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Résumé: Un jeu est élémentaire s'il admet un équilibre corrélé strict à support plein. Un 
jeu est plein si le polytope de distributions d'équilibres corrélés à dimension 
pleine. Tout jeu élémentaire est plein. Nous montrons qu'un jeu plein est 
élémentaire si et seulement si aucune des contraintes d'incitation définissant 
les équilibres corrélés n'est vide. Plusieurs caractérisations des jeux pleins sont 
données. Enfin, nous présentons une méthode permettant de construire des 
jeux pleins mais non élémentaires. 

 
Abstract: A game is elementary if it has strict correlated equilibrium distributions with 

full support. A game is full if its correlated equilibrium polytope has full 
dimension. Any elementary game is full. We show that a full game is 
elementary if and only if all the correlated equilibrium incentive constraints 
are nonvacuous. Characterizations of full games are provided and examples 
are given. Finally, we give a method to build full, nonelementary games.  
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1 Introduction

Elementary games were introduced by Myerson [3]. A game is elementary if it has
correlated equilibrium distributions that satisfy all nonnegativity and incentive con-
straints with strict inequality. As Myerson points out [3, p186]: “For such elementary
games, any player can be motivated to choose any pure strategy with no indifference
problems” so “correlated equilibrium refinements that generalize Selten’s perfectness
concept should be unnecessary.” Furthermore, Myerson defines a process called dual
reduction [3], [8]. This process, which includes elimination of dominated strategies,
allows to reduce finite games into games with fewer strategies in a way that selects
among correlated equilibria; that is, any correlated equilibrium distribution of the re-
duced game can be mapped back to a correlated equilibrium distribution of the original
game. By iterative dual reduction, any game is reduced to an elementary game, and
then the process stops. More precisely, a game is elementary if and only if it cannot be
reduced by dual reduction.

A slightly larger, closely related class of games is the class of games whose corre-
lated equilibrium polytopeC has full dimension1, henceforth calledfull games. Nau et
al [4] proved that if a gameG is full then there is no Nash equilibrium in the relative
interior ofC 2, which is not generally true.

The aim of this note is to relate and characterize these two classes of games. The
remaining of this note is organized as follow: in the next section, the main definitions
and notations are introduced. The link between elementary games and full games is
made precise in section 3. The last section and appendix B are devoted to characteriza-
tions of full games. These can also be used to characterize elementary games. Finally,
a method to build full but nonelementary games is explained in appendix A.

2 Notations and Definitions

2.1 Basic notations

The analysis in this note is restricted to finite games in strategic forms. LetG =
{I, (Si)i∈I , (ui)i∈I} denote a finite game in strategic form:I is the nonempty finite set
of players,Si the nonempty finite set of pure strategies of playeri andui : ×i∈ISi → R
the utility function of playeri. The set of (pure) strategy profiles isS = ×i∈ISi; the
set of strategy profiles for the players other thani is S−i = ×j∈I−iSj . Pure strategies
of player i (resp. strategy profiles; strategy profiles of the players other thani) are
denotedsi or ti (resp. s; s−i). We may write(ti, s−i) to denote the strategy profile
that differs froms only in that itsi−component isti. Finally, N denotes the cardinal
of S and∆(S) the set of probability distribution overS.

1That is, dimensionN − 1 whereN is the number of pure strategy profiles in the game. See section 2.
2Except ifG is trivial; that is, if the payoff of the players are independent of their own strategy.
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2.2 Correlated equilibrium distribution

The set∆(S) is anN − 1 dimensional simplex, henceforth calledthe simplex. A cor-
related strategyof the players inI is an element of the simplex. Thusµ = (µ(s))s∈S

is a correlated strategy if:

(nonnegativity constraints) µ(s) ≥ 0 ∀s ∈ S (1)

(normalization constraint)
∑

s∈S

µ(s) = 1 (2)

For (i, si, ti) ∈ I × Si × Si, let hsi,ti denote the linear form onRS which maps
x = (x(s))s∈S to

hsi,ti(x) =
∑

s−i∈S−i

x(s)[ui(s)− ui(ti, s−i)]

A correlated strategyµ is acorrelated equilibrium distribution[1] if:

(incentive constraints) hsi,ti(µ) ≥ 0 ∀i ∈ I, ∀si ∈ Si, ∀ti ∈ Si\{si}
(3)

Since conditions (1), (2) and (3) are all linear, the set of correlated equilibrium
distributions is a polytope. This polytope, which we denote byC, is a subset of the
simplex. Therefore, it has at most dimensionN − 1.

Definition 2.1 The polytopeC hasfull dimensionif it has dimensionN − 1.

2.3 Full games

Definition 2.2 G is a full gameif C has full dimension.

To state more precisely the result of Nau et al [4] mentionned in the introduction, we
need some definitions:

Definition 2.3 Let (i, si, ti) ∈ I × Si × Si, with si 6= ti. The incentive constraint
hsi,ti(.) ≥ 0 is vacuousif hsi,ti = 0. That is, ifui(si, .) = ui(ti, .).

Definition 2.4 A game is nontrivial if at least one of the incentive constraints is non-
vacuous:∃i ∈ I, ∃si ∈ Si, ∃ti 6= si, ui(si, .) 6= ui(ti, .).

Nau et al [4] proved that ifG is nontrivial, then all Nash equilibria lie on the boundary
of C 3. If furthermoreC has full dimension, its boundary coincides with its relative
boundary, hence all Nash equilibria lie on its relative boundary. In contrast, ifC has
less than full dimension, it consists entirely of boundary; the above result is then void
and examples of nontrivial games with Nash equilibria in the relative interior ofC have
actually been found [4].

3We could seeC as a subset ofRN , in which caseC (and∆(S)) would always have an empty interior.
Rather, we seeC as a subset of the hyperplane containing the simplex. Therefore, a correlated equilibrium
distribution belongs to theboundaryof C if and only if it belongs to a face ofC whose dimension is at most
N − 2.
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2.4 Elementary games

Definition 2.5 A game is elementary [3] if it has correlated equilibrium distributions
which satisfy all incentive constraints (3) with strict inequality. That is,

∃µ ∈ C, ∀i ∈ I, ∀si ∈ Si, ∀ti ∈ Si − si, hsi,ti(µ) > 0 (4)

Note that (4) and (1) jointly imply that every pure strategy must have positive marginal
probability inµ; that is,

∑
s−i∈S−i

µ(s) > 0 ∀i ∈ I, ∀si ∈ S−i. Also, if some playeri
is indifferent between two pure strategiessi andti 6= si (that is, ifui(si, .) = ui(ti, .))
thenhsi,ti

(µ) = 0 for all µ in ∆(S), and (4) cannot be satisfied. Therefore:

Remark 2.6 If a game is elementary, then all incentive constraints are nonvacuous:
∀i ∈ I, ∀si ∈ Si, ∀ti ∈ Si\{si}, ui(si, .) 6= ui(ti, .).

For comments and results on elementary games, see (Myerson, [3]).

3 The relation between elementary games and full games

In this section, we first give necessary and sufficient conditions for a game to be full.
We then precise the link between elementary games and full games.

Proposition 3.1 The following properties are equivalent:

(i) C has full dimension

(ii) There exists a correlated equilibrium distribution that satisfies all the nonvacu-
ous incentive constraints with strict inequality. Formally,

∃µ ∈ C, ∀i ∈ I, ∀si ∈ Si, ∀ti ∈ Si\{si}, hsi,ti 6= 0 ⇒ hsi,ti(µ) > 0

(iii) There exists a correlated equilibrium distribution that satisfies all nonnegativity
and nonvacuous incentive constraints with strict inequality.

Proof. (ii) ⇒ (iii) and(iii) ⇒ (i) are clear. Let us prove(i) ⇒ (ii) by contraposi-
tion. By convexity ofC, (ii) is equivalent to:

∀i ∈ I,∀si ∈ Si, ∀ti ∈ Si\{si}, hsi,ti 6= 0 ⇒ (∃µ ∈ C, hsi,ti(µ) > 0)

Therefore, if (ii) does not hold, then there exists a nonvacuous incentive constraint
that is binding in all correlated equilibrium distributions; this constraint defines an
hyperplane whose intersection with the simplex has at most dimensionN − 2 and
includesC; thereforeC has at most dimensionN − 2, contradicting (i).

Corollary 3.2 G is elementary if and only if (a) none of the incentive constraints is
vacuous and (b)C has full dimension.

Proof. Clear from definition 2.5, remark 2.6 and the equivalence of (i) and (ii) in
proposition 3.1.

Any trivial game (in the sense of definition 2.4) is a full, nonelementary game. A
more subtle example of such a game is the following:
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Example 3.3
L R

T
B

(
1, 1 0, 0
1, 0 0, 1

)

There are four incentive constraints. Two of them are vacuous, hence this game is
not elementary. However, the correlated strategy assigning probability1/2 to bothTL
andBR checks the two nonvacuous incentive constraints with strict inequality, so, by
proposition 3.1, this game is full.

A general method to build full, nonelementary games is given in appendix A.

4 Characterization of these classes of games

In this section , we provide criteria to determine whetherC has full dimension. By
corollary 3.2, these criteria can also be used to know if a game is elementary. We end
this note with two examples: an elementary game and a nonelementary game.

4.1 Characterizations

The following proposition is based on [2], [6, p.186] and [3]. LetG be nontrivial.
Consider the following two-player, zero-sum, auxiliary gameΓ: the maximizer chooses
a strategy profiles in S; the minimizer chooses a playeri in N and a couple of strategy
(s′i, ti) in Si × Si, such thatui(s′i, .) 6= ui(ti, .).4 The payoff for the maximizer is
ui(s)− ui(ti, s−i) if s′i = si and0 otherwise.

Proposition 4.1 C has full dimension if and only if the value of the mixed extension of
Γ is positive

Proof. A mixed strategy of the maximizer is a correlated strategyµ of G; the payoff
if the minimizer chooses(s′i, ti) is hs′i,ti

(µ). Thus,µ guarantees a positive payoff if
and only ifµ checks all nonvacuous incentive constraints with strict inequality (and if
it doesµ ∈ C). Then apply proposition 3.1.

The following propositions apply only to games with a correlated equilibrium dis-
tribution with full support (for instance, a completely mixed Nash equilibrium). Letm
be a positive integer andh1, ..., hm denote the linear forms associated with the nonva-
cuous incentive constraints.

Proposition 4.2 Assume thatG admits a correlated equilibrium distribution with full
support. Ifh1, ..., hm are independent, thenC has full dimension.

Proof. Given in appendix B.

If h1, ..., hm are not independent, letB be a basis of the linear span of{h1, ..., hm}.
Without loss of generality, assume thatB = (h1, ..., hq) with 1 ≤ q < m. Let

4Such a triplet(i, s′i, ti) with ui(s
′
i, .) 6= ui(ti, .) must exist, becauseG is nontrivial.
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A = (akl)1≤k≤q, q+1≤l≤m be the matrix of(hq+1, ..., hm) in the basisB; that is,
for all q + 1 ≤ l ≤ n,

hl =
∑

1≤k≤q

aklhk

Let Γ′ denote the two-player, zero-sum, auxiliary game, whose payoff matrix for the
maximizer isA; that is the maximizer choosesk in {1, ..., q}, the minimizer choosesl
in {q + 1, ...,m} and the payoff for the maximizer isakl.

Proposition 4.3 Assume thatG admits a correlated equilibrium with full support. If
h1, ..., hm are not independent,C has full dimension if and only if the value of the
mixed extension ofΓ′ is positive.

Proof. Given in appendix B.

The following remarks will be used in the examples:

Remark 4.4 If in the payoff matrixA of Γ′ there is a nonpositive column (resp. all
the entries are nonnegative), then the value of the mixed extension ofΓ′ is nonpositive
(resp. positive).

Proof. The first part is straightforward. For the second part, recall thath1, ..., hm

are the linear forms associated with thenonvacuousincentives constraints. Therefore
h1, ..., hm are all nonzero. So, for allq + 1 ≤ l ≤ m, there exists1 ≤ kl ≤ q such
that akll is nonzero. Therefore if all the entries ofA are nonnegative then playing a
completely mixed strategy guarantees a positive payoff to the maximizer. Hence the
value of the mixed extension ofΓ′ is positive.

4.2 Examples

Example 4.5 An elementary game with linearly dependent incentive constraints.

The following 3-player,2× 2× 2 game is taken from [4]:

Up: Left Right
Top
Bottom

(
0, 0, 2 0, 3, 0
3, 0, 0 0, 0, 0

)

Down:
Top
Bottom

(
1, 1, 0 0, 0, 0
0, 0, 0 0, 0, 3

)

This game has a completely mixed Nash equilibrium. There are only five distinct incen-
tive constraints (the constraint for Row defecting from Top to Bottom is the same as the
constraint for Column defecting from Left to Right). These five incentive constraints
are linearly independent. So the payoff matrixA of the auxiliary gameΓ′ is a5 × 1
column matrix whose entries are four 0 and a 1. So, by proposition 4.3 and remark
4.4, C has dimension7. Furthermore, none of the incentive constraints is vacuous.
Therefore, by corollary 3.2, this game is elementary.
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Example 4.6 A nonelementary game:

L R
T
B

(
2,−1 0, 0
0, 0 1,−2

)

This game has a completely mixed Nash equilibrium. Any incentive constraint is a
nonpositive linear combination of the three other incentive constraints, which are lin-
early independent. So the payoff matrixA of Γ′ is a3× 1, nonpositive column matrix.
Therefore, by remark 4.4,C has less than dimension3.5 In particular, this game is not
elementary.

A A method to build full, nonelementary games

We first need a definition:

Definition A.1 LetG = (I, (Si)i∈I , (ui)i∈I) andG′ = (I ′, (S′i)i∈I′ , (u′i)i∈I′) be two
finite games.G′ is built onG by adding a semi-duplicate to player iif:

• I ′ = I

• S′j = Sj ∀j 6= i

• ∃t′i ∈ S′i, S′i = Si ∪ {t′i}
• u′k(s) = uk(s) ∀s ∈ S, ∀k ∈ I

• ∃ti ∈ Si, ∀s−i ∈ S−i, u′i(t
′
i, s−i) = ui(ti, s−i) 6

Example A.2

G1 =
(

1, 1 0, 0
)

G′1 =
(

1, 1 0, 0
1, 0 0, 1

)
G
′′
1 =

(
1, 1 0, 0 0, 1
1, 0 0, 1 1, 0

)

G′1 is built onG1 by adding a semi-duplicate to the row player andG
′′
1 is built onG′1

by adding a semi-duplicate to the column player.

We can now provide the method:

Proposition A.3 LetG be elementary andG′ be built onG by adding a semi-duplicate
to some player. ThenG′ is full and nonelementary.

5More generally, it is easy to prove that ifG is nontrivial and best-response equivalent to a two-player
zero-sum game [7] (as in example 4.6),C does not have full dimension.

6In words, inG′ the set of players is the same than inG and the pure strategy sets are the same for all
players buti, who has an additional pure strategyt′i; when playeri does not use his additional strategy the
payoffs inG′ are the same than inG; furthermore playeri is indifferent between his additional strategy and
a strategyti that was already available inG.
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Proof. G′ is clearly nonelementary, so we only have to prove thatG′ is full. Let µ in
∆(S) check all the incentive contraints ofG with strict inequality (in the sense of (4)).
Defineµ′ andν′ in ∆(S′) by:

µ′(s) = µ(s) ∀s ∈ S ; µ′(t′i, s−i) = 0 ∀s−i ∈ S−i

ν′(s) = 0 ∀s ∈ S ; ν′(t′i, s−i) =
1

µ(ti × S−i)
µ(ti, s−i) ∀s−i ∈ S−i

Note that forε > 0 small enough,µ′ε = (1 − ε)µ′ + εν′ is a correlated equilibrium
distribution ofG′ that satisfies all its nonvacuous incentive constraints with strict in-
equality. Then use proposition 3.1.

Note that full, nonelementary games cannot all be built by adding semi-duplicates
to an elementary game:G′1 cannot be built in this way.

Note also that ifG is full but not elementary, then adding a semi-duplicate toG
need not yield a full game. For instance,G′′1 is not full. The point is that adding a new
strategy to some player may lift the indifference of some other player between two of
her strategies. This shall be clear from proposition A.5, which generalizes proposition
A.3. We first need a definition:

Definition A.4 Let G′ be a game built onG by adding a semi-duplicate to playeri.
G′ preserves indifferencein G if for all j 6= i and allsj , tj in Sj :

uj(sj , .) = uj(tj , .) ⇒ u′j(sj , .) = u′j(tj , .)

That is, if playerj was indifferent betweensj andtj in G, she is still indifferent between
sj andtj in G′.

Proposition A.5 Let G be full andG′ be built onG by adding a semi-duplicatet′i to
player i. If G′ preserves indifference inG, G′ is full. If G is a two-player game, the
converse holds, so thatG′ is full if and only ifG′ preserves indifference inG.

Proof. In G′, there are three kinds of incentive constraints: constraints of type: (i)
h′sj ,tj

(.) ≥ 0 with j 6= i or, if j = i, si 6= t′i andti 6= t′i; (ii) h′si,t′i
(.) ≥ 0 with si ∈ Si;

(iii) h′
t
′
i,si

(.) ≥ 0 with si ∈ Si. (The prime inh′ indicates that we consider incentive

constraints ofG′.) SinceG is full, there exists a correlated strategyµ that checks all
the nonvacuous incentive constraints ofG with strict inequality. Defineµ′, ν′ andµ′ε
as in the proof of proposition A.3. We now show that forε small enough,µ′ε satisfies
with strict inequality all the nonvacuous incentive constraints ofG′, which implies that
G′ is full.

First, for ε small enough,µ′ε satisfies with strict inequality all the incentive con-
straints of type (i) corresponding to incentive constraints ofG satisfied byµ with strict
inequality. SinceG′ preserves indifference inG, the other incentive constraints of type
(i) are vacuous. Since for allsi ∈ Si, h′si,t′i

= h′si,ti
, the above argument also takes care

of constraints of type (ii). Finally, the conditional probabilities onS−i given t′i in µ′ε
are the same than the conditional probabilities giventi in µ. Sinceu′i(t

′
i, .) = ui(ti, .),
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this makes sure thatµ′ε satisfies with strict inequality all the nonvacuous incentive con-
straints of type (iii).

Now assume thatG is a2-player game and thati = 2. Let t′2 be the strategy added
to player2 in G′. If G′ does not preserve indifference inG, then there existss1, t1 ∈ S1

such that player1 is indifferent betweens1 andt1 in G but not inG′: u1(s1, s2) 6=
u1(t1, s2) for all s2 in S2 butu1(s1, t

′
2) 6= u1(t1, t′2). Assume for instanceu1(s1, t

′
2) >

u1(t1, t′2); then, inG′, s1 weakly dominatest1. So the incentive constrainth′t1,s1
(.) ≥

0, which is nonvacuous, cannot be satisfied with strict inequality. ThereforeG′ cannot
be full.

B Proof of propositions 4.2 and 4.3

We begin with a claim:

Claim B.1 C has full dimension if and only if (α) there exists a correlated equilibrium
distribution µ with full support and (β) there existsx in RS such thatx satisfies all
nonvacuous incentive constraints with strict inequality.

Proof. Necessity: follows from proposition 3.1; sufficiency: assume that (α) and (β)
hold; letν = (1− ε)µ + εx. Forε positive small enough, normalizingν yields a corre-
lated equilibrium distribution which satisfies all nonvacuous incentive constraints with
strict inequality. Then apply proposition 3.1

Claim B.1 implies that if there exists some correlated equilibrium with full support,
C has full dimension if and only if (β) holds. We now show that the condition required
on top of(α) in proposition 4.2 (resp. proposition 4.3) imply (resp. is equivalent to)
condition(β). We will use the following standard result:

Lemma B.2 Let E be a finite dimensional real vector space,q a positive integer, and
f1, ..., fq linear forms onE. Thenf1, ..., fq are linearly independent if and only if for
anyy in Rq there existsx in E such thaty = (f1(x), ..., fq(x)).

The notations below are taken from section 4.1. Assume thath1, ..., hm are linearly
independent; lemma B.2 then implies that (β) holds, proving proposition 4.2. Assume
now thatB = (h1, ..., hq) is a basis of the linear span of{h1, ..., hm}, for some1 ≤
q < m. The value of the auxiliary game of proposition 4.3 is positive if and only if

∃y ∈ Rq, y ≥ 0,

q∑

k=1

yk = 1, yA > 0 (5)

Forx in RS , let y(x) = (h1(x), ..., hq(x)). By definition of the matrixA:

(hq+1(x), ..., hm(x)) = y(x)A

Therefore (β) holds if and only if there existsx in RS such thaty(x) > 0 andy(x)A >
0. But, by lemma B.2,y(x) may be given any value inRq by an appropriate choice of
x. Therefore (β) is equivalent to:

∃y ∈ Rq, y > 0, yA > 0 (6)

It is easy to see that (6) is equivalent to (5), completing the proof of proposition 4.3.
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