Corrigé de l'examen d'algèbre 1 du 2 février 2010

Questions de cours

1) Soit $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Soient $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $n \in \mathbb{N}$. Si $n \geq degP$, alors

$$P(X) = \sum_{k=0}^{n} P^{(k)}(a) \frac{(X-a)^{k}}{k!}.$$

[Erreurs courantes : écrire P(a) au lieu de P(X), ou $P^{(k)}(X)$ au lieu de $P^{(k)}(a)$.]

2) a) V; b) F; c) F; d) V. [Tout le monde a eu tous les points]

Exercice 1

- 1) La négation de P est : Il existe un entier n dans \mathbb{N}^* , une matrice carrée A dans \mathcal{M}_n et des vecteurs-colonnes X, Y et B dans $\mathcal{M}_{n,1}$ tels que AX = B et AY = B et $X \neq Y$." [la plupart des étudiants ne savent pas nier une implication, il faut qu'ils revoient ce point essentiel]
- 2) La proposition P est fausse. En effet, pour n=1, A=B=X=(0) et Y=(1), on a AX=AY=B mais $X\neq Y$.

Exercice 2 Soit $z \in \mathbb{C}^*$, r son module et θ son argument dans $[0, 2\pi]$. On a $\bar{z} = re^{-i\theta}$, donc

$$z^3 = \bar{z}^3 \iff (re^{i\theta})^3 = (re^{-i\theta})^3 \Leftrightarrow r^3e^{i3\theta} = r^3e^{-i3\theta} \Leftrightarrow e^{i6\theta} = 1 \text{ (car } r \neq 0) \Leftrightarrow \exists k \in \mathbb{Z}, \theta = 2k\pi/6$$

or $\theta \in [0, 2\pi[, donc$

$$z^3 = \bar{z}^3 \Leftrightarrow \exists k \in \{0, 1, ..., 5\}, \theta = 2k\pi/6 = k\pi/3.$$

En ajoutant la solution évidente z=0, on obtient que l'ensemble des solutions S est l'ensemble des complexes de la forme $re^{ik\pi/3}$ avec $r \in \mathbb{R}_+$ et $k \in \{0, 1, ..., 5\}$. En posant $D_k = \{re^{ik\pi/3}, r \in \mathbb{R}_+\}$, on a donc

$$S = \bigcup_{0 \le k \le 5} D_k = \bigcup_{0 \le k \le 2} (D_k \cup D_{k+3}).$$

Or $D_k \cup D_{k+3}$ correspond à la droite passant par 0 et faisant un angle de $k\pi/3$ avec l'axe des abscisses; S est donc l'union de trois droites passant par l'origine.

[erreurs courantes : supposer implicitement que z est de module 1 en le prenant de la forme $z=e^{i\theta}$; donner une interprétation géométrique farfelue (exemple "l'ensemble des solutions est un cercle")]

Exercice 3 [Des étudiants semblent croire que le produit matriciel est commutatif : c'est une erreur majeure]

- 1) Supposons A inversible et montrons par récurrence que pour tout $k \in \mathbb{N}$, A^k est inversible. Pour k=0, on a $A^k=I_n$, qui est inversible. Soit maintenant $k \in \mathbb{N}$ tel que A^k est inversible. Posons $B=(A^k)^-1A$. On a $A^{k+1}B=AA^k(A^k)^{-1}A^{-1}=AA^{-1}=I_n$, donc A^{k+1} est inversible. Par récurrence, A^k est inversible pour tout $k \in \mathbb{N}$. [J'ai été étonné de voir que peu d'étudiants savaient redémontrer ce résultat simple du cours]
- 2a) Soit $M \in \mathcal{M}_n$. Supposons qu'il existe $i \in \{1, ..., n\}$ tel que $m_{ij} = 0$ pout tout $j \in \{1, ..., n\}$. Soit $X = (x_1, ..., x_n) \in \mathcal{M}_{1,n}$ tel que $x_i = 1$ et $x_k = 0$ si $k \neq i$. Soit $j \in \{1, ..., n\}$. On a

- $XM \in \mathcal{M}_{1,n}$ et $(XM)_{1j} = \sum_{k=1}^{n} x_k m_{ik} = x_i m_{ij} = 0$ (car respectivement $x_k = 0$ si $k \neq i$, et $m_{ij} = 0$ pour tout j). Donc $X \neq 0$ et XM = 0. La matrice M n'est donc pas inversible (sinon, $XM = 0 \Rightarrow XMM^{-1} = 0M^{-1} \Rightarrow X = 0$).
- 2b) Comme le rappelle l'énoncé, il existe une matrice inversible P telle que PA est échelonnée réduite. Posons M=PA. La matrice M ne peut pas être égale à I_n , sinon A serait inversible d'inverse P. Donc, d'après le deuxième résultat rappelé par l'énoncé, M a sa dernière ligne nulle. Donc d'après le a), il existe un vecteur non nul $X \in \mathcal{M}_{1,n}$ tel que XM = 0. Posons Y = XP. On a $Y \in \mathcal{M}_{1,n}$. De plus, comme $X \neq 0$ et que P est inversible, $Y \neq 0$. Enfin, YA = XPA = XM = 0, donc pour tout $K \in \mathbb{N}^*$, $KA^k = KAA^{k-1} = KAA^{k-1} = 0$. La matrice KA^k n'est donc pas inversible (même argument qu'au a)).
- 3) D'après le 1), si A est inversible, alors toutes ses puissances le sont, donc en particulier A^2 est inversible. Réciproquement, d'après le 2) avec k = 2, si A n'est pas inversible, alors A^2 n'est pas inversible; donc par contraposée, si A^2 est inversible, alors A l'est aussi.

Exercice 4 [Beaucoup d'étudiants confondent nombres complexes et nombres complexes non réels. Quand on dit : "soit z un nombre complexe", ils comprennent "soit $z \in \mathbb{C}\backslash\mathbb{R}$ ". C'est dévastateur].

- 1a) Soit n = deg P. Si n < 2, P'' = 0, donc $P + (P'')^2 = P \neq 0$. Donc $n \geq 2$, donc deg P'' = n 2 et $deg(P'')^2 = 2(n-2)$. De plus, comme $P + (P'')^2 = 0$, P et $(P'')^2$ ont même degré (sinon, $deg(P + (P'')^2) = \max(deg P, deg(P'')^2) \geq deg P$ donc $P + (P'')^2 \neq 0$). Donc n = 2(n-2), d'où n = 4.
- 1b) Comme degP = 4, on a degP" = 4 2 = 2. Donc d'après le théorème de décomposition des polynômes dans $\mathbb{C}[X]$, il existe des complexes λ , r_1 et r_2 tels que $P" = \lambda(X r_1)(X r_2)$. Comme λ est le coefficient dominant de P" et que P est à coefficients réels, donc P" aussi, λ est réel.
- 1c) Supposons $r_1 \neq r_2$ [ce qui, contrairement à ce que pensent beaucoup d'étudiants, n'implique pas directement que r_1 et r_2 ne sont pas réels : P" pourrait avoir deux racines réelles distinctes]. On a alors $P = -(P)^2 = -\lambda^2(X r_1)^2(X r_2)^2$, avec $r_1 \neq r_2$, donc r_1 est racine exactement double de P. Donc $P(r_1) = P'(r_1) = 0$ et $P''(r_1) \neq 0$, ce qui contredit le fait que r_1 est racine de P". Donc $r_1 = r_2$.
- 1d) D'après le c), $r_1 = r_2$, donc d'après le b), $P'' = \lambda (X r_1)^2$, donc r_1 est l'unique racine de P" donc r_1 est réel. Sinon, P" étant à coefficients réels, \bar{r}_1 serait aussi racine de P et on aurait $\bar{r}_1 \neq r_1$, donc r_1 ne serait pas l'unique racine de P.
- 2) Le polynôme nul est solution. De plus, si P est un polynôme non nul solution, alors d'après le 1), il existe des réels λ et r tels que P" = $\lambda(X-r)^2$. De plus, $P = -(P")^2$, donc $P = -\lambda^2(X-r)^4$, donc $P' = -4\lambda^2(X-r)^3$ et P" = $-12\lambda^2(X-r)^2$. Comme on a P" = $\lambda(X-r)^2$, on doit avoir $-12\lambda^2 = \lambda$, or $\lambda \neq 0$ car $P \neq 0$, donc $\lambda = -1/12$. Donc $P = -(1/12)^2(X-r)^4$. Réciproquement, s'il existe un réel r tel que $P = -(1/12)^2(X-r)^4$, alors P" = $-(1/12)(X-r)^2$ et on a bien $P + (P")^2 = 0$.

P est donc solution si et seulement si P=0 ou s'il existe un réel r tel que $P=-(1/12)^2(X-r)^4$.

Exercice 5 Soit $x \in E$ et $A = \{x\}$. On a $f(A) = \{f(x)\}$ et $g(A) = \{g(x)\}$, donc $f(x) \in \{g(x)\}$, donc f(x) = g(x). Ceci est vrai pour tout x dans E, donc f = g.