the proportion of somatic cells must be a multiple
of 1/N, then the condition for soma specialization is
slightly more demanding than Eq. (13) and is more easily
satisfied if the number of cells in the colony is large. This
effect of colony size in facilitating the evolution of soma
specialization may be interpreted as follows: there is a
tension between being efficient (that is, having high ratios
of viability/(resources allocated to viability) and fecundity/
(resources allocated to fecundity)) and keeping a balance
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between viability and fecundity. If a cell specializes in
soma, then in order to keep a balance between fecundity
and viability, the other cells must increase their fecundity.
If there are only a few other cells in the colony, then they
will have to increase their fecundity a lot, possibly moving
to inefficient functioning points. This is likely to be the case
when there are decreasing returns on efforts (that is, when
the fecundity/(resources to fecundity) ratio decreases as the
resources alloted to fecundity increase, and similarly for
viability), which corresponds to a concave trade-off. In
contrast, in a large colony where there are more cells
available, a balance between viability and fecundity can
more easily be maintained since the increase in reproduc-
tive effort by the rest of the colony can be divided among
more cells, which would then not greatly effect each cell’s
efficiency. Thus, it is possible to reap the advantage of
soma specialization linked to the cost of reproduction while
maintaining both a balance between viability and fecundity
and an efficient functioning of all cells.

6. Discussion

We have concluded that during the origin of multi-
cellularity convex trade-offs between survival and repro-
duction, such as those created by a significant initial cost of
reproduction to survival, select for specialization in the two
fitness components as colonies increase in size. As a result
of this specialization, the individuality of the cell group is
enhanced. The conclusion about the role of convexity in
specialization is very general; in particular, we have shown
it holds for more general fitness functions than multi-
plicative (Eq. (10)) and for non-additive viabilities. The
main point is that when the trade-off is convex, specializa-
tion allows for the increase of one component of fitness (we
focused on viability) without any decrease in the other
component (fecundity).

The conclusion that convexity favors specialization
resembles the standard results of life-history theory, which
state that convex fitness trade-offs select for specialization
in reproductive function as organisms increase in age. That
is, convex fitness trade-offs select for semelparity or ‘‘big
bang’’ reproduction in which there is no reproduction until
the last stage of the life cycle (Schaffer, 1974; Charlesworth
and Leon, 1976). Big bang reproduction is analogous to
cell specialization in the sense that age classes specialize in
either no reproduction or complete reproduction (for the
last class).

However, the life-history problem of optimization of
reproductive effort over the lifespan of an individual is
different in important ways from the problem of optimiza-
tion of the reproductive effort of cells in a group. There is,
most fundamentally, the very question we wish to answer:
is the individual the cell or the cell group? While we do
assume selection at the group level, without cell specializa-
tion there is no property that would make the group
indivisible and hence a true individual. In answering this
question, we are not concerned with how the reproductive
26
effort at the group level changes, but rather with whether
there is specialization at the lower level among cells.
Indeed, in our argument for cell specialization in the
optimization model, the average reproductive effort at the
group level does not change at all. However, how this effort
is distributed among cells can be critical for the group in
terms of its viability and individuality.
Consider, for example, the following question in life-

history theory which may seem similar to the one studied
here. How will the trade-off between viability and
fecundity evolve as an external parameter, such as the
quality of the environment, varies (Kisdi et al., 1998)? Here
we also investigate the evolution of the trade-off between
viability and fecundity as another parameter, the size of the
group, varies. However, the question we investigate is not
how the investment in fecundity will evolve as this
additional parameter varies, as in Kisdi et al. (1998), but
whether some cells will specialize (again, the overall
investment in fecundity staying more or less the same).
On a qualitative level, what we have studied is how the

relative changes in viability and fecundity linked to cell
specialization evolve as colony size increases. Due to the
assumed multiplicative nature of fitness (Eqs. (1) and (10)),
W ¼ VB, what matters when a cell changes its reproduc-
tive effort are the relative changes in viability and fecundity
for the group. Formally, if a cell specializes in soma,
leading to a decrease in group fecundity of dB and an
increase in group viability of dV, then the change in group
fitness is DW ¼ �VdBþ BdV � dBdV . If we neglect the
last term (which is a second-order term), then we see that
the condition for fitness to increase is that the relative
increase in viability dV=V be greater than the relative
decrease in fecundity �dB=B. This is more likely to be the
case if viability is low, as will occur if colonies increase in
size without specializing in somatic functions.
What is the fecundity viability trade-off curve like in

single-celled organisms? The multiplicative nature of fitness
requires that single-cell organisms be generalists and have
intermediate efforts at both reproduction and viability,
regardless of the curvature of the trade-off curve. Never-
theless, the curvature of the trade-off determines whether
the unicellular habit will be stable to two- (or greater) cell
groups. This will be the case when the trade-off curve is
strictly concave. Since, in nature, smaller groups are not
specialized (Fig. 1), our model suggests that the trade-off is
concave rather than convex in single-celled species.
Furthermore, a concave trade-off seems more natural for
small groups, as it expresses a law of decreasing return on
efforts.
The curvature of the function describing the relationship

between the two main fitness components’ reproduction
and survival is a basic issue in life-history theory (Benk-
man, 1993; Michod, 1978; Schaffer, 1974; Benson and
Stephens, 1996; Blows et al., 2004; Carriere and Roff, 1995;
Kisdi, 2001; Reznick, 1985; Roff, 2002; Rueffler et al.,
2004; Sato, 2002; Strohm and Linsenmair, 2000; Takada
and Nakajima, 1996; Levins, 1968; Stearns, 1992). Despite
2
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the central relevance of this issue to life-history theory, a
recent review (Rueffler et al., 2004) of the data concerning
the curvature of the trade-off curve states: ‘‘Unfortunately,
there is no study known to us which has revealed the details
of this curvature for any life-history trade-off in a specific
organism. However, these curvatures are central in life-
history theory which indicates a major gap between theory
and empirical knowledge...’’.

Our analysis predicts that a large initial cost of
reproduction to survival is sufficient to select for G–S
specialization. Measuring this initial survival cost of
reproduction is empirically more practical than measuring
the complete curvature of the trade-off curve between
survival and reproduction, the latter having been studied in
a variety of organisms with no clear results (if the above
quotation is accepted). We return now to the volvocine
green algae (Fig. 1) and consider this central prediction of
our model.

As already discussed when introducing the volvocine
algae (Fig. 1), the investment of the parent colony in
reproductive cell growth illustrates an initial cost of
reproduction to survival, which increases with organism
size. Besides using more resources, a larger embryo
increases the volume, mass and drag of the mother colony,
as has been quantified in Fig. 4 of Solari et al. (2005b).
Solari et al. (2005b) show that these initial survival costs
increase with colony size, requiring more swimming force
as well as more flagellar mixing (for nutrient acquisition
and removal of waste) per embryo.

We believe the need to pay this initial cost of
reproduction to survival accounts for the observed increase
in the somatic/reproductive (S/R) cell ratio as colony size
increases in the volvocine algae (see Table 3 of Solari et al.,
2005b). We think that the evolution of soma (as well as the
evolution of increased S/R ratios) provides the benefits that
compensate for the increasing initial costs of reproduction
in colonies of increasing size. There are also direct costs of
germ and soma specialization which must be overcome by
these benefits, as germ specialization reduces the number of
cells available for vegetative functions and soma specializa-
tion reduces the number of reproducing cells.

The benefits of soma specialization include: (i) colony
motility while reproducing (overcoming the flagellation
constraint discussed in Section 3), (ii) motility while large
(overcoming the enlargement constraint discussed in
Section 3), (iii) increased resource uptake due to the
‘source-sink’ effect (in which somatic cells transfer
resources to germ cells which act as a sink) (Bell, 1985;
Koufopanou and Bell, 1993; Solari et al., 2005a), and (iv)
enhanced uptake of resources and removal of waste by
flagellar beating (Niklas, 1994, 2000; Solari et al., 2005a).

In addition, soma specialization reduces the detriment to
viability of germ specialization. Once larger colonies invest
in a high proportion of somatic cells, non-somatic cells can
focus on reproduction rather than contribute to vegetative
functions which are sufficiently dealt with by somatic cells.
When soma separation is complete, germ specialization can
263
provide additional benefits, such as decreased generation
time, increased productivity by specialization at photo-
synthesis, and hydrodynamic advantages stemming from
the location of germ. Since specialized germ cells are non-
flagellated and do not contribute to motility, they are
located in the interior of the colony, making the colony
spheroid smaller and lowering drag (Solari et al., 2005b).
Single gene mutations in life-history traits can be a

powerful approach to understanding the cost of reproduc-
tion and trade-offs between life history traits, both long
standing topics of considerable interest (Reznick, 1985;
Roff, 2000, 2002). Various V. carteri developmental
mutants are known (Kirk, 1998), which differ in the basic
factors hypothesized in our models for the origin of
multicellularity: group size, S/R ratio, type and timing of
G–S specialization, and motility; yet they differ in just one
or a few genes. These mutants include lag� (germ cells
perform motility functions before reproducing; these
mutant colonies are similar to Volvox species such as V.

aureus and V. rouselletti), regA� (somatic cells regenerate
to become reproductive), and glsA�/regA� (all cells
perform vegetative functions first and then become
reproductive; this mutant is similar to Eudorina; see Fig. 1).
These mutants are especially useful for studying fitness

decomposition at the cell and group levels, because a
certain known number of cells (or amount of tissue) have
changed their reproductive effort. We can measure the
consequences of this change at the colony level, and in this
way estimate the contribution to the group fitness of the
changed effort at the cell level as is required by our model
in Fig. 4. In the regA� mutants, �235 cells have changed
their phenotype from somatic to unspecialized; in lag��9
cells have changed their phenotype from germ to unspe-
cialized; and in glsA� regA� there are �561 unspecialized
cells — similar to a Eudorina colony, but larger.
As a result of these changes in reproductive effort at the

cell level, the size, productivity and motility of the group
change (Solari et al., 2005b; Solari, 2005). For example, in
colonies with the regA� mutation, as once-specialized
somatic cells (b ¼ 0 in Fig. 4) begin exerting reproductive
effort (b40), there is not only a large decrease in colony
motility, but also a large decrease in the motility
contributed by a single changed cell. Specifically, the
average force exerted for group motility by a single motile
cell is about half in the regA� mutant and a quarter in the
glsA� regA� mutant compared to the wild type (Solari
et al., 2005b). The initial cost of reproduction to survival
that underlies the convex nature of the fitness trade-offs
(Fig. 4) is real and directly measurable in these organisms,
and attributable to a change in the effort exerted by single
cells within the cell group as required by the models
considered above.
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Appendix A

We use Eq. (5) and build the group one cell at a
time, assuming that after a cell is added it does not
change its strategy. For the first cell, V ¼ B ¼ 0 and the
isoclines are simply v ¼W i=b. Maximizing W i (Eq. (3))
subject to Eq. (5) gives the optimum strategy for the cell
defined by

b� ¼
vmax

2a
¼

bmax

2
and v� ¼

vmax

2
. (A.1)

The additional fitness (Eq. (3)) is now given by

W �
i ¼

bmaxvmax

4
. (A.2)

We now add the second cell. The isocline (Eq. (2)) now
has V 1 ¼ vmax=2 and B1 ¼ bmax=2. Note that V1 ¼ aB1.
For the second cell, maximizing the added fitness (Eq. (3))
subject to the linear constraint (Eq. (5)) gives

b� ¼
bmax

2
and v� ¼

vmax

2
, (A.3)

with added fitness given by

W �
i ¼

3
4

V1B1. (A.4)

The new 2-cell group has V 2 ¼ 2vmax=2 ¼ vmax and B2 ¼

2bmax=2 ¼ bmax and Eq. (A.4) holds since, of course,
vmax ¼ abmax. If we now consider the N+1 cell and
maximize W i subject to the linear constraint (Eq. (5)),
and that for the N cell group V N ¼ aBN (Eq. (A.2)), we
find again Eq. (A.1) and BNþ1 ¼ BN þ bmax=2 ¼
ðN þ 1Þbmax=2 and V Nþ1 ¼ V N þ vmax=2 ¼ ðN þ 1Þvmax=2.
The optimal value of intermediate reproductive effort can
be obtained by maximizing W i subject to the linear
intrinsic constraint. For use in the text in deriving
Eq. (8), we assume V ¼ aB. When there is a cost of
reproduction, using the piecewise linear curve defined in
Fig. 4, we obtain the optimal intermediate values to be

b� ¼
bmax

2
and v� ¼

ð1� eN Þvmax

2
. (A.5)

Using the values in Eq. (A.5), we obtain as the maximal
added fitness for intermediate strategies

W �
i ¼
ð4Bþ bmaxÞð1� eN Þvmax

4
. (A.6)

Appendix B

B.1. Proof of a result on convex trade-offs

Assume that vðbÞ is strictly convex. Let biobj be
intermediate fecundities and let d40 be smaller than bi

and bmax � bj . From the mean-value theorem, it
follows that there exist fecundities b0 in ½bi � d; bi� and b00
26
in ½bj ; bj þ d� such that

vðbiÞ ¼ vðbi � dÞ þ d
qv

qb
ðb0Þ and

vðbj þ dÞ ¼ vðbjÞ þ d
qv

qb
ðb00Þ.

It follows that

vðbi � dÞ þ vðbj þ dÞ � ðvðbiÞ þ vðbjÞÞ

¼ d
qv

qb
ðb00Þ �

qv

qb
ðb0Þ

� �
. ðB:1Þ

Since the function v is strictly convex, its first derivative is
strictly increasing. Therefore, since b004b0, Eq. (B.1) is
positive, as claimed in Section 5.3.3. The result still holds if
the function v is not differentiable (proof omitted).
B.2. Proof of results on concave trade-offs with an initial

cost of reproduction

We compute here the optimal behavior of a colony
facing a strictly concave trade-off with an initial cost of
reproduction. We first assume, as an approximation, that
the proportion of somatic cells can take any value. We then
discuss how taking into account the fact that the
proportion of somatic cells must be a multiple of 1/N
changes the results. Throughout, we assume that the
contributions to viability are additive (the case of non-
additive viabilities is treated in Appendix B.3). We also
assume for simplicity that the function vðbÞ is twice
differentiable, so that the fitness function is twice
differentiable. This allows us to use the standard first-
and second-order optimality conditions of optimization
theory (see below). However, this assumption is not
necessary: as discussed at the end of this section, a
graphical analysis shows that the same conclusions may
be reached if the function v is not differentiable.
The fitness of a colony with a proportion p of somatic

cells and fecundity b for all other cells is

W ðp; bÞ ¼ N2½pvmax þ ð1� pÞvðbÞ� � ð1� pÞb. (B.2)

As explained in Section 5.4.2, in the best colony, all non-
somatic cells have the same fecundity. Thus, to find the best
colony, we only need to find the values of p and b that
maximize Eq. (B.2). Let ~p and ~b be such optimal values and
let ~v ¼ vð ~bÞ. Specialization of some cells in soma is optimal
if ~p40. Specialization of the non-somatic cells in germ is
optimal if ~b ¼ bmax. Recall that b� denotes the optimal
value of the fecundity for a non-specialized colony. If
specialization in soma does not pay ð ~p ¼ 0Þ, then ~b ¼ b�;
but, if specialization in soma pays, then we expect (and we
will prove) that the optimal fecundity of the non-somatic
cells ~b is greater than b�.
Since the values ~p and ~b are optimal, we have

qW

qb
ð ~p; ~bÞ ¼ 0 (B.3)
4
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if ~bobmax,

qW

qb
ð ~p; ~bÞX0 (B.4)

if ~b ¼ bmax, and finally, if ~p40,

qW

qp
ð ~p; ~bÞ ¼ 0. (B.5)

To use these conditions, we need to compute the partial
derivatives of W. We get

qW

qp
ðp; bÞ ¼ N2b½ð1� 2pÞvmax � 2ð1� pÞvðbÞ�, (B.6)

qW

qb
ðp; bÞ

¼ N2ð1� pÞ ð1� pÞ b
qv

qb
ðbÞ þ vðbÞ

� �
þ pvmax

� �
. ðB:7Þ

From Eqs. (B.5) and (B.6) we obtain

~p ¼
vmax � 2~v

2½vmax � ~v�
(B.8)

and

~pvmax ¼ ð1� ~pÞðvmax � 2~vÞ. (B.9)

Furthermore, plugging Eq. (B.9) into Eq. (B.7) we get

qW

qb
ð ~p; ~bÞ ¼ N2ð1� ~pÞ2 ~b

qv

qb
ð ~bÞ þ ðvmax � ~vÞ

� �
. (B.10)

Therefore, Eqs. (B.3) and (B.4) imply that

vmaxX ~v� ~b
qv

qb
ð ~bÞ, (B.11)

with equality if ~bobmax.
We now distinguish three cases which correspond,

respectively, to no specialization, specialization in soma
but not in germ, and specialization in soma and in germ.
Let v� ¼ vðb�Þ.

Case 1: vmaxp2v�. It follows from Eq. (B.8) that for
specialization to be optimal, i.e. ~p40, we must have

vmax42~v. (B.12)

Since vmaxp2v�, this implies v�4~v, hence ~b4b�.
Since the function v is concave, it follows that

~v� ~b
qv

qb
ð ~bÞ4v� � b�

qv

qb
ðb�Þ.

Together with Eq. (B.11), this implies that

vmax4v� � b�
qv

qb
ðb�Þ ¼ 2v�

(the latter equality is proved in Section 5.4.2). This
contradicts the assumption vmaxp2v�. It follows that if
vmaxp2v�, then specialization is not optimal.

Case 2: 2v�ovmaxo� bmaxðqv=qbÞðbmaxÞ. Applying
Eq. (B.6) at p ¼ 0 and b ¼ b� we obtain

qW

qp
ð0; b�Þ ¼ N2b�ðvmax � 2v�Þ40. (B.13)
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Thus a colony with some somatic cells and fecundity b� for
the non-somatic cells would have a higher fitness than the
colony in which all cells have fecundity b� (i.e. the best
unspecialized colony). This implies that at a fitness
maximum, the proportion of somatic cells is positive:
~p40. Furthermore, since

vmaxo� bmax
qv

qb
ðbmaxÞ ¼ vðbmaxÞ � bmax

qv

qb
ðbmaxÞ

it follows that if ~b ¼ bmax, then Eq. (B.10) is negative,
contradicting Eq. (B.4). Therefore, ~bobmax, i.e. the non-
somatic cells should be generalists. This implies that Eq.
(B.11) holds with equality. That is,

vmax ¼ ~v� ~b
qv

qb
ð ~bÞ. (B.14)

Since the equation of the tangent to the trade-off curve at ~b
is

v ¼ ~vþ ðb� ~bÞ
qv

qb
ð ~bÞ,

Eq. (B.14) means that this tangent crosses the line b ¼ 0
exactly at v ¼ vmax, as depicted in Fig. 5. This implies that
~v4v�.
Using Eq. (B.8), we compute the viability, fecundity

and fitness of the colony to obtain V ¼ Nvmax=2; B

¼ Nvmax=2a, and W ¼ N2v2max=4a, with a ¼ �ðqv=qbÞð ~bÞ.
Case 3: vmaxX� bmaxðqv=qbÞðbmaxÞ. As in case 2,

specialization in soma pays: ~p40, but now ~b ¼ bmax

(otherwise Eq. (B.10) would be positive, contradicting
Eq. (B.3)). That is, the non-somatic cells should be germ
(and not generalist). The above formulae for p, V, B and
the fitness W still hold. In particular, Eq. (B.8) gives p ¼ 1

2
;

thus, half of the cells should specialize in germ and half in
soma.
Note that our results do not require that the function

vðbÞ stays the same. In particular, the trade-off function
could change as the number of cells increases ðv ¼ vðb;NÞÞ,
in which case the optimal fecundity of the cells in an
unspecialized colony may depend on the size of the colony.
In addition, it is not necessary that the function v be
concave (it could be, e.g., neither convex nor concave). A
graphical analysis (included as supplementary material in
the online version of this article) shows that provided that
there exists a fecundity ~b which is greater than the mean
fecundity in the best unspecialized colony and such that the
line joining the points (0, vmax) and ð ~b; vð ~bÞÞ is above the
graph of v, then specialization will be favored.

Taking into account the fact that the proportion of somatic

cells is a multiple of 1/N: We now discuss how the results
change if we take into account the fact that the proportion
of somatic cells cannot vary continuously but must be a
multiple of 1/N. Consider a colony in which a cell
specializes in soma and the other cells increase their
fecundities from b� to ðN=ðN � 1ÞÞb�. This colony would
have the same fecundity B� ¼ Nb� as the best unspecialized
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colony, but its viability would be

V ¼ vmax þ ðN � 1Þv
Nb�

N � 1

� �
. (B.15)

Thus, a sufficient condition for specialization to be favored
is that V4V� ¼ Nv�, or equivalently

vmax4Nv� � ðN � 1Þv
Nb�

N � 1

� �
. (B.16)

Noting that Nb�=ðN � 1Þ ¼ b�ð1þ 1=ðN � 1ÞÞ and approx-
imating the right-hand side by a Taylor expansion
including up to second-order terms, Eq. (B.16) becomes

vmax4v� � b�
qv

qb
ðb�Þ �

ðb�Þ2

2ðN � 1Þ

q2v

qb2
ðb�Þ. (B.17)

This is exactly Eq. (13) when the trade-off is linear, but is
more demanding for a concave trade-off as the second
derivative of v is then negative. Furthermore, for a concave
trade-off, Eq. (B.17) reduces to Eq. (13) in the limit of a
very large number of cells, but may be significantly more
demanding when N is small.

Intuitively, if N is small and vmax is only slightly greater
than v� � b�ðqv=qbÞðb�Þ ¼ 2v�, then if a cell specializes in
soma, the resulting proportion of somatic cells, 1/N, might
be much higher than the optimal proportion of somatic
cells given in Eq. (B.8) and specialization in soma need not
be favored even though Eq. (13) is satisfied.

B.3. Non-additive viabilities

Up to now, we assumed for simplicity that the cells
contributions to the viability of the group were additive.
We show here that we may dispense with this assumption.
The assumptions we keep are that the fecundities of the
cells are additive, B ¼

P
ibi, and (for some results) that

the viability V of the group is a symmetric function of the
fecundities; that is, the cells are interchangeable in the sense
that if cell i and cell j exchange their fecundities, then the
viability of the group does not change. We first consider
trade-offs with no initial cost of reproduction and show
that a convex (concave) trade-off selects for (against)
specialization.

Convex trade-off: Assume that the function V is strictly
convex. Then in an optimal group, at most one cell
may have an intermediate fecundity. Indeed, assume by
contradiction that two cells, say cells 1 and 2, have an
intermediate fecundity. If cell 1 increases its fecundity by
some small quantity x and cell 2 simultaneously decreases
its fecundity by the same quantity, then the fecundity of the
group does not change but the viability becomes

f ðxÞ ¼ V ðb1 þ x; b2 � x; b3; . . . ; bNÞ.

It follows from the strict convexity of V that the function f
is strictly convex. Therefore, for x40, f ðxÞ þ f ð�xÞ

42f ð0Þ. It follows that at least one of the quantities f ðxÞ

and f ð�xÞ is strictly greater than f ð0Þ. Without loss of
generality, assume f ðxÞ4f ð0Þ. This means that, while the
26
fecundity of a colony with fecundities b1 þ x; b2 �

x; b3; . . . ; bN is the same as the fecundity of the initial
colony, its viability, hence its fitness, is higher. Therefore,
the initial colony was not optimal.

Linear trade-off: In this case, assuming that V is
symmetric in the fecundities, then viabilities are additive
and we are back to the model of Section 5.3.2. Indeed, if
the trade-off is linear then there exist constants Vmax,
a1; . . . ; aN such that

V ðb1; . . . ; bnÞ ¼ Vmax �
X

i

aibi

 !
.

If V is symmetric, then the constants ai are all equal.
Letting a be the common value of the ai and
vmax ¼ Vmax=N, we get

V ðb1; . . . ; bnÞ ¼
X

i

ðvmax � abiÞ

as in the case of additive viabilities.
Concave trade-off: If the viability V is strictly concave

and symmetric, then in an optimal colony, all cells have the
same fecundity. Indeed, consider a colony with fecundities
b1; . . . ; bN and assume that two cells, say cells 1 and 2, have
different fecundities. Let

gðxÞ ¼ V
b1 þ b2

2
þ x;

b1 þ b2

2
� x; b3; . . . ; bN

� �

so that V ðb1; . . . ; bNÞ ¼ gð½b1 � b2�=2Þ. If V is strictly
concave, then so is g, so that for x ¼ ½b1 � b2�=2a0

gðxÞ þ gð�xÞo2gð0Þ.

Furthermore, if V is symmetric, then

gð�xÞ ¼ V ðb2; b1; b3; . . . ; bNÞ ¼ V ðb1; b2; b3; . . . ; bNÞ

¼ gðxÞ

so that gðxÞogð0Þ. It follows that a colony with fecundities
ðb1 þ b2Þ=2; ðb1 þ b2Þ=2; b3; . . . ; bN would have the same
group fecundity but a higher group viability than a colony
with fecundities b1; b2; b3; . . . ; bN .

Initial cost of reproduction: We now consider the effect of
an initial cost of reproduction. By an initial cost of
reproduction, we mean that if cell i specializes in soma, the
viability is substantially higher than if it provides a little
fecundity. Formally,

V ðb1; . . . ; bi�1; 0; biþ1; . . . ; bN Þ

4V ðb1; . . . ; bi�1; 0
þ; biþ1; . . . ; bN Þ

with

V ðb1; . . . ; bi�1; 0
þ; biþ1; . . . ; bN Þ

¼ lim
e!0;e40

V ðb1; . . . ; bi�1; e; biþ1; . . . ; bN Þ.

When the fecundities are additive, then the difference

V ðb1; . . . ; bi�1; 0; biþ1; . . . ; bN Þ

� V ðb1; . . . ; bi�1; 0
þ; biþ1; . . . ; bNÞ

is simply the difference between vmax and v0 (see Fig. 5).
6
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We focus on the case of a concave trade-off (the case of a
convex or linear trade-off is easily dealt with as in Section
5.4.1.). Recall the above argument showing that if the
function V is strictly concave and symmetric and if there is
no initial cost of reproduction, then all cells should have
the same fecundity. The same argument shows that, when
there is a cost of reproduction, all non-somatic cells should
have the same fecundity.

Let b� denote the fecundity of the cells in the best
unspecialized colony and B� ¼ Nb�. If, starting from
the best unspecialized colony, one cell specializes in soma
and the other cells increase their fecundities to
b0 ¼ Nb�=ðN � 1Þ, then the global fecundity does not
change but the viability goes from V ðb�; . . . ; b�Þ to
V ð0; b0; . . . ; b0Þ. Thus, a sufficient condition for fitness to
increase is that

V ð0; b0; . . . ; b0Þ4V ðb�; . . . ; b�Þ with b0 ¼
Nb�

N � 1
. (B.18)

In the case of a linear (and symmetric) trade-off, the
quantity

V ð0þ; b0; . . . ; b0Þ � V ðb�; . . . ; b�Þ (B.19)

is zero. Thus we may see this quantity as a detriment to
soma specialization due to the concavity of the trade-off.
Eq. (B.18) expresses that if the bonus to soma specializa-
tion

V ð0; b0; . . . ; b0Þ � V ð0þ; b0; . . . ; b0Þ

is greater than the detriment in Eq. (B.19), then specializa-
tion in soma is favored.

Another perspective is as follows: let V ðp; bÞ and W ðp; bÞ
denote, respectively, the viability and fitness of a colony
with a proportion p of somatic cells and fecundity b for the
non-somatic cells. Assume for simplicity that p can vary
continuously and let

f ðpÞ ¼ V ðp; b�=ð1� pÞÞ

denote the viability of a colony with a proportion p of
somatic cells and fecundity b�=ð1� pÞ for the other cells, so
that the global fecundity equals B�. A sufficient condition
for specialization is that

qf

qp
ð0Þ40. (B.20)

This expresses the fact that by having some cells specialized
in soma, a colony can retain the same fecundity as the best
unspecialized colony but increase its viability.

Simple computations show that Eq. (B.20) is equivalent
to

1

V

qV

qp
ð0; b�Þ41 (B.21)

which means that the relative increase in viability provided
by specialization in soma should be greater than a certain
threshold (when the viabilities are additive, Eq. (B.21) boils
down to ðvmax � v�Þ=v�41 or equivalently vmax42v�). An
effect of an increasing initial cost of reproduction is that
267
the relative increase in viability provided by specialization
in soma increases with the size of the colony (In volvocine
algae, this is essentially because, in the absence of somatic
cells, the viability gets lower and lower, hence 1/V

increases). Thus, the higher the initial cost of reproduction,
the more likely it is that Eq. (B.21) will be satisfied, hence
specialization favored.

Appendix C. Supplementary data

Supplementary data associated with this article
can be found in the online version at doi:10.1016/
j.jtbi.2005.08.043.
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Appendix C. (Supplementary material for the online version of the article)

In this appendix, we generalize some of the results given in appendix B. We
focus on the case of addivite viabilities and fecundities. That is, we assume that
the viability and fecundity of the colony are given by the sum of the contributions
of the cells, as given in equation 9. Furthermore, we assume (counterfactually) that
the proportion of cells with a given fecundity need not be a multiple of 1/n but may
take any value in [0, 1].

We consider a nonnegative trade-off function v(b) defined on an interval [0, bmax]
(the possible contributions of a cell to the fecundity of the colony). No other as-
sumption the trade-off function is needed. In particular, we do not assume that
this function is differentiable, nor that it is convex or concave, nor even that it is
decreasing.

Let b∗ ∈ [0, bmax] be an optimal value of the fecundity of all cells in an unspecial-
ized colony. That is, b∗ maximizes the product bv(b). (Since we make no particular
assumption on the curvature of the trade-off, there may be multiple values of b max-
imizing the product bv(b); in this case, we choose as b∗ one of these values.) Let
v∗ = v(b∗) and for all b in [0, bmax] let

v̄(b) = v∗ (2− b/b∗)

That is, v̄ represents a linear trade-off with no initial cost of reproduction and such
that v̄(0) = 2v∗ and v̄(b∗) = v∗. Note that if for all b, v(b) = v̄(b), then, as proved
in section 5.3.2, any arrangement of the fecundities such that the average fecundity
is b∗ is optimal. In particular, the undifferentiated colony in which all cells have
fecundity b∗ is an optimal colony.

More generally, we prove below that:

Proposition. The undifferentiated colony in which all cells have fecundity b∗ is an
optimal colony if and only if

∀b ∈ [0, bmax], v(b) ≤ v̄(b) (C.1)

Indeed, let

W (b1, ..., bN ) =

 ∑
1≤i≤N

v(bi)

  ∑
1≤i≤N

bi


and

W̄ (b1, ..., bN ) =

 ∑
1≤i≤N

v̄(bi)

  ∑
1≤i≤N

bi


Let W ∗ = W (b∗, ...., b∗) and W̄ ∗ = W̄ (b∗, ...., b∗)
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Since v̄(b∗) = v(b∗), we have
W ∗ = W̄ ∗

Furthermore, it follows from the definition of v̄ and the analysis in section 5.3.2.
that, for any values b1, ..., bn of the fecundities,

W̄ ∗ ≥ W̄ (b1, ..., bn)

Finally, if Eq. (C.1) is satisfied then, for any b1, ..., bn,

W̄ (b1, ..., bn) ≥ W (b1, ..., bn)

Combining these three equations, we obtain that for any values b1, ..., bn of the
fecundities,

W ∗ = W̄ ∗ ≥ W̄ (b1, ..., bn) ≥ W (b1, ..., bn)

Therefore, the undifferentiated colony in which all cells have fecundity b∗ is an
optimal colony.

Conversely, if Eq. (C.1) is not satisfied then there exists a fecundity b′ in [0, bmax]
such that

v(b′) > v̄(b′) (C.2)

For p in [0, 1], let W (p) denote the fitness of a colony with a proportion p of cells
having fecundity b′ and a proportion 1− p of cells having fecundity b∗:

W (p) = N2
(
pv′ + (1− p)v∗

) (
pb′ + (1− p)b∗

)
Thus, W (0) = W ∗. A straightforward computation shows that due to Eq. (C.2),

we have
∂W

∂p
(0) > 0 (C.3)

(actually, Eqs. (C.2) and (C.3) are equivalent).
Eq. (C.3) means that if, departing from the best undifferentiated colony, a small

proportion of cells adopt the fecundity b′, then the fitness of the colony increases.
It follows that the best undifferentiated colony is not an optimal colony, hence that
specialization if favored. This completes the proof of the proposition.

We conclude with some remarks: first, if Eq. (C.1) is satisfied then, for any b′ and
b̃ such that b′ < b∗ < b̃, the line joining the points (b, v(b)) and (b̃, v(b̃) crosses the
vertical line b = b∗ below v∗. It follows that, as mentioned in appendix B.2, if there
exists a fecundity b̃ > b∗ such that the line joining the points (0, v(0)) and (b̃, v(b̃))
is strictly above the graph of v at b = b∗, then condition (C.1) is not satisfied, hence
specialization is favored.

Second, if the trade-off is concave (strictly convex) then Eq. (C.1) is (is not)
satisfied so that specialization is not (is) favored, as mentioned in appendix B.2.
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Finally, a complement to the above proposition is as follows (proof omitted): If
Eq. (C.1) holds then the optimal colonies are exactly those such that the average
fecundity is v∗ and such that, for every cell i, v(bi) = v̄(bi). It follows that the
undifferentiated colony in which every cell has fecundity b∗ is the unique optimal
colony if and only if, on top of condition (C.1), at least one of the two following
conditions holds:

∀b ∈ [0, b∗[, v(b) < v̄(b) (C.4)

∀b ∈]b∗, bmax], v(b) < v̄(b) (C.5)

271





Bibliography of parts I and II

[1] Akin, E. (1980), “Domination or Equilibrium”, Mathematical Bio-

sciences 50, 239-250

[2] Aumann R.J. (1961), “Almost Strictly Competitive Games”, Journal

of the SIAM 9, 544-550

[3] Aumann, R. (1974), “Subjectivity and Correlation in Randomized

Strategies”, Journal of Mathematical Economics 1, 67-96

[4] Aumann, R.J. (1987), “Correlated Equilibria as an Expression of

Bayesian Rationality”, Econometrica 55, 67-96

[5] Beaud, J.P. (2002), Contributions à la théorie des jeux : jeux antago-
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