TD n°13 : Campanato, régularité elliptique et Trudinger

Exercice 1: injection de Sobolev

Soit $u \in W^{1,p}(\mathbb{R}^n)$. On note :

$$u_{x,r} = \frac{1}{|B(x,r)|} \int_{B(x,r)} u$$

1. Montrer que :

$$\int_{B(x,r)} |u(y) - u_{x,r}|^p dy \le Cr^p \int_{B(x,r)} ||\nabla u||^p$$

où C est une constante indépendente de x et r.

[Indication : utiliser l'inégalité de Poincaré-Sobolev.]

2. En utilisant le théorème de Campanato, en déduire que si Ω est un ouvert à bord régulier et si p > n, alors $W^{1,p}(\Omega) \subset \mathcal{C}^{0,\alpha}(\Omega)$ avec $\alpha = 1 - \frac{n}{p}$.

Exercice 2 : régularité elliptique

Soient Ω un ouvert de \mathbb{R}^n et $A \in \mathcal{C}^{0,1}(\Omega, \mathcal{M}_n(\mathbb{R}))$ telle que, pour un certain $\lambda > 0$:

$$\forall x \in \Omega, \xi \in \mathbb{R}^n, \qquad \langle A\xi, \xi \rangle \ge \lambda ||\xi||^2$$

Pour tout $h \in \mathbb{R}^n$, on note $\tau_h u = u(x+h)$ et $\Delta_h u = \frac{u(x+h)-u(x)}{||h||}$. Soient Ω' et Ω'' tels que $\overline{\Omega'} \subset \Omega''$ et $\overline{\Omega''} \subset \Omega$.

1. Rappeler pourquoi, pour $u \in H^1(\Omega)$ et h assez petit :

$$||\tau_h u - u||_{L^2(\Omega'')} \le ||h|| ||\nabla u||_{L^2(\Omega)}$$

2. Soit $f \in L^2(\Omega)$. Soit $u \in H^1(\Omega)$ une solution faible de $-\operatorname{div}(A\nabla u) = f$. Montrer que pour tout h assez petit et $\phi \in H^1(\Omega)$, à support dans Ω'' , on a :

$$\int_{\Omega} \langle (\tau_h A) \nabla (\Delta_h u), \nabla \phi \rangle = \int_{\Omega} (\Delta_h f) \phi - \int_{\Omega} \langle (\Delta_h A) \nabla u, \nabla \phi \rangle$$

3. En s'inspirant de la preuve de l'inégalité de Cacciopoli, montrer que :

$$\int_{\Omega'} ||\nabla \Delta_h u||^2 \le C \int_{\Omega} (u^2 + f^2)$$

[Indication : on pourra utiliser le fait que $\int_{\Omega''} ||\nabla u||^2 \le c \int_{\Omega} (u^2 + f^2)$. Voir le TD 11 pour la démonstration.]

4. En déduire :

$$\int_{\Omega'} ||\nabla^2 u||^2 \le C' \int_{\Omega} (u^2 + f^2)$$

5. On considère maintenant le problème de Dirichlet :

$$\begin{cases} -\operatorname{div}(A\nabla u) &= f \text{ sur } R\\ u &= 0 \text{ sur } \partial R \end{cases}$$

où R est le rectangle $[0;1] \times [-1;1]^{n-1}$. Soit $R' = [0;1/2] \times [-1/2;1/2]^{n-1}$. Montrer que :

$$\int_{R'} ||\nabla^2 u||^2 \le C'' \int_{R} (u^2 + f^2)$$

Exercice 3 : inégalité de Trudinger

On rappelle l'inégalité de Young. Soient $p, q, r \in [1; +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. Alors :

$$\forall f \in L^p(\mathbb{R}^n), g \in L^q(\mathbb{R}^n), \qquad ||f \star g||_r \le ||f||_p ||g||_q$$

1. Soit $u \in H^{n/2}(\mathbb{R}^n)$. Montrer que l'on peut écrire $u = J_{n/2} \star v$ avec $v \in L^2$ et :

$$\hat{J}_{n/2}(\xi) = \frac{1}{(1+||\xi||^2)^{n/4}}$$

2. En étudiant la distribution

$$u \in \mathcal{D}(\mathbb{R}^n - \{0\}) \to \int e^{ix.\xi} \frac{u(x)}{(1+||\xi||^2)^{n/4}} dx d\xi$$

définie par une intégrale oscillante, montrer que $J_{n/2}$ est \mathcal{C}^{∞} sur $\mathbb{R}^n - \{0\}$ et décroît rapidement quand $||x|| \to +\infty$.

3. Montrer que, pour $||x|| \le 1$, on a :

$$|J_{n/2}(x)| \le C||x||^{-n/2}$$

[Indication : on pourra, pour tout $k \in]0; n[$, estimer $\mathcal{F}^{-1}(||\xi||^{-k})$ par homogénéité.]

4. En déduire :

$$||J_{n/2}||_{L^{2-\delta}}^{2-\delta} \le \frac{C_n}{\delta}$$

- 5. Montrer que, pour tout $p \ge 2$, $||u||_{L^p} \le C(2+p)^{1/2+1/p}||u||_{H^{n/2}}$.
- 6. En déduire qu'il existe γ , ne dépendant que de $||u||_{H^{n/2}}$, tel que :

$$\int_{\mathbb{R}^n} (e^{\gamma |u(x)|^2} - 1) dx < +\infty$$