Examen d'algèbre 1

Durée 2h. Documents et appareils électroniques interdits. Le barême est approximatif.

Sauf mention contraire, les réponses doivent être justifiées.

Questions de cours (4,5pts)

- 1) (1pt) Sans justifier, parmi les ensembles suivants, dire ceux qui sont dénombrables et ceux qui ne sont pas dénombrables : \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{N} \times \mathbb{N}$, $\mathbb{R} \setminus \mathbb{Q}$.
 - 2) (0,5pt) Enoncer le théorème de division euclidienne sur Z.
- 3) (1pt) Est-il possible de trouver un entier n dans \mathbb{N}^* et deux matrices A et B dans $\mathcal{M}_n(\mathbb{R})$ telles que $A^k = B^k$ pour tout entier naturel $k \geq 2$ mais $A \neq B$? Justifier.
- 4) (1,5pt) Soient $n \in \mathbb{N}^*$. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. Donner la définition de la trace d'une matrice $M \in \mathcal{M}_n(\mathbb{R})$, notée Tr(M), puis redémontrer que Tr(AB) = Tr(BA).

Exercice 1 (4,5pts) Soient A, B et C les matrices suivantes :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 3 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}$$

- 1) (1pt) Pour tout entier naturel n, calculer B^n et C^n .
- 2) (1,5pt) Calculer A^{20} (on ne cherchera pas à simplifier l'expression des coefficients de la matrice obtenue).
- 3) (2pts) Parmi les matrices A, B et C, dire lesquelles sont inversibles, et déterminer leur inverses.

Exercice 2 (6pts)

- 1) (1pt) En
oncer la formule de Taylor pour les polynômes de $\mathbb{R}[X]$.
- 2) (1pt) Déterminer le reste dans la division euclidienne de $X^9 2X^8 + X^5 X^2 + 1$ par X^3 .
- 3) (1pt) Soient P_0 , P_1 , P_2 trois polynômes de $\mathbb{R}[X]$ tels que $deg(P_k) = k$ pour tout $k \in \{0, 1, 2\}$. Soient a_0 , a_1 , a_2 des réels. Redémontrer que $a_0P_0 + a_1P_1 + a_2P_2 = 0$ si et seulement si $a_0 = a_1 = a_2 = 0$.
 - 4) Soit P un polynôme de degré $n \geq 3$ et R le reste dans la division euclidienne de P par $(X-1)^3$.
 - 4a) (1pt) Montrer que $R = P(1) + P'(1)(X 1) + P''(1)\frac{(X 1)^2}{2}$.
- 4b) (1pt) Donner une condition nécessaire et suffisante sur la valeur de P et de ses dérivés au point 1 pour que $(X-1)^3$ divise P. Rédémontrer que cette condition est nécessaire et suffisante.
 - 4c) (1pt) Déterminer le reste dans la division euclidienne de $2X^{10} 9X^5 + 26X$ par $(X-1)^3$.

Exercice 3 (5pts) Soit $f: \mathbb{C}^* \to \mathbb{C}$ définie par, pour tout z dans \mathbb{C}^* , $f(z) = \frac{1}{2} \left(z + \frac{3}{z} \right)$.

- 1) (1,5pt) Résoudre dans $\mathbb C$ l'équation $z^2-2iz+3=0$, puis déterminer $f^{-1}(\{i\})$.
- 2) (1pt) L'application f est-elle injective? surjective?
- 3) (2,5pts) Soit $A = \{z \in \mathbb{C}, |z| = \sqrt{3}\}$. Déterminer f(A). A-t-on $f(A) \subset \mathbb{R}$? L'image directe d'un cercle par f est-elle toujours un cercle?

Question bonus Montrer que toute matrice inversible peut s'écrire comme le produit d'un nombre fini de matrices d'opérations élémentaires.