Chapitre 1, exercice 10

1. (a) L'ensemble A est non-vide. En effet, il contient par exemple le réel $2 = \frac{1}{1} + \frac{1}{1}$.

Montrons qu'il est majoré par 2. Il faut montrer que, pour tout $x \in A$, $x \le 2$.

Soit $x \in A$ quelconque. D'après la définition de A, il existe $n, m \in \mathbb{N}^*$ tels que $x = \frac{1}{n} + \frac{1}{m}$. Soient $n, m \in \mathbb{N}^*$ vérifiant cette égalité. Alors, puisque $n \geq 1$ et $m \geq 1$,

$$x = \frac{1}{n} + \frac{1}{m} \le \frac{1}{1} + \frac{1}{1} = 2.$$

On a bien montré que, pour n'importe quel x dans A, $x \leq 2$.

Donc A est majoré par 2.

Montrons maintenant que A est minoré par 0. Soit $x \in A$ quelconque. Soient $n, m \in \mathbb{N}^*$ tels que $x = \frac{1}{n} + \frac{1}{m}$. Puisque n et m sont strictement positifs, $\frac{1}{n}$ et $\frac{1}{m}$ sont également strictement positifs. Donc

$$x = \frac{1}{n} + \frac{1}{m} > 0 + 0 = 0.$$

On a donc montré que, pour tout $x \in A$, x > 0. Donc A est minoré par 0.

Puisque A est non-vide et majoré, il admet une borne supérieure. Puisqu'il est non-vide et minoré, il admet une borne inférieure.

1. (b) On a vu dans la question précédente que 2 était un majorant de A et que 2 était un élément de A. On en déduit que 2 est le plus grand élément de A. La borne supérieure est égale au plus grand élémet, lorsqu'un plus grand élément existe; on a donc

$$\sup(A) = 2.$$

Montrons maintenant que 0 est la borne inférieure de A. On a déjà vu que 0 était un minorant de A. D'après la propriété caractéristique des bornes inférieures, il suffit de montrer que, pour tout $\epsilon > 0$, il existe $x \in A$ tel que $x < \epsilon$.

Soit $\epsilon > 0$ quelconque. Montrons qu'il existe un élément x de A tel que $x < \epsilon$.

D'après la définition de A, chercher $x \in A$ tel que $x < \epsilon$ revient à chercher $n, m \in \mathbb{N}^*$ tels que $\frac{1}{n} + \frac{1}{m} < \epsilon$. On remarque que, pour tous $n, m \in \mathbb{N}^*$, si $\frac{1}{n} < \frac{\epsilon}{2}$ et $\frac{1}{m} < \frac{\epsilon}{2}$, alors on a aussi $\frac{1}{n} + \frac{1}{m} < \epsilon$. On va donc simplement chercher $n, m \in \mathbb{N}^*$ tels que $\frac{1}{n} < \frac{\epsilon}{2}$ et $\frac{1}{m} < \frac{\epsilon}{2}$. Soit $n \in \mathbb{N}^*$ tel que $n > \frac{2}{\epsilon}$. Un tel n existe d'après la propriété d'Archimède. De même, soit

 $m \in \mathbb{N}^*$ tel que $m > \frac{2}{\epsilon}$. On a bien

$$\frac{1}{n} < \frac{\epsilon}{2}$$
 et $\frac{1}{m} < \frac{\epsilon}{2}$.

On pose $x = \frac{1}{n} + \frac{1}{m}$. C'est un élément de A et

$$x = \frac{1}{n} + \frac{1}{m} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

On a donc bien réussi à trouver $x \in A$ tel que $x < \epsilon$.

Ainsi, les deux propriétés du théorème de caractérisation des bornes inférieures sont vérifiées par 0. Donc $\inf(A) = 0$.

2. L'ensemble B est non-vide. En effet, il contient par exemple $0 = \frac{1}{1} - \frac{1}{1}$.

Montrons que B est majoré par 1. Soit $x \in B$ quelconque. Soient $n, m \in \mathbb{N}^*$ tels que $\frac{1}{n} - \frac{1}{m} = x$. Puisque $n \ge 1, \frac{1}{n} \le 1$. De plus, m > 0 donc $\frac{1}{m} > 0$ et $-\frac{1}{m} < 0$. Ainsi,

$$x = \frac{1}{n} - \frac{1}{m} < 1 + 0 = 1.$$

On a donc montré que, pour tout $x \in B$, x < 1. Cela implique que 1 est un majorant de B.

Une démonstration presque identique permet de montrer que -1 est un minorant de B.

L'ensemble B est non-vide et majoré; il admet donc une borne supérieure. Il est non-vide et minoré; il admet donc une borne inférieure.

Montrons que $\sup(B)=1$. On a déjà vu que 1 était un majorant. D'après le théorème de caractérisation des bornes inférieures, il suffit donc de montrer que, pour tout $\epsilon>0$, il existe $x\in B$ tel que $x>1-\epsilon$.

Soit $\epsilon > 0$ fixé.

Posons n=1. Soit $m\in\mathbb{N}^*$ tel que $m>\frac{1}{\epsilon}$. Un tel m existe d'après la propriété d'Archimède. Avec cette définition de m, on a $\frac{1}{m}<\epsilon$, donc $-\frac{1}{m}>-\epsilon$.

Soit $x = \frac{1}{n} - \frac{1}{m}$. C'est un élément de B. De plus,

$$x = \frac{1}{n} - \frac{1}{m} = 1 - \frac{1}{m} > 1 + (-\epsilon) = 1 - \epsilon.$$

On a donc bien montré qu'il existait $x \in B$ tel que $x > 1 - \epsilon$.

Ainsi, $\sup(B) = 1$.

Une démonstration presque identique permet de montrer que $\inf(B) = -1$.