Corrigé partiel des exercices 3.6, 3.7 et 3.8

[Remarque: dans tout l'exercice, j'utilise la notation « $f \to \alpha$ » et non « $\lim f = \alpha$ » pour indiquer qu'une fonction f converge vers une certaine limite α en un point. En effet, la notation avec la flèche signifie (au moins selon mes propres conventions) « f admet une limite et cette limite vaut α » tandis que la notation avec lim signifie seulement « la limite de f vaut α ». Lorsqu'on n'a pas précédemment démontré l'existence de la limite, il est donc plus rigoureux d'utiliser la première notation.]

Exercice 3.6

d) Définissons $f: x \in \mathbb{R}_+^* \to x^{1/x} \in \mathbb{R}$ et commençons par étudier le comportement de cette fonction en 0^+ .

Pour tout x > 0, $f(x) = \exp(\ln(x)/x)$. Or

$$\ln(x) \xrightarrow{x \to 0^+} -\infty$$
 et $\frac{1}{x} \xrightarrow{x \to 0^+} +\infty$.

Par produit de limites,

$$\frac{\ln(x)}{x} \stackrel{x \to 0^+}{\longrightarrow} -\infty.$$

Comme $\exp \stackrel{-\infty}{\rightarrow} 0$, on en déduit par composition de limites que

$$f(x) = \exp\left(\frac{\ln(x)}{x}\right) \xrightarrow{x \to 0^+} 0.$$

La fonction à étudier est la composée $f\circ |.|.$ Puisque $|x|\xrightarrow{x\to 0} 0^+,$ on peut composer les limites :

$$|x|^{1/|x|} \xrightarrow{x \to 0} 0.$$

e) Définissons $f: x \in \mathbb{R}_+^* \to \frac{(\ln(x))^{99}}{\sqrt{x}} \in \mathbb{R}$ et commençons par étudier le comportement de cette fonction en 0^+ .

Puisque $\ln(x) \stackrel{x \to 0^+}{\longrightarrow} -\infty$,

$$(\ln(x))^{99} \stackrel{x \to 0^+}{\longrightarrow} -\infty.$$

De plus, $\frac{1}{\sqrt{x}} \xrightarrow{x \to 0^+} +\infty$ donc, par produit de limites,

$$f(x) \stackrel{x \to 0^+}{\longrightarrow} -\infty.$$

On en déduit en composant avec |.| comme à la question précédente que

$$\frac{(\ln(|x|))^{99}}{\sqrt{|x|}} \stackrel{x \to 0}{\longrightarrow} -\infty.$$

Exercice 3.7

a) Lorsque x < 1, x - 1 < 0 donc $(x - 1)^{x - 1}$ n'est pas défini. On va donc se contenter de calculer la limite en 1^+ .

Posons $f: x \in \mathbb{R}^+ \to x^x$ et $g: x \in [1; +\infty[\to x-1]]$. On a vu en corrigeant la question b) de l'exercice 3.6 que

$$f(x) \stackrel{x \to 0^+}{\longrightarrow} 1.$$

Puisque $g(x) \xrightarrow{x \to 1^+} 0^+$, on peut composer les limites :

$$(x-1)^{x-1} = f \circ g(x) \xrightarrow{x \to 1^+} 1.$$

b) Lorsque x tend vers 1^+ ou 1^- , $x^3 - 3x^2 + 3x - 1$ tend vers 0. La limite, si elle existe, est donc a priori une forme indéterminée ($<\frac{1}{0}>$). Pour lever l'indétermination, il faut étudier le signe de $x^3 - 3x^2 + 3x - 1$ autour de 1; le plus simple pour cela est de mettre (x - 1) en facteur :

$$\forall x \in \mathbb{R}, \quad x^3 - 3x^2 + 3x - 1 = (x - 1)(x^2 - 2x + 1) = (x - 1)^3.$$

Ainsi,

$$x^{3} - 3x^{2} + 3x - 1 \xrightarrow{x \to 1^{-}} (0^{-})^{3} = 0^{-}$$

$$\text{donc} \quad \frac{1}{x^{3} - 3x^{2} + 3x - 1} \xrightarrow{x \to 1^{-}} \ll \frac{1}{0^{-}} \gg = -\infty;$$

$$x^{3} - 3x^{2} + 3x - 1 \xrightarrow{x \to 1^{+}} (0^{+})^{3} = 0^{+}$$

$$\text{donc} \quad \frac{1}{x^{3} - 3x^{2} + 3x - 1} \xrightarrow{x \to 1^{+}} \ll \frac{1}{0^{+}} \gg = +\infty.$$

e) Commençons par étudier le comportement en 1⁺ et 1⁻ de $x \to \frac{\sin(5(x-1))}{(x-1)^2}$. Nous allons pour cela utiliser la propriété suivante :

$$\frac{\sin(x)}{x} \stackrel{x \to 0}{\longrightarrow} 1.$$

[Cette propriété est souvent utile ; je vous conseille de la retenir. Si on admet le fait que sin est une fonction dérivable dont la dérivée est cos, on peut la démontrer ainsi :

$$\frac{\sin(x)}{x} = \frac{\sin(x) - \sin(0)}{x - 0} \xrightarrow{x \to 0} (\sin)'(0) = \cos(0) = 1.$$

En composant la fonction $x \to \frac{\sin(x)}{x}$ et la fonction $x \to 5(x-1)$, on déduit de cette propriété que

$$\frac{\sin(5(x-1))}{5(x-1)} \xrightarrow{x \to 1} 1$$

$$\operatorname{donc} \frac{\sin(5(x-1))}{(x-1)^2} = \frac{5}{x-1} \frac{\sin(5(x-1))}{5(x-1)} \xrightarrow{x \to 1^-} -\infty$$

$$\operatorname{et} \frac{\sin(5(x-1))}{(x-1)^2} = \frac{5}{x-1} \frac{\sin(5(x-1))}{5(x-1)} \xrightarrow{x \to 1^+} +\infty.$$

On conclut par composition de limites, en utilisant le fait que exp tend vers 0 en $-\infty$ et $+\infty$ en $+\infty$:

$$\exp\left(\frac{\sin(5(x-1))}{(x-1)^2}\right) \xrightarrow{x\to 1^-} 0;$$
$$\exp\left(\frac{\sin(5(x-1))}{(x-1)^2}\right) \xrightarrow{x\to 1^+} +\infty.$$

Exercice 3.8

b) Définissons $f: x \to \frac{x^4+x-1}{x^2+1}$. Puisqu'on doit étudier le comportement de la fonction $f \circ \tan$ et puisque tan tend vers $+\infty$ en $\frac{\pi}{2}$ et vers $-\infty$ en $\frac{\pi}{2}$, on

peut commencer par étudier le comportement de f en $+\infty$ et $-\infty$.

$$f(x) = \frac{x^4(1+x^{-3}-x^{-4})}{x^2(1+x^{-2})} = x^2 \left(\frac{1+x^{-3}-x^{-4}}{1+x^{-2}}\right)$$

$$\xrightarrow{x \to +\infty} \ll (+\infty)^2 \frac{1+0-0}{1+0} \gg = +\infty;$$

$$f(x) = \frac{x^4(1+x^{-3}-x^{-4})}{x^2(1+x^{-2})} = x^2 \left(\frac{1+x^{-3}-x^{-4}}{1+x^{-2}}\right)$$

$$\xrightarrow{x \to -\infty} \ll (-\infty)^2 \frac{1+0-0}{1+0} \gg = +\infty.$$

Par composition de limites,

$$\frac{\tan^4(x) + \tan(x) - 1}{\tan^2(x) + 1} \xrightarrow{x \to \frac{\pi}{2}^-} +\infty;$$
$$\frac{\tan^4(x) + \tan(x) - 1}{\tan^2(x) + 1} \xrightarrow{x \to \frac{\pi}{2}^+} +\infty.$$

On a donc

$$\frac{\tan^4(x) + \tan(x) - 1}{\tan^2(x) + 1} \xrightarrow{x \to \frac{\pi}{2}} +\infty.$$

c) La fonction arcos est continue (et définie en 1) donc

$$arcos(x) \xrightarrow{x \to 1} arcos(1) = 0.$$

De plus, arcos est strictement décroissante donc, pour tout $x \in [-1; 1[$, $\arccos(x) > \arccos(1) = 0$, ce dont on déduit

$$arcos(x) \xrightarrow[x \neq 1]{x \to 1} 0^+.$$

Ainsi,

$$\frac{1}{\arccos(x)} \stackrel{x \to 1}{\longrightarrow} +\infty$$

et, par composition de limites,

$$e^{\frac{1}{\arccos(x)}} = +\infty.$$