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Un jeu est élémentaire s'il admet un équilibre corrélé strict a support plein. Un
jeu est plein si le polytope de distributions d'équilibres corrélés a dimension
pleine. Tout jeu élémentaire est plein. Nous montrons qu'un jeu plein est
¢lémentaire si et seulement si aucune des contraintes d'incitation définissant
les équilibres corrélés n'est vide. Plusieurs caractérisations des jeux pleins sont
données. Enfin, nous présentons une méthode permettant de construire des
jeux pleins mais non élémentaires.

A game is elementary if it has strict correlated equilibrium distributions with
full support. A game is full if its correlated equilibrium polytope has full
dimension. Any elementary game is full. We show that a full game is
elementary if and only if all the correlated equilibrium incentive constraints
are nonvacuous. Characterizations of full games are provided and examples
are given. Finally, we give a method to build full, nonelementary games.
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1 Introduction

Elementary games were introduced by Myerson [3]. A game is elementary if it has
correlated equilibrium distributions that satisfy all nonnegativity and incentive con-
straints with strict inequality. As Myerson points out [3, p186]: “For such elementary
games, any player can be motivated to choose any pure strategy with no indifference
problems” so “correlated equilibrium refinements that generalize Selten’s perfectness
concept should be unnecessary.” Furthermore, Myerson defines a process called dual
reduction [3], [8]. This process, which includes elimination of dominated strategies,
allows to reduce finite games into games with fewer strategies in a way that selects
among correlated equilibria; that is, any correlated equilibrium distribution of the re-
duced game can be mapped back to a correlated equilibrium distribution of the original
game. By iterative dual reduction, any game is reduced to an elementary game, and
then the process stops. More precisely, a game is elementary if and only if it cannot be
reduced by dual reduction.

A slightly larger, closely related class of games is the class of games whose corre-
lated equilibrium polytop€' has full dimensioh henceforth callefull games Nau et
al [4] proved that if a gamé& is full then there is no Nash equilibrium in the relative
interior of C' 2, which is not generally true.

The aim of this note is to relate and characterize these two classes of games. The
remaining of this note is organized as follow: in the next section, the main definitions
and notations are introduced. The link between elementary games and full games is
made precise in section 3. The last section and appendix B are devoted to characteriza-
tions of full games. These can also be used to characterize elementary games. Finally,
a method to build full but nonelementary games is explained in appendix A.

2 Notations and Definitions

2.1 Basic notations

The analysis in this note is restricted to finite games in strategic forms.GLet
{I, (S:)ier, (u;)icr } denote a finite game in strategic forthis the nonempty finite set
of players,S; the nonempty finite set of pure strategies of playardu; : x;c;5; — R
the utility function of playeri. The set of (pure) strategy profiles§s= x;c;.5;; the
set of strategy profiles for the players other thé@S_; = x;cr—;S;. Pure strategies
of playeri (resp. strategy profiles; strategy profiles of the players other ¢hare
denoteds; or t; (resp. s; s—;). We may write(¢;, s_;) to denote the strategy profile
that differs froms only in that itsi—component ig;. Finally, N denotes the cardinal
of S andA(S) the set of probability distribution oves.

1That is, dimensiolV — 1 whereN is the number of pure strategy profiles in the game. See section 2.
2Except ifG is trivial; that is, if the payoff of the players are independent of their own strategy.



2.2 Correlated equilibrium distribution

The setA(S) is anN — 1 dimensional simplex, henceforth callédte simplexA cor-
related strategyf the players in/ is an element of the simplex. Thus= (u(s))ses
is a correlated strategy if:

(nonnegativity constraints) u(s) >0 VseSs 1)
(normalization constraint) Z u(s) =1 (2)
ses

For (i,s;,t;) € I xS; x S;, let hy, ;, denote the linear form o which maps
x = (2(s))ses tO

hoa (@)= > w(s)uils) — ui(ti, s_;)]

s_;€S_;

A correlated strategy is acorrelated equilibrium distributionfl] if:

(incentive constraints) hs, ¢, (1) >0 Vie I,Vs; € S;,Vt; € S;\{s:}
3)
Since conditions (1), (2) and (3) are all linear, the set of correlated equilibrium
distributions is a polytope. This polytope, which we denote(hyis a subset of the
simplex. Therefore, it has at most dimensisgn- 1.

Definition 2.1 The polytope” hasfull dimensionif it has dimensionV — 1.

2.3 Full games

Definition 2.2 G is afull gameif C' has full dimension.

To state more precisely the result of Nau et al [4] mentionned in the introduction, we
need some definitions:

Definition 2.3 Let (i, s;,t;) € I x S; x S;, with s; # ¢;. The incentive constraint
hs, 1, () > 0isvacuoudf hg, ,, = 0. Thatis, ifu;(s;,.) = u;(t;, ).

Definition 2.4 A game is nontrivial if at least one of the incentive constraints is non-
vacuous:di € I,3ds; € Si7 dt; 7& si7ui(si, ) # Ui(ti, )

Nau et al [4] proved that i7 is nontrivial, then all Nash equilibria lie on the boundary

of C 3. If furthermoreC has full dimension, its boundary coincides with its relative
boundary, hence all Nash equilibria lie on its relative boundary. In contraSthiiis

less than full dimension, it consists entirely of boundary; the above result is then void
and examples of nontrivial games with Nash equilibria in the relative interi6ttwive
actually been found [4].

3We could see” as a subset &Y, in which caseC' (andA(S)) would always have an empty interior.
Rather, we se€’ as a subset of the hyperplane containing the simplex. Therefore, a correlated equilibrium
distribution belongs to theoundaryof C' if and only if it belongs to a face af' whose dimension is at most
N —2.



2.4 Elementary games

Definition 2.5 A game is elementary [3] if it has correlated equilibrium distributions
which satisfy all incentive constraints (3) with strict inequality. That is,

HMEC7V7;€I7VSZ‘ ESi,VtiESi—Si,hshti(/J) >0 (4)

Note that (4) and (1) jointly imply that every pure strategy must have positive marginal
probability iny; thatis,> S, ¢ u(s) >0 Vi€ I,Vs; € S_;. Also, if some playef

is indifferent between two pure strategiesandt; # s; (thatis, ifu;(s;,.) = ui(t;,.))
thenhs, +, (1) = 0 for all i in A(S), and (4) cannot be satisfied. Therefore:

Remark 2.6 If a game is elementary, then all incentive constraints are nonvacuous:
Vi € I,VSZ' € SZ,VtZ S Sl\{sl},uz(sl, ) 75 Ui(ti, )

For comments and results on elementary games, see (Myerson, [3]).

3 Therelation between elementary games and full games
In this section, we first give necessary and sufficient conditions for a game to be full.
We then precise the link between elementary games and full games.

Proposition 3.1 The following properties are equivalent:

(i) C has full dimension

(ii) There exists a correlated equilibrium distribution that satisfies all the nonvacu-
ous incentive constraints with strict inequality. Formally,

HM € C,VZ e l,Vs; € SZ-,Vt,» S S’i\{si}ahsi,ti 75 0= hsi,ti (/,L) >0

(iif) There exists a correlated equilibrium distribution that satisfies all nonnegativity
and nonvacuous incentive constraints with strict inequality.

Proof. (i4) = (éi7) and(iii) = (i) are clear. Let us provE) = (ii) by contraposi-
tion. By convexity ofC, (i) is equivalent to:

Vi € Ivvsz S Sz»Vti S Sl\{sz}a hSi,ti # 0= (H/L € Ca hsi7ti (M) > O)

Therefore, if (ii) does not hold, then there exists a honvacuous incentive constraint
that is binding in all correlated equilibrium distributions; this constraint defines an
hyperplane whose intersection with the simplex has at most dime@éien2 and
includesC; thereforeC' has at most dimensioN — 2, contradicting (i).m

Corollary 3.2 G is elementary if and only if (a) none of the incentive constraints is
vacuous and (b{’' has full dimension.

Proof. Clear from definition 2.5, remark 2.6 and the equivalence of (i) and (ii) in
proposition 3.1.m

Any trivial game (in the sense of definition 2.4) is a full, nonelementary game. A
more subtle example of such a game is the following:



Example3.3 T 1, ,0
B 1,0 0,1

There are four incentive constraints. Two of them are vacuous, hence this game is
not elementary. However, the correlated strategy assigning probabilitio both7T'L
and BR checks the two nonvacuous incentive constraints with strict inequality, so, by
proposition 3.1, this game is full.

A general method to build full, nonelementary games is given in appendix A.

4 Characterization of these classes of games

In this section , we provide criteria to determine whetbehas full dimension. By
corollary 3.2, these criteria can also be used to know if a game is elementary. We end
this note with two examples: an elementary game and a nonelementary game.

4.1 Characterizations

The following proposition is based on [2], [6, p.186] and [3]. l@the nontrivial.
Consider the following two-player, zero-sum, auxiliary gamehe maximizer chooses
a strategy profile in S; the minimizer chooses a playegin N and a couple of strategy
(sh,t;) in S; x S;, such thatu;(s},.) # u;(t;,.).* The payoff for the maximizer is
u;(8) — ui(ts, s—;) if s, = s; and0 otherwise.

Proposition 4.1 C has full dimension if and only if the value of the mixed extension of
I' is positive

Proof. A mixed strategy of the maximizer is a correlated strategyf G; the payoff

if the minimizer choosess;, t;) is hy ;, (1). Thus,u guarantees a positive payoff if
and only if ., checks all nonvacuous incentive constraints with strict inequality (and if
it doesu € C). Then apply proposition 3.1m

The following propositions apply only to games with a correlated equilibrium dis-
tribution with full support (for instance, a completely mixed Nash equilibrium).7het
be a positive integer and, ..., h,,, denote the linear forms associated with the nonva-
cuous incentive constraints.

Proposition 4.2 Assume thaz admits a correlated equilibrium distribution with full
support. Ifhy, ..., h,, are independent, thefl has full dimension.

Proof. Given in appendix B.m

If hy, ..., h,y, are notindependent, I& be a basis of the linear span{dfy, ..., h,, }.
Without loss of generality, assume th&t = (hq,...,h,) With 1 < ¢ < m. Let

4Such a tripleq(s, s}, t;) with u; (s}, .) # w;(t;,.) must exist, becaus@ is nontrivial.



A = (aki)1<k<q,g+1<i<m b€ the matrix of(hy41, ..., hy,) in the basisB; that is,
n

< )
forallg+1<1<n,
hy = Z agrhg

1<k<q

Let IV denote the two-player, zero-sum, auxiliary game, whose payoff matrix for the
maximizer isA; that is the maximizer choosésn {1, ..., ¢}, the minimizer choosels
in {¢g+ 1,...,m} and the payoff for the maximizer ig;;.

Proposition 4.3 Assume tha&; admits a correlated equilibrium with full support. If
hi, ..., h,, are not independent;’ has full dimension if and only if the value of the
mixed extension df’ is positive.

Proof. Given in appendix B.m

The following remarks will be used in the examples:

Remark 4.4 If in the payoff matrixA of I there is a nonpositive column (resp. all
the entries are nonnegative), then the value of the mixed extensidrsofionpositive
(resp. positive).

Proof. The first part is straightforward. For the second part, recall khat.., h,,

are the linear forms associated with thenvacuousncentives constraints. Therefore

hi, ..., hy, are all nonzero. So, forafl + 1 < [ < m, there existd < k; < g such
thatag,; is nonzero. Therefore if all the entries df are nonnegative then playing a
completely mixed strategy guarantees a positive payoff to the maximizer. Hence the
value of the mixed extension @Y is positive. m

4.2 Examples

Example 4.5 An elementary game with linearly dependent incentive constraints.

The following 3-player2 x 2 x 2 game is taken from [4]:

Up: Left Right
Top 0,0,2 0,3,0
Bottom ( 3,0,0 0,0,0 >
Down:

Top 1,1,0 0,0,0

Bottom ( 0,0,0 0,0,3 )
This game has a completely mixed Nash equilibrium. There are only five distinct incen-
tive constraints (the constraint for Row defecting from Top to Bottom is the same as the
constraint for Column defecting from Left to Right). These five incentive constraints
are linearly independent. So the payoff matdxof the auxiliary gamd" is a5 x 1
column matrix whose entries are four 0 and a 1. So, by proposition 4.3 and remark

4.4, C has dimensioryY. Furthermore, none of the incentive constraints is vacuous.
Therefore, by corollary 3.2, this game is elementary.



Example 4.6 A nonelementary game:
L R
T 2,-1 0,0
B 0,0 1,-2
This game has a completely mixed Nash equilibrium. Any incentive constraint is a
nonpositive linear combination of the three other incentive constraints, which are lin-
early independent. So the payoff matrbof I' is a3 x 1, nonpositive column matrix.

Therefore, by remark 4.4, has less than dimensi&® In particular, this game is not
elementary.

A A method to build full, nonelementary games

We first need a definition:

Definition A.1 LetG = (I, (S:)ier, (ui)ier) andG' = (I, (S))ier , (u})icr ) be two
finite gamesG’ is built on G by adding a semi-duplicate to playéif:i

o I'=1
° ;=155 Vj#i
3 e S, 8= S, U {1}

uy(s) =up(s) Vs € S,Vk € I

dt; € S;,Vs_; € S,i, u;(t;,s,z) = Ui(ti,S,i) 6

Example A.2
B , (1,1 0,0 v (1,1 0,0 0,1
Gi=(11 00) Gl_(1,o 01) “={10 01 10
G/, is built on G4 by adding a semi-duplicate to the row player afigl is built on
by adding a semi-duplicate to the column player.

We can now provide the method:

Proposition A.3 LetG be elementary an@” be built onG by adding a semi-duplicate
to some player. The@" is full and nonelementary.

SMore generally, it is easy to prove thatdf is nontrivial and best-response equivalent to a two-player
zero-sum game [7] (as in example 4.6)does not have full dimension.

6In words, inG the set of players is the same thanGnand the pure strategy sets are the same for all
players but, who has an additional pure stratedy when player does not use his additional strategy the
payoffs inG’ are the same than i@; furthermore playet is indifferent between his additional strategy and
a strategyt; that was already available @.



Proof. G’ is clearly nonelementary, so we only have to prove tHais full. Let p in
A(S) check all the incentive contraints 6f with strict inequality (in the sense of (4)).
Definey’ andv’ in A(S’) by:

W(s)=u(s) Vse S ; u'(t,s—i)=0 Vs_; € S_;

! (¢ 1
_ . t. —i) = . . a N
v (5) 0 Vs S S ;v ( irS ) M(tl X sz)

p(tiys—i) Vs €8

Note that fore > 0 small enoughy’. = (1 — )i’ 4 e/ is a correlated equilibrium
distribution of G’ that satisfies all its nonvacuous incentive constraints with strict in-
equality. Then use proposition 3.1

Note that full, nonelementary games cannot all be built by adding semi-duplicates
to an elementary gamé&, cannot be built in this way.

Note also that ifG is full but not elementary, then adding a semi-duplicaté&:to
need not yield a full game. For instand&; is not full. The point is that adding a new
strategy to some player may lift the indifference of some other player between two of
her strategies. This shall be clear from proposition A.5, which generalizes proposition
A.3. We first need a definition:

Definition A.4 Let G’ be a game built ort by adding a semi-duplicate to playeér
G’ preserves indifferende G if for all j # ¢ and all s, ¢; in S;:

uj(sj,.) = wj(ts,.) = ui(sj,.) = uji(ty,.)

That s, if playerj was indifferent betweesy andt; in G, she is still indifferent between
s; andt; in G'.

Proposition A.5 Let G be full andG’ be built onG by adding a semi-duplicatg to
playeri. If G’ preserves indifference i@, G’ is full. If G is a two-player game, the
converse holds, so that’ is full if and only if G’ preserves indifference ii.

Proof. In G’, there are three kinds of incentive constraints: constraints of type: (i)
Wy, ¢, () = 0with j #dor if j =i, s; # t; andt; # ti; (i) b, () = Owith s; € S;;
(iii) h;/_ s‘(.) > 0 with s; € S;. (The prime in%’ indicates that we consider incentive

constraints of5’.) SinceG is full, there exists a correlated strategyhat checks all
the nonvacuous incentive constraints(dfwith strict inequality. Define./, v" and .
as in the proof of proposition A.3. We now show that &small enoughy. satisfies
with strict inequality all the nonvacuous incentive constraint§gfwhich implies that
G’ is full.

First, for e small enoughy. satisfies with strict inequality all the incentive con-
straints of type (i) corresponding to incentive constraint& cfatisfied by with strict
inequality. SinceZ’ preserves indifference i@, the other incentive constraints of type
(i) are vacuous. Since foral € S;, h, ,, = h;, ,,, the above argument also takes care
of constraints of type (ii). Finally, the conditional probabilities 8n; givent, in p.
are the same than the conditional probabilities gitzen p. Sinceu!(t},.) = u;(t;, .),



this makes sure that. satisfies with strict inequality all the nonvacuous incentive con-
straints of type (iii).

Now assume that is a2-player game and that= 2. Lett), be the strategy added
to player2in G'. If G’ does not preserve indifference@ then there exists, , t; € S
such that playet is indifferent betweers; andt; in G but not inG’: wuy (s, s2) #
uy(ty1, s2) forall sq in So butu (s1,t5) # uq (t1,t5). Assume for instance, (s1,t5) >
uy(t1,15); then, inG’, s; weakly dominates; . So the incentive constraing , (.) >
0, which is nonvacuous, cannot be satisfied with strict inequality. Theréfocannot
be full. m

B Proof of propositions 4.2 and 4.3

We begin with a claim:

Claim B.1 C has full dimension if and only it there exists a correlated equilibrium
distribution 1 with full support and @) there exists: in R® such thatz satisfies all
nonvacuous incentive constraints with strict inequality.

Proof. Necessity: follows from proposition 3.1; sufficiency: assume thaahd (3)

hold; lety = (1 — €)u + ex. Fore positive small enough, normalizingyields a corre-
lated equilibrium distribution which satisfies all nonvacuous incentive constraints with
strict inequality. Then apply proposition 3s

Claim B.1 implies that if there exists some correlated equilibrium with full support,
C has full dimension if and only iff) holds. We now show that the condition required
on top of («) in proposition 4.2 (resp. proposition 4.3) imply (resp. is equivalent to)
condition(3). We will use the following standard result:
Lemma B.2 Let E be a finite dimensional real vector spagea positive integer, and
fi, ..., fq linear forms onE. Thenfi, ..., f, are linearly independent if and only if for
anyy in R? there exists in E such thaty = (f1(x), ..., fy(x)).

The notations below are taken from section 4.1. Assuméithat, h,,, are linearly
independent; lemma B.2 then implies thaj bolds, proving proposition 4.2. Assume
now thatB = (hy, ..., hy) is a basis of the linear span ¢k, ..., h,,, }, for somel <
g < m. The value of the auxiliary game of proposition 4.3 is positive if and only if

q
ﬂyGRq,yZO,Zyk:LyA>O ()
k=1

Forz in RY, lety(z) = (hy(x), ..., hy(z)). By definition of the matrixA:
(hg1(2); oo han (7)) = y(z) A

Therefore @) holds if and only if there exists in R® such thay(x) > 0 andy(z)A >
0. But, by lemma B.2y(x) may be given any value iR? by an appropriate choice of
x. Therefore () is equivalent to:

JyeRyy>0,yA>0 (6)
Itis easy to see that (6) is equivalent to (5), completing the proof of proposition 4.3.
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