Feuille d'exercices n^o5

Exercice 1: questions diverses

- 1. a) Montrer que \mathbb{R} est \mathbb{R}^2 ne sont pas homéomorphes.
- b) [Plus difficile] Montrer qu'il n'existe pas de bijection continue $\phi: \mathbb{R} \to \mathbb{R}^2$.
- 2. Les propriétés suivantes sont-elles vraies?
- a) Un produit d'espaces connexes est connexe.
- b) Un produit d'espaces connexes par arcs est connexe par arcs.
- c) Un produit d'espaces localement connexes est localement connexe.
- 3. Soit (X, d) un espace de longueur. Montrer que X est localement connexe par arcs.
- 4. Soit X un espace topologique. On considère les deux relations d'équivalences suivantes :
 - (i) $\forall x, y \in X, x \mathcal{R} y$ si x et y appartiennent à la même composante connexe.
 - (ii) $\forall x, y \in X, xSy$ si, pour toute function $f: X \to \{0, 1\}$ continue, f(x) = f(y).
- a) Montrer que ces définitions sont équivalentes lorsque X est localement connexe.
- b) Soit $E \subset \mathbb{R}^2$ l'ensemble suivant :

$$E = \{(0,0)\} \cup \{(0,1)\} \cup \left\{ \left(\frac{1}{n}, y\right) \text{ tq } n \in \mathbb{N}^*, y \in \mathbb{R} \right\}$$

Déterminer la classe d'équivalence de (0,0) pour les relations \mathcal{R} et \mathcal{S} .

Exercice 2 : connexité de la topologie cofinie

Soit X un ensemble infini. On apelle topologie cofinie sur X la topologie dont les ouverts sont l'ensemble vide et les ensembles de complémentaire fini.

- 1. Montrer que X est connexe et localement connexe.
- 2. Dans cette question, on va montrer que, si $\{F_n\}_{n\in\mathbb{N}}$ est une partition disjointe de [0;1] en fermés, alors tous les F_n sont vides, sauf l'un qui vaut [0;1].

Posons $G = \bigcup_{n} \partial F_n$, où ∂F_n désigne le bord de F_n dans [0;1].

- a) Montrer que G est fermé dans [0;1].
- b) Montrer que, si G est non-vide, il existe $a < b \in \mathbb{R}$ tels que $]a; b[\cap G$ est non-vide et inclus dans l'un des F_n .
- c) Montrer qu'il est impossible que G soit non-vide. Conclure.
- d) Montrer que, si X est dénombrable, X n'est pas connexe par arcs.
- 3. On suppose ici que X n'est pas dénombrable. On suppose de plus qu'il existe une injection de \mathbb{R} dans X (c'est toujours le cas si on admet l'hypothèse du continu). Montrer que X est connexe par arcs.

Exercice 3: retour de la distance de Hausdorff

Soit (X, d) un espace métrique compact. Soit \mathcal{F} l'ensemble des parties fermées non vides de X. Pour toute $A \in \mathcal{F}$, on pose :

$$\phi_A: X \to \mathbb{R}$$
$$x \to d(x, A)$$

Pour toutes $A, B \in \mathcal{F}$, on note $\delta(A, B) = ||\phi_A - \phi_B||_{\infty}$. On a vu au cours du premier TD que δ était une distance sur \mathcal{F} , appelée distance de Hausdorff.

- 1. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{F} telle que $(\phi_{A_n})_{n\in\mathbb{N}}$ converge uniformément sur X vers une fonction $f: X \to \mathbb{R}$ continue, lorsque $n \to +\infty$. Soit $A = f^{-1}(\{0\})$.
- a) Soit $x \in X$. Montrer que, pour tout $n \in \mathbb{N}$, il existe $a_n \in A_n$ tel que $\phi_{A_n}(x) = d(x, a_n)$. En déduire qu'il existe $a \in A$ tel que d(x, a) = f(x). (Cela montre en particulier que $A \neq \emptyset$.)
- b) Montrer que f est 1-lipschitzienne et en déduire que $f \leq \phi_A$.
- c) Montrer que $f = \phi_A$.
- 2. À l'aide du théorème d'Ascoli, montrer que (\mathcal{F}, δ) est compact.

Exercice 4 : théorème de Peano

Soient $n \in \mathbb{N}^*$ et $x_0 \in \mathbb{R}^n$. On note |.| la norme euclidienne sur \mathbb{R}^n .

Soient $\eta, R > 0$ et $U = [0; \eta] \times \overline{B}(x_0, R) \subset \mathbb{R} \times \mathbb{R}^n$. Soit $f : U \to \mathbb{R}^n$ une application continue. Soit M > 0 une borne de |f| sur U.

On va démontrer qu'il existe $\epsilon > 0$ tel que le problème

$$\frac{dX}{dt} = f(t, X(t)) \qquad X(0) = x_0$$

admet une solution $X \in \mathcal{C}^1([0; \epsilon], \mathbb{R}^n)$.

- 1. Soit $\epsilon = \min(\eta, R/M)$. Montrer que, pour tout $\delta > 0$, il existe une fonction continue $X_{\delta} : [0; \epsilon] \to \mathbb{R}^n$, de classe \mathcal{C}^1 par morceaux telle que :
- $-X_{\delta}(0)=x_0$
- $-\forall t \in [0; \epsilon]$, si X_{δ} est dérivable en t, alors $\left|\frac{dX_{\delta}}{dt}(t) f(t, X_{\delta}(t))\right| \leq \delta$.

 $[Indication: Utiliser\ la\ «\ m\'ethode\ d'Euler\ ».]$

- 2. Montrer qu'il existe une suite $(\delta_n)_{n\in\mathbb{N}}$ convergeant vers 0 d'éléments de \mathbb{R}_+^* telle que $(X_{\delta_n})_{n\in\mathbb{N}}$ converge uniformément dans $\mathcal{C}^0([0;\epsilon],\mathbb{R}^n)$ vers une fonction $X:[0;\epsilon]\to\mathbb{R}^n$.
- 3. Montrer que X est une solution de l'équation.

Exercice 5 : partitions de l'unité

Soit X un espace topologique compact.

- 1. Montrer que si $\Omega_1, ..., \Omega_n$ sont des ouverts de X dont l'union vaut X, alors il existe $V_1, ..., V_n$ des ouverts de X dont l'union vaut X tels que, pour tout $k, \overline{V}_k \subset \Omega_k$.
- 2. Soit $U_1,...,U_n$ une famille finie d'ouverts de X telle que $\bigcup U_k = X$.

Montrer qu'il existe $\phi_1, ..., \phi_n : X \to \mathbb{R}^+$ des fonctions continues telles que :

(i)
$$\forall k \leq n, \ \overline{\{x \in X \ \text{tq} \ \phi_k(x) \neq 0\}} \subset U_k$$

(ii)
$$\forall x \in X$$
, $\sum_{k \le n} \phi_k(x) = 1$

On appelle $\phi_1, ..., \phi_n$ une partition de l'unité subordonnée à $\{U_k\}_{k \le n}$.

[Remarque : la même propriété est vraie dans le cadre plus général des espaces paracompacts, lorsque le recouvrement ouvert n'est plus fini mais seulement localement fini. Pouvez-vous la démontrer? La définition et une propriété importante des espaces paracompacts se trouvent dans le TD3.]

Exercice 6 : un théorème de plongement

Soit X un espace topologique.

On dit que $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ est un recouvrement ouvert de X si c'est une famille d'ouverts de X telle que $\bigcup_{{\alpha} \in A} U_{\alpha} = X$.

On dit que \mathcal{U} est d'ordre fini s'il existe $m \in \mathbb{N}$ tel que, pour tout $x \in X$, il existe au plus m valeurs différentes de α pour lesquelles $x \in U_{\alpha}$. On appelle ordre de \mathcal{U} la plus petite valeur de m pour laquelle cette propriété est vraie.

On dit qu'un recouvrement ouvert $\mathcal{V} = \{V_{\beta}\}_{\beta \in B}$ raffine le recouvrement ouvert \mathcal{U} si, pour tout $\beta \in B$, il existe $\alpha \in A$ tel que $V_{\beta} \subset U_{\alpha}$.

On dit que X est de dimension topologique finie s'il existe $m \in \mathbb{N}$ tel que tout recouvrement ouvert de X se raffine en un recouvrement d'ordre au plus m+1. On appelle dimension topologique de X le plus petit ouvert m pour lequel cette propriété est vraie.

On suppose maintenant que (X, d) est un espace métrique compact d'ordre fini m. Nous allons montrer qu'il existe un plongement de X dans \mathbb{R}^{2m+1} , c'est-à-dire une application $\phi: X \to \mathbb{R}^{2m+1}$ continue et injective qui réalise un homéomorphisme de X sur $\phi(X)$.

1. Pour toute fonction $f: X \to \mathbb{R}^{2m+1}$, on pose $\Delta(f) = \sup \{ \operatorname{diam} (f^{-1}(\{z\})) \}_{z \in f(X)}$. Pour tout $\epsilon > 0$, soit :

$$U_{\epsilon} = \{ f \in \mathcal{C}^0(X, \mathbb{R}^{2m+1}) \text{ tq } \Delta(f) < \epsilon \}$$

On suppose temporairement que $\bigcap_{n\in\mathbb{N}^*} U_{1/n} \neq \emptyset$. Montrer la propriété demandée.

- 2. Montrer que, pour tout $\epsilon > 0$, U_{ϵ} est un ouvert de $\mathcal{C}^0(X, \mathbb{R}^{2m+1})$ muni de la norme uniforme.
- 3. Soit $\epsilon > 0$ fixé. Nous allons montrer que U_{ϵ} est dense dans $\mathcal{C}^0(X, \mathbb{R}^{2m+1})$.

Soient $f \in \mathcal{C}^0(X, \mathbb{R}^{2m+1})$ et $\delta > 0$ quelconques. On va construire $g \in U_{\epsilon}$ tel que $||f - g||_{\infty} < \delta$.

- a) Montrer qu'il existe $\{U_1,...,U_n\}$ un recouvrement ouvert fini de X tel que :
 - (i) diam $U_i < \epsilon/2$ pour tout $i \le n$
 - (ii) diam $f(U_i) < \delta/2$ pour tout $i \le n$
 - (iii) $\{U_1, ..., U_n\}$ est d'ordre au plus m+1
- b) Fixons, pour tout $i \leq n$, un point $x_i \in U_i$. Montrer qu'il existe $z_1, ..., z_n \in \mathbb{R}^{2m+1}$ un ensemble vérifiant les deux propriétés suivantes :
 - (i) $||f(x_i) z_i|| < \delta/2$
- (ii) Pour tous $i_1, ..., i_{2m+2} \le n$, la famille $((z_{i_1}, 1), ..., (z_{i_{2m+2}}, 1))$ est libre dans \mathbb{R}^{2m+2} . (La notation $(z_k, 1)$ désigne le vecteur z_k , auquel on ajouté une dernière coordonnée égale à 1 pour en faire un élément de \mathbb{R}^{2m+2} .)

c) Soit $\{\phi_1,...,\phi_n\}$ une partition de l'unité subordonnée à $\{U_1,...,U_n\}$. On pose, pour tout $x\in X$:

$$g(x) = \sum_{i \le n} \phi_i(x) z_i$$

Montrer que $||f - g||_{\infty} < \delta$.

- d) Montrer que $\Delta(g) < \epsilon$.
- 4. Conclure.

Exercice 7 : deux propriétés des espaces de longueur

1. Soit (X, d) un espace métrique complet. Montrer qu'il s'agit d'un espace de longueur si et seulement si, pour tous $x, y \in X$ et tout $\epsilon > 0$, il existe $z \in X$ tel que :

$$d(x,z) < \frac{d(x,y)}{2} + \epsilon$$
 et $d(z,y) < \frac{d(x,y)}{2} + \epsilon$

2. Soit (X, d) un espace métrique.

Soit, pour tout $n \in \mathbb{N}$, $\gamma_n : [0;1] \to X$ une fonction continue telle que γ_n est une courbe de longueur minimale entre $\gamma_n(0)$ et $\gamma_n(1)$.

On suppose que $(\gamma_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction continue $\gamma_\infty:[0;1]\to X$.

- a) Montrer que, si (X, d) est un espace de longueur, alors γ_{∞} est une courbe de longueur minimale entre $\gamma_{\infty}(0)$ et $\gamma_{\infty}(1)$.
- b) Donner un contre-exemple pour le cas où (X, d) n'est pas un espace de longueur.