Feuille d'exercices n^o4 Corrigé

Exercice 1

1. Commençons par le cas où A est réduit à un point : $A = \{a\}$. Pour tout $y \in B$, soient $U_y \subset X$ et $V_y \subset Y$ des ouverts tels que $(a, y) \in U_y \times V_y \subset \Omega$.

Puisque $B \subset \bigcup_{y} V_{y}$, il existe $y_{1},...,y_{n} \in B$ tels que $B \subset \bigcup_{k \leq n} V_{y_{k}}$. Posons $U = \bigcap_{k \leq n} U_{y_{k}}$ et $V = \bigcup_{k \leq n} V_{y_{k}}$. Alors $\{a\} \times B \subset U \times V \subset \bigcup_{k \leq n} (U_{y_{k}} \times V_{y_{k}}) \subset \Omega$.

On ne suppose maintenant plus que A est réduit à un point. Pour tout $a \in A$, d'après ce que l'on vient de voir, il existe $U_a \subset X$ et $V_a \subset Y$ des ouverts tels que $\{a\} \times B \subset U_a \times V_a \subset \Omega$. Puisque $A \subset \bigcup_a U_a$, il existe $a_1, ..., a_n$ tels que $A \subset \bigcup_{k \leq n} U_{a_k}$. Posons $U = \bigcup_k U_{a_k}$ et $V = \bigcap_k V_{a_k}$. Alors $A \times B \subset U \times V \subset \Omega$.

2. a) Nous allons montrer que le complémentaire est ouvert. Soit $(x, y) \in (X \times Y) - \mathcal{G}(f)$. On a alors $y \neq f(x)$.

Soient U, V deux ouverts disjoints de Y tels que $y \in U$ et $f(x) \in V$. Soit $W \subset X$ un voisinage ouvert de x tel que, $f(W) \subset V$. Un tel voisinage existe car f est continue.

Alors $W \times U$ est un ouvert de $X \times Y$. Il contient (x, y) mais n'a pas d'intersection avec $\mathcal{G}(f)$. En effet, pour tout $x \in X$, si $x \in W$, alors $f(x) \in V$ donc $f(x) \notin U$ et $(x, f(x)) \notin W \times U$.

b) Supposons que f n'est pas continue. Soient $x_0 \in X$ et V un voisinage ouvert de $f(x_0)$ tel qu'il n'existe pas un voisinage U de x_0 pour lequel $f(U) \subset V$.

Soit $P = \{\overline{f(U) - V} \text{ tq } U \subset X \text{ est un voisinage ouvert de } x_0\}.$

Si $U_1, ..., U_n$ sont un nombre fini de voisinages ouverts de $x_0, \bigcap_{k \le n} \overline{f(U_k) - V}$ est un ensemble non-vide (car il contient $f(U_1 \cap ... \cap U_n) - V$ qui est non-vide par hypothèse).

Puisque Y-V est compact (c'est un fermé de Y), cela implique que $\bigcap_{S\in P} S\neq\emptyset$. Soit y_0 un point dans cet ensemble. Aucun voisinage de (x_0,y_0) dans $X\times Y$ n'est disjoint de $\mathcal{G}(f)$ (en effet, si $(x_0,y_0)\in U\times W$ avec U,W ouverts, $y_0\in\overline{f(U)-V}$ par définition de y_0 donc $W\cap f(U)\neq\emptyset$). Pourtant, $(x_0,y_0)\notin\mathcal{G}(f)$ (car $y_0\notin V$ donc $y_0\neq f(x_0)$). Donc $\mathcal{G}(f)$ n'est pas fermé.

- c) Soit $f:[0;1] \to \mathbb{R}$ la fonction telle que f(0)=0 et f(x)=1/x si $x\neq 0$. Cette fonction n'est pas continue mais son graphe est fermé.
- 3. Si X est compact, toute fonction continue de X dans \mathbb{R} a pour image un compact de \mathbb{R} donc un ensemble borné, c'est-à-dire que la fonction est bornée.

Suppons maintenant que X n'est pas compact. Puisque X est un ensemble métrique, cela signifie qu'il existe une suite $(u_n)_{n\in\mathbb{N}}$ sans valeur d'adhérence. On peut supposer que tous les u_n sont distincts les uns des autres. Alors $F = \{u_n\}_{n\in\mathbb{N}}$ est fermé dans X.

Soit $f: F \to \mathbb{R}$ la fonction telle que $f(u_n) = n$. C'est une fonction continue. Puisque X est normal (comme tous les espaces métriques), il a la propriété de Tietze donc f peut se prolonger en une fonction continue $g: X \to \mathbb{R}$, qui n'est pas bornée car f ne l'est pas.

Exercice 2

1. Cet ensemble n'est pas complet.

Soit $f:[0;1] \to \mathbb{R}$ une fonction continue quelconque. D'après le théorème de Weierstrass, il existe une suite $(P_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{P} convergeant uniformément vers f.

Cette suite est de Cauchy dans \mathcal{P} mais n'admet pas de limite dans \mathcal{P} si f n'est pas une fonction polynomiale.

L'ensemble $\mathcal{C}^0([0;1],\mathbb{R})$ est un complété de \mathcal{P} . En effet, c'est un espace complet. L'inclusion de \mathcal{P} dans $\mathcal{C}^0([0;1],\mathbb{R})$ est une isométrie dont l'image est dense (d'après le théorème de Weierstrass).

2. Cet ensemble est complet. En effet, soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans E_0 . C'est aussi une suite de Cauchy dans $C_b(\mathbb{R},\mathbb{R})$; elle converge donc vers une fonction g continue et bornée (puisque $C_b(\mathbb{R},\mathbb{R})$ est complet).

Il faut montrer que g tend vers 0 en $+\infty$ et $-\infty$.

Soit $\epsilon > 0$. Puisque $f_n \to g$ uniformément, il existe n tel que $||f_n - g||_{\infty} < \epsilon/2$. Soit un tel n. Puisque $f_n(x) \to 0$ quand $x \to \pm \infty$, il existe M > 0 tel que, si $|x| \ge M$, alors $|f_n(x)| \le \epsilon/2$. Pour tout x tel que $|x| \ge M$, $|g(x)| \le |f_n(x)| + ||f_n - g||_{\infty} \le \epsilon$.

3. Cet ensemble n'est pas complet.

Soit $\phi : \mathbb{R} \to [0; 1]$ une fonction continue telle que $\phi(x) = 0$ si $|x| \ge 2$ et $\phi(x) = 1$ si $|x| \le 1$.

Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue admettant 0 pour limite en $+\infty$ et $-\infty$.

Pour tout $n \in \mathbb{N}^*$, notons $f_n(x) = g(x).\phi(x/n)$. C'est une fonction continue et à support compact (car $f_n(x) = 0$ si $|x| \ge 2n$).

Pour tout n, $||f_n - g||_{\infty} = \sup_{x \in \mathbb{R}} |g(x)||1 - \phi(x/n)| \le \sup_{|x| \ge n} |g(x)|$. Puisque $g(x) \to 0$ quand $x \to \pm \infty$,

 $||f_n - g||_{\infty} \to 0$ quand $n \to 0$.

La suite (f_n) est de Cauchy dans E mais ne converge pas dans E si g n'est pas à support compact.

Le complété de E est l'ensemble E_0 des fonctions continues de \mathbb{R} dans \mathbb{R} qui tendent vers 0 en $\pm \infty$. En effet, l'injection de E dans E_0 est une isométrie et, d'après le raisonnement qu'on vient de faire, E est dense dans E_0 .

De plus, E_0 est complet d'après la question précédente.

Exercice 3

- 1. E est compact par le théorème de Tychonov.
- 2. F est un compact. Pour le démontrer, il suffit de démontrer que F est un fermé de E (qui est compact d'après la question précédente).

Pour tous $x, y \in [0; 1]$ tels que $x \neq y$, posons $F_{x,y} = \{f \in E \text{ tq } |f(x) - f(y)| \leq |x - y|\}$. Cet ensemble est un fermé de E. En effet, l'application $\phi_{x,y} : f \in E \to f(x) - f(y)$ est continue pour la topologie produit (car c'est une différence de fonctions continues) donc $F_{x,y} = \phi_{x,y}^{-1}([-|x-y|;|x-y|])$ est un fermé de E.

Puisque $F = \bigcap_{x \neq y} F_{x,y}$, F est un fermé.

3. G n'est pas compact.

Définissons, pour tout $n \in \mathbb{N}^*$, la fonction f_n telle que :

$$f_n(x) = \max(0, 1 - nx) \quad \forall x \in \mathbb{R}$$

La suite $(f_n)_{n\in\mathbb{N}}$ converge dans E vers la fonction g qui vaut 1 en 0 et 0 partout ailleurs. Elle a donc une unique valeur d'adhérence dans g, qui est E. Puisque $g \notin G$, elle n'a pas de valeur d'adhérence dans G donc G n'est pas compact (dans un compact, toute suite a au moins une valeur d'adhérence).

Exercice 4

1. Notons $\pi_f: E_X \to [0;1]$ la projection sur la f-ième coordonnée.

On sait que $\phi: X \to E_X$ est continue si et seulement si, pour toute $f \in \mathcal{F}_X$, l'application $\pi_f \circ \phi: X \to [0; 1]$ est continue.

Pour toute $f \in \mathcal{F}_X$, $\pi_f \circ \phi(x) = f(x)$, qui est une application continue puisque f est continue.

2. a) Pour tous $x, y \in X$ tels que $x \neq y$, il existe $f: X \to [0; 1]$ tel que f(x) = 0 et f(y) = 1 (puisqu'un espace normal possède la propriété d'Urysohn et puisque, comme l'espace est séparé, $\{x\}$ et $\{y\}$ sont fermés).

Pour cette function f, $\pi_f(\phi(x)) = 0 \neq 1 = \pi_f(\phi(y))$ donc $\phi(x) \neq \phi(y)$.

b) Soit $U \subset X$ un ouvert. Montrons que $\phi(U)$ est ouvert dans $\phi(X)$.

Soit $x \in U$ quelconque. Il faut montrer que $\phi(U)$ contient un voisinage ouvert de $\phi(x)$.

Soit $f: X \to [0; 1]$ une fonction continue qui vaut 1 sur X - U et 0 en x (une telle fonction existe car X est normal et $\{x\}, X - U$ sont deux fermés disjoints).

Posons $V = \pi_f^{-1}([0;1])$. C'est un ouvert de E_X .

L'ensemble $\phi(X) \cap V$ est donc un ouvert de $\phi(X)$. Il contient $\phi(x)$ car $\pi_f(\phi(x)) = f(x) = 0$. De plus, il est inclus dans $\phi(U)$. En effet, si $\phi(y) \in V$, $f(y) = \pi_f(\phi(y)) \neq 1$ donc $y \notin X - U$, par définition de f. Donc $y \in U$ et $\phi(y) \in \phi(U)$.

- c) L'application $\phi: X \to \phi(X)$ est continue et bijective. De plus, elle est ouverte. C'est donc un homéomorphisme.
- 3. L'ensemble E_X est compact, par le théorème de Tychonov. Puisque Y_X est fermé dans E_X , cet ensemble est aussi compact.

Un ensemble est toujours dense dans son adhérence.

4. a) Notons toujours, pour toute $f \in \mathcal{F}_X$, $\pi_f : E_X \to [0;1]$ la projection sur la f-ième coordonnée (qui est continue d'après la définition de la topologie produit).

L'application h est continue puisque, pour tout $i \in I$, $p_i \circ h$ est continue (c'est la restriction à Y_X de l'application $\pi_{p_i \circ g}$, qui est continue).

De plus, pour tout $x \in X$, $h \circ \phi(x) = h(\{f(x)\}_{f \in \mathcal{F}_X}) = \{p_i \circ g(x)\}_{i \in I} = g(x)$.

b) On pose $Z' = [0;1]^I$. Puisque $g: X \to Z$ est continue et $Z \subset Z'$, on peut étendre g en une fonction $g': X \to Z'$, qui est aussi continue.

Soit $h': Y_X \to Z'$ continue telle que $h' \circ \phi = g'$. Elle existe d'après la question précédente.

Pour tout $y \in \phi(X)$, $h'(y) \in Z$. En effet, $y = \phi(x)$ pour un certain x et $h'(y) = h'(\phi(x)) = g'(x) = g(x)$. Donc, puisque h' est continue, $h'(Y_X) = h'(\overline{\phi(X)}) \subset \overline{h'(\phi(X))} \subset \overline{Z} = Z$. En effet, comme Z est un sous-ensemble compact de Z', il est fermé.

On peut donc restreindre h' en une application continue $h: Y_X \to Z$. Puisque $h' \circ \phi = g'$, $h \circ \phi = g$.

c) Un compact Z est toujours normal. Il est donc homéomorphe à un certain sous-ensemble Z' de $[0;1]^I$, d'après la question 2. Ce Z' est compact.

Soit $G: Z \to Z'$ un homéomorphisme.

Puique $G \circ g$ est une fonction continue, il existe, d'après la question précédente, $h': Y_X \to Z'$ continue telle que $h' \circ \phi = G \circ g$. ALors $G^{-1} \circ h': Y_X \to Z$ est continue et vérifie $h \circ \phi = g$.

d) Supposons que h et h' sont deux fonctions continues de Y_X vers Z telles que $g = h \circ \phi = h' \circ \phi$. Pour tout $x \in X$, $h(\phi(x)) = h'(\phi(x))$ donc h = h' sur $\phi(X)$. L'ensemble $\{y \in Y_X \text{ tq } h(y) = h'(y)\}$ est un fermé (car h et h' sont continues et Z est séparé (car compact)). Il contient $\phi(X)$ donc il est égal à Y_X , puisque $\phi(X)$ est dense dans Y_X .

Les fonctions h et h' sont donc égales.

Exercice 5

1. a) Soit \mathcal{F} l'ensemble des fermés non-vides de K qui sont stables par f.

On munit \mathcal{F} de l'inclusion, qui est un ordre partiel. Montrons que toute partie \mathcal{P} totalement ordonnée de \mathcal{F} admet un minorant dans \mathcal{F} . Soit \mathcal{P} une telle partie.

Soit $G = \bigcap_{F \in \mathcal{P}} F$. C'est un fermé (car c'est une intersection de fermés). L'ensemble G est stable par f (car tous les éléments de \mathcal{P} le sont). Il est non-vide. En effet, s'il était vide, il existerait un nombre fini d'éléments de \mathcal{P} , $F_1, ..., F_n$, dont l'intersection serait vide (car K est compact). C'est impossible car, $F_1, ..., F_n$ admettant un plus petit élément pour l'inclusion (puisque \mathcal{P} est totalement ordonnée), ce plus petit élément (qui est non-vide) devrait être inclus dans $F_1 \cap ... \cap F_n = \emptyset$.

On peut donc appliquer le lemme de Zorn à l'ensemble \mathcal{F} : cet ensemble admet un élément minimal. Notons F un tel élément. C'est bien un fermé non-vide de K stable par f et minimal pour l'inclusion.

b) Soit $x \in F$. Pour tout k, F_k est un fermé non-vide, stable par f et inclus dans F (puisque $x \in F$). Puisque F est minimal pour l'inclusion, $F_k = F$.

Donc $x \in \bigcap_k F_k = F$, ce qui est équivalent au fait que x est récurrent.

2. a) L'ensemble des points non-errants est fermé. En effet, son complémentaire est ouvert : si $x \in K - NE(f)$, il existe U un voisinage de x tel que, pour tout $n \in \mathbb{N}^*$, $f^n(U) \cap U = \emptyset$. Alors $U \subset (K - NE(f))$.

De plus, $R(f) \subset NE(f)$. En effet, si $x \in R(f)$, il existe $(\phi(n))_{n \in \mathbb{N}}$ une suite strictement croissante telle que $f^{\phi(n)}(x) \to x$. Si $U \subset K$ est un voisinage de x, il existe n tel que $f^{\phi(n)}(x) \in U$ et alors $f^{\phi(n)}(U) \cap U \neq \emptyset$.

Donc $R(f) \subset NE(f)$.

b) Soit K = [0; 2]. Soit $f : K \to K$ telle que f(x) = 1 - 4|x - 1/4| si $x \in [0; 1/2]$, f(x) = 0 si $x \in [1/2; 1]$ et f(x) = x - 1 si $x \in [1; 2]$.

Aucun point de [1/2; 2] n'est récurrent. En effet :

- si $x \in [1/2; 1]$, $f^n(x) = 0$ pour tout $n \ge 1$.
- si x > 1, comme $f^n(x) \le 1$ pour tout $n \ge 1$, x n'est pas récurrent.

En revanche, 1 est non-errant. Démontrons-le. On peut montrer par récurrence que, pour tout $n \ge 1$, $f^n(x) = 1 - 4^n |x - 1 - 1/4^n|$ si $x \in [1; 1 + 2/4^n]$. En particulier, $f^n(1 + 1/4^n) = 1$.

Pour tout voisinage U de 1, il existe donc $x \in U$ tel que, pour un certain n, $f^n(x) = 1$, ce qui impliquer $U \cap f^n(U) \neq \emptyset$.

Exercice 6

- 1. Si elle l'était, la boule unité le serait aussi. En effet, $(r, u) \in [0; 1] \cap \mathcal{S} \to ru \in \overline{B}(0, 1)$ est une application continue dont l'image est $\overline{B}(0, 1)$. Si \mathcal{S} était compacte, cela impliquerait que $\overline{B}(0, 1)$ serait l'image d'un compact par une application continue, donc un ensemble compact, ce qui n'est pas le cas.
- 2. Soit $\phi: K \to \mathcal{S}$ l'application continue telle que :

$$\phi(x) = \frac{x - x_0}{||x - x_0||}$$

L'image de K par ϕ est un ensemble compact. Puisque \mathcal{S} n'est pas compacte, ϕ n'est pas surjective. Soit $y \in \mathcal{S}$ tel que $y \notin \phi(K)$.

Alors $(x_0 + \mathbb{R}^+ y) \cap K = \emptyset$.

3. Soit M > 0 tel que, pour tout $x \in K$, ||x|| < M. Un tel M existe puisque K est bornée. Notons \mathcal{S}_M la sphère de centre 0 et de rayon M. On peut vérifier que cet ensemble est connexe par arcs.

Soit $x_0 \in E - K$ quelconque. Montrons qu'il existe un chemin dans E - K reliant x_0 à S_M . Cela impliquera qu'il existe un chemin entre deux points quelconques de E - K.

Premier cas: $||x_0|| \ge M$. Alors $\phi : t \in [0;1] \to \left(\frac{M}{||x_0||}t + (1-t)\right)x_0$ convient. En effet, $||\phi(t)|| \ge M$ pour tout t donc $\phi(t) \notin K$ pour tout $t \in [0;1]$.

Deuxième cas : $||x_0|| < M$. D'après la question précédente, il existe y tel que $x_0 + \mathbb{R}^+ y \cap K = \emptyset$. Soit $\lambda > 0$ tel que $x_0 + \lambda y = M$. L'application $\phi : t \in [0;1] \to x_0 + (1-t)\lambda y$ convient.