Feuille d'exercices n°11

Exercice 1 : quelques exemples d'utilisation de Cauchy-Lipschitz

1. Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 telle que $|f(t) - \cos(t)| < 1$ (pour tout $t \in \mathbb{R}$). On considère le système différentiel

(S)
$$\begin{cases} x'(t) = f(x(t)) \\ x(0) = x_0 \end{cases}$$

- a) Montrer que (S) admet une unique solution globale (c'est à dire définie sur \mathbb{R} entier).
- b) Montrer que f admet un zéro t_k sur chaque intervalle $[2k\pi, (2k+1)\pi]$ $(k \in \mathbb{Z})$.
- c) Montrer que, quel que soit x_0 , la solution x de (S) est bornée.
- 2. Soient $f, g : [0, 1] \times \mathbb{R} \to \mathbb{R}$ deux fonctions continues vérifiant f(t, x) < g(t, x) pour tout $(t, x) \in [0, 1] \times \mathbb{R}$. On fixe $t_0 \in [0, 1[$ et $a \in \mathbb{R}$ et on considère les systèmes

$$(S_f)$$

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = a \end{cases}$$
 et (S_g)
$$\begin{cases} y'(t) = g(t, y(t)) \\ y(t_0) = a \end{cases}$$

- a) Si x, y sont des solutions (de classe C^1) de (S_f) et (S_g) , définies sur tout $[t_0; 1]$, montrer qu'il existe $\delta > 0$ tel que x(t) < y(t) pour tout $t \in]t_0; t_0 + \delta[$.
- b) En déduire que $x(t) \leq y(t)$ pour tout $t \in [t_0; 1]$.
- 3. Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 telle que $\lim_{\|x\| \to \infty} f(x) = +\infty$. On lui associe le champ de vecteurs $X(x) = -\nabla f$ et on considère le système différentiel associé

$$(S_X) \qquad \begin{cases} x'(t) = X(x(t)) \\ x(t_0) = x_0 \end{cases}$$

- a) Montrer que le système (S_X) admet une unique solution maximale, définie sur un intervalle de la forme $]a, +\infty[$, avec $a \in \mathbb{R} \cup \{-\infty\}$.
- b) En considérant la fonction $f(x) = x^4/4$ pour n = 1, montrer que a n'est pas nécessairement égal à $-\infty$.

Exercice 2

Soit $n \in \mathbb{N}^*$. Soient $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ et $b : \mathbb{R} \to \mathbb{R}^n$ deux applications continues. On considère l'équation suivante :

$$\dot{u} = A(t)u + b(t)$$

On suppose que A et b sont périodiques, de même période.

Montrer que l'équation admet une solution périodique si et seulement si elle admet une solution bornée sur \mathbb{R}^+ .

[Indication: utiliser la formule de Duhamel.]

Exercice 3 : une étude de systèmes différentiels

1. On considère le système suivant :

$$\begin{cases} \dot{x} = 2y + 2x^2 \\ \dot{y} = -2x - 4x^3 - 4xy \end{cases}$$

- a) Vérifier que $E(x,y) = x^2 + y^2 + x^4 + 2x^2y$ est une intégrale première (c'est-à-dire que $t \to E(x(t), y(t))$ est une fonction constante si (x(t), y(t)) est une solution du système).
- $\lim_{||(x,y)|| \to +\infty} E(x,y)$ et en déduire que les solutions sont globales.
- c) Trouver toutes les solutions du système.

Indication: trouver une (quasi-)équation différentielle pour x, ne faisant pas intervenir y.

2. On perturbe le système (a > 0):

$$\begin{cases} \dot{x} = 2y + 2x^2 - ax \\ \dot{y} = -2x - 4x^3 - 4xy + 2ax^2 \end{cases}$$

Montrer que ce système perturbé admet des solutions globales.

[Indication : considérer à nouveau E(x(t), y(t)); pour $t \to -\infty$, utiliser le lemme de Gronwall.]

Exercice 4: distributions et solution fondamentale du Laplacien

Pour tout $m \in \mathbb{N}$ et toutes fonctions $f, g : \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^{∞} à support compact, on définit :

$$||f - g||_m = \sup_{n_1 + n_2 \le m} \sup_{x \in \mathbb{R}^2} \left| \frac{\partial^{n_1 + n_2} f}{\partial^{n_1} x_1 \partial^{n_2} x_2} (x) - \frac{\partial^{n_1 + n_2} g}{\partial^{n_1} x_1 \partial^{n_2} x_2} (x) \right|$$

Étant donné un compact $K\subset\mathbb{R}^2$, on note \mathcal{C}_K^∞ l'ensemble des fonctions \mathcal{C}^∞ de \mathbb{R}^2 vers \mathbb{R} dont le support est compact et inclus dans K.

Pour tout $m \in \mathbb{N}$, toute $g \in \mathcal{C}_K^{\infty}$ et tout $\epsilon > 0$, on note $B_{K,m}(g,\epsilon) = \{ f \in \mathcal{C}_K^{\infty} \text{ tq } ||f-g||_m < \epsilon \}.$ On munit \mathcal{C}_K^{∞} de la topologie engendrée par $\{B_{K,m}(g,\epsilon)\}_{m,g,\epsilon}$.

- 1. a) Montrer que $\{B_{K,m}(g,\epsilon)\}_{m,g,\epsilon}$ forme une base de la topologie de \mathcal{C}_K^{∞} . b) Montrer que $+: \mathcal{C}_K^{\infty} \times \mathcal{C}_K^{\infty} \to \mathcal{C}_K^{\infty}$ et $\times: \mathcal{C}_K^{\infty} \times \mathbb{R} \to \mathcal{C}_K^{\infty}$ sont des applications continues.
- c) Soit $\phi: \mathcal{C}_K^{\infty} \to \mathbb{R}$ une forme linéaire. Montrer que ϕ est continue si et seulement si il existe $m \in \mathbb{N}, C > 0$ tels que, pour toute $f \in \mathcal{C}_K^{\infty}$:

$$|\phi(f)| \le C||f||_m$$

2. On note \mathcal{C}_c^{∞} l'ensemble des fonctions \mathcal{C}^{∞} de \mathbb{R}^2 dans \mathbb{R} à support compact.

Pour tout compact K, on continue de noter \mathcal{C}_K^∞ l'ensemble des fonctions de classe \mathcal{C}^∞ à support dans K, vu comme un sous-espace vectoriel de \mathcal{C}_c^{∞} .

Soit $\mathcal V$ l'ensemble des sous-ensembles V de $\mathcal C_c^\infty$ vérifiant les propriétés suivantes :

- 1. V est convexe et contient 0.
- $2. \ \forall x \in V, -x \in V$
- 3. pour tout compact $K, V \cap \mathcal{C}_K^{\infty}$ est un ouvert de \mathcal{C}_K^{∞} (pour la topologie définie en 1.) Soit $\mathcal T$ l'ensemble des sous-ensembles Ω de $\mathcal C_c^\infty$ vérifiant la propriété suivante :

$$\forall f \in \Omega, \exists V \in \mathcal{V} \text{ tq } f + V \subset \Omega$$

- a) Montrer que \mathcal{T} est une topologie.
- b) Montrer que $\mathcal{V} \subset \mathcal{T}$.
- c) Montrer que, pour cette topologie, + et \times sont des applications continues.
- d) Montrer que $f \in \mathcal{C}_c^{\infty} \to \frac{\partial f}{\partial x_i} \in \mathcal{C}_c^{\infty}$ est une application continue pour i = 1, 2. e) Soit $L : \mathcal{C}_c^{\infty} \to \mathbb{R}$ une forme linéaire. Montrer que L est continue si et seulement si, pour tout compact K, il existe $m_K \in \mathbb{N}$ et $C_K > 0$ tels que :

$$\forall f \in \mathcal{C}_K^{\infty}, \quad |\phi(f)| \le C_K ||f||_{m_K}$$

- 3. On appelle distribution une forme linéaire continue sur C_c^{∞} .
- a) On note δ_0 l'application telle que $\delta_0(f) = f(0)$. Montrer que δ_0 est une distribution.
- b) Soit $g:\mathbb{R}^2\to\mathbb{R}$ une fonction mesurable dont la restriction à tout compact est L^1 . On définit :

$$\begin{array}{ccc} \phi_g: & \mathcal{C}_c^{\infty} & \to & \mathbb{R} \\ & f & \to & \int_{\mathbb{R}^2} fg \end{array}$$

Montrer que ϕ_g est une distribution.

4. Pour toute $f \in \mathcal{C}_c^{\infty}$, on pose $\Delta f = \frac{\partial^2 f}{\partial^2 x_1} + \frac{\partial^2 f}{\partial^2 x_2}$. Pour toute distribution T, on définit ΔT par :

$$\forall f \in \mathcal{C}_c^{\infty}, \quad \Delta T(f) = T(\Delta f)$$

- a) Montrer que ΔT est une distribution.
- b) Montrer que si g est une fonction de classe \mathcal{C}^2 , alors $\Delta \phi_g = \phi_{\Delta g}$.
- 5. Soient f_1, f_2 deux fonctions \mathcal{C}^{∞} de \mathbb{R}^2 dans \mathbb{R} dont l'une au moins est à support compact. Montrer que, pour tout $\epsilon > 0$:

$$\int_{\mathbb{R}^2 - D_{\epsilon}} (\Delta f_1) f_2 - (\Delta f_2) f_1 = \int_{S_{\epsilon}} \left(f_1 \frac{\partial f_2}{\partial n} - f_2 \frac{\partial f_1}{\partial n} \right) d\sigma$$

Ici, D_{ϵ} désigne le disque centré en 0 de rayon ϵ et S_{ϵ} son bord. On définit, pour toute h:

$$\int_{S_{\epsilon}} h d\sigma = \epsilon \int_{0}^{2\pi} h(\epsilon \cos \theta, \epsilon \sin \theta) d\theta$$

La fonction $\frac{\partial f_i}{\partial n}$ est la dérivée normale de f_i par rapport à la normale à S_{ϵ} , c'est-à-dire :

$$\frac{\partial f_i}{\partial n}(\epsilon \cos \theta, \epsilon \sin \theta) = \cos \theta \frac{\partial f_i}{\partial x_1} + \sin \theta \frac{\partial f_i}{\partial x_2}$$

[Indication : on rappelle la formule de Stokes : pour $\phi \in \mathcal{C}_c^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ et pour $\Omega \subset \mathbb{R}^2$ un ouvert, $\int_{\Omega} \operatorname{div}(\phi) = \int_{\partial\Omega} \phi(x).n(x)d\sigma(x)$, où n(x) désigne le vecteur normal à $\partial\Omega$ en x, orienté vers l'extérieur de Ω .]

6. Soit, pour tout $x \in \mathbb{R}^2$:

$$f_0(x) = \frac{1}{2\pi} \log(||x||)$$

- a) Montrer que, sur $\mathbb{R}^2 \{0\}$, $\Delta f_0 = 0$.
- b) Montrer que $\Delta \phi_{f_0} = \delta_0$.

[Indication: utiliser la question 5.]

c) Soit $g \in L^1(\mathbb{R}^2)$ à support compact. Montrer que l'équation $\Delta T = \phi_g$ admet une solution dans l'espace des distributions.

[Indication : trouver un moyen de définir $T\star g$ pour toute distribution T et vérifier que $\Delta(T\star g)=(\Delta T)\star g$.]