Feuille d'exercices n^o9 Corrigé

Exercice 1

Soit $\eta_1, ..., \eta_n$ une suite de zéros et de uns. Notons k le nombre de uns qu'elle contient. On a :

$$P(X_1 = \eta_1, ..., X_n = \eta_n) = p^{n-k}(1-p)^k = p^n \left(\frac{1-p}{p}\right)^k$$

La suite $(\eta_1, ..., \eta_n)$ est ϵ -typique si :

$$H(X) - \epsilon \le -\frac{\log_2(P(X_1 = \eta_1, ..., X_n = \eta_n))}{n} \le H(X) + \epsilon$$

L'entropie de X vaut $H(X) = -p \log_2(p) - (1-p) \log_2(1-p)$. Puisque $\frac{\log_2(P(X_1=\eta_1,...,X_n=\eta_n))}{n} = \log_2(p) + \frac{k}{n} \log_2\left(\frac{1-p}{p}\right)$, la suite $(\eta_1,...,\eta_n)$ est ϵ -typique si et seulement si :

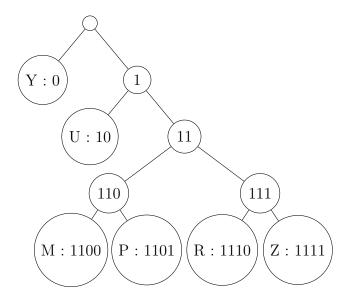
$$(1-p)\log_2\left(\frac{1-p}{p}\right) - \epsilon \le \frac{k}{n}\log_2\left(\frac{1-p}{p}\right) \le (1-p)\log_2\left(\frac{1-p}{p}\right) + \epsilon$$

$$\Leftrightarrow n\left((1-p) - \epsilon \left|\log_2\left(\frac{1-p}{p}\right)\right|^{-1}\right) \le k \le n\left((1-p) + \epsilon \left|\log_2\left(\frac{1-p}{p}\right)\right|^{-1}\right)$$

En effet, on a pu diviser par $\log_2\left(\frac{1-p}{p}\right)$ car, comme $p \neq 1/2$, ce nombre est non-nul. Le nombre de uns dans une suite ϵ -typique est donc de l'ordre de n(1-p).

Exercice 2

1. $H(X) = -\left(\frac{1}{16}\log_2\left(\frac{1}{16}\right) + \frac{1}{16}\log_2\left(\frac{1}{16}\right) + \frac{1}{16}\log_2\left(\frac{1}{16}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{16}\log_2\left(\frac{1}{16}\right)\right)$ donc H(X) = 2. 2. a)



b) Toutes les lettres de probabilité 1/16 sont codées par 4 bits, celle de probabilité 1/4 par 2 bits et celle de probabilité 1/2 par 1 bits. La longueur moyenne est donc :

$$\frac{1}{16}$$
.4.4 + $\frac{1}{4}$.2 + $\frac{1}{2}$.1 = 2 = $H(X)$

- 3. On procède par récurrence sur n. Pour n=0, c'est vrai. Supposons qu'on l'a montré jusqu'à n et montrons-le pour n+1.
 - Si $\epsilon_1 = 0$: par l'hypothèse de récurrence, il existe un mot m dont le code commence par $\epsilon_2...\epsilon_n$. Alors le code de Ym commence par $\epsilon_1...\epsilon_n$.
 - Si $\epsilon_1=1, \epsilon_2=0$: soit m un mot dont le code commence par $\epsilon_3...\epsilon_n$. Alors le code de Um commence par $\epsilon_1...\epsilon_n$.
 - Si $\epsilon_1 = \epsilon_2 = 1$: il existe une lettre l dont le code est $\epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4$. Soit m un mot dont le code commence par $\epsilon_5...\epsilon_n$. Alors le code de lm commence par $\epsilon_1...\epsilon_n$.
- 4. a) 0101100
- b) Si on change le premier bit, on obtient 1101100. Ceci est le code du mot PUY.

Exercice 3

1. On ordonne les éléments de \mathcal{E} par longueur de code croissante : $\pi(1)$ est l'élément de \mathcal{E} tel que $l(\phi(\pi(1)))$ est minimale, $\pi(2)$ est l'élément de \mathcal{E} tel que $l(\phi(\pi(2)))$ est la plus petite possible après $l(\phi(\pi(1)))$ etc.

Pour tout k, $l(\phi(\pi(k))) \ge [\log_2(k)]$. En effet, sinon, $l(\phi(\pi(k))) \le [\log_2(k)] - 1$ et, puisque $s \to l(\phi(\pi(s)))$ est croissante, on a, pour tout $s \in \{1, ..., k\}$:

$$l(\phi(\pi(s))) \le [\log_2(k)] - 1$$

Le nombre d'éléments de \mathcal{B} dont la longueur est inférieure ou égale à $[\log_2(k)] - 1$ est $2^{[\log_2(k)]} - 1$. Ce nombre est inférieur ou égal à $2^{\log_2(k)} - 1 = k - 1$. C'est absurde car $\phi(\pi(1)), ..., \phi(\pi(k))$ sont k éléments de \mathcal{B} distincts dont la longueur est inférieure ou égale à $[\log_2(k)] - 1$.

Ainsi:

$$\mathbb{E}(l(\phi(X))) = \sum_{k=1}^{n} P(X = \pi(k)) l(\phi(\pi(k)))$$

$$\geq \sum_{k=1}^{n} P(X = \pi(k)) [\log_2(k)]$$

2. D'après la question précédente, il suffit de montrer :

$$\sum_{k=1}^{n} P(X = \pi(k))[\log_2(k)] \ge H(X) - 1 - \log_2(1 + \ln(n))$$

$$= -\sum_{k=1}^{n} P(X = \pi(k))\log_2(P(X = \pi(k))) - 1 - \log_2(1 + \ln(n))$$

On a:

$$\begin{split} \sum_{k=1}^{n} & P(X = \pi(k))[\log_2(k)] \ge \sum_{k=1}^{n} P(X = \pi(k)) \left(\log_2(k) - 1\right) \\ &= \sum_{k=1}^{n} P(X = \pi(k)) \log_2(k) - \sum_{k=1}^{n} P(X = \pi(k)) \\ &= \sum_{k=1}^{n} P(X = \pi(k)) \log_2(k) - 1 \end{split}$$

Il suffit donc de démontrer :

$$\sum_{k=1}^{n} P(X = \pi(k)) \log_2(k) \ge -\sum_{k=1}^{n} P(X = \pi(k)) \log_2(P(X = \pi(k))) - \log_2(1 + \ln(n))$$

soit:

$$\log_2(1 + \ln(n)) \ge \sum_{k=1}^n P(X = \pi(k)) \log_2\left(\frac{1}{kP(X = \pi(k))}\right)$$

Or, d'après la concavité de la fonction \log_2 et puisque $\sum_{k=1}^n P(X=\pi(k))=1$:

$$\sum_{k=1}^{n} P(X = \pi(k)) \log_2 \left(\frac{1}{kP(X = \pi(k))} \right) \le \log_2 \left(\sum_{k=1}^{n} P(X = \pi(k)) \frac{1}{kP(X = \pi(k))} \right)$$

$$= \log_2 \left(\sum_{k=1}^{n} \frac{1}{k} \right)$$

$$\le \log_2 (1 + \ln(n))$$

3. Puisque les variables aléatoires X_1, X_2, \dots sont indépendantes les unes des autres et de même loi :

$$\forall k \in \mathbb{N}^*, \quad H((X_1, ..., X_k)) = kH(X_1)$$

Si on note $N=n^k$ le nombre d'éléments de \mathcal{E}^k , on a, d'après la question précédente :

$$\mathbb{E}(l(\phi_k(X_1,...,X_k))) \ge H((X_1,...,X_k)) - 1 - \log_2(1 + \ln(N))$$

donc:

$$\frac{1}{k}\mathbb{E}(l(\phi_k(X_1, ..., X_k))) \ge \frac{1}{k}(H((X_1, ..., X_k)) - 1 - \log_2(1 + \ln(N)))$$

$$= H(X_1) - \frac{1}{k} - \frac{1}{k}\log_2(1 + k\ln(n))$$

Puisque $\frac{1}{k} + \frac{1}{k} \log_2(1 + k \ln(n)) \to 0$ quand $k \to +\infty$, l'égalité suivante est vraie pour tout k assez grand :

$$\frac{1}{k}\mathbb{E}(l(\phi_k(X_1,...,X_k))) \ge H(X_1) - \epsilon$$

Exercice 4

1. Soit r le réel codant le mot de n lettres.

On décode par récurrence : si n = 0, on renvoie le mot vide.

Supposons qu'on a déjà décodé les m premières lettres, avec m < n. Alors on peut calculer y_k^{inf} et y_k^{sup} pour tout $k \le m$. La m+1-ème lettre est l'unique x_{m+1} tel que $r \in [y_m^{\text{inf}} + a_{x_{m+1}-1}(y_m^{\text{sup}} - y_m^{\text{inf}}); y_m^{\text{inf}} + a_{x_{m+1}}(y_m^{\text{sup}} - y_m^{\text{inf}})]$.

2. Pour toute suite de lettres $x_1...x_n$, on note $[y_n^{\inf}(x_1...x_n), y_n^{\sup}(x_1...x_n)]$ l'intervalle correspondant.

On vérifie par récurrence que sa largeur est exactement $p_{x_1}...p_{x_n}$. Cet intervalle contient donc un réel de la forme $M2^{-m}$ où M est un entier et $m = \lceil -\log_2(p_{x_1}...p_{x_n}) \rceil$.

Puisqu'un réel compris entre 0 et 1 de la forme $M2^{-m}$ se code en m bits, la longueur du code de $x_1...x_n$ est au plus :

$$\lceil -\log_2(p_{x_1}...p_{x_n}) \rceil \le 1 - \sum_{s \le n} \log_2(p_{x_s})$$

On obtient:

$$l_n \le \sum_{x_1, \dots, x_n} p(x_1) \dots p(x_n) \left(1 - \sum_{s \le n} \log_2(p_{x_s}) \right)$$

= $1 - \sum_{s \le n} \sum_{x_s} p_{x_s} \log_2(p_{x_s})$
= $1 + nH(X)$

donc $l_n/n \le H(X) + 1/n$.

- 3. a) $H(X) = -(1 \epsilon) \log_2(1 \epsilon) \epsilon \log_2 \epsilon$
- b) 0 est codé par 0 et 1 est codé par 1.
- c) Un mot de n lettres est toujours codé par un code de longueur n. On a donc $l_n/n = 1$. Pourtant, si ϵ est proche de 0 ou de 1, $H(X) \ll 1$ (car la fonction $x \to x \log_2(x)$ tend vers 0 en x = 0 et en x = 1).

Exercice 5

1.

$$H(X) = -\sum_{k \ge 1} 2^{-k} \log_2 (2^{-k})$$

$$= \sum_{k \ge 1} k 2^{-k}$$

$$= \sum_{k \ge 1} \sum_{s \ge k} 2^{-s}$$

$$= \sum_{k \ge 1} 2^{-k+1}$$

$$= \sum_{k \ge 0} 2^{-k} = 2$$

2. On code le nombre k par le mot 1...10, qui contient (k-1) zéros (c'est-à-dire que 1 est codé par 0, 2 par 10, 3 par 110 etc.).

Le nombre moyen de bits pour un symbole est (puisque le symbole k est codé par k bits) :

$$\sum_{k} P(X = k).k = \sum_{k} k2^{-k} = H(X)$$

Donc le code est optimal.

3. Dans ce cas, les symboles 1, ..., N voient leur code entier envoyé. En revanche, les codes des symboles N+1, N+2, ... sont tronqués : pour un tel symbole, on n'envoie que x=1...1 (N fois le bit 1). On suppose que lorsque le N-uplet reçu est x, on le décode par N+1. Dans ce cas, le nombre de bits moyen est :

$$\sum_{k\geq 1} P(X = k) \min(k, N) = \sum_{k\geq 1} \min(k, N) 2^{-k}$$

$$= \sum_{k=1}^{N} \sum_{s\geq k} 2^{-s}$$

$$= \sum_{k=1}^{N} 2^{-(k-1)}$$

$$= \sum_{k=0}^{N-1} 2^{-k}$$

$$= 2.(1 - 2^{-N})$$

La distance entre le symbole k à transmettre et le symbole décodé est 0 si $k \leq N+1$ et

k-(N+1) si k>N+1. L'erreur quadratique moyenne est donc :

$$\sum_{k \ge N+1} P(X=k)(k-(N+1))^2 = \sum_{k \ge N+1} 2^{-k}(k-(N+1))^2$$

$$= 2^{-(N+1)} \sum_{k \ge 0} k^2 2^{-k}$$

$$= 2^{-(N+1)} \sum_{k \ge 0} (1+3+5+\ldots+(2k-1)) 2^{-k}$$

$$= 2^{-(N+1)} \sum_{k \ge 1} (2k-1) \left(\sum_{s \ge k} 2^{-s}\right)$$

$$= 2^{-(N+1)} \sum_{k \ge 1} (2k-1) 2^{-(k-1)}$$

$$= 2^{-(N+1)} \left(2 \sum_{k \ge 0} k 2^{-k} + \sum_{k \ge 0} 2^{-k}\right)$$

$$= 2^{-(N+1)} (2 \cdot 2 + 2) = 3 \cdot 2^{-N}$$