Partiel d'algèbre 1

Durée 2h. Tous documents et appareils électroniques interdits. Le barême est approximatif. Sauf mention contraire, les réponses doivent êre justifiées.

Questions de cours (5,5pts)

- 1) (1pt) Soit $E = \{1\}$. Sans justifier, donner la liste des éléments de $\mathcal{P}(\mathcal{P}(E))$.
- 2) (1pt) Soit $n \in \mathbb{N}^*$ et $z \in \mathbb{C}^*$. Soit A l'ensemble des racines nièmes de z. Est-il possible de trouver une application $f : \{1, 2, ..., n\} \to A$ injective mais non surjective? Justifier brièvement.
- 3) (1,5pt) Résoudre dans \mathbb{C} l'équation $2z^2 + (2+2i)z + 1 + i(1-\sqrt{3}) = 0$. On donnera les racines sous forme cartésienne, c'est à dire sous la forme x + iy.
- 4) (2pts) Soit $n \in \mathbb{N}^*$. Soit $A = \{z \in \mathbb{C}, z^n = 1\}$ et $B = \{e^{i2k\pi/n}, k \in \{0, 1, ..., n-1\}\}$. Rédémontrer que A = B.

Exercice 1 (4,5pts) Soit $\theta \in]0, 2\pi[$. Soient les applications

$$r: \mathbb{C} \to \mathbb{C}$$
 et $\pi: \mathbb{C} \to \mathbb{C}$ $z \mapsto ze^{i\theta}$ et $z \mapsto \mathcal{R}e(z)$

- a) (0.5pt) Interpréter r et π géométriquement.
- b) (1,5pt) Montrer que r est bijective et déterminer sa réciproque. Déterminer $r(\mathbb{C})$.
- c) (2,5pts) On note $\mathcal{U} = \{z \in \mathbb{C}, |z| = 1\}$ le cercle unité. Sans justifier, donner $\pi(\mathcal{U})$. En justifiant, déterminer $\pi^{-1}(\mathcal{U})$ et $\pi(\pi^{-1}(\mathcal{U}))$. Interpréter géométriquement ces ensembles.

Exercice 2 (5pts) Soit $f: \mathbb{C} \to \mathbb{C}$ une application différente de l'identité et telle que $f \circ f = f$.

- a) (0.5pt) Montrer que f n'est pas bijective.
- b) (1pt) Soit $z \in \mathbb{C}$. Montrer que $z \in f(\mathbb{C})$ si et seulement si f(z) = z
- c) (0,5pt) Montrer que f n'est pas surjective.
- d) (1pt) Montrer que f n'est pas injective.
- e) (1pt) Soit $g:\mathbb{C}\to\mathbb{C}$ telle que $g\circ g=g$. Montrer que si g est injective, alors g est bijective.
- f) (1pt) Sans justifier, donner un exemple d'application de $\mathbb C$ dans $\mathbb C$ injective mais non bijective.

Exercice 3 (Théorème de Tarski) (6,5 pts)

Soit E un ensemble non vide muni d'une relation d'ordre partiel notée \leq . Soit $f: E \to E$ une application. Soit $A = \{x \in E, x \leq f(x)\}$. On suppose que :

- (H1) Toute partie non vide de E a une borne inférieure et une borne supérieure (qui sont dans E).
- (H2) L'application f est croissante au sens où, pour tous x et y dans E, si $x \leq y$ alors $f(x) \leq f(y)$.
 - a) (1pt) Montrer que ${\cal E}$ a un plus petit élément.
 - b) (0,5pt) Montrer que A a une borne supérieure.
 - c) (1pt) Montrer que $f(A) \subset A$.
 - d) (3pts) (difficile) Soit $y = \sup A$. Montrer que f(y) = y
 - e) (1pt) Soit $B = \{x \in E, f(x) = x\}$. Montrer que max B existe et que max $B = \sup A$.