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Abstract

The fitness of an evolutionary individual can be understood in terms of its two basic components: survival and reproduction. As
embodied in current theory, trade-offs between these fitness components drive the evolution of life-history traits in extant multicellular
organisms. Here, we argue that the evolution of germ—soma specialization and the emergence of individuality at a new higher level during
the transition from unicellular to multicellular organisms are also consequences of trade-offs between the two components of fitness—
survival and reproduction. The models presented here explore fitness trade-offs at both the cell and group levels during the
unicellular—multicellular transition. When the two components of fitness negatively covary at the lower level there is an enhanced fitness
at the group level equal to the covariance of components at the lower level. We show that the group fitness trade-offs are initially
determined by the cell level trade-offs. However, as the transition proceeds to multicellularity, the group level trade-offs depart from the
cell level ones, because certain fitness advantages of cell specialization may be realized only by the group. The curvature of the trade-off
between fitness components is a basic issue in life-history theory and we predict that this curvature is concave in single-celled organisms
but becomes increasingly convex as group size increases in multicellular organisms. We argue that the increasingly convex curvature of
the trade-off function is driven by the initial cost of reproduction to survival which increases as group size increases. To illustrate the
principles and conclusions of the model, we consider aspects of the biology of the volvocine green algae, which contain both unicellular
and multicellular members.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction (Stearns, 1992; Charlesworth, 1980). We show here that
trade-offs between survival and reproduction have special

Fitness can be understood in terms of its two basic  significance during evolutionary transitions; in particular,

components: survival (viability) and reproduction (fecund-
ity). Investment in one component often detracts from the
other, leading to trade-offs in fitness components. A wide
body of work shows that fitness trade-offs underlie the
evolution of diverse life-history traits in extant organisms
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they may drive the evolution of individuality during the
transition from unicellular to multicellular organisms.
The emergence of individuality during the unicellular—
multicellular transition is based on the evolution of cells
that differentiate and specialize in reproductive and
survival-enhancing vegetative functions. In unicellular
individuals, the same cell must contribute to both fitness
components, these contributions typically being separated
in time. In multicellular groups, cells may specialize during
development in either component, leading to the differ-
entiation and specialization in reproductive (germ) and
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vegetative survival-enhancing functions (soma)—what we
term germ—soma or ““G—S” specialization. As cells specia-
lize in these different but essential fitness components, they
relinquish their autonomy in favor of the group and, as a
result, fitness and individuality are transferred from the cell
level to the group level. We argue here that the evolution of
G-S separation and the emergence of individuality at the
new higher level are consequences of fitness trade-offs
among life-history components—in short, that life-history
evolution is a fundamental factor in evolutionary transi-
tions. We first present an overview of the volvocine green
algae, which are the organisms we had in mind when
constructing the models. Although we discuss the models
with regard to the volvocine algae, we have kept the
assumptions of the models general so that they will apply
to other groups.

2. The volvocine green algae

The evolution of multicellular organisms from unicel-
lular and colonial ancestors is the premier example of the
integration of lower level units into a new, higher level
individual. Unfortunately, for the major multicellular
lineages, the factors underlying their origin lie hidden deep
in their evolutionary past, obscured by hundreds of
millions of years of evolution. In contrast, according to
one estimate (Rausch et al., 1989), the colonial volvocine
algae (Fig. 1) diverged from a unicellular ancestor just 35
million years ago, providing a unique window into this
major transition.

Volvocine algae are flagellated photosynthetic organisms
that range from unicellular (i.e. Chlamydomonas) and
multicellular forms with no cell differentiation (e.g.,
Gonium and Eudorina; 8-32 cells) or incomplete G-S
differentiation (Pleodorina; 64-128 cells) to multicellular
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Fig. 1. Subset of volvocine species which shows an increase in complexity,
cell number, volume of extracellular matrix, division of labor between
somatic and reproductive cells, and proportion of somatic cells. A:
Chlamydomonas reinhardtii; B: Gonium pectorale; C: Eudorina elegans; D:
Pleodorina californica; E: Volvox carteri; F: Volvox aureus. Where two cell
types are present (D, E and F), the smaller cells are the vegetative sterile
somatic cells, whereas the larger cells are the reproductive germ cells.
Picture credit: C. Solari.

forms with complete G-S separation (i.e. Volvox;
500-50,000 cells) (Kirk, 1998). In multicellular volvocine
colonies the number of cells is determined by the number of
cleavage divisions that take place during their initial
formation, and cell number is not augmented by additional
cell divisions (Kirk, 1997). In colonies without G-S
separation (i.e., Gonium, Eudorina), each cell gives rise to
a daughter colony. The life cycle corresponds to one of
discrete generations as the parent colony dies as soon as the
daughter colonies hatch.

It is believed that all multicellular volvocine algae have
evolved from a common ancestor similar to the extant
Chlamydomonas reinhardtii (Coleman, 1999; Larson et al.,
1992). Within this closely-related monophyletic group
(Buchheim et al., 1994; Coleman, 1999; Larson et al.,
1992; Nozaki et al., 2000, 2002, 2003; Nozaki, 2003),
significant evolutionary transitions have occurred repeat-
edly within a relatively short period of time (possibly as
short as 35 million years (Rausch et al., 1989), as already
mentioned), suggesting strong selective pressures driving
the evolution of multicellularity and G-S specialization.

Although several model systems have been used to
investigate the origins of multicellularity, including choa-
noflagellates (King and Carroll, 2001), cellular slime molds
(Strassmann et al., 2000; Foster et al., 2002; Queller et al.,
2003) and myxobacteria (Velicer et al., 2000; Shimkets,
1990), volvocine algae exhibit a number of features that
make them especially suitable for our work (see the
Volvocales Information Project at www.unbf.ca/vip). Like
most familiar multicellular forms, and unlike other model
experimental systems such as slime molds or myxobacteria,
multicellular volvocine algae develop from a single cell, so
the cells in the group are related. They can easily be
obtained from nature (where uni- and multicellular forms
coexist) and maintained in the lab under realistic condi-
tions that allow for an eco-physiological framework. Many
aspects of their biology have been studied (Kirk, 1998)
(cytology, biochemistry, development, genetics, physiol-
ogy, natural history, ecology and life-history). The ‘social’
genes necessary for group living and fitness reorganization
have been identified in V. carteri (Kirk et al., 1999; Miller
and Kirk, 1999), indicating that the underlying genetics of
cellular differentiation and G-S specialization is likely
simple and may not involve many genetic steps (Kirk, 1997,
1998).

3. Overview of models

The models studied below focus on the trade-offs
between survival and reproduction and on how these
trade-offs change as group size increases and cells specialize
in reproductive and vegetative functions. The models are
based on three general assumptions: (i) there are both
advantages and disadvantages associated with increasing
group size, (ii) generations are discrete, so that fitness is the
product of viability and fecundity, and (iii) variation in
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fitness exists primarily at the group or colony level; within-
group variation is assumed negligible.

Larger group size may be beneficial for survival (for
example, in terms of predation avoidance, ability to catch
bigger prey, or a buffered environment within a group), as
well as for reproduction (for example, in terms of a higher
number or quality of offspring). Reduced predation is likely
to be especially important in the volvocine algae (Morgan,
1980; Pentecost, 1983; Porter, 1977, Reynolds, 1984;
Shikano et al., 1990). However, we do not explicitly model
or discuss further this assumed advantage of larger groups.

Increasing group size may also detract from fitness,
because of the increasing need for local resources, less
effective movement within the environment, and longer
generation time. In volvocine algae, these disadvantages of
larger size are the result of (i) the ‘flagellation constraint’
which impedes motility in dividing cells (Koufopanou,
1994) and (ii) the ‘enlargement constraint’ which refers to
the transport and hydrodynamic problems associated with
the metabolism and translocation of an increasingly larger
colony (Solari et al., 2005a, b). Bell (1985) has also
discussed with respect to the volvocines the effect of
increased colony size on the increased generation time and
the resources needed.

The flagellation constraint impedes motility, and thus
viability, during cell division (Koufopanou, 1994), and is a
consequence of the coherent glycoprotein cell wall that
does not allow the flagellar basal bodies to move laterally
and take the expected position of centrioles in cell division
while still attached to the flagella (as they do in naked green
flagellates). This constraint sets an upper limit of five for
the number of times a cell can divide while still maintaining
an active flagellum, and thus becomes critical at about the
32-cell stage.

The enlargement constraint stems from the particular
way in which volvocine algae reproduce. Because post-
embryonic cell divisions are not possible (although the
young colonies do increase in size after their release from
the mother colony through an increase in cell size and
volume of extracellular matrix), the embryo contains all the
cells present in the adult. Consequently, the larger the
number of cells in the colony, the larger the embryo that
develops and must be supported by the swimming mother
colony. And, the Ilarger the colony, the larger the
investment needed for there to be any reproduction at all.
This initial cost of reproduction is especially acute in
species in which cells do not double in size and then
undergo binary fission, but grow about N = 2¢ fold in size
and then undergo a rapid synchronous series of d divisions
(under the mother cell wall). This type of cell division,
which is considered the ancestral developmental program
in this lineage (Desnitski, 1995), is known as “palintomy”
and is thought to have predisposed these algae to
multicellularity (Kirk, 1998). It occurs in the smaller
species (including Chlamydomonas, Gonium, Eudorina and
Pleodorina) and in some of the G-S specialized Volvox
species (e.g., V. carteri) (Fig. 1).

The assumption of selection at the group level (assump-
tion (iii)) is likely to hold in volvocine algae because of their
mode of reproduction and colony formation, in which all
cells in the group are derived clonally from a single cell
after a specific number of cell divisions, d (d =3 for
Gonium, d = 5 for Eudorina, d = 6—7 for Pleodorina and
d =8—16 for species of Volvox). We have previously
studied the conditions under which multilevel selection
may select for systems of conflict mediation that enhance
selection at the group level (Michod, 1996, 1997, 1999;
Michod and Roze, 1997, 1999; Michod et al., 2003).
Another factor favoring selection at the group level is
“parental control” of the cell phenotype, in which the
behavioral phenotype (i.e., the cell fate) is determined
during development by the “mother’ cell. This is the case
in V. carteri, as the cell fate (somatic or germ) is established
early in development through a series of asymmetric cell
divisions of the anterior blastomeres (for discussion see
Michod et al. (2003)). It is well known that it is easier for
cooperation to be maintained in a group under parental
control than under offspring control (in which the
phenotype is determined by the genotype of the cell),
because the sacrifice of cooperation is spread over the
different genotypes present in the cell group (see, for
example, Michod (1982)).

Here we consider a group of cells and seek to understand
the selective pressures that mold the allocation of energy
and resources at the cell level to the two fitness components
of the group, survival and reproduction. We present two
models. In the fitness isocline model we consider whether,
as groups increase in size, when a single new cell is added, it
could increase the fitness of the group by changing its
reproductive effort from what the existing cells in the group
have been doing. In the full optimization model we
consider whether a small change in behavior of one or
several cells could increase the fitness of the group. The
optimization model is clearly more general, but we begin
with the fitness isocline model for heuristic reasons.
Throughout, we seek qualitative results that are indepen-
dent of the specific functions involved (so long as these
functions meet the general assumptions stated: differentia-
bility, concavity, convexity, etc.).

4. Fitness isocline model

Consider a group of N — 1 cells with a group viability
Vn_1 and fecundity By_;. We would like to predict the
allocation of energy and resources to reproduction, e, and
survival-enhancing vegetative functions, 1—e, for the Nth
cell, resulting in b(e) and v(1—e) contributions to fecundity
and viability, respectively. The variable e is the familiar
reproductive effort variable of life-history theory (Stearns,
1992; Charlesworth, 1980). Since both b and v are assumed
to be monotonic functions of e, we follow precedence in
this area and generally work in terms of b and v directly
(instead of in terms of e). We assume a simple additive
model of fitness at the group level (termed ‘‘group selection
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I” by Damuth and Heisler (1988)) so that the fitness
components of the group are the sum of the contributions
of the cells, or considering the additional Nth cell, the
fitness of the group is W = (V +v)(B+ b), where V =
Vn_1 and B = By_;. We suppress the group size subscript
here and in what follows for notational simplicity.
Additivity of cell contributions to viability and fecundity
might apply, for example, to the simpler forms of volvocine
algae considered in Fig. 1, in which cells stay together after
cell division.

The new fitness of the group with the additional cell is
then given by

W = bv+bV +vB+ BV. (1)

We would like to maximize the fitness, W, contributed by
the new cell given by

Wi;=bv+ bV + vB. 2)

For fixed W (fixed V and B), the fitness contributed by the
new cell, 1, is a function of two variables, b and v. We can
plot isoclines for W; by using Egs. (3) and (4) to plot v as a
function of 4 as done in Fig. 2:

W;,—bV
=t -7 3
‘T B 3)
v'(b) = —M<O and
(b+ B)
U”(b) — 2M > (4)
(b+ By

We note a few points about Fig. 2 that will be useful below.
The isoclines are convex functions (first derivative increas-
ing) which do not overlap and, for increasing fitness return,
W, they occur increasingly farther from the origin. For any
particular W;, W;/B and W;/V are the maximal fitness
that could be attained at the group level for viability and

Isoclines of increasing W;

Fig. 2. Fitness isoclines for the contribution of the new cell to viability, v,
and fecundity, b, at the group level. Four isoclines are shown, the heavy
solid line is the isocline of interest, the others are dashed. Tangents to the
isocline are shown at the maximal contributions possible: W;/V for
reproduction and W;/B for viability.

fecundity, respectively. Using Eq. (4), the slopes of
tangents to the isocline at these points are indicated in
Fig. 2.

In addition to the fitness relations at the group level
graphed by the isoclines in Fig. 2, we assume there is an
intrinsic relation that links » and v within the cell because
of cell physiology and/or other constraints. We refer to this
intrinsic relation as the “trade-off function”, as it embodies
life-history trade-offs between the two fitness components
at the cell level. During the origin of multicellularity, we
expect these trade-offs to depend upon the size of the group
that the cells must create (investigated below), as well as a
host of other factors; but, for the moment, we consider the
implications of the simple linear relation

U = Unmax — ob. (5)

As illustrated in Fig. 3A with a linear intrinsic function, the
cell will likely invest in both reproductive and viability-
related functions. Indeed, a simple inductive argument
given in Appendix A shows that for a linear intrinsic
function (Eq. (5)), cell groups have no incentive to
specialize. No matter how large the group is, provided
that the N—1 first cells exert intermediate reproductive
effort at b = bpax/2 and v = vmax/2, it is optimal that the
Nth cell exerts the same effort (this yields the best
unspecialized group; some specialized groups may achieve
the same level of fitness, but not a higher one). In the case
of a linear trade-off, the ratio of viability to fecundity at the
group level is determined directly by the trade-offs at the
cell level (as represented by «) and is given by

V =aB. (6)

Since o governs the basic relationship between survival
and reproduction at the cell level, it imposes severe
constraints on fitness components ¥ and B at the group
level (Eq. (6)). Indeed, as there is yet nothing else in the
model that might change the relationship between viability
and fecundity at the group level, we may expect that Eq. (6)
will hold as the group increases in size, so long as we
assume the linear constraint at the cell level (Eq. (5)).
Below we consider a cost of reproduction to survival that
increases as the size of the group produced by the cell
increases. This cost changes the basic relationship between
survival and reproduction at the group level from that
given in Eq. (6), because certain fitness advantages of cell
specialization may be realized by the group, but not the
cell.

From the graphs in Fig. 3 (B and C), we may anticipate a
central result of the model. Note that as the intrinsic curve
becomes convex (meaning its derivative increases with b),
the cell will specialize in viability (panel B) or fecundity
(panel C) functions to attain the maximum fitness gains
allowed at the group level. Such specialization in viability
or fecundity functions is tantamount to the evolution of
soma (panel B) and germ (panel C). In what follows, we
approximate a convex intrinsic function in a piecewise
linear fashion.
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Fig. 3. Optimal investment strategy determined by the intrinsic functions and the fitness isocline. For a linear intrinsic curve (A), the new cell will perform
a mix of viability and fecundity functions. For convex intrinsic curves, the new cell will more likely specialize, for example, in survival (B) or reproduction
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Fig. 4. Initial cost of reproduction. The piecewise convex curve in panel (C) is formed out of the functions in panels (A) and (B) and approximates the
convex curves in Fig. 3. In panel (A) the reproductive effort ey is the initial (or fixed) cost of reproduction. In panel (C) the quantity vmax — Umax(1 — en) is
the bonus to viability of soma specialization. This bonus is realized only in groups. The negative of the bonus may be referred to as the initial cost of

reproduction to survival. See text for further explanation.

An initial investment is often necessary to get any
reproduction. For example, growing the embryo inside the
mother colony in the case of the volvocine algae takes time,
energy and resources away from other functions (or a
mating display, producing a flower, etc.). These initial
reproductive costs tend to create a convex relationship
between reproductive effort, e, and fecundity, b(e), as
depicted in Fig. 4A in a piecewise linear way. We assume
that this initial cost of reproduction detracts from survival
and so we term it ““initial cost of reproduction to survival”
or sometimes just ““initial cost of reproduction”. This initial
cost will depend on the group size N which the cell must
produce, ey. Combining this initial cost of reproduction
(Fig. 4A) with a linear intrinsic function for viability
(Fig. 4B) and using the construction given in Fig. 4, we
obtain the piecewise linear intrinsic function relating v and
b given in Eq. (7) and plotted in Fig. 4C. By varying the
initial cost of reproduction, the piecewise linear curve in
Eq. (7) (Fig. 4B) can approximate the convex curves
graphed in Fig. 3 (panels B and C).

U = Umax(1 — eN)<1 - b )5 Ugvmax(l - eN)’

bmax

U>vmax(1 - eN)' (7)

In Fig. 4, the initial cost of reproduction to survival is
the vertical portion of the intrinsic curve running along the
v-axis from vp.x(1 — ey) up to vmax. The modulus of this
initial cost also equals the benefit to viability of soma
specialization stemming from not having to pay the initial

U= Umax(l - e)n

cost of reproduction. For the volvocine green algae with
palintomic development (Fig. 1), the initial cost of
reproduction, ey in Fig. 4, is directly related to the group
size N which the reproductive cell must produce, and thus
to the cell size the reproductive cell must attain before
initiating the rapid series of embryonic divisions to create
the daughter colony.

We note three points about this benefit of soma
specialization, the “bonus’ diagrammed in Fig. 4C. First,
this bonus is only obtainable through group living and is
only expressed at the group level, it is not an option open
to solitary cells. Second, it changes the basic relationship
that governs the fitness components at the cell level into a
new relationship between viability and reproduction at the
group level. Third, the benefit will likely change with the
size and organization of the group. For example, if there
are already many somatic cells in the group, the benefit of a
new somatic cell may be small.

If we assume that at the colony size at which the initial
cost of reproduction becomes operative, the ratio of
survival to reproduction at the group level is o (as the
linear constraint predicts), ¥V = aB, then a straight-
forward analysis is possible. In this case, we must have
Bvmax > Vbmax, s0 germ specialization never pays as a first
step from undifferentiated cells. Assuming V =oB, a
critical value for the initial cost of reproduction, ey, can
be derived to determine whether the new cell will specialize
in somatic functions or remain undifferentiated. This
critical cost is obtained by investigating the conditions
when Bum,x > W7, where W7 is the maximal value of added
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fitness obtained for optimal intermediate allocation to
reproduction, b*, and survival, v*. The critical value of the
initial cost of reproduction is given by

) b
crit max . 8
N T 4B 4 bpax ®

If ey > e, soma specialization pays. Otherwise, the cell
continues to allocate resources to both survival and
reproduction.

By inspecting Eq. (8), we can see that the larger the
group fecundity (B) is, the smaller the initial cost of
reproduction may be for soma specialization to evolve. In
other words, in colonies with larger fecundity (and, all
things being equal, this means larger colonies) it is easier
for a specialized and sterile soma to evolve. This may be
explained as follows. The difference between the added
fitness brought about by a cell specializing in soma and the
added fitness brought about by a cell having the same
fecundity, b = byax/2, as the first N—1 cells is
(Vmax — 00)B — Uobmax /4. The first term is the advantage
of specialization linked to the initial cost of reproduction.
The second term is the loss linked to the fact that
specialization disrupts the balance between viability and
fecundity (see Section 5.4.1 for more discussion). While this
loss is independent of colony size, the advantage increases
with colony fecundity. Therefore, it is more likely for the
advantage of specialization to exceed the loss due to
specialization for larger and already more fecund colonies.

The significance of the loss due to specialization is a
result of the assumption that only one cell changes. In
particular, if the cell reduces its reproductive effort, there
must be a loss to fecundity that must be overcome for this
specialization to pay in the overall group fitness. In the
optimization model considered next, we allow two (or
more) cells to simultaneously change their allocation
strategy. If one cell increases and another cell decreases
their respective reproductive efforts by the same amount,
the total fecundity will remain the same (hence, there is no
fecundity loss to the group), but gains in viability are
possible under convex curvature.

5. Optimization model
5.1. Overview

We now apply optimization theory to the cell group, so
as to consider all the cells simultaneously and study
strategies in which cells jointly increase or decrease their
reproductive effort so as to maximize the fitness of the
group. In the fitness isocline model, we considered how a
single new cell could maximize its fitness contribution to
the group. In the optimization model we test whether small
deviations by two or more cells could increase the fitness of
the group. The stability conditions of the optimization
model include, and are more general than, the stability
conditions of the fitness isocline model.

5.2. The model

Consider groups of N cells, with cells indexed
i=1,2,...,N. Let e}, es,...,ey be the reproductive effort
for each cell, and let by,by,...,by be the resulting
contribution to the fecundity of the group. As we did
above, we assume the contribution to fecundity is an
increasing function of reproductive effort; therefore, we
can work in terms of fecundity, instead of reproductive
effort. Let vy, vy,...,vy be the vegetative, viability-enhan-
cing capabilities of each cell. As more effort is put into
reproduction, less is available for vegetative functions,
resulting in a trade-off between the contributions to the
fitness components of the group. We assume that if
b = by then v =0, and if b = 0 then v = vy, As above,
for simplicity, we assume that the viability and fecundity of
the group, V and B, respectively, are simple additive
functions of the cell properties given by

N N
Bngi and V:;vi. )

Note that while in the fitness isocline model V' and B
denoted the contribution to viability and fecundity of the
first N—1 cells, here they denote the viability and fecundity
of the whole colony. While it seems biologically reasonable
to assume additivity of the contributions to fecundity of the
group, additivity of the contributions to viability is more
questionable. We have in mind a trait-like flagellar motility
(or mixing) as a proxy for viability and assume there is a
simple linear relationship between the effort or time a cell
invests in flagellar action and the overall motility of the
group. While this assumption may hold over a limited
range, it would likely fail as the group gets larger and more
integrated. We show in Appendix B.3 that we may dispense
with the additivity assumption as it applies to viability so
long as we maintain it for fecundity and still reach the same
qualitative conclusions.

For our purposes, it is not necessary to normalize fitness,
since the analysis of optimal behavior in the optimization
model or in the fitness isocline model would not change.
Normalizing fitness means multiplying the fitness we have
by a coefficient which depends only on the size of the
colony. When we ask, for a colony of a particular size,
should cells specialize or remain generalists, normalization
would not change the answer, because the maxima for the
normalized or not-normalized fitness functions would be
the same.

We assume that group fitness, W, is the product of
viability and fecundity. This is appropriate for a life cycle
involving discrete generations as is the case with the
volvocine green algae.

W = VB. (10)

Although the multiplicative decomposition of fitness into
viability and fecundity assumed in Eq. (10) applies when
generations are discrete, most of the qualitative points
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made in the following sections would still hold were fitness
a more general function W (V, B) which was nonnegative,
zero if and only if = 0 or B = 0, and strictly increasing in
both arguments whenever V" and B are both positive. In
particular, the fundamental point that cell specialization
allows the group to increase fitness under conditions of
convexity holds for this more general fitness function
(because specialization can retain the same group fecundity
while increasing viability).

As already mentioned, the additivity assumed in Eq. (9)
is an example of group selection of type I as discussed by
Damuth and Heisler (1988). However, there are interesting
implications of combining the fitness components at the
group level after first summing the cell contributions (as
assumed in Egs. (9) and (10)). Most important (and critical
to our analysis below) is the fact that, if one cell has a high
fecundity (and hence a low viability, so that it would have a
low fitness by itself), this may be compensated for if
another cell has a high viability (and hence low fecundity).
Consequently, even though each of these cells by itself
would have a low fitness, together they can bring a high
fitness to the group (especially under conditions of
convexity of the trade-off). This kind of joint effect is a
first step towards integration of the group, and would not
be possible if we used as group fitness the average cell
fitness, (1/N)SN v;b;.

More formally, the normalized fitness, VB/N?, is greater
than the average cell fitness by the negative of the
covariance between the two fitness components. Since in
our case the covariance is negative, the normalized fitness
associated with Eq. (10), VB/N?, is greater than the
average cell fitness, (I/N)Zf.ilvib,-, by the magnitude of the
covariance between fitness components. This covariance
effect at the group level appears to be quite general. Its
contribution to a property like fitness depends on the
property being a multiplicative function (or some other
function requiring a strong balance) of two components
(e.g., viability and fecundity) which themselves covary so
that higher values of one component bring lower values of
the other (the trade-off principle). Of course, if there is no
variance in these components among the lower level units
(cells) then there is no covariance and no effect at the group
level. What factors might produce variance among the
lower level units? We can think of two factors: noise, and
the curvature of the trade-off function being convex.

5.3. Implications of different curvatures of the trade-off
Sfunction

When investigating the implications of the different
possible curvatures of the trade-off function, v(b), we will
repeatedly make use of the definitions of convex and
concave functions. For a strictly convex (concave) function
v(b), if we take a particular point, say b", and two points
equidistant below and above 4", say b~ and b, respec-
tively, then v(b™) +v(b™)>(<) 2 v(b"). If b is fecundity and
v(b) viability, then convexity of v implies that there is an

advantage to specializing in the two components of fitness,
while concavity implies there are diminishing returns on an
investment in either component. We first assume that there
is no initial cost of reproduction.

5.3.1. Concave trade-off

If the function v(b) is strictly concave, then the cell group
should remain unspecialized. More precisely, all cells
should exert the effort »* that maximizes the product
bv(b). The key to this result is to observe that if two cells, i
and j, have different reproductive efforts, b; #b;, then they
could both change their fecundities to (b; + b;)/2. This
change in reproductive effort would not change the overall
fecundity of the group but would (by definition of
concavity) increase group viability, and hence increase
fitness. Indeed, the change in group viability would be
AV = 2u((b; + bj)/2) — v(b;) — v(b;), which is positive be-
cause v(b) is a strictly concave function. This shows that all
cells should exert the same effort. If this common effort is b
then the viability is V' = Nuv(b), the fecundity is B = Nb and
the fitness is W = N’bu(b). Thus, independently of the
number of cells in the colony, the optimal value of the cell
fecundity common to all cells is the one that maximizes the
product bv(b). The result that the optimal fecundity for
each cell does not depend on the number of cells is likely
not robust and depends crucially on the assumptions that
viability is additive and that the trade-off function wv(b)
does not depend on the size of the colony. In contrast, the
result that a concave trade-off function selects against
specialization is robust, as we show in Appendix B.

5.3.2. Linear trade-off

If the function v(b) is linear (v(b) = vmax — ab, as in Eq.
(5)) then the group viability only depends on the group
fecundity (and not on the particular values of the
component cell fecundities). Indeed, we have
V= Z,’Ui = Zi (Vmax — 0b;) = Nvmax — o.B.

Thus, any values of the fecundities by,...,by leading to
the same global fecundity B yield the same fitness
W = (Nvmax — @B)B. The possible values of B range from
0 to Nvmax/o. The maximum fitness is obtained for B =
Nbmax/2 (hence V = Numax/2) and is equal to
W* = N?DmaxUmax /4. Any arrangement of the fecundities
by,....by such that Y .b; = Nbm,y/2 is optimal and these
are the only optimal choices of the fecundities. In
particular, assuming that the N—1 first cells have a
fecundity b = by /2, then it is optimal for the Nth cell
to exert the same effort, which yields the first result of the
fitness isocline model. Formally, the group of cells behaves
as if there was just one cell. There is no incentive to
specialize and so no individuality at this stage.

5.3.3. Convex trade-off

If the function v(b) is strictly convex, then the vast
majority of cells will specialize (some in soma, some in
germ). It may be that, at most, one cell remains
unspecialized if, for example, there is an odd number of
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cells in the group. If there is an even number of cells, then
half should specialize in germ and half in soma. Indeed,
this yields a fitness of W = %N 2 pmaxPmax, Which is the same
fitness obtained in the more favorable linear case con-
sidered above with the same values of b, and v,,. The
linear trade-off is more ‘‘favorable” in the sense that, for
any value of the contribution to fecundity b, the contribu-
tion to viability v(d) is higher or equal in the linear case
than in the convex case. As a result, for a convex trade-off,
complete specialization in equal proportions must be
optimal since it attains this highest possible fitness. If there
is an odd number of cells, it may be that one cell remains
unspecialized (for instance, when there is just one cell), but
at most one cell may remain unspecialized. Indeed, assume
that two cells i and j have an intermediate fecundity;
without loss of generality assume b;<b;. Let J be positive
and smaller than both b; and by,.x—b;. If cell i decreases its
fecundity while cell j increases its fecundity by the same
amount ¢, then the global fecundity of the colony does not
change. However, the viability increases, hence the fitness
increases. Indeed, the change in wviability is
AV = v(b; — ) + v(b; + ) — (v(b;) + v(b;)), which is posi-
tive due to the strict convexity of the function v(b), as
shown in Appendix B.1.

5.3.4. Neither convex nor concave

It might be that the function v(b) is neither concave nor
convex. In that case, in the absence of additional
information, whether specialization pays cannot be
decided. Some partial results may be obtained though.
For instance, assuming that v(b) is differentiable, if at a
fitness maximum a cell { has an intermediate fecundity b;,
then we must have Ov/0b(b;) = — V' /B (taking the deriva-
tive of fitness with respect to fecundity of cell i and setting
it to zero using Eqgs. (10) and (9)). Also, if v(b) is twice
differentiable, then at a fitness maximum at most one cell
may have an intermediate fecundity 5’ such that the trade-
off function is locally strictly convex at b’ (that is,
azv/a2b(b/)>0). This generalizes the above result on
convex trade-offs. The proof of this result (omitted for
brevity) consists in differentiating the fitness function and
investigating the standard first- and second-order optim-
ality conditions.

5.4. Initial cost of reproduction

We now investigate the effect of an initial cost of
reproduction. Formally, letting v, be the contribution to
viability of a completely specialized somatic cell (b = 0)
and letting vy be the limit of v(b) when the fecundity b>0
tends to zero, we assume that v,y is greater than vy, and
study how this modifies the results of the preceding section.
Recall that v,.c—vo is the bonus discussed in Fig. 4.
Intuitively, an initial cost of reproduction makes the trade-
off function more ‘“‘convex-like”, and thus tends to select
for specialization.

5.4.1. Convex or linear trade-off

If the trade-off function wv(b) is strictly convex, then
adding an initial cost of reproduction only reinforces the
conclusion that specialization should be favored. More
interesting are the cases of a linear trade-off (considered
now) or a concave trade-off (considered below). Recall that in
the linear case, without an initial cost of reproduction, the
maximal fitness may be obtained with or without specializa-
tion. Thus, in the previous case, the colony is indifferent to
specialization or no specialization. An initial cost of
reproduction, however small, tilts the balance in favor of
specialization. Indeed, assume that for 5>0, v(b) = vy — ab
with 19 = otbmax <Umax.- If no cell specializes, then, as
discussed in the preceding section, the best fitness that the
colony can obtain is W* = N 2 Danax U0 /4. This will be the case
when the group fecundity is B* = Nbpay/2, and the group
viability is V* = Nvy/2. We now apply the argument above
concerning a pair of cells and whether they might jointly
specialize by considering a colony in which N—2 cells have
fecundity b = byax/2, and in which the two other cells are
specialized, one in soma and one in germ. The overall
fecundity of the colony is still B*, but the viability is now
V =(N —2)v9/2 + Umax = N(v0/2) + vmax — o> V*; hence,
the fitness is greater than W*. Therefore, if some of the cells,
specialize, the colony can obtain a greater fitness than if all
cells are generalists. If there is an even number of cells then, as
in the case of a convex trade-off and no initial cost of
reproduction, half of the cells should specialize in soma and
half in germ.

Note that, with a linear trade-off, specialization occurs
as soon as there is any initial cost of reproduction. This
contrasts with the fitness isocline model, in which
specialization requires that the initial cost of reproduction
be greater than a critical value (Eq. (8)). To understand this
difference, note that in the fitness isocline model we
assumed that the behavior of the N—1 first cells was fixed.
Thus, if the Nth cell specializes in soma, this yields a benefit
to viability (the bonus to specialization linked to the initial
cost of reproduction), but disrupts the balance between
fecundity and viability. For specialization to be optimal in
the fitness isocline model, the benefits must outweigh the
costs. In the more general optimization model considered
here, if a cell specializes in soma, the other cells may
increase their reproductive effort in order to compensate
for the corresponding loss of fecundity. Thus, the group
may obtain the benefits of specialization without having to
pay for a disruption in the balance between fecundity and
viability.

5.4.2. Concave trade-off

We assume now that the trade-off function v(b) is strictly
concave (0<b<bn,), but that there is an initial cost of
reproduction, so that vy,x > vy (Fig. 5). As in the preceding
section, if two cells i and j which are not specialized in soma
have a different fecundity, e.g. b;>b; >0, then by changing
their fecundity to (b; + b;)/2, they would retain the same
overall contribution to group fecundity while increasing
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Fig. 5. Evolution of soma and germ with concave trade-off and cost of reproduction. The kinds of colonies predicted by the model are given along the
ordinate in panel (A) for different regions of vn,.x. The quantities b* and v* are the fecundity and viability, respectively, of the cells in the optimal
unspecialized colony. The solid concave curve (identical in both panels) is the trade-off between viability and fecundity. Three tangents relevant to the
analysis are drawn. In panel (A), the dotted and dashed lines are the tangents to the trade-off curve at b = by, and b = b*, respectively. In panel (B), the

dashed line is the tangent to the curve at b = b. The significance of these points is discussed in the text and Appendix B.2. The quantity 2v*—uy is the
detriment to soma specialization due to the concavity of the trade-off. If vyax > 20v*, then specialization in soma pays. See text for further explanation.

their contribution to group viability. It follows that, at a
fitness maximum, all cells which are not specialized in soma
must have the same fecundity. An immediate consequence
is that specialization in germ without specialization in soma
cannot pay as a first step. The question is whether
specialization of some cells in soma allows for an increase
in fitness.

Assuming that the function v(b) is twice differentiable,
an analysis given in Appendix B.2 gives the conditions
under which soma specialization will evolve, and, if soma
evolves, whether germ specialization will also evolve. We
now summarize those conditions referring to Fig. 5. Let b*
denote the fecundity of the cells in the best unspecialized
colony (i.e. b* is the fecundity which maximizes the product
bv(b)). If Eq. (11) holds, specialization does not pay (the
best colony is the one in which all cells have intermediate
fecundity b*).

Vmax <20 (11)

Since b* maximizes bv(b), we have v* + b*(0v/0b)(b*) = 0.
It follows that Eq. (11) is equivalent to

ov
max < t b (bY). 12
v v —b ab(b) (12)

Eq. (12) means that the tangent to the trade-off curve at
b =b* crosses the line 5 =0 below vy.x. On the other
hand, if the reverse of Eq. (12) (given in Eq. (13)) holds,
then some cells should specialize in soma.

ov
* gk 7 * =2 * max- 1
v*—b ab(b) v <v (13)

Furthermore, if, in addition to satisfying Eq. (13),
Umax < — b*(0v/0b)(b"), then the reproductive cells should
have an intermediate fecundity; more precisely, they should
have fecundity b such that the tangent to the trade-off
curve at b = b crosses the line » = 0 precisely at vy (Fig. 5

panel (B)) (that is vpay = 5—5(60/%)(5), see Appendix
B.2). The proportion of somatic cells should be such that
the mean viability is vy,a,/2. The mean fecundity is then
bmax/2s bmax = —Umax/[(Qv/0b)(B)]  and  the  fitness
W = NUmaxbmax /4, which is the highest obtainable fitness
for a colony facing a linear trade-off v = vy — b with
o = —0v/db(b).
Finally, if

ov
Umax = — bmax & (bmax)a (14)

then half of the cells should specialize in soma (b = 0) and
the other half in germ (b = byay). This yields the fitness
W = szmaxbmax/4-

The above analysis shows that there are two threshold
values for vy, (in the region vy, >0, (see Fig. 5)). The
first threshold, vgax = 20* = v* — b*(0v/0b)(b*), concerns
specialization in soma. The second threshold, vy =
—bimax(00/0b)(bmax), concerns specialization in germ. In
the case of a linear trade-off, both thresholds are equal to
vg. Thus, while v, — vg is the bonus of soma specialization
linked to the cost of reproduction, we may see 2v* — vy as
the detriment of soma specialization linked to the
concavity of the trade-off. Eq. (11) (or, equivalently, Eq.
(12)) expresses the condition that the bonus of soma
specialization is smaller than its detriment.

As detailed in Appendix B.2, if we take into account the
fact that the proportion of somatic cells must be a multiple
of 1/N, then the condition for soma specialization is
slightly more demanding than Eq. (13) and is more easily
satisfied if the number of cells in the colony is large. This
effect of colony size in facilitating the evolution of soma
specialization may be interpreted as follows: there is a
tension between being efficient (that is, having high ratios
of viability/(resources allocated to viability) and fecundity/
(resources allocated to fecundity)) and keeping a balance
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between viability and fecundity. If a cell specializes in
soma, then in order to keep a balance between fecundity
and viability, the other cells must increase their fecundity.
If there are only a few other cells in the colony, then they
will have to increase their fecundity a lot, possibly moving
to inefficient functioning points. This is likely to be the case
when there are decreasing returns on efforts (that is, when
the fecundity/(resources to fecundity) ratio decreases as the
resources alloted to fecundity increase, and similarly for
viability), which corresponds to a concave trade-off. In
contrast, in a large colony where there are more cells
available, a balance between viability and fecundity can
more easily be maintained since the increase in reproduc-
tive effort by the rest of the colony can be divided among
more cells, which would then not greatly effect each cell’s
efficiency. Thus, it is possible to reap the advantage of
soma specialization linked to the cost of reproduction while
maintaining both a balance between viability and fecundity
and an efficient functioning of all cells.

6. Discussion

We have concluded that during the origin of multi-
cellularity convex trade-offs between survival and repro-
duction, such as those created by a significant initial cost of
reproduction to survival, select for specialization in the two
fitness components as colonies increase in size. As a result
of this specialization, the individuality of the cell group is
enhanced. The conclusion about the role of convexity in
specialization is very general; in particular, we have shown
it holds for more general fitness functions than multi-
plicative (Eq. (10)) and for non-additive viabilities. The
main point is that when the trade-off is convex, specializa-
tion allows for the increase of one component of fitness (we
focused on viability) without any decrease in the other
component (fecundity).

The conclusion that convexity favors specialization
resembles the standard results of life-history theory, which
state that convex fitness trade-offs select for specialization
in reproductive function as organisms increase in age. That
is, convex fitness trade-offs select for semelparity or ‘“big
bang” reproduction in which there is no reproduction until
the last stage of the life cycle (Schaffer, 1974; Charlesworth
and Leon, 1976). Big bang reproduction is analogous to
cell specialization in the sense that age classes specialize in
either no reproduction or complete reproduction (for the
last class).

However, the life-history problem of optimization of
reproductive effort over the lifespan of an individual is
different in important ways from the problem of optimiza-
tion of the reproductive effort of cells in a group. There is,
most fundamentally, the very question we wish to answer:
is the individual the cell or the cell group? While we do
assume selection at the group level, without cell specializa-
tion there is no property that would make the group
indivisible and hence a true individual. In answering this
question, we are not concerned with how the reproductive

effort at the group level changes, but rather with whether
there is specialization at the lower level among cells.
Indeed, in our argument for cell specialization in the
optimization model, the average reproductive effort at the
group level does not change at all. However, how this effort
is distributed among cells can be critical for the group in
terms of its viability and individuality.

Consider, for example, the following question in life-
history theory which may seem similar to the one studied
here. How will the trade-off between viability and
fecundity evolve as an external parameter, such as the
quality of the environment, varies (Kisdi et al., 1998)? Here
we also investigate the evolution of the trade-off between
viability and fecundity as another parameter, the size of the
group, varies. However, the question we investigate is not
how the investment in fecundity will evolve as this
additional parameter varies, as in Kisdi et al. (1998), but
whether some cells will specialize (again, the overall
investment in fecundity staying more or less the same).

On a qualitative level, what we have studied is how the
relative changes in viability and fecundity linked to cell
specialization evolve as colony size increases. Due to the
assumed multiplicative nature of fitness (Egs. (1) and (10)),
W = VB, what matters when a cell changes its reproduc-
tive effort are the relative changes in viability and fecundity
for the group. Formally, if a cell specializes in soma,
leading to a decrease in group fecundity of 0B and an
increase in group viability of § 7, then the change in group
fitness is AW = —VOB+ BoV — dBoV. If we neglect the
last term (which is a second-order term), then we see that
the condition for fitness to increase is that the relative
increase in viability 67 /V be greater than the relative
decrease in fecundity —oB/B. This is more likely to be the
case if viability is low, as will occur if colonies increase in
size without specializing in somatic functions.

What is the fecundity viability trade-off curve like in
single-celled organisms? The multiplicative nature of fitness
requires that single-cell organisms be generalists and have
intermediate efforts at both reproduction and viability,
regardless of the curvature of the trade-off curve. Never-
theless, the curvature of the trade-off determines whether
the unicellular habit will be stable to two- (or greater) cell
groups. This will be the case when the trade-off curve is
strictly concave. Since, in nature, smaller groups are not
specialized (Fig. 1), our model suggests that the trade-off is
concave rather than convex in single-celled species.
Furthermore, a concave trade-off seems more natural for
small groups, as it expresses a law of decreasing return on
efforts.

The curvature of the function describing the relationship
between the two main fitness components’ reproduction
and survival is a basic issue in life-history theory (Benk-
man, 1993; Michod, 1978; Schaffer, 1974; Benson and
Stephens, 1996; Blows et al., 2004; Carriere and Roff, 1995;
Kisdi, 2001; Reznick, 1985; Roff, 2002; Rueffler et al.,
2004; Sato, 2002; Strohm and Linsenmair, 2000; Takada
and Nakajima, 1996; Levins, 1968; Stearns, 1992). Despite
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the central relevance of this issue to life-history theory, a
recent review (Rueffler et al., 2004) of the data concerning
the curvature of the trade-off curve states: “Unfortunately,
there is no study known to us which has revealed the details
of this curvature for any life-history trade-off in a specific
organism. However, these curvatures are central in life-
history theory which indicates a major gap between theory
and empirical knowledge...”.

Our analysis predicts that a large initial cost of
reproduction to survival is sufficient to select for G-S
specialization. Measuring this initial survival cost of
reproduction is empirically more practical than measuring
the complete curvature of the trade-off curve between
survival and reproduction, the latter having been studied in
a variety of organisms with no clear results (if the above
quotation is accepted). We return now to the volvocine
green algae (Fig. 1) and consider this central prediction of
our model.

As already discussed when introducing the volvocine
algae (Fig. 1), the investment of the parent colony in
reproductive cell growth illustrates an initial cost of
reproduction to survival, which increases with organism
size. Besides using more resources, a larger embryo
increases the volume, mass and drag of the mother colony,
as has been quantified in Fig. 4 of Solari et al. (2005b).
Solari et al. (2005b) show that these initial survival costs
increase with colony size, requiring more swimming force
as well as more flagellar mixing (for nutrient acquisition
and removal of waste) per embryo.

We believe the need to pay this initial cost of
reproduction to survival accounts for the observed increase
in the somatic/reproductive (S/R) cell ratio as colony size
increases in the volvocine algae (see Table 3 of Solari et al.,
2005b). We think that the evolution of soma (as well as the
evolution of increased S/R ratios) provides the benefits that
compensate for the increasing initial costs of reproduction
in colonies of increasing size. There are also direct costs of
germ and soma specialization which must be overcome by
these benefits, as germ specialization reduces the number of
cells available for vegetative functions and soma specializa-
tion reduces the number of reproducing cells.

The benefits of soma specialization include: (i) colony
motility while reproducing (overcoming the flagellation
constraint discussed in Section 3), (i1) motility while large
(overcoming the enlargement constraint discussed in
Section 3), (iii) increased resource uptake due to the
‘source-sink’ effect (in which somatic cells transfer
resources to germ cells which act as a sink) (Bell, 1985;
Koufopanou and Bell, 1993; Solari et al., 2005a), and (iv)
enhanced uptake of resources and removal of waste by
flagellar beating (Niklas, 1994, 2000; Solari et al., 2005a).

In addition, soma specialization reduces the detriment to
viability of germ specialization. Once larger colonies invest
in a high proportion of somatic cells, non-somatic cells can
focus on reproduction rather than contribute to vegetative
functions which are sufficiently dealt with by somatic cells.
When soma separation is complete, germ specialization can

provide additional benefits, such as decreased generation
time, increased productivity by specialization at photo-
synthesis, and hydrodynamic advantages stemming from
the location of germ. Since specialized germ cells are non-
flagellated and do not contribute to motility, they are
located in the interior of the colony, making the colony
spheroid smaller and lowering drag (Solari et al., 2005b).

Single gene mutations in life-history traits can be a
powerful approach to understanding the cost of reproduc-
tion and trade-offs between life history traits, both long
standing topics of considerable interest (Reznick, 1985;
Roff, 2000, 2002). Various V. carteri developmental
mutants are known (Kirk, 1998), which differ in the basic
factors hypothesized in our models for the origin of
multicellularity: group size, S/R ratio, type and timing of
G-S specialization, and motility; yet they differ in just one
or a few genes. These mutants include lag™ (germ cells
perform motility functions before reproducing; these
mutant colonies are similar to Volvox species such as V.
aureus and V. rouselletti), regA~ (somatic cells regenerate
to become reproductive), and glsA™ /regA~ (all cells
perform vegetative functions first and then become
reproductive; this mutant is similar to Fudorina; see Fig. 1).

These mutants are especially useful for studying fitness
decomposition at the cell and group levels, because a
certain known number of cells (or amount of tissue) have
changed their reproductive effort. We can measure the
consequences of this change at the colony level, and in this
way estimate the contribution to the group fitness of the
changed effort at the cell level as is required by our model
in Fig. 4. In the regA™ mutants, ~235 cells have changed
their phenotype from somatic to unspecialized; in lag™~9
cells have changed their phenotype from germ to unspe-
cialized; and in glsA~ regA~ there are ~561 unspecialized
cells — similar to a Eudorina colony, but larger.

As a result of these changes in reproductive effort at the
cell level, the size, productivity and motility of the group
change (Solari et al., 2005b; Solari, 2005). For example, in
colonies with the regA~ mutation, as once-specialized
somatic cells (b = 0 in Fig. 4) begin exerting reproductive
effort (b>0), there is not only a large decrease in colony
motility, but also a large decrease in the motility
contributed by a single changed cell. Specifically, the
average force exerted for group motility by a single motile
cell is about half in the reg4™ mutant and a quarter in the
glsA~ regA~ mutant compared to the wild type (Solari
et al., 2005b). The initial cost of reproduction to survival
that underlies the convex nature of the fitness trade-offs
(Fig. 4) is real and directly measurable in these organisms,
and attributable to a change in the effort exerted by single
cells within the cell group as required by the models
considered above.
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Appendix A

We use Eq. (5) and build the group one cell at a
time, assuming that after a cell is added it does not
change its strategy. For the first cell, = B =0 and the
isoclines are simply v = W;/b. Maximizing W; (Eq. (3))
subject to Eq. (5) gives the optimum strategy for the cell
defined by

Umax blTlaX vlTlaX
* = = * = A.l
P > and v > (A.1)
The additional fitness (Eq. (3)) is now given by
W — bimaxVmax ) (A.2)

! 4

We now add the second cell. The isocline (Eq. (2)) now
has V| = vmax/2 and Bj = byax/2. Note that V| = aB.
For the second cell, maximizing the added fitness (Eq. (3))
subject to the linear constraint (Eq. (5)) gives

b
b = r;ax and 0" = Ulrzlax, (A.3)
with added fitness given by
Wi =3V \B. (A4

The new 2-cell group has V5, = 20max/2 = Umax and B, =
2bmax/2 = bmax and Eq. (A.4) holds since, of course,
Umax = 0bmax. If we now consider the N+1 cell and
maximize W, subject to the lincar constraint (Eq. (9)),
and that for the N cell group Vy = aBy (Eq. (A.2)), we
find again Eq. (A.l) and Byii = By + bmax/2 =
(N 4 Dbmax/2 and Vyer = Vi + Umax/2 = (N + Dvmax /2.
The optimal value of intermediate reproductive effort can
be obtained by maximizing W, subject to the linear
intrinsic constraint. For use in the text in deriving
Eq. (8), we assume V = aB. When there is a cost of
reproduction, using the piecewise linear curve defined in
Fig. 4, we obtain the optimal intermediate values to be

* (1 - eN)Umax

* bm'dX
b* = T and v* = 5

Using the values in Eq. (A.5), we obtain as the maximal
added fitness for intermediate strategies
_ (4B + bmax)(l - eN)Umax
= 2 .

(A.5)

W (A.6)

Appendix B
B.1. Proof of a result on convex trade-offs

Assume that v(b) is strictly convex. Let b;<b; be
intermediate fecundities and let 6>0 be smaller than b;
and  byax —b;. From the mean-value theorem, it
follows that there exist fecundities 4" in [b; — J,b;] and b”

in [b;, b; 4 6] such that
ov ,
U(bi) = U(b,' — (5) + 0 &(b ) and
o ,
v(bj + 0) = v(by) + 6@(15 ).
It follows that
u(b; = 0) + v(b; + 0) — (v(b;) + v(by))

ov_,.  Oov ,
=519 — 2Ll B.1
ﬁ%w>aﬁm} (B.1)
Since the function v is strictly convex, its first derivative is
strictly increasing. Therefore, since b” >4, Eq. (B.1) is
positive, as claimed in Section 5.3.3. The result still holds if
the function v is not differentiable (proof omitted).

B.2. Proof of results on concave trade-offs with an initial
cost of reproduction

We compute here the optimal behavior of a colony
facing a strictly concave trade-off with an initial cost of
reproduction. We first assume, as an approximation, that
the proportion of somatic cells can take any value. We then
discuss how taking into account the fact that the
proportion of somatic cells must be a multiple of 1/N
changes the results. Throughout, we assume that the
contributions to viability are additive (the case of non-
additive viabilities is treated in Appendix B.3). We also
assume for simplicity that the function wv(b) is twice
differentiable, so that the fitness function is twice
differentiable. This allows us to use the standard first-
and second-order optimality conditions of optimization
theory (see below). However, this assumption is not
necessary: as discussed at the end of this section, a
graphical analysis shows that the same conclusions may
be reached if the function v is not differentiable.

The fitness of a colony with a proportion p of somatic
cells and fecundity b for all other cells is

W(p, b) = Nz[PUmax +( —P)U(b)] -(1 —P)b

As explained in Section 5.4.2, in the best colony, all non-
somatic cells have the same fecundity. Thus, to find the best
colony, we only need to find the values of p and b that
maximize Eq. (B.2). Let p and b be such optimal values and
let o = 0(5). Specialization of some cells in soma is optimal
if p>0. Specialization of the non-somatic cells in germ is
optimal if b = bmax. Recall that b* denotes the optimal
value of the fecundity for a non-specialized colony. If
specialization in soma does not pay (5 = 0), then b = b*;
but, if specialization in soma pays, then we expect (and we
will prove) that the optimal fecundity of the non-somatic
cells b is greater than b*.
Since the values j and b are optimal, we have

(B.2)

0 -
a—VbV(,s, b)=0 (B.3)
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if b<bmaxs

oW -

——(3,b)=0 B.4
o D) (B.4)
if b = by, and finally, if 5>0,

oW -

——(,b)=0. B.5
A (p,0) (B.5)

To use these conditions, we need to compute the partial
derivatives of W. We get

ow
E(P, b) = N?B[(1 = 2p)vmax — 2(1 = p)u(d)], (B.6)

ow
E (pa b)
= N1 =)= ) |5 B+ 6|+ po] . B

From Egs. (B.5) and (B.6) we obtain

Umax — 20
= — B.8
P 2[Umax - 5] ( )
and
ﬁvmax = (l _ﬁ)(umax - 25) (B9)

Furthermore, plugging Eq. (B.9) into Eq. (B.7) we get

ow _ - 0 |00 ~ -
E(p,b)_N(l—p) b&(b)—l—(vmax—v) . (B.10)
Therefore, Egs. (B.3) and (B.4) imply that

~0U ~
tman > = b5 (B), (B.11)

with equality if < bpay.

We now distinguish three cases which correspond,
respectively, to no specialization, specialization in soma
but not in germ, and specialization in soma and in germ.
Let v* = v(b").

Case 1: vpmax <2v*. It follows from Eq. (B.8) that for
specialization to be optimal, i.e. >0, we must have

Umax > 20. (B.12)
Since vmax <2v*, this implies v* > 7, hence b>b*.

Since the function v is concave, it follows that
. ~O0v ~ . L O0v
—>b &(b)>v —-b &(b ).
Together with Eq. (B.11), this implies that

ov

Umax > U — b* 3 (b*) = 2v*

(the latter equality is proved in Section 5.4.2). This
contradicts the assumption vy, <2v*. It follows that if
Umax < 20%, then specialization is not optimal.

Case 20 20" <Umax < — Dmax(00/0b)(bmax). Applying
Eq. (B.6) at p = 0 and b = b* we obtain
ow
5(0’ b*) = N?b*(Umax — 20%)>0. (B.13)

Thus a colony with some somatic cells and fecundity b* for
the non-somatic cells would have a higher fitness than the
colony in which all cells have fecundity »* (i.e. the best
unspecialized colony). This implies that at a fitness
maximum, the proportion of somatic cells is positive:
p>0. Furthermore, since

ov ov
Umax < — bmax & (bmax) = U(bmax) - bmax & (bmax)

it follows that if b = by, then Eq. (B.10) is negative,
contradicting Eq. (B.4). Therefore, b <bmax, 1.€. the non-
somatic cells should be generalists. This implies that Eq.
(B.11) holds with equality. That is,

. ~0U ~
Umax = 0 — b@(b). (B.14)
Since the equation of the tangent to the trade-off curve at b
is

v= E+(b—5)2—2(5),

Eq. (B.14) means that this tangent crosses the line 5 =0
exactly at v = vyax, as depicted in Fig. 5. This implies that
i>0*.

Using Eq. (B.8), we compute the viability, fecundity
and fitness of the colony to obtain V = Nvyax/2, B
= Nvmax /20, and W = N?v2,__ /4o, with o = —(3v/0b)(b).

Case 3: Umax= — bmax(00/0D)(bmax). As in case 2,
specialization in soma pays: p>0, but now b = byax
(otherwise Eq. (B.10) would be positive, contradicting
Eq. (B.3)). That is, the non-somatic cells should be germ
(and not generalist). The above formulae for p, V, B and
the fitness W still hold. In particular, Eq. (B.8) gives p = %;
thus, half of the cells should specialize in germ and half in
soma.

Note that our results do not require that the function
v(b) stays the same. In particular, the trade-off function
could change as the number of cells increases (v = v(b, N)),
in which case the optimal fecundity of the cells in an
unspecialized colony may depend on the size of the colony.
In addition, it is not necessary that the function v be
concave (it could be, e.g., neither convex nor concave). A
graphical analysis (included as supplementary material in
the online version of this article) shows that provided that
there exists a fecundity b which is greater than the mean
fecundity in the best unspecialized colony and such that the
line joining the points (0, vyax) and (5, v(l;)) is above the
graph of v, then specialization will be favored.

Taking into account the fact that the proportion of somatic
cells is a multiple of 1/N: We now discuss how the results
change if we take into account the fact that the proportion
of somatic cells cannot vary continuously but must be a
multiple of 1/N. Consider a colony in which a cell
specializes in soma and the other cells increase their
fecundities from »* to (N /(N — 1))b*. This colony would
have the same fecundity B* = Nb* as the best unspecialized
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colony, but its viability would be

V = tmax + (N — 1)17( Nf 1).

(B.15)

Thus, a sufficient condition for specialization to be favored
is that V> V* = Nv*, or equivalently

Umax > Nv* — (N — 1)U< Nf 1>.

Noting that Nb* /(N — 1) = b*(1 + 1 /(N — 1)) and approx-
imating the right-hand side by a Taylor expansion
including up to second-order terms, Eq. (B.16) becomes

* *61) * (b*) 62
Umax > U _b &( )_Z(N l)abz( )

This is exactly Eq. (13) when the trade-off is linear, but is
more demanding for a concave trade-off as the second
derivative of v is then negative. Furthermore, for a concave
trade-off, Eq. (B.17) reduces to Eq. (13) in the limit of a
very large number of cells, but may be significantly more
demanding when N is small.

Intuitively, if N is small and vy, is only slightly greater
than v* — b*(0v/0b)(b*) = 2v*, then if a cell specializes in
soma, the resulting proportion of somatic cells, 1/N, might
be much higher than the optimal proportion of somatic
cells given in Eq. (B.8) and specialization in soma need not
be favored even though Eq. (13) is satisfied.

(B.16)

(B.17)

B.3. Non-additive viabilities

Up to now, we assumed for simplicity that the cells
contributions to the viability of the group were additive.
We show here that we may dispense with this assumption.
The assumptions we keep are that the fecundities of the
cells are additive, B =3 _.b;, and (for some results) that
the viability V' of the group is a symmetric function of the
fecundities; that is, the cells are interchangeable in the sense
that if cell 7 and cell j exchange their fecundities, then the
viability of the group does not change. We first consider
trade-offs with no initial cost of reproduction and show
that a convex (concave) trade-off selects for (against)
specialization.

Convex trade-off: Assume that the function V is strictly
convex. Then in an optimal group, at most one cell
may have an intermediate fecundity. Indeed, assume by
contradiction that two cells, say cells 1 and 2, have an
intermediate fecundity. If cell 1 increases its fecundity by
some small quantity x and cell 2 simultaneously decreases
its fecundity by the same quantity, then the fecundity of the
group does not change but the viability becomes

S(x)=V(b1 +x,b »by).

It follows from the strict convexity of V' that the function f
is strictly convex. Therefore, for x>0, f(x)+f(—x)
>2f(0). It follows that at least one of the quantities f(x)
and f(—x) is strictly greater than f(0). Without loss of
generality, assume f(x)>f(0). This means that, while the

—x,b3,...

fecundity of a colony with fecundities b+ x,b; —
x,bs,...,by is the same as the fecundity of the initial
colony, its viability, hence its fitness, is higher. Therefore,
the initial colony was not optimal.

Linear trade-off: In this case, assuming that V is
symmetric in the fecundities, then viabilities are additive
and we are back to the model of Section 5.3.2. Indeed, if
the trade-off is linear then there exist constants V.,
®1,...,0y such that

V(bly~ .- abn) = Vinax — (Z%h)

If V' is symmetric, then the constants «; are all equal.
Letting o be the common value of the o; and
Umax = Vmax/Na we get

Vb, ,ba) =Y (vmax — 2b;)

as in the case of additive viabilities.

Concave trade-off: If the viability V is strictly concave
and symmetric, then in an optimal colony, all cells have the
same fecundity. Indeed, consider a colony with fecundities
by, ...,by and assume that two cells, say cells 1 and 2, have
different fecundities. Let

by +b by +b
g(x):V( 1—; 2—|—x, 1—; 2—X,b3,...,b/v)

so that V(by,...,by) = g(b) — b2]/2). If V is strictly
concave, then so is g, so that for x = [b; — b,]/2#0
9(x) + g(—x) <2g(0).
Furthermore, if V' is symmetric, then
g(—x) = V(bz,bl,b3, e ,bN) = V(bl,bz,bg, . ,bN)

= g(x)

so that g(x)<g(0). It follows that a colony with fecundities
(b1 + b2)/2,(b1 + b2)/2,b3,...,by would have the same
group fecundity but a higher group viability than a colony
with fecundities by, by, b3, ..., by.

Initial cost of reproduction: We now consider the effect of
an initial cost of reproduction. By an initial cost of
reproduction, we mean that if cell i specializes in soma, the
viability is substantially higher than if it provides a little
fecundity. Formally,

Vb, ....bi—1,0,bit1,...,bN)
>V(b1,... i— ],0 b,+1,...,b )
with
V(bly'-' i— laO bl+15-"ab )
= lim V(bl, , 1, €, b,+1,...,bN).
e—>0,6>0

When the fecundities are additive, then the difference

V(bi,...,bi—1,0,biy1,...,byn)
Vbt b1, 0" By b)

is simply the difference between v, and vy (see Fig. 5).



R.E. Michod et al. | Journal of Theoretical Biology 1 (1ill) 111111 15

We focus on the case of a concave trade-off (the case of a
convex or linear trade-off is easily dealt with as in Section
5.4.1.). Recall the above argument showing that if the
function V is strictly concave and symmetric and if there is
no initial cost of reproduction, then all cells should have
the same fecundity. The same argument shows that, when
there is a cost of reproduction, all non-somatic cells should
have the same fecundity.

Let b* denote the fecundity of the cells in the best
unspecialized colony and B* = Nb*. If, starting from
the best unspecialized colony, one cell specializes in soma
and the other cells increase their fecundities to
b’ = Nb*/(N — 1), then the global fecundity does not
change but the viability goes from V(b*,...,b") to
V(0,¥,...,b"). Thus, a sufficient condition for fitness to
increase is that

*

N-1
In the case of a linear (and symmetric) trade-off, the
quantity

VO, b,... b)) = V(... b (B.19)

is zero. Thus we may see this quantity as a detriment to
soma specialization due to the concavity of the trade-off.
Eq. (B.18) expresses that if the bonus to soma specializa-
tion

VO,b,....b)— VO, ... b

is greater than the detriment in Eq. (B.19), then specializa-
tion in soma is favored.

Another perspective is as follows: let V(p,b) and W (p, b)
denote, respectively, the viability and fitness of a colony
with a proportion p of somatic cells and fecundity b for the
non-somatic cells. Assume for simplicity that p can vary
continuously and let

fp)=V(p.b*/(1 —p)

denote the viability of a colony with a proportion p of
somatic cells and fecundity b* /(1 — p) for the other cells, so
that the global fecundity equals B*. A sufficient condition
for specialization is that

of
2, >0,

/4
This expresses the fact that by having some cells specialized
in soma, a colony can retain the same fecundity as the best
unspecialized colony but increase its viability.

Simple computations show that Eq. (B.20) is equivalent
to
1oV .
v o (0,p™)>1
which means that the relative increase in viability provided
by specialization in soma should be greater than a certain
threshold (when the viabilities are additive, Eq. (B.21) boils
down to (vmax — v*)/v*>1 or equivalently vm.x >2v*). An
effect of an increasing initial cost of reproduction is that

V©,b,....b)>V(b*,...,b*) with b’ = (B.18)

(B.20)

(B.21)

the relative increase in viability provided by specialization
in soma increases with the size of the colony (In volvocine
algae, this is essentially because, in the absence of somatic
cells, the viability gets lower and lower, hence 1/V
increases). Thus, the higher the initial cost of reproduction,
the more likely it is that Eq. (B.21) will be satisfied, hence
specialization favored.

Appendix C. Supplementary data

Supplementary data associated with this article
can be found in the online version at doi:10.1016/
j-jtbi.2005.08.043.
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