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Abstract

We survey and unify results on elimination of dominated strategies
by monotonic dynamics and prove some new results that may be seen
as dual to those of Hofbauer and Weibull (J. Econ. Theory, 1996,
558-573) on convex monotonic dynamics.
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1 Introduction

A key issue in evolutionary game theory is whether evolutionary consider-
ation lend support to rationality based concepts. The most basic of these
concepts is perhaps that strictly dominated strategies should not be played.
Accordingly, whether evolutionary dynamics wipe out dominated strategies
has been studied by a number of authors (Akin, 1980; Nachbar, 1990; Dekel
and Scotchmer, 1992; Samuelson and Zhang, 1992; Cabrales and Sobel, 1992;
Hofbauer and Weibull, 1996; Cabrales, 2000; Berger and Hofbauer, 2005;
Mertikopoulos and Moustakas, 2010; Hofbauer and Sandholm, 2011, and
others). Many results concern deterministic monotonic dynamics and are
proved in a very similar way. We unify these results, and prove some new
results on concave monotonic dynamics (defined in the next section). These
may be seen as a dual of Hofbauer and Weibull’s (1996) results on convex
monotonic dynamics.

The material is organized as follows. In the next section, we precise the
framework and define several classes of dynamics. The main results are given
in section 3 for continuous-time dynamics and in section 4 . for discrete-time
dynamics. Section 5 gives examples of survival of strictly dominated strate-
gies for single-population dynamics. Section 6 reviews more general dynamics
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and section 7 discusses the concept of mixed strategy elimination. Appendix
A deals with elimination of iteratively strictly dominated strategies. Finally,
Appendices B and C provide details on some proofs.

2 Framework and classes of dynamics

The setting we introduce is rather abstract in order to encompass a variety of
situations, including 1-player games (decision problems), single population
dynamics, and multipopulation dynamics where the different populations
need not evolve according to the same dynamics.

We consider a large population of players from which individuals are
repeatedly and randomly drawn to play a game against some unspecified
opponent. For instance, if the underlying game is a n-person game, then we
focus on player 1, which we call the focal player, and consider players 2 to
n as a single entity, which we call the opponent (whether players 2 to n can
correlate their actions or not will not be relevant).

We assume that the set of pure strategies of the focal player is finite and
denote it by I := {1, ..., N}. The set Sopp of strategies of the opponent is
compact. We denote by SN or ∆(I) the N − 1 dimensional simplex over I:

SN = ∆(I) =

{
x ∈ RN

+ ,
∑
i∈I

xi = 1

}
and by intSN := {x ∈ SN : ∀i ∈ I, xi > 0} its interior. Let xi(t) denote the
frequency of strategy i at time t in the focal population, and x(t) := (xi(t))i∈I
the vector of these frequencies. Let y(t) be the opponent’s strategy at time
t.1

The payoff of the pure strategy i against strategy y is denoted Ui(y),
where Ui : Sopp → R is continuous. The payoff of the mixed strategy p is
Up(y) :=

∑
i∈I piUi(y). Vectors are in bold characters.

Dynamics We assume that the focal population adapts to the oppo-
nent’s strategy through some biological or sociological process (imitation,
selection,...). This is modeled by assuming that x(t) follows a differential
equation. We focus on dynamics of the form:

ẋi(t) = xi(t)

[
gi(x(t),y(t))−

∑
k∈I

xk(t)gk(x(t),y(t))

]
(1)

1If the game models an interaction with an individual of another population, then y(t)
is the mean strategy in this other population; if it models a symmetric interaction with
an individual of the same population, then y(t) = x(t).
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To ensure uniqueness of the solution through each initial condition, we as-
sume that the functions gi and y are locally Lipschitz. The simplex SN and
its faces are then invariant under (1).

This class of dynamics includes the payoff functional dynamics

ẋi = xi
[
f(Ui(y))− f̄

]
(2)

where f : R→ R is Lipschitz continuous and f̄ =
∑

i∈I xif(Ui(y)), with time
indices suppressed. An interpretation of (2) is that Ui(y) is a material gain
(food, territory, money,...) and f(Ui(y)) its translation in terms of fitness.
The replicator dynamics (Taylor and Jonker, 1978) corresponds to f linear,
that is when the payoffs are directly measured in terms of fitness.

Domination and elimination As usual, we say that the mixed strat-
egy p strictly dominates the mixed strategy q if Up(y) > Uq(y) for all y
in Sopp. Throughout, we focus on strict domination, and write “dominated”
for “strictly dominated”. The pure strategy i is eliminated under a solu-
tion x(·) of (1) if xi(t) → 0 as t → +∞; it survives otherwise. Following
Samuelson and Zhang (1992) and Cabrales (2000), we say that the mixed
strategy q ∈ SN is eliminated if min{i∈I:qi>0} xi(t) → 0 (or equivalently∏

i∈I x
qi
i (t)→ 0). We discuss the usefulness of this concept in section 7.

Classes of dynamics We want to find conditions on dynamics of type
(1) that ensure that dominated strategies are eliminated, or conversely, that
dominated strategies survive in some games. To formulate these conditions,
let us call gi(x(t),y(t)) the (unnormalized) growth rate of strategy i at time
t. By analogy, we call growth rate of the mixed strategy p the quantity

gp(x,y) :=
∑
i∈I

pigi(x,y) (3)

Definition. A dynamics (1) is aggregate monotonic (Samuelson and Zhang,
1992) if the growth rates of mixed strategies are ordered by their payoffs: for
any mixed strategies p and q in SN ,

∀(x,y) ∈ SN × Sopp, Up(y) > Uq(y)⇒ gp(x,y) > gq(x,y) (4)

It is monotonic if (4) holds whenever p and q are pure strategies, and convex
monotonic (Hofbauer and Weibull, 1996) if (4) holds whenever q is pure. It is
concave monotonic if (4) holds whenever p is pure. Examples of convex and
concave monotonic dynamics are discussed by Hofbauer and Weibull (1996).2

2Monotonicity (Samuelson and Zhang, 1992) is called relative monotonicity by Nachbar
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To understand these names, note that a payoff functional dynamics (2)
with f increasing is convex (resp. concave) monotonic if and only if f is
convex (resp. concave). It is aggregate monotonic if and only if f is linear,
in which case (2) is the replicator dynamics.3

3 Intuition and main results

Intuition. Convex monotonic dynamics favour mixed strategies over pure
ones in that a payoff advantage of a mixed strategy over a pure one always
translates in a higher growth rate; thus they should eliminate dominated
pure strategies, but not necessarily dominated mixed strategies. Similarly,
concave monotonic dynamics favour pure strategies, thus should eliminate
mixed strategies dominated by pure ones.

Aggregate monotonic dynamics are a limit case: a better payoff always
translates in a higher growth rate, hence all dominated strategies are elim-
inated. The same holds for monotonic dynamics when restricting attention
to pure strategies. Formally:

Proposition 1 Let p and q be two mixed strategies. If p strictly dominates
q then, under any aggregate monotonic dynamics and for any interior initial
condition, q is eliminated.

The same result holds for monotonic dynamics when p and q are both
pure, for convex monotonic dynamics when q is pure, and for concave mono-
tonic dynamics when p is pure.4

For generalizations to elimination of iteratively dominated strategies, see
Appendix A. Before providing a formal proof, we note that these results are
sharp in the class of payoff functional dynamics (2):

(1990), order-compatibility by Friedman (1991), and payoff monotonicity by Hofbauer and
Weibull (1996). The definition of concave monotonic dynamics is new but related dynamics
are studied by Björnerstedt (1995).

3Samuelson and Zhang (1992) have shown that in bimatrix games, for any aggre-
gate monotonic dynamics, there exists a positive speed function λ such that ẋ(t) =
λ(x(t),y(t))ẋREP (t), where ẋREP = xi(Ui(y) − Ux(y)). For single-population dynam-
ics (y(t) = x(t) ∀t), this implies that any aggregate monotonic dynamics has the same
orbits than the replicator dynamics; for multi-population dynamics, this need not be so,
because the speed function is population specific.

4For multipopulation dynamics, these results are due to Akin (1980) for the replica-
tor dynamics, Nachbar (1990) for monotonic dynamics, Samuelson and Zhang (1992) for
aggregate monotonic dynamics and Hofbauer and Weibull (1996) for convex monotonic
dynamics. The result on concave monotonic dynamics seems to be new.
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Proposition 2 Consider a payoff functional dynamics (2). If f is not con-
vex, then (2) need not eliminate strictly dominated pure strategies: there
exists a game with a strictly dominated pure strategy that survives for some
interior initial conditions and some opponent’s behaviors.

Similarly, if f is not concave, then (2) need not eliminate mixed strategies
dominated by a pure strategy; if f is not linear (resp. not increasing), then
(2) need not eliminate mixed strategies dominated by another mixed strategy;
(resp. pure by pure).

The result on convex monotonic dynamics is due to Hofbauer and Weibull
(1996). The others seem to be new.

Proof of proposition 1. First consider aggregate monotonic dynamics:
let p and q be mixed strategies such that p strictly dominates q. Since the
dynamics is aggregate monotonic, it follows that gp(x,y) > gq(x,y) for all
(x,y) ∈ SN × Sopp. By compactness of SN × Sopp, there exists ε > 0 such
that

gp(x,y)− gq(x,y) ≥ ε ∀(x,y) ∈ SN × Sopp (5)

Fix an interior solution x(·) and let w(t) :=
∑

i∈I(pi − qi) lnxi(t). By (5), at
any point in time,

ẇ =
∑
i∈I

(pi − qi)
ẋi
xi

=
∑
i∈I

(pi − qi)gi(x,y) = gp(x,y)− gq(x,y) ≥ ε (6)

Therefore, limt→+∞w(t) = +∞. Since
∑

i∈I pi lnxi(t) ≤ 0 (as xi ≤ 1), this
implies that

∑
i∈I qi lnxi(t) → −∞. Therefore

∏
i∈I xi(t)

qi → 0 and q is
eliminated.

The proof for the other classes of dynamics is the same, up to replacement
of p, q, or both, by pure strategies.

Proof of proposition 2. The case f nonincreasing is obvious. The case
f nonlinear follows from the cases f nonconvex and f nonconcave, which we
now deal with. Assume first that f is not convex. Since f is continuous (as
assumed throughout), there exist real numbers a, b, and ε > 0 such that

f(a) + f(b)

2
< f

(
a+ b

2
− ε
)

(7)

Consider the 3× 2 game with payoff matrix:

L R
T
M
B

 a b
a+b
2
− ε a+b

2
− ε

b a

 (8)
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The pure strategy M is strictly dominated by q = (1/2, 0, 1/2). But if,
approximately, y(t) = L half of the time and y(t) = R the other half, then
the average (unnormalized) growth rate of strategies T and B is close to
[f(a) + f(b)]/2, while the average growth rate of strategy M is f([a+ b]/2−
ε) > [f(a) + f(b)]/2. It follows that xM → 1, hence strategy M survives.

If f is not concave, then take a, b, and ε > 0 such that f(a)+f(b)
2

>
f
(
a+b
2

+ ε
)
. Consider the same game as (8), but with −ε changed into

+ε. Strategy q is strictly dominated by M . But against the same oppo-
nent’s behaviour, the average growth rate of strategy q is now higher than
the average growth rate of M . It follows that xM → 0. Choosing y(t)
periodic and respecting the symmetry between strategies T and B ensures
that xT/xB remains bounded. Together with xM → 0, this implies that
lim inft→+∞ xT (t)xB(t) > 0, hence q is not eliminated. For details see Ap-
pendix B.

As detailed in Appendix C, a variant of this proof shows that proposition
2 extends to the wider class of payoff functional dynamics considered by
Hofbauer and Weibull (1996).

4 Discrete-time dynamics

Dekel and Scotchmer (1992) show that the discrete-time replicator dynamics
need not eliminate pure strategies strictly dominated by mixed strategies.
Thus, proposition 1 does not extend to discrete-time dynamics. To see why,
consider the discrete-time dynamics:

xi(n+ 1) = xi(n)
C + gi(x,y)

C +
∑

k xkgk(x,y)
(9)

where x = x(n), y = y(n), and the constant C > −mini,x,y gi(x,y) may
be interpreted as background fitness (Maynard-Smith, 1982). Eq. (9) is
equivalent to

xi(n+ 1)− xi(n) = xi(n)
gi(x,y)−

∑
k xkgk(x,y)

C +
∑

k xkgk(x,y)
(10)

which is the Euler discretization of (1) with step size 1/[C +
∑

k xkgk(x,y)].
The discrete-time replicator dynamics (Maynard-Smith, 1982) corresponds
to gi(x,y) = Ui(y). Dekel and Scotchmer (1992) take C = 0.

Proposition 1 and 2 are based on the evolution of the quantity w :=∑
i∈I(qi − pi) lnxi, where p and q are two mixed strategies. In continuous-

time, we had (6): ẇ =
∑

i∈I(qi − pi)gi(x,y). But it follows from (9) that in
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discrete-time,

w(n+ 1)− w(n) =
∑
i∈I

(qi − pi)g̃i(x,y) with g̃i = ln (C + gi) . (11)

It follows that propositions 1 and 2 hold for (9) if we replace gi by g̃i when
defining our classes of dynamics. This was first understood, and shown for
aggregate monotonic dynamics, by Cabrales and Sobel (1992).

For payoff functional dynamics

xi(n+ 1) = xi(n)
C + f(Ui(y))

C +
∑

k xkf(U(k,y))
(12)

we get:

Proposition 3 The dynamics (12) eliminates pure (mixed) strategies strictly
dominated by mixed (pure) strategies if and only if ln(C + f) is increasing
and convex (concave). It eliminates mixed strategies strictly dominated by
mixed strategies if and only if ln(C + f) is increasing and linear.

Since the logarithm is concave, dynamics that are aggregate monotonic in
continuous-time become concave monotonic in discrete-time, and thus do not
eliminate dominated pure strategies. Dekel and Scotchmer’s (1922) example
is an instance of this general result.

For large C (a fine discretization), g̃i ' lnC + gi/C and discretizing
concavifies less the dynamics. If we first fix the game and the functions gi
and then take C large enough, or if we let C depend on n, with Cn → +∞
(and

∑
n 1/Cn = +∞ for the dynamics not to stop), then proposition 1 holds

also in the discrete case, without modifying the definitions of the classes of
dynamics (see Appendix C and Cabrales and Sobel, 1992). For more on
discrete time dynamics, see Cabrales and Sobel (1992) and Björnerstedt et
al. (1996).5

5 Survival of strictly dominated strategies in

single-population dynamics

Proposition 2 is easy to prove because the opponent’s behaviour may be
chosen ad-hoc. This section shows that similar results may be obtained with

5Björnerstedt et al. (1996) consider an overlapping-generations dynamics which has as
limit cases the discrete-time and the continuous-time replicator dynamics, for respectively
no overlap and full overlap. The degree of overlap plays a role similar to that of the
background fitness C in (9 ). They show that, for a fixed game, if the degree of overlap is
large enough, strictly dominated strategies are eliminated.
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more realistic opponent’s behaviours. We first recall a result of Hofbauer and
Weibull (1996).

5.1 Hofbauer and Weibull’s result

Consider a single population dynamics with a payoff functional form (2), with
f C1. Up to a change of time, and suppressing time indices, it may be written
as ẋi = xi[f(Ui) − f̄ ] with Ui = Ux(x) and f̄ =

∑
i xif(Ui). Hofbauer and

Weibull (1996) show that if f is not convex, then there are games where pure
strategies strictly dominated by mixed strategies survive, for many interior
initial conditions, The game they consider is a 4 × 4 two-player symmetric
game. It is built by adding a fourth strategy to a generalized Rock-Paper-
Scissors (RPS) game. The payoff matrix has the following structure:

a c b γ
b a c γ
c b a γ

a+ β a+ β a+ β 0


where: (i) c < a < b, (ii) (a+ b+ c)/3 > a+ β and γ > 0 , and (iii) β > 0.

By (i), the 3 × 3 base game is a RPS game, and by (ii), strategy 4 is
strictly dominated by p = (1/3, 1/3, 1/3, 0). Since β and γ are positive,
there is a rest point zi in the relative interior of the edge connecting strategy
i ∈ {1, 2, 3} to strategy 4. It attracts any solution starting in the relative
interior of this edge, and actually, any solution starting in the relative interior
of the face xi+1 = 0, where i + 1 is counted modulo 3. It follows that the
zi form a heteroclinic cycle, that is, a loop of saddle rest points and orbits
connecting them. Conditions (ii) and (iii) imply that (a + b + c)/3 > a (or
equivalently, a < (b+c)/2). This implies that, under the replicator dynamics,
the base game in an inward cycling RPS game (Hofbauer and Sigmund, 1998,
p93; Gaunersdorfer and Hofbauer, 1995, p291). It may be shown that under
the replicator dynamics (i.e. f strictly increasing and linear), any solution
starting in the interior of the state space converges to the Nash equilibrium
p = (1/3, 1/3, 1/3, 0). In particular, strategy 4 is eliminated. However, if
the function f is strictly increasing but not convex, then one may find such
payoffs that furthermore satisfy f(a) > [f(b) + f(c)]/2. This means that in
the RPS base game, even though the replicator dynamics is inward cycling,
the current dynamics is outward cycling close to the RPS cycle; thus, this
cycle is asymptotically stable on the face x4 = 0. As detailed by Hofbauer and
Weibull, this implies that for β small enough, the heteroclinic cycle between
the zi is asymptotically stable. But along this cycle, x4 > 0. Thus, though
strictly dominated, strategy 4 survives for an open set of initial conditions.
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5.2 A dual result.

Our aim is to give a dual example, showing that if f is strictly increasing and
sufficiently regular but not concave, then mixed strategies that are strictly
dominated by a pure strategy need not be eliminated.

To simplify the exposition, we assume that f is differentiable, with a
strictly positive derivative, and that f is strictly convex. The strict convexity
assumption may be replaced by any assumption that guarantees that f is
strictly convex over some range, as we can always locate all the payoffs in
this range. For instance, f C2 and not concave suffices.

Consider the game with payoff matrix

A =


a c b m− γ
b a c m− γ
c b a m− γ

m+ β m+ β m+ β m

 (13)

where m = (a+ b+ c)/3. Assume that : (i) c < a < b, (ii) β > 0 and γ > 0,
and (iii) a > (b+c)/2. Condition (i) means that the 3×3 base game is a RPS
game; condition (ii) implies that strategy 4 strictly dominates the strategy
p = (1/3, 1/3, 1/3, 0); condition (iii) implies that in the RPS base game, the
replicator dynamics cycles outwards.

Because f is strictly convex, we may find such payoffs that furthermore
satisfy: (iv) f(a) < [f(b) + f(c)]/2. Consider first the dynamics on the face
x4 = 0, that is, in the RPS base game. Condition (iv) implies that on this
face, even though the replicator dynamics is outward cycling, our dynamics is
inward cycling close to the RPS heteroclinic cycle, i.e. the relative boundary
of this face is repulsive (Hofbauer and Sigmund, 1998; Gaunersdorfer and
Hofbauer, 1995). Using a Taylor expansion of f near m, it may be shown
that, close to the rest point p = (1/3, 1/3, 1/3, 0), the dynamics behaves as
if f was linear, that is, as the replicator dynamics. Due to condition (3)
this implies that close to p (except exactly at p), the dynamics is outward
cycling: x1x2x3 strictly decreases along trajectories (Figure 1).6

By compactness, this implies that there exists ρ ∈]0, 1/27[ and a positive
constant C such that, if x4 = 0 and x1x2x3 = ρ, then d(x1x2x3)/dt < −C.

6Technically, fix a solution x(·) in the relative interior of the face x4 = 0. Let v(t) =
(x1x2x3)1/3 and w(t) = ln v(t). Let h(t) = x(t)−p. Then ẇ(t) = −[a−(b+c)/2]||h(t)||2+
o(||h(t)||2), hence near p, by condition (iii), x1x2x3 decreases along trajectories. To obtain
this expression of ẇ, note that (Ax)i −m = (Ah)i, thus f((Ax)i) = m + f ′(m)(Ah)i +
o([Ah)i]). Using this and

∑
i hi = 0, we get ẇ = −f ′(m)h ·Ah + o(||h||2). A standard

computation shows that h ·Ah = [a − (b + c)/2]||h(t)||2 hence the result. This may be
seen as a variant of exercise 8.1.1 in Hofbauer and Sigmund (1998).
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By continuity of f , this implies the existence of a small positive ε such that,
if x4 ≤ ε and x1x2x3 = ρ, then d(x1x2x3)/dt < −C/2. Furthermore, for
β = 0, except if x1 = x2 = x3, the payoff of strategy 4 is less than the mean
payoff: (Ax)4 < x ·Ax (Viossat, 2007), hence ẋ4 < 0 by convexity of f . By a
compactness and continuity argument, this implies that for β small enough,
if x belongs to the compact set K = {x ∈ S4 : x1x2x3 ≤ ρ and x4 ≤ ε}, then
ẋ4 < −C ′ for some positive constant C ′.

Now consider any solution with initial condition in K. The solution
cannot leave K, which implies that it converges to the face x4 = 0. More-
over, since on this face the relative boundary is repulsive, this implies that
lim inf x1x2x3 > 0. Thus, though p = (1/3, 1/3, 1/3, 0) is strictly dominated
by strategy 4, it is not eliminated.7

Figure 1: Dynamics on the face x4 = 0. Both the center and the boundary

are repulsive. In the neighborhood of this face, for suitable payoffs, x4 decreases

outside a small neighborhood of (1/3, 1/3, 1/3, 0). Thus the limit cycle (or annulus)

in the interior of this face is asymptotically stable in the whole game. Graphic

produced with Dynamo (Sandholm et al., 2011).

5.3 Discrete-time analog

For discrete-time dynamics (12), the survival examples of sections 5.1 and
5.2 go through if the assumptions on the convexity of f are replaced by

7This proof is similar to the proof that the Brown-von-Neumann-Nash dynamics may
eliminate all strategies used in correlated equilibria (Viossat, 2008)
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the corresponding assumptions on ln f . Indeed, for reasons similar to those
of section 4, the stability condition of the RPS cycle of the base game for
(12) is : ln f(a) > [ln f(b) + ln f(c)]/2 (Gaunersdorfer, 1992, section 5 ;
Hofbauer and Schlag, 2000, p533 ; see also Weissing, 1991). For Hofbauer
and Weibull’s result, the proof goes through with no other changes. For
our dual result, two other ingredients are needed: first, (Ax)4 < x · Ax
should imply f [(Ax)4) <

∑
i xif [(Ax)i]; but if ln f is convex, so is f , hence

this holds. Second, in the RPS base game, x1x2x3 should decrease near the
equilibrium. In continuous time, when a > [b + c]/2, this holds for any C1

monotonic dynamics; but the discrete-time dynamics trajectories are tangent
to their continous-time counterpart and the set of mixed strategies x such
that x1x2x3 ≥ λ is convex; thus, under the discrete-time dynamics, x1x2x3
decreases a fortiori (see also Hofbauer and Schlag, 2000, p534). The rest of
the proof is unchanged.

6 Other dynamics

Continuous set of pure strategies Elimination of dominated strategies by
monotonic dynamics is generalized to games with a continuous set of pure
strategies by Heifetz et al (2007a, 2007b) and by Cressman and Hofbauer
(2005) and Cressman et al (2006) [see also, Cressman, 2005] for the replicator
dynamics.

Stochastic dynamics Cabrales (2000) studies a stochastic version of the
replicator dynamics and gives conditions under which dominated strategies
are eliminated. Mertikopoulos and Moustakas (2010) show that for another
version of the stochastic replicator dynamics, dominated strategies are always
eliminated.

Best-reply dynamics. Under the best-reply dynamics (Gilboa and Mat-
sui, 1991; Matsui 1992), the frequency of pure strategies that are not best
replies to the current strategy of the opponent decreases exponentially. It
follows that strictly dominated pure strategies are eliminated. This extends
to iteratively strictly dominated pure strategies. However, strictly dominated
mixed strategies need not be eliminated. This follows from (Viossat, 2008)
or from a variant of the proof of proposition (2). These results are not sur-
prising, as the best reply dynamics may be seen as a limit case of convex
monotonic dynamics (Hofbauer and Weibull, 1996)

Survival of pure strategies strictly dominated by other pure strategies.
Building on Berger and Hofbauer (2006), Hofbauer and Sandholm (forthcom-
ing) [see also Sandholm (2011)] show that under a large class of dynamics, a
pure strategy strictly dominated by another pure strategy may survive. Their

11
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key feature is that, except at Nash equilibria, the growth rate of an unused
best-reply is always positive. Combined with regularity requirements, this
gives a small advantage to rare strategies which allows to maintain strictly
dominated strategies at nonvanishing frequencies.8

7 Discussion

One of the contribution of this article is to study elimination of dominated
mixed strategies by concave monotonic dynamics. Elimination of dominated
mixed strategies has a natural interpretation if we assume that agents may
play mixed strategies, but even if we think that agents play only pure strate-
gies, we find the concept useful on at least three grounds. First, to compare
the outcome of evolutionary dynamics with rationalizable strategies (Bern-
heim, 1984; Pearce, 1984). Second, to clarify the logic of Hofbauer and
Weibull’s (1996) results by showing that elimination of pure strategies by
convex monotonic dynamics and of mixed strategies by concave monotonic
dynamics are two faces of the same coin. Third, to analyse the behaviour of
some dynamics.

Consider for instance a single-population dynamics modeling the evolu-
tion of behavior in the two-player symmetric game 3 0 0

0 3 0
2 2 1


The mixed strategy q = (1/2, 1/2, 0) is strictly dominated by the third pure
strategy. Thus, if the dynamics is concave monotonic, then for any interior
initial condition x1(t)x2(t) → 0, hence the solution converges to the union
of the edges x1 = 0 and x2 = 0. Together with the dynamics on these edges
(which is qualitatively the same for all monotonic dynamics), this implies
that any interior solution converges to one of the three pure Nash equilibria,
or to one of the rest points in the relative interior of these edges, that is
(1/2, 0, 1/2) and (0, 1/2, 1/2). This need not be the only way to prove this
result, but probably the most elementary.

8An example of a game and a dynamics such that a pure strategy dominated by all
other pure strategies survives for most initial conditions is given by Björnerstedt et al.
(1996).
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A Iterative elimination

Proposition (1) extends to elimination of iteratively strictly dominated strate-
gies. For simplicity, we focus on two-player finite games. The extension to
n-player games is immediate.

Let I and J denote the finite sets of pure strategies of player 1 and
2, respectively, and for any finite set K, let ∆(K) denote the simplex of
probability distribution over K. Thus, the set of mixed strategies of player
1 is ∆(I).

Let I0 = Ĩ0 = I and S0 = S̃0 = ∆(I). Similarly, let J0 = J̃0 = J and
T 0 = T̃ 0 = ∆(J). Inductively, let Ik+1 (resp. Ĩk+1, Sk+1, S̃k+1) denote the
set of strategies in Ik (resp. Ĩk, Sk, S̃k) that are not strictly dominated by
any strategy in Ik (resp. ∆(Ĩk), I ∩Sk, S̃k) when player 2 chooses strategies
in Jk (resp. J̃k, T k, T̃ k). Similar definitions apply to player 2.

Definition. A pure strategy i ∈ I (resp. a mixed strategy x ∈ ∆(I)) is
iteratively strictly dominated by pure strategies if there exists k in N such
that i /∈ Ik (resp. x /∈ Sk). A pure strategy i ∈ I (resp. a mixed strategy
x ∈ ∆(I)) is iteratively strictly dominated if there exists k in N such that
i /∈ Ĩk (resp. x /∈ S̃k). 9

Proposition 4 For every interior initial condition: if both x(t) and y(t) fol-
low a monotonic (resp. concave monotonic) dynamics, then every pure (resp.
mixed) strategy iteratively strictly dominated by pure strategies is eliminated;
if both x(t) and y(t) follow a convex (resp. aggregate) monotonic dynam-
ics, then every iteratively strictly dominated pure (resp. mixed) strategy is
eliminated.

Proof. We first prove the result on convex monotonic dynamics. It
follows from proposition 1 that the pure strategies in Ĩ0\Ĩ1 and in J̃0\J̃1 are
eliminated. By induction assume that for k in N, the strategies in Ĩ0\Ĩk and
in J̃0\J̃k are eliminated, hence in particular

∀η > 0,∃T ∈ R,∀t ≥ T, max
j∈J\J̃k

yj(t) ≤ η (14)

9 Since a pure strategy is also a mixed strategy, there seems to be two definitions of
iteratively strictly dominated pure strategies, but they are equivalent. This is because
iterative elimination of dominated mixed strategies boils down to iterative elimination
of dominated pure strategies followed by one round of elimination of dominated mixed
strategies, as is easily shown. Similarly, iterative elimination of mixed strategies dominated
by pure strategies boils down to iterative elimination of pure strategies dominated by other
pure strategies, followed by one round of elimination of mixed strategies dominated by
pure ones. Thus, both definitions of pure strategies iteratively strictly dominated by pure
strategies are also equivalent.
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Let i ∈ Ĩk\Ĩk+1. Since strategy i is strictly dominated in the game restricted
to Ĩk × J̃k, there exists ε > 0, η > 0 and p ∈ SN such that

max
j∈J\J̃k

yj ≤ η ⇒ Ui(y(t)) < Up(y(t)) + ε

Therefore, it follows from (14) and the proof of proposition 1 that strategy i
is eliminated. The result follows.

The proof for monotonic dynamics is identical up to replacement of Ĩk,
J̃k by Ik, Jk, and of “p ∈ SN” by “i ∈ I”. Concave monotonic dynamics
eliminate pure strategies iteratively strictly dominated by pure strategies, as
any monotonic dynamics, and then mixed strategies that become dominated
by pure ones after this elimination, by an argument similar to the iteration
step for convex monotonic dynamics. This and footnote 9 proves the result.
The proof for aggregate monotonic dynamics relies similarly on the fact that
they are convex monotonic and footnote 9.

These results are due to Nachbar (1990) for monotonic dynamics, Samuel-
son and Zhang (1992) for aggregate monotonic dynamics and Hofbauer and
Weibull (1996) for convex monotonic dynamics.

B Details on survival of dominated mixed strate-

gies under non concave monotonic dynam-

ics

B.1 For payoff functional dynamics (2)

If f is not concave, then there exist reals a and b such that

f(a) + f(b)

2
> f

(
a+ b

2

)
By continuity of f , there exists ε > 0 such that:

α :=
f(a) + f(b)

2
− f

(
a+ b

2
+ ε

)
> 0 (15)

Assume that player 1 plays a 3× 2 game with payoff matrix:

L R
1
2
3

 a b
a+b
2

+ ε a+b
2

+ ε
b a
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Let yl(t) denote the probability at time t that the opponent chooses the left
column. Fix some large positive constant T (more precisely, T > (2C +
1)/α+1 with C = max[a,b] |f |; this condition will appear later). Assume that
the function yl(·) is 2T -periodic with yl(t) = 1 if t ∈ [0, T − 1], yl(t) = 0 if
t ∈ [T, 2T − 1], and linear variation on [T − 1, T ] and [2T − 1, 2T ].

Assume that x(0) ∈ intSN and let

w(t) := ln

(
x2√
x1x3

)
(t)

Letting gi(t) := f(Ui(y(t)), we have:

ẇ(t) = g2(t)−
g1(t) + g3(t)

2

hence

w((k + 1)T )− w(kT ) =

∫ (k+1)T

kT

(
g2(t)−

g1(t) + g3(t)

2

)
dt

Since for all t, g2(t) = f((a+ b)/2 + ε) and since

∀t ∈ [kT, (k + 1)T − 1], g1(t) + g3(t) = f(a) + f(b)

it follows from (15) that:

w((k + 1)T )− w(kT ) ≤ −(T − 1)α + 2C

with C = max[a,b] |f |. Since we assumed T > (2C + 1)/α+ 1, it follows that

w((k + 1)T ) ≤ w(kT )− 1

Therefore w(kT ) → −∞ as k → +∞. Since the variation of w between kT
and (k + 1)T is bounded (less than 2CT ), it follows that w(t)→ −∞ hence
x2(t) → 0 as t → +∞. Furthermore, it is easy to see by the same kind
of computation that x1(t)/x3(t) is 2T -periodic. It follows that x1x3 9 0.
Actually, as is easily seen,

inf
t∈R+

x1(t)x3(t) = min
t∈[0,2T ]

x1(t)x3(t) > 0

Therefore, though q = (1/2, 0, 1/2) is strictly dominated by strategy 2, the
mixed strategy q is not eliminated.10

10Note also that for T sufficiently large or x1(0) sufficiently close to x3(0), there exists t
in [0, 2T ] such that x1(t) = x3(t), hence x1(t+ 2kT ) = x3(t+ 2kT ) for all k ∈ N. Together
with x2(t)→ 0, this implies that lim supt→+∞ x1(t)x3(t) = 1/4.
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B.2 For the wider class of payoff functional dynamics
considered by Hofbauer and Weibull (1996)

In the context of n-player normal form games (hence with the opponent
corresponding to players 2 to n), Hofbauer and Weibull (1996) consider payoff
functional dynamics of the form (time indices suppressed):

ẋi = λ(x,y)xi
[
f(Ui(y))− f̄

]
(16)

This is more general than (2) because the speed of the dynamics may now
depend on the population’s and opponent’s mean strategies. Assuming that
λ is continuous, the previous proof is easily adapted to deal with these more
general dynamics.

Fix a large constant T . Let (tn) be a strictly increasing sequences of
times, with t0 = 0. Assume that :

(i) y(t) is piecewise linear, with for all n ∈ N : yL(t) = 1 on [t6n, t6n+1],
yL(t) = 0 on [t6n+3, t6n+4], yL(t6n+2) = yL(t6n+5) = 1/2, and linear variation
on [t6n+1, t6n+2], [t6n+2, t6n+3], [t6n+4, t6n+5] and [t6n+5, t6n+6]. Furthermore :

(ii) Choose t6n+1 and t6n+4 such that∫ t6n+1

t6n

λ(x(s), y(s))ds =

∫ t6n+4

t6n+3

λ(x(s), y(s))ds = T ;

(iii) Let t6n+3 = t6n+1 + 1 and t6n+6 = t6n+4 + 1;
(iv) if a = b, choose t6n+2 and t6n+5 arbitrarily in ]t6n+1, t6n+3[ and

]t6n+4, t6n+6[, respectively. Otherwise, assume w.l.o.g. a < b, note that g1−g3
is negative on ]t6n+1, t6n+2[ and positive on ]t6n+2, t6n+3[, and choose t6n+2 such
that

∫ t6n+3

t6n+1
[g1(x(s),y(s))−g3(x(s),y(s))]ds = 0. Similarly, choose t6n+5 such

that ∫ t6n+6

t6n+4

[g1(x(s),y(s))− g3(x(s),y(s))]ds = 0.

The same kind of computation as in the case λ ≡ 1 show that

w(t6n+6 − w(t6n) < −2Tα + 4vmaxC

where vmax = max(x,y)∈SN×Sopp λ(x,y), and C = max[a,b] |f |. Thus for T >
2vmaxC/α, w(t) →t→+∞ −∞. Thus x2(t) → 0 and x1(t) + x3(t) → 1.
Conditions (ii) and (iv) ensure that [x1/x3](t6n+6) = [x1/x3](t6n). Together
with x1(t) + x3(t)→ 1, this implies that lim sup x1(t)x3(t) ≥ x1(0)x3(0) > 0,
hence q is not eliminated.
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C More on discrete dynamics

We now consider the limit C → +∞. If C � max(i,x,y) |gi(x,y)| then
ln (1 + gi/C) is approximately equal to gi/C. From this remark we obtain
the following result, which was shown by Cabrales and Sobel (1992), in the
aggregate monotonic case.

Proposition 5 Fix a game and functions gi; fix a mixed strategy q strictly
dominated by a mixed strategy p. Assume either that the dynamics is aggre-
gate monotonic (in the continuous-time sense) or that it is convex monotonic
and that q is pure. Then there exists C̄ in R such that for all C ≥ C̄, the
discrete dynamics (9) eliminates strategy q.

Proof. There exists ε > 0 such that

∀(x,y),
∑
i∈I

(pi − qi)Ui(y) ≥ ε

Therefore, under the above assumptions, there exists α > 0 such that

∀(x,y),
∑
i∈I

(pi − qi)gi(x,y) ≥ α

For C large enough,

∀(i,x,y),

∣∣∣∣ln(1 +
gi(x,y)

C

)
− gi(x,y)

C

∣∣∣∣ < α

4C

so that
∀(x,y),

∑
i∈I

(pi − qi)g̃i(x,y) ≥ α/2C > 0

where g̃i = lnC + ln
(
1 + gi

C

)
= ln (C + gi). The result follows.

Note that the constant C̄ depends not only on the game and the functions
gi, but also, through ε, on the strategies p and q. Compare proposition 5
and proposition 3. Note that for aggregate monotonic dynamics, the order
of the quantifiers (whether we first fix the game, the functions gi and the
strategies p and q, or we first fix the constant C) is crucial.

To conclude, note that if the constant C depends on the step n:

xi(n+ 1) = xi(n)
Cn + gi(x,y)

Cn +
∑

k xkgk(x,y)
(17)

then we have:
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Proposition 6 Assume that Cn → +∞ as n→ +∞ and that∑
n∈N

1

Cn

= +∞, (18)

Then for any game, any functions gi and any mixed strategies p and q such
that p strictly dominates q, if the dynamics is aggregate monotonic or if it is
convex monotonic and q is pure, then the discrete dynamics (17) eliminates
strategy q.

Proof. This follows from proposition 5. The condition (18) is needed for
the dynamics not to slow down too much and “stop”.
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