http://www.eleves.ens.fr/home/waldspur/LM125.html

TD : Algèbre

Exercice 1 : [Changement de base]

- 1. On note $v_1 = (1,1)$ et $v_2 = (-1,1)$. Montrer que $\mathcal{V} = (v_1, v_2)$ est une base de \mathbb{R}^2 .
- 2. On note $\mathcal{E} = (e_1, e_2)$ la base canonique de \mathbb{R}^2 : $e_1 = (1, 0)$ et $e_2 = (0, 1)$.
- a) Écrire v_1 et v_2 comme des combinaisons linéaires de e_1 et e_2 .
- b) Calculer P, la matrice de passage de \mathcal{E} à \mathcal{V} .
- 3. a) Écrire e_1 et e_2 comme des combinaisons linéaires de v_1 et v_2 .
- b) En déduire S, la matrice de passage de \mathcal{V} à \mathcal{E} .
- c) Vérifier que P est inversible, d'inverse S.
- 4. Soit z = (1, 2).
- a) Donner les coordonnées de z dans la base \mathcal{E} puis dans la base \mathcal{V} .
- b) On note $X_{\mathcal{E}} = \mathcal{M}_{\mathcal{E}}(z)$ et $X_{\mathcal{V}} = \mathcal{M}_{\mathcal{V}}(z)$ les deux vecteurs de coordonnées trouvés à la question précédente. Vérifier que $X_{\mathcal{E}} = PX_{\mathcal{V}}$ et $X_{\mathcal{V}} = SX_{\mathcal{E}}$.

Exercice 2:

Les bases \mathcal{E} et \mathcal{V} de \mathbb{R}^2 sont définies comme à l'exercice précédent. On note encore P et S les matrices de passage trouvées à l'exercice précédent.

On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(e_1) = (-1, 3)$ et $f(e_2) = (2, -1)$.

- 1. Écrire $f(e_1)$ et $f(e_2)$ comme des combinaisons linéaires de e_1 et e_2 . En déduire $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(f)$.
- 2. a) Calculer $f(v_1)$ et $f(v_2)$.
- b) Écrire $f(v_1)$ et $f(v_2)$ comme des combinaisons linéaires de e_1 et e_2 . En déduire la valeur de $\mathcal{M}_{\mathcal{E}}^{\mathcal{V}}(f)$.
- c) Vérifier que $\mathcal{M}_{\mathcal{E}}^{\mathcal{V}}(f) = \mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(f)P$.
- 3. a) Écrire $f(v_1)$ et $f(v_2)$ comme des combinaisons linéaires de v_1 et v_2 . En déduire la valeur de $\mathcal{M}_{\mathcal{V}}^{\mathcal{V}}(f)$.
- b) Vérifier que $\mathcal{M}_{\mathcal{V}}^{\mathcal{V}}(f) = S\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(f)P$.
- 4. On prend toujours z = (1, 2).
- a) Calculer $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(f)\mathcal{M}_{\mathcal{E}}(z)$.
- b) Calculer $\mathcal{M}_{\mathcal{E}}^{\mathcal{V}}(f)\mathcal{M}_{\mathcal{V}}(z)$.
- c) Que vaut f(z)?

Exercice 3: [Composition]

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application f((x,y)) = (-x+y, 2x-y).

Soit $g: \mathbb{R}^2 \to \mathbb{R}^3$ l'application g((x,y)) = (y,x,x+y).

On note \mathcal{E}_2 et \mathcal{E}_3 les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .

1. Calculer $g \circ f$.

- 2. Calculer $M_1 = \mathcal{M}_{\mathcal{E}_2}^{\mathcal{E}_2}(f)$ et $M_2 = \mathcal{M}_{\mathcal{E}_3}^{\mathcal{E}_2}(g)$.
- 3. Calculer M_2M_1 et retrouver l'expression de $g \circ f$.

Exercice 4: [Déterminant]

Rappel : le déterminant d'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est caractérisé par les trois propriétés suivantes.

- $-\det I_n=1$
- $\det M = 0$ si deux colonnes de M sont identiques.
- Si $k \in \{1, ..., n\}, C_1, ..., C_n, D_k$ sont des matrices colonnes de taille n et $\lambda, \mu \in \mathbb{R}$:

$$\det \left(C_1 | C_2 | ... | \lambda C_k + \mu D_k | ... | C_n \right) = \lambda \det \left(C_1 | C_2 | ... | C_k | ... | C_n \right) + \mu \det \left(C_1 | C_2 | ... | D_k | ... | C_n \right)$$

À l'aide de ces propriétés, on va calculer le déterminant de $A = \begin{pmatrix} 2 & 1 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

- 1. Montrer que det $A = 2 \det \begin{pmatrix} 1 & 1 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.
- $2. \, \text{Montrer que det} \begin{pmatrix} 1 & 1 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix} = -\det \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix} + \det \begin{pmatrix} 1 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{pmatrix} \text{ et que det} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix} = \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix} 3 \det \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$
- 3. Montrer que $\det\begin{pmatrix} 1 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{pmatrix} = \det\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$. En déduire que $\det\begin{pmatrix} 1 & 1 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \end{pmatrix} = -\det\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.
- 4. Montrer que det $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix} = 3 \det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- 5. Déduire des questions précédentes le déterminant de A. Vérifier qu'il est égal à $2 \times (-1) \times 3$.

Exercice 5:

Soit $f: \mathbb{R}^4 \to \mathbb{R}^3$ la fonction telle que :

$$f((w, x, y, z)) = (w + x + 2y - 3z, w - x - y + 2z, -5w + x - y)$$

- 1. a) Déterminer une base de Ker f.
- b) Compléter cette base en une base de \mathbb{R}^4 . On note $\mathcal{U} = (u_1, u_2, u_3, u_4)$ la base complète (en mettant les vecteurs de la question a) à la fin).
- c) Calculer le rang de f.
- 2. a) Calculer $f(u_1)$ et $f(u_2)$.
- b) Montrer que $\mathcal{B} = (f(u_1), f(u_2), (0, 0, 1))$ est une base de \mathbb{R}^3 .
- 3. On note \mathcal{E}_3 et \mathcal{E}_4 les bases canoniques de \mathbb{R}^3 et \mathbb{R}^4 .
- a) Déterminer la matrice de passage P de \mathcal{E}_4 à \mathcal{U} .
- b) Déterminer la matrice de passage S de \mathcal{E}_3 à \mathcal{B} .
- c) Montrer que S est inversible et calculer son inverse.
- d) En déduire la matrice de passage Q de \mathcal{B} à \mathcal{E}_3 .
- 4. a) Calculer la matrice de f dans les bases \mathcal{E}_4 et \mathcal{E}_3 , notée $\mathcal{M}_{\mathcal{E}_3}^{\mathcal{E}_4}(f)$.
- b) À l'aide de la question 3., calculer $\mathcal{M}_{\mathcal{B}}^{\mathcal{U}}(f)$.
- c) Expliquer pourquoi le résultat est aussi simple.

Exercice 6:

On dit qu'un ensemble \mathbb{K} est un corps s'il est muni de deux lois internes + et \times vérifiant les propriétés suivantes :

- (i) + est associative, commutative et possède un élément neutre, qu'on note 0; tout élément a un inverse par +.
- (ii) \times est associative et possède un élément neutre, qu'on note 1; tout élément a un inverse par \times , sauf 0.
- (iii) \times est distributive par rapport à +.
- \mathbb{Q} , \mathbb{R} et \mathbb{C} sont des exemples de corps.
- 1. Soit $\alpha \in \mathbb{C} \{0\}$. On note $\mathbb{Q}[\alpha] = \{a_0 + a_1\alpha + ... + a_n\alpha^n \text{ tq } n \in \mathbb{N}, a_0, ..., a_n \in \mathbb{Q}\}.$
- a) Montrer que $\mathbb{Q}[\alpha]$ est un \mathbb{Q} -espace vectoriel.
- b) Montrer que $\mathbb{Q}[\alpha]$ est stable par produit : si $x_1, x_2 \in \mathbb{Q}[\alpha]$, alors $x_1 x_2 \in \mathbb{Q}[\alpha]$.
- c) Montrer que, si $\mathbb{Q}[\alpha]$ est de dimension finie sur \mathbb{Q} , alors il existe un polynôme non-nul P, à coefficients dans \mathbb{Q} , tel que $P(\alpha) = 0$. [Indication : utiliser le fait que la famille $(1, \alpha, \alpha^2, ..., \alpha^n)$ est liée pour un certain $n \in \mathbb{N}^*$.]
- d) Dans cette question, on suppose qu'il existe P un polynôme non-nul à coefficients dans \mathbb{Q} tel que $P(\alpha) = 0$. On note $P(X) = a_0 + a_1 X + ... + a_d X^d$, avec $a_d \neq 0$. Montrer que, pour tout $k \geq d$, α^k est une combinaison linéaire de $1, \alpha, ..., \alpha^{d-1}$. En déduire que $\mathbb{Q}[\alpha]$ est de dimension finie sur \mathbb{Q} .
- 2. a) On suppose dans cette question que $\mathbb{Q}[\alpha]$ est un corps. Montrer qu'il existe un polynôme non-nul P à coefficients dans \mathbb{Q} tel que $P(\alpha) = 0$. [Indication : utiliser le fait que, puisque α admet un inverse dans $\mathbb{Q}[\alpha]$ pour \times , $1/\alpha \in \mathbb{Q}[\alpha]$.]
- b) On suppose maintenant qu'il existe un polynôme non-nul P à coefficients dans \mathbb{Q} tel que $P(\alpha)=0$. Montrer que $\mathbb{Q}[\alpha]$ est un corps. [Indication : le seul point délicat est de montrer que tout élément $x\in\mathbb{Q}[\alpha]-\{0\}$ admet un inverse dans $\mathbb{Q}[\alpha]$ par la loi \times . Soit donc $x\in\mathbb{Q}[\alpha]-\{0\}$ quelconque. Montrer que, pour tout $k, x^k\in\mathbb{Q}[\alpha]$. Montrer ensuite qu'il existe $d\geq 0$ tel que $(1,x,...,x^d)$ est une famille liée de $\mathbb{Q}[\alpha]$.]